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Abstract. In this paper, we introduce the class of disturbed convex functions defined by means of distance
perturbations in two dimensions on co-ordinates. Some quantum trapezoidal estimations are obtained for
functions having two dimensional distance-disturbed convexity properties. Refined bounds of the quantum
integrals of distance-disturbed convex functions on coordinates are deduced by using the rectangular finite
elements technique. These approximations are as best as possible from the sharpness point of view. The
sharpness of few results from the literature follows as consequence of the new results in this paper.

1. Introduction

The impressive range of applications of the convexity properties for sets and functions resulted in many
attempts to define similar concepts, more general ones, that preserve as many properties as possible. A
thorough discussion on generalized convexity properties for sets is in [4], counting more than one hundred
of convexities with applications in discrete optimization, in picture processing and image understanding.
The generalized convexities for sets are the framework for generalized convexities for functions. The idea
of comparing the graph of the function with some other curve, altering somehow the straight-line segment,
lead both to strengthening ([2], [21]) and to weakening ([3], [18], [8], [19]) the convexity.
Let us denote by R,Q,Z andN, respectively, the set of all real, rational, integer and natural numbers. Let
us consider the numbers a, b, c, d ∈ [0,+∞) such as a < b and c < d, and a rectangle D = [a, b]× [c, d]. By L1(D)
we denote the set of all Lebesque integrable functions over the rectangle D.
It is well known that a function f : [a, b]→ R is convex on [a, b] if it is a solution of the following functional
inequation:

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y),∀x, y ∈ [a, b], t ∈ [0, 1]. (1)

The converse inequality defines the concave functions. The functions that make sharp the above inequality
are called affine functions. It is well-known that a function is convex if and only if the following inequality,
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known as Hermite-Hadamard inequality (named after its authors, [9] and [14]):

f
(p + q

2

)
≤

1
q − p

∫ q

p
f (x)dx ≤

f (p) + f (q)
2

, (2)

holds whenever p, q ∈ [a, b] and p < q. The reverse inequality characterizes the concave functions. The
inequality is sharp. Each generalization of convexity for functions is accompanied by research on similar
type of integral inequalities [6], [20].

Let σ ∈ R and X a linear normed space. Let A ⊆ X be a convex set and suppose that d : X × X → R is a
distance on X (it may be defined by means of the norm of the space). Consider a function f : A → R. The
following inequation is frequent in the last two decades mathematical literature ([2], [10]), together with
generalized versions ([1], [3], [11], [12], [13]):

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y) − σt(1 − t)d2(x, y), (3)

for all x, y ∈ A and for all t ∈ [0, 1].

Definition 1.1. A function f : A → R is said to be (σ, d)-disturbed convex (or distance-disturbed convex with
modulus σ) if verifies (3) for all x, y ∈ A and for all t ∈ [0, 1].

Remark 1.2. If the inequality in (3) is strict then f is said to be strict (σ, d)-disturbed convex. The (σ, d)-disturbed
convexity is an unifying concept that includes more types of convexities described by inequalities of type (3):

• If σ > 0 then a solution of inequation (3) is called strongly convex function (see, for example, [2]). The concept
of strong convexity have been introduced by Polyak [21] in connection with solving some extremum problems
with applications in mathematical economics and in optimization.

• If σ = 0 in (4), then inequation (3) reduces to the definition (1) of the convex functions.

• If σ < 0 then a solution of inequation (3) is called weak (σ, d)-convex. This concept unifies more types of weak
convexity, as in [2] and [10], leading to the generalized weak convexity properties from [1], [3], [11], [12], [13].

If X = R and A = I ⊆ R is an interval then (3) becomes

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y) − σt(1 − t)(x − y)2, (4)

for all x, y ∈ A and for all t ∈ [0, 1].
In this paper we extend the properties of (σ, d)-disturbed convexity to real functions of two real variables,

