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Abstract. Our aim in this work is to study the existence of global mild solutions of a second order functional
differential equation with delay. We use the Schauder fixed point theorem combined with the cosine family
of linear bounded operators for the existence of solutions.

1. Introduction

In this work we provide sufficient conditions for the existence of global mild solutions for two classes of
second order semilinear functional equations with delay. Our investigations will be situated in the Banach
space of real continuous and bounded functions on the real half axis [0,+∞). First, we will consider the
following problem

y′′(t) = Ay(t) + f (t, yt), a.e. t ∈ J := [0,+∞) (1)

y(t) = φ(t), t ∈ [−r, 0], y′(0) = ϕ, (2)

where f : J×C([−r, 0],E)→ E is given function, A : D(A) ⊂ E→ E is the infinitesimal generator of a strongly
continuous cosine family of bounded linear operators (C(t))t∈R, on E, φ : [−r, 0] → E is given continuous
function, and (E, | · |) is a real Banach space. For any function y defined on [−r,+∞) and any t ∈ J, we denote
by yt the element of C([−r, 0],E) defined by yt(θ) = y(t + θ), θ ∈ [−r, 0]. Here yt(·) represents the history of
the state from time t − r, up to the present time t.
Later, we consider the following problem

y′′(t) = Ay(t) + f (t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (3)

y(t) = φ(t), t ∈ (−∞, 0], y′(0) = ϕ, (4)
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where f : J ×B → E is given function, A : D(A) ⊂ E→ E as in problem (1)-(2), φ ∈ B, ρ : J ×B → (−∞,+∞),
and (E, | · |) is a real Banach space. For any function y defined on [−r,+∞) and any t ∈ J, we denote by yt
the element of B defined by yt(θ) = y(t + θ), θ ∈ (−∞, 0]. We assume that the histories yt belongs to some
abstract phases B. The main results are based upon Schauder’s fixed theorem combined with the family of
cosine operators.

The cosine function theory is related to abstract linear second order differential equations in the same
manner that the semigroup theory of bounded linear operators is related to first order partial differen-
tial equations and its equally appealing devoted their generality and simplicity. For basic concepts and
applications of this theory, we refer to the reader to Fattorini [20], Travis and Weeb [41].

In the literature there are many papers study the problems of differential equations using different
methods. Among them, the fixed point method combined by semigroup theory in Fréchet space, see for
instance Baghli and Benchohra [5–7]. Our purpose in this work is to consider a simultaneous generalization
of the classical second order abstract Cauchy problem studied by Travis and Weeb in [40, 41]. Additionally,
we observe that the ideas and techniques in this paper permit the reformulation of the problems studied in
[8, 12, 21, 35, 36] to the context of partial second order differential equations, see ([40], pp. 557) and the
referred papers for details.

Complicated situations in which the delay depends on the unknown functions have been studied in
the recent years (see for instance [1, 4, 38, 42, 43] and the references therein). Over the past several
years it has become apparent that equations with state-dependent delay arise also in several areas such as
classical electrodynamics [16], in population models [10], models of commodity price fluctuations [11, 33],
and models of blood cell productions [34]. These equations are frequently called equations with state-
dependent delay. The literature devoted differential equations with state-dependent delay is concerned
fundamentally with first order functional differential equations for which the state belong to some finite
dimensional space, see among another works [2, 9, 13, 15, 17–19]. The problem of the existence of solutions
for first and second order partial functional differential with state-dependent delay have treated recently in
[3, 25–29, 32, 37, 38]. The literature relative second order differential system with state-dependent delay is
very restrict, and related this matter we only cite [39] for ordinary differential system and [24] for abstract
partial differential systems.

To the best of our knowledge, the study of the existence of solutions for abstract second order functional
differential equations with state-dependent delay on unbounded interval is an untreated topic in the
literature and this fact, is the main motivation of the present work.

This paper is organized as follows. In Section 2 we introduce some preliminary results which are used
in the following section. Our main result will be presented in Section 3, while in Section 4 we provide two
examples to illustrate the abstract theory.

2. Preliminaries

In this section we present briefly some notations, definition, and a theorem that are used throughout
this work. In this paper, we will employ an axiomatic definition of the phase space B introduced by Hale
and Kato in [23] and follow the terminology used in [30]. Thus, (B, ‖ · ‖B) will be a seminormed linear space
of functions mapping (−∞, 0] into E, and satisfying the following axioms :

(A1) If y : (−∞, b) → E, b > 0, is continuous on J and y0 ∈ B, then for every t ∈ J the following conditions
hold :
(i) yt ∈ B ;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions L(·),M(·) : R+ → R+ independent of y with L continuous and bounded,
and M locally bounded such that :

‖yt‖B ≤ L(t) sup{ |y(s)| : 0 ≤ s ≤ t} + M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J.
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(A3) The space B is complete.

Denote
l = sup{L(t) : t ∈ J},

and
m = sup{M(t) : t ∈ J}.

Remark 2.1. 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.
2. Since ‖ · ‖B is a seminorm, two elements φ,ψ ∈ B can verify ‖φ − ψ‖B = 0 without necessarily φ(θ) = ψ(θ)

for all θ ≤ 0.
3. From the equivalence of in the first remark, we can see that for all φ,ψ ∈ B such that ‖φ − ψ‖B = 0 : We

necessarily have that φ(0) = ψ(0).

Example 2.2. (The phase space (Cr × Lp(g,E)).)
Let 1 : (−∞,−r) → R be a positive Lebesgue integrable function and assume that there exists a non-negative

and locally bounded function γ on (−∞, 0] such that 1(ξ + θ) ≤ γ(ξ)1(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ,
where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero. The space Cr × Lp(1,E) consists of all classes of functions
ϕ(−∞, 0] → R such that φ is continuous on [−r, 0], Lebesgue-measurable and 1‖φ‖p is Lebesgue integrable on
(−∞,−r). The seminorm in Cr × Lp(1,E) is defined by

‖φ‖B := sup{‖φ(θ)‖ : −r ≤ θ ≤ 0} +
(∫

−r

−∞

1(θ)‖φ(θ)‖pdθ
) 1

p

Assume that 1(·) verifies the condition (1−5), (1−6) and (1−7) in the nomenclature [30]. In this case,B = Cr×Lp(1,E)
verifies assumptions (A1), (A2), (A3) see ([30] Theorem 1.3.8) for details. Moreover, when r = 0 and p = 2 we have

that H = 1,M(t) = γ(−t)
1
2 and L(t) = 1 +

(∫ 0

−t
1(θ)dθ

) 1
2

for t ≥ 0.

By BUC we denote the space of bounded uniformly continuous functions defined from (−∞, 0] to E.

Next we mention a few results and notations respect of the cosine function theory which are needed to
establish our results. Along of this section, A is the infinitesimal generator of a strongly continuous cosine
function of bounded linear operators (C(t))t∈R on Banach space (E, ‖ · ‖). We denote by (S(t))t∈R the sine

function associated with (C(t))t∈R which is defined by S(t)y =

∫ t

0
C(s)yds, for y ∈