working on coordinates. Hermite-Hadamard type inequalities are deduced using the classic Lebesque
integration in section 2. Few elements of quantum integral calculus are mentioned in Section 3 and some
new auxiliary calculus identities are deduced in this context. The quantum calculus is used in mathematics,
in particular in mathematical inequalities, since it provides good approximation of the calculus (see [7, 17]),
without the use of limits. The quantum calculus has been initiated by Euler (1707-1783), but it formally
developed in early twentieth century starting with the work of F. H. Jackson [15]. In quantum calculus, one
establishes q-analogues of mathematical objects, which can be recaptured as q→ 1. Detailed presentation of
quantum calculus are in [7], [17]. Section 3 contains estimates of the quantum q-integral of a function, which
is (σ, d)-disturbed convex on co-ordinates. All the inequalities derived in Sections 2 and 3 are sharp. These
quantum integral estimates have applications in many domains of mathematics (orthogonal polynomials,
basic hypergeometric functions [17], [23]) science (quantum theory, mechanics, theory of relativity) and
life (economics, statistics, information processing). We derive refined bounds of the quantum integrals of
distance-disturbed convex functions on coordinates by splitting the integration domain into rectangular
finite elements.
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2. Distance-disturbed convexity on coordinates and Hermite-Hadamard type inequalities

In this paper we introduce and study the co-ordinated distance-disturbed convexity for two variables
functions defined on rectangles. Some integral inequalities of Hermite-Hadamard type are derived for two
variables functions having distance-disturbed convexities on co-ordinates. Let A ⊆ R2 be a convex set. By
L1(A) one denotes the set of all Lebesque integrable over A. We consider functions f : A→ R, restricting the
research to particular rectangles D = [a, b] × [c, d] ⊆ A. Denote by Ax = {y|(x, y) ∈ A} and Ay = {x|(x, y) ∈ A}.
Define, as usual, the partial mappings fy : Ay → R, fy(u) = f (u, y) and fx : Ax → R, fx(v) = f (x, v). Let us
chose the fixed numbers σ1, σ2 ∈ R.

Definition 2.1. A function f : A→ R is said to be co-ordinated distance-disturbed (σ1, σ2)-convex on A if

f (tx1 + (1 − t)x2, τy1 + (1 − τ)y2) + σ1t(1 − t)(x1 − x2)2 + σ2τ(1 − τ)(y1 − y2)2

≤ tτ f (x1, y1) + t(1 − τ) f (x1, y2) + τ(1 − t) f (x2, y1) + (1 − t)(1 − τ) f (x2, y2), (5)

whenever (x1, y1), (x2, y2) ∈ A and t, τ ∈ [0, 1].

The corresponding concept of co-ordinated distance-disturbed concavity is defined by reversing the
inequality in (5).

Proposition 2.2. A function f : A → R is co-ordinated distance-disturbed (σ1, σ2)-convex on A if and only if the
partial function fy is distance-disturbed convex with modulus σ1 for all y ∈ Ax and fx is distance-disturbed convex
with modulus σ2 for all x ∈ Ay.

Proof. First, let us suppose that f is co-ordinated distance-disturbed (σ1, σ2)-convex on A. Let us consider
two points (x1, y), (x2, y) ∈ A and t ∈ [0, 1]. By (5) we can write

fy(tx1 + (1 − t)x2)

= f (t(x1, y) + (1 − t)(x2, y)) + σ1t(1 − t)(x1 − x2)2

≤ t2 f (x1, y) + t(1 − t) f (x1, y) + t(1 − t) f (x2, y) + (1 − t)2 f (x2, y)
= t f (x1, y) + (1 − t) f (x2, y) = t fy(x1) + (1 − t) fy(x2),

which means that fy is distance-disturbed convex with modulus σ1. One can prove the distance-disturbed
convexity with modulus σ2 of fx in the same manner.
Now, let us suppose that the the partial function fy is distance-disturbed convex with modulus σ1 for all
y ∈ Ax and fx is distance-disturbed convex with modulus σ2 for all x ∈ Ay. Then, if (x1, y1), (x2, y2) ∈ A and
t, τ ∈ [0, 1] one has

f (tx1 + (1 − t)x2, τy1 + (1 − τ)y2) + σ1t(1 − t)(x1 − x2)2 + σ2τ(1 − τ)(y1 − y2)2

= fτy1+(1−τ)y2 (tx1 + (1 − t)x2) + σ1t(1 − t)(x1 − x2)2 + σ2τ(1 − τ)(y1 − y2)2

≤ t fτy1+(1−τ)y2 (x1) + (1 − t) fty1+(1−t)y2 (x2) + σ2τ(1 − τ)(y1 − y2)2

= t f (x1, τy1 + (1 − τ)y2) + (1 − t) f (x2, ty1 + (1 − t)y2) + σ2τ(1 − τ)(y1 − y2)2

≤ tτ f (x1, y1) + t(1 − τ) f (x1, y2) + τ(1 − t) f (x2, y1) + (1 − t)(1 − τ) f (x2, y2),

which means that f is co-ordinated distance-disturbed (σ1, σ2)-convex on A.

Remark 2.3. Suppose that σ1 = σ2 = σ. If f is co-ordinated distance-disturbed (σ1, σ2)-convex on A and d is the
Euclidean distance in R2 then from (5) one obtains

f (t(x1, y1) + (1 − t)(x2, y2)) + σt(1 − t)d2((x1, y1), (x2, y2))

≤ t2 f (x1, y1) + t(1 − t) f (x1, y2) + t(1 − t) f (x2, y1) + (1 − t)2 f (x2, y2), (6)

whenever (x1, y1), (x2, y2) ∈ A and t ∈ [0, 1].
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Remark 2.4. Definition 2.1 includes many possible cases of surfaces that have either some strong or some weak type
of convexity on directions parallel to the coordinates axes, as follows:

1. σ1 > 0 and σ2 > 0 defines the (strong, strong) (σ1, σ2)-convex functions on coordinates;
2. (σ1 > 0 and σ2 < 0) (or (σ1 < 0 and σ2 > 0)) defines the (strong, weak)(or(weak, strong) respectively)

(σ1, σ2)-convex functions on coordinates;
3. σ1 < 0 and σ2 < 0 defines the (weak, weak) (σ1, σ2)-convex functions on coordinates;
4. (σ1 > 0 and σ2 = 0) (or (σ1 = 0 and σ2 > 0)) defines the (strong, classic)(or(classic, strong) respectively)

(σ1, σ2)-convex functions on coordinates;
5. (σ1 < 0 and σ2 = 0) (or (σ1 = 0 and σ2 < 0)) defines the (weak, classic)(or(classic, weak) respectively)

(σ1, σ2)-convex functions on coordinates;
6. σ1 = 0 and σ2 = 0 defines the convex functions on coordinates as in [5].

Proposition 2.5. Suppose that σ1 ∈ R and σ2 ∈ R. Let us consider two bounded functions u : [a, b] → R and
v : [c, d]→ R such as u is (σ1, d)-disturbed convex and v is nonnegative and (σ2, d)-disturbed convex. Then there are
two real numbers σ3 and σ4 such that the function f : [a, b]× [c, d]→ R defined by f (x, y) = u(x)v(y) is co-ordinated
distance-disturbed (σ3, σ4)-convex on D = [a, b] × [c, d].

Proof. Denote mu = inf{u(x)|x ∈ [a, b]}, mv = inf{v(y)|y ∈ [c, d]}, Mu = sup{u(x)|x ∈ [a, b]} and Mv =
sup{v(y)|y ∈ [c, d]}. Since u is (σ1, d)-disturbed convex and v is nonnegative then for x1, x2 ∈ [a, b], y ∈ [c, d]
and t ∈ [0, 1] one has

u(tx1 + (1 − t)x2)v(y) + σ1t(1 − t)(x1 − x2)2v(y) ≤ tu(x1)v(y) + (1 − t)u(x2)v(y).

Let y1, y2 ∈ [c, d], τ ∈ [0, 1] and take y = τy1 + (1 − τ)y2. Then, due to the (σ2, d)-disturbed convexity of
function v one has

u(tx1 + (1 − t)x2)v(τy1 + (1 − τ)y2) + σ1t(1 − t)(x1 − x2)2v(y)

≤ tu(x1)[τv(y1) + (1 − τ)v(y2) − σ2τ(1 − τ)(y1 − y2)2]

+ (1 − t)v(y2)[τv(y1) + (1 − τ)v(y2) − σ2τ(1 − τ)(y1 − y2)2]
= tτu(x1)v(y1) + t(1 − τ)u(x1)v(y2)

+ τ(1 − t)u(x2)v(y1) + (1 − t)(1 − τ)u(x2)v(y2) − σ2τ(1 − τ)[tu(x1) + (1 − t)u(x2)](y1 − y2)2.

Now we analyze each case, according to Remark 2.4 as follows:
1. Suppose that σ1 > 0 and σ2 > 0. Than taking σ3 = σ1mv and σ4 = σ2mu one gets that function f = uv is

co-ordinated distance-disturbed (σ3, σ4)-convex on D.
2. Suppose that σ1 > 0 and σ2 < 0. Than taking σ3 = σ1mv and σ4 = σ2Mu one gets that function f = uv is

co-ordinated distance-disturbed (σ3, σ4)-convex on D.
3. Suppose that σ1 < 0 and σ2 < 0. Than taking σ3 = σ1Mv and σ4 = σ2Mu one gets that function f = uv

is co-ordinated distance-disturbed (σ3, σ4)-convex on D.
4. In all the other existing cases one proceeds in the same manner and get the required result.

Remark 2.6. The previous property stays valid if the hypothesis changes by requiring that function u : [a, b] → R
is a non-negative, bounded and (σ1, d)-disturbed convex and function v is bounded and (σ2, d)-disturbed convex.

Theorem 2.7. If function f : A→ R is co-ordinated distance-disturbed (σ1, σ2)-convex on A and f ∈ L1(A) then

f
(

a + b
2
,

c + d
2

)
+

1
12

[
σ1(b − a)2 + σ2(d − c)2

]
≤

1
(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y)dxdy

≤
1
4
[

f (a, c) + f (a, d) + f (b, c) + f (b, d)
]
−

1
6

[
σ1(b − a)2 + σ2(d − c)2

]
, (7)

whenever a, b, c, d ∈ R, a < b, c < d and D = [a, b] × [c, d] ⊆ A.



G. Cristescu, M. U. Awan, M. Găianu / Filomat 33:3 (2019), 825–836 829

Proof. Let us remark that

f (x, y) = fx(y) = fy(x),∀x, y ∈ A. (8)

To prove the lower bound, one start by using Proposition 2.2, which states that the partial function fy is
distance-disturbed convex with modulus σ1 under the hypothesis of the theorem. It means that, for every
y ∈ [c, d], the following inequality

fy

(x1 + x2

2

)
+
σ1

4
(x1 − x2)2

≤
fy(x1) + fy(x2)

2

holds whenever x1, x2 ∈ [a, b]. Consider x1 = ta + (1 − t)b and x2 = (1 − t)a + tb, implying that x1 + x2 = a + b,
x1 − x2 = (1 − 2t)(b − a) and

fy

(
a + b

2

)
+
σ1(b − a)2

4
(1 − 2t)2

≤
fy(ta + (1 − t)b) + fy((1 − t)a + tb)

2
. (9)

Integrate this inequality with respect to t over [0, 1] and get

fy

(
a + b

2

)
+
σ1(b − a)2

12
≤

1
b − a

∫ b

a
fy(x)dx. (10)

In a similar manner one deduces

fx

(
c + d

2

)
+
σ2(d − c)2

12
≤

1
d − c

∫ d

c
fx(y)dy.

Taking x = a+b
2 and using (8) one obtains

f a+b
2

(
c + d

2

)
+
σ2(d − c)2

12
≤

1
d − c

∫ d

c
f a+b

2
(y)dy

=
1

d − c

∫ d

c
f
(

a + b
2
, y

)
dy =

1
d − c

∫ d

c
fy

(
a + b

2

)
dy.

Introducing the evaluation from (10) under the right side integral one gets

f a+b
2

(
c + d

2

)
+
σ2(d − c)2

12
≤

1
d − c

∫ d

c
fy

(
a + b

2

)
dy

≤
1

d − c

∫ d

c

[
1

b − a

∫ b

a
f (x, y)dx −

σ1(b − a)2

12

]
dy

=
1

(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y)dxdy −

σ1(b − a)2

12
.

After arranging the last inequality the proof of the lower bound of (7) is complete.
To prove the upper bound of (7), one starts by the distance-disturbed convexity of fy and write the following
inequalities:

fy(ta + (1 − t)b) + σ1t(1 − t)(b − a)2
≤ t fy(a) + (1 − t) fy(b),

fy((1 − t)a + tb) + σ1t(1 − t)(b − a)2
≤ (1 − t) fy(a) + t fy(b).

The sum of these two inequalities is:

fy(ta + (1 − t)b) + fy((1 − t)a + tb) + 2σ1t(1 − t)(b − a)2
≤ fy(a) + fy(b). (11)
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Integrating both sides of this inequality with respect to t over [0, 1] and changing the variables as usual one
gets

1
b − a

∫ b

a
fy(x)dx +

σ1(b − a)2

6
≤

fy(a) + fy(b)
2

. (12)

In a similar manner one obtains

1
d − c

∫ d

c
fx(y)dy +

σ2(d − c)2

6
≤

fx(c) + fx(d)
2

. (13)

Integrate (12) with respect to y over [c, d]:

1
b − a

∫ d

c

∫ b

a
fy(x)dxdy +

σ1(b − a)2(d − c)
6

≤
1
2

∫ d

c

[
fy(a) + fy(b)

]
dy.

By (8) this inequality becomes

1
b − a

∫ d

c

∫ b

a
f (x, y)dxdy +

σ1(b − a)2(d − c)
6

≤
1
2

∫ d

c

[
fy(a) + fy(b)

]
dy. (14)

Now, from (13), by (8), we can write∫ d

c
fa(y)dy ≤ (d − c)

fa(c) + fa(d)
2

−
σ2(d − c)3

6
,

∫ d

c
fb(y)dy ≤ (d − c)

fb(c) + fb(d)
2

−
σ2(d − c)3

6
.

Now we use these inequalities, introducing them into the right side of (14) to increase it. Then we use (8)
once again, writing

1
b − a

∫ d

c

∫ b

a
f (x, y)dxdy +

σ1(b − a)2(d − c)
6

≤
d − c

2

[
f (a, c) + f (a, d) + f (b, c) + f (b, d)

2
−

2σ2(d − c)2

6

]
dy.

Dividing this inequality by (d−c) and conveniently arranging it one completes the proof of the theorem.

Remark 2.8. The inequality (7) is sharp. To prove that one can consider the following example. Take σ1 = σ2 = 0,
[a, b] = [c, d] = [0, 1] so D = [0, 1]2 and consider f : D → R defined by f (x, y) = xy. In this case f is co-ordinated
distance-disturbed (0, 0) convex and continuous on D. In this case (7) becomes 1

4 ≤
1
4 ≤

1
4 , which proves the sharpness

of inequality (7).

Remark 2.9. If we take σ1 = σ2 = 0 in (7) then inequality (7) becomes

f
(

a + b
2
,

c + d
2

)
≤

1
(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y)dxdy ≤

f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

,

which is Theorem 1 from [5]. The previous remark shows that this inequality is sharp too.
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3. Quantum integral inequalities for co-ordinated distance-disturbed convex functions

We now recall some preliminary details of quantum calculus on finite intervals. Let J = [a, b] ⊆ R be an
interval and 0 < q < 1 be a constant. The q-derivative of a function f : J → R at a point x ∈ J on [a, b] is
defined as follows.

Definition 3.1 ([22, 23]). Let f : J → R be a continuous function and let x ∈ J. Then q-derivative of f on J at x is
defined as

aDq f (x) =
f (x) − f (qx + (1 − q)a)

(1 − q)(x − a)
, x , a. (15)

It is obvious that aDq f (a) = lim
x→a

aDq f (x).

A function f is q-differentiable on J if aDq f (x) exists for all x ∈ J. Also if a = 0, then 0Dq f = Dq f , where Dq is
the q-derivative of the function f [7, 17] defined as

Dq f (x) =
f (x) − f (qx)

(1 − q)x
.

Definition 3.2 ([22, 23]). Let f : J→ R be a continuous function. A second-order q-derivative on J, which is denoted
as aD2

q f , provided aDq f is q-differentiable on J is defined as aD2
q f = aDq(aDq f ) : J → R. Similarly, higher order

q-derivative on J is defined by aDn
q f =: J→ R.

The q-integral is defined as follows:

Definition 3.3 ([22, 23]). Let f : I ⊂ R→ R be a continuous function. Then q-integral on I is defined as

x∫
a

f (t)adqt = (1 − q)(x − a)
∞∑

n=0

qn f (qnx + (1 − qn)a), (16)

for x ∈ J.

This concept can be viewed as the Riemann type of q-integral (or q-antiderivative [17]). If a = 0 in (1.3), then
we have the classical q-integral, that is

x∫
0

f (t)0dqt = (1 − q)x
∞∑

n=0

qn f (qnx), x ∈ [0,∞).

The quantum calculus is didactically presented in [7] and [17]. Useful quantum differentiation and integra-
tion formulas are derived in [22] and [23]. The following properties are necessary tools in the proofs of the
main results in this section.

Theorem 3.4 ([22, 23]). Let f : I→ R be a continuous function, then

1. aDq

x∫
a

f (t) adqt = f (x)

2.
x∫

c
aDq f (t)adqt = f (x) − f (c) for x ∈ (c, x).

Lemma 3.5. If j ∈N, 0 < q < 1, a, b ∈ R, a < b then∫ b

a
x j

adqx = (1 − q)(b − a)
j∑

k=0

1
1 − q j−k+1

Ck
j(b − a) j−kak, (17)

where by Ck
j we denote the combinations of k elements taken out of a set of j elements.
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Proof. We use Newton’s binomial formula

(u + v) j =

j∑
k=0

Ck
ju

j−kvk,

to compute the required q-integral as follows:∫ b

a
x j

adqx = (1 − q)(b − a)
∞∑

n=0

qn [
qnb + (1 − qn)a

] j

= (1 − q)(b − a)
∞∑

n=0

qn [
qn(b − a) + a

] j

= (1 − q)(b − a)
∞∑

n=0

qn

 j∑
k=0

Ck
jq

n( j−k)(b − a) j−kak

 ,
which is convergent to (17).

Corollary 3.6. If 0 < q < 1, a, b ∈ R, a < b then∫ b

a
adqx = b − a,∫ b

a
x adqx = (1 − q)(b − a)

(
b − a
1 − q2 +

a
1 − q

)
,∫ b

a
x2

adqx = (1 − q)(b − a)
(

(b − a)2

1 − q3 +
2a(b − a)

1 − q2 +
a2

1 − q

)
.

Suppose now that 0 < q < 1.

Theorem 3.7. If function f : A → R is co-ordinated distance-disturbed (σ1, σ2)-convex on A, if f is q-integrable
both with respect to x and with respect to y then

f
(

a + b
2
,

c + d
2

)
+

Q(q)
4

[
σ1(b − a)2 + σ2(d − c)2

]
≤

1
(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y) adqx cdqy

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
−

1 −Q(q)
4

{
σ1(b − a)2 + σ2(d − c)2

}
, (18)

whenever a, b, c, d ∈ R, a < b, c < d and D = [a, b] × [c, d] ⊆ A. Here

Q(q) = 1 −
4

1 + q
+

4
1 + q + q2 , (19)

for q ∈ (0, 1).

Proof. In order to prove the lower bound we start as in the proof of Theorem 2.7 and q-integrate inequality
(9) over [0, 1] with respect to t, getting

fy

(
a + b

2

)
+
σ1(b − a)2

4

(
1 −

4
1 + q

+
4

1 + q + q2

)
≤

1
b − a

∫ b

a
fy(x) adqx. (20)
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In a similar manner one deduces

fx

(
c + d

2

)
+
σ2(d − c)2

4

(
1 −

4
1 + q

+
4

1 + q + q2

)
≤

1
d − c

∫ d

c
fx(y) cdqy.

As above, taking x = a+b
2 and using (8) one gets

f a+b
2

(
c + d

2

)
+
σ2(d − c)2

4
Q(q)

≤
1

d − c

∫ d

c
f a+b

2
(y) cdqy

=
1

d − c

∫ d

c
f
(

a + b
2
, y

)
cdqy =

1
d − c

∫ d

c
fy

(
a + b

2

)
cdqy.

Introduce the evaluation from (20) under the right side integral and compute as follows

f a+b
2

(
c + d

2

)
+
σ2(d − c)2

4
Q(q)

≤
1

d − c

∫ d

c

[
1

b − a

∫ b

a
f (x, y) adqx −

σ1(b − a)2

4
Q(q)

]
cdqy

=
1

(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y) adqx cdqy −

σ1(b − a)2

4
Q(q).

After arranging the last inequality and using (8), the proof of the lower bound of (18) is complete.
To prove the upper bound of (18), we start again as in the proof of Theorem 2.7 and q-integrate inequality
(9) over [0, 1] with respect to t. After the common change of variable by using (19) one deduces

2
b − a

∫ b

a
fy(x) adqx + 2(b − a)2σ1

∫ 1

0
(t − t2) 0dqt ≤ fy(a) + fy(b),

1
b − a

∫ b

a
fy(x) adqx + σ1(b − a)2 1 −Q(q)

4
≤

fy(a) + fy(b)
2

. (21)

In a similar manner one obtains

1
d − c

∫ d

c
fx(y) cdqy + σ2(d − c)2 1 −Q(q)

4
≤

fx(c) + fx(d)
2

. (22)

Again, q-integrate (21) with respect to y over [c, d], getting

1
b − a

∫ d

c

∫ b

a
f (x, y) adqx cdqy + σ1(b − a)2(d − c)

1 −Q(q)
4

≤
1
2

∫ d

c

[
fy(a) + fy(b)

]
cdqy. (23)

Due to (22) and (8), we can write∫ d

c
fy(a) cdqy =

∫ d

c
fa(y) cdqy ≤ (d − c)

fa(c) + fa(d)
2

−
σ2(d − c)3[1 −Q(q)]

4
,

∫ d

c
fy(b) cdqy =

∫ d

c
fb(y) cdqy ≤ (d − c)

fb(c) + fb(d)
2

−
σ2(d − c)3[1 −Q(q)]

4
.

Using these two estimates in (23) and dividing by d − c we complete the proof of the right side of (18).
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If we take σ1 = σ2 = 0 in (18), one deduces the following new quantum integral inequality for classically
co-ordinated convex functions.

Theorem 3.8. If function f : A→ R is co-ordinated convex on A, if f is q-integrable both with respect to x and with
respect to y then

f
(

a + b
2
,

c + d
2

)
≤

1
(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y) adqx cdqy

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
(24)

whenever a, b, c, d ∈ R, a < b, c < d and D = [a, b] × [c, d] ⊆ A.

Remark 3.9. If q→ 1 and f ∈ L1(A) then (18) becomes (7) and (24) becomes Theorem 1 from [5].

Remark 3.10. The previous remark, together with the sharpness results from Section 2 of this paper, shows that both
inequality (18) and (24) are sharp as q→ 1.

4. Refined bounds of quadratures and q-quadratures within the class of the distance-disturbed convex
functions on co-ordinates

In this section we refine the inequalities (7) and (18) by splitting the domain D = [a, b] × [c, d] in finite
elements and evaluating the integrals on the domain by using their partial boundaries on each finite element.

Theorem 4.1. If function f : A→ R is co-ordinated distance-disturbed (σ1, σ2)-convex on A and f ∈ L1(A) then

n∑
k=1

m∑
l=1

f
(

(2n − 2k − 1)a + (2k + 1)b
2n

,
(2m − 2l − 1)c + (2l + 1)d

2m

)
+

mn
12

σ1

(
b − a

n

)2

+ σ2

(
d − c

m

)2
≤

mn
(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y)dxdy

≤
1
4
[

f (a, c) + f (a, d) + f (b, c) + f (b, d)
]
+

1
2

m−1∑
l=1

[
f
(
a,

(m − l)c + ld
m

)
+ f

(
b,

(m − l)c + ld
m

)]

+
1
2

n−1∑
k=1

[
f
(

(n − k)a + kb
n

, c
)

+ f
(

(n − k)a + kb
n

, d
)]

+

n−1∑
k=1

m−1∑
l=1

f
(

(n − k)a + kb
n

,
(m − l)c + ld

m

)

−
mn
6

σ1

(
b − a

n

)2

+ σ2

(
d − c

m

)2 , (25)

whenever a, b, c, d ∈ R, a < b, c < d and D = [a, b] × [c, d] ⊆ A.

Proof. Let us split the rectangle D into rectangular finite elements as follows:

D = [a, b] × [c, d] =

n−1⋃
k=0

m−1⋃
l=0

[
a +

k(b − a)
n

, a +
(k + 1)(b − a)

n

] [
c +

l(d − c)
m

, c +
(l + 1)(d − c)

m

]
. (26)

Consider each rectangle of (26) and write the corresponding inequality (7). For example, let us chose the
rectangle[

(n − k)a + kb
n

,
(n − k − 1)a + (k + 1)b

n

]
×

[
(m − l)c + ld

m
,

(n − l − 1)c + (l + 1)d
m

]
.
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Inequality (7) becomes on this rectangle:

f
(

(2n − 2k − 1)a + (2k + 1)b
2n

,
(2m − 2l − 1)c + (2l + 1)d

2m

)
+

1
12

σ1

(
b − a

n

)2

+ σ2

(
d − c

m

)2
≤

mn
(b − a)(d − c)

∫ (n−l−1)c+(l+1)d
m

(m−l)c+ld
m

∫ (n−k−1)a+(k+1)b
n

(n−k)a+kb
n

f (x, y)dxdy

≤
1
4

f
(

(n − k)a + kb
n

,
(m − l)c + ld

m

)
+

1
4

f
(

(n − k)a + kb
n

,
(n − l − 1)c + (l + 1)d

m

)
+

1
4

f
(

(n − k − 1)a + (k + 1)b
n

,
(m − l)c + ld

m

)
+

1
4

f
(

(n − k − 1)a + (k + 1)b
n

,
(n − l − 1)c + (l + 1)d

m

)
−

1
6

σ1

(
b − a

n

)2

+ σ2

(
d − c

m

)2 . (27)

Computing the sum over k ∈ {0, 1, ...,n − 1} and l ∈ {0, 1, ...,m − 1} of all the inequalities, side by side, one
gets (25).

Theorem 4.2. If function f : A → R is co-ordinated distance-disturbed (σ1, σ2)-convex on A, if f is q-integrable
both with respect to x and with respect to y then

n∑
k=1

m∑
l=1

f
(

(2n − 2k − 1)a + (2k + 1)b
2n

,
(2m − 2l − 1)c + (2l + 1)d

2m

)
+

mnQ(q)
4

σ1

(
b − a

n

)2

+ σ2

(
d − c

m

)2
≤

mn
(b − a)(d − c)

∫ d

c

∫ b

a
f (x, y) adqx cdqy

≤
1
4
[

f (a, c) + f (a, d) + f (b, c) + f (b, d)
]
+

1
2

m−1∑
l=1

[
f
(
a,

(m − l)c + ld
m

)
+ f

(
b,

(m − l)c + ld
m

)]

+
1
2

n−1∑
k=1

[
f
(

(n − k)a + kb
n

, c
)

+ f
(

(n − k)a + kb
n

, d
)]

+

n−1∑
k=1

m−1∑
l=1

f
(

(n − k)a + kb
n

,
(m − l)c + ld

m

)

−
mn(1 −Q(q))

6

σ1

(
b − a

n

)2

+ σ2

(
d − c

m

)2 , (28)

whenever a, b, c, d ∈ R, a < b, c < d and D = [a, b] × [c, d] ⊆ A. Here Q(q) defined by (19) for q ∈ (0, 1).

Proof. One proceeds as in the proof of Theorem 4.1, by splitting the rectangle D as in (26) and applying (18)
on each finite element. The required inequality (28) is obtained by computing the sum of all the inequalities
on finite elements over k ∈ {0, 1, ...,n − 1} and l ∈ {0, 1, ...,m − 1}.

Remark 4.3. Inequality (28) becomes (25) as q→ 1.

5. Conclusion

The concept of distance-disturbed convexity is an unifying one, including both strengthened and wea-
kened types of generalized convexity that exist in nowadays mathematical literature. The inequalities
derived in this paper are useful tools whenever quantum integral approximations involving functions ha-
ving some type of distance-disturbed convexity are discussed (see, for example the context of [23]). The
technique developed in this paper is useful in deriving quantum integral estimates in case of other types
of generalized convexity, which may be approached on co-ordinates [20]. The strong case of generalized
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convexities, as in [1], may be approached in two dimensions in the same manner in quantum calculus. The
paper provides mathematical tools for quantum integral estimates involving two dimensions weakened
convexity properties, as [3], [8], [18], [19]. The representation of the domain by finite elements in order to
refine the computation is a fruitful technique, opening new directions of research in quantum mathematics.
The quantum computation and the quantum inequalities in the plane is a fertile tool, with impact on the
development of quantum physics, information processing techniques and all the domains of science and
life in which these new fields of research apply.

Literatur

[1] H. Angulo, J. Giménez, A.M. Moros, K. Nikodem, On strongly h-convex functions, Ann. Funct. Anal. 2(2)(2011), 85–91.
[2] A. Azócar, J. Giménez, K. Nikodem, J.L. Sánchez, On strongly midconvex functions, Opuscula Math. 31(1) (2011), 15–26.
[3] P. Burai, A. Házy, T. Juhász, On approximately Breckner s-convex functions, Control and Cybernetics 40(1)(2011), 91–99.
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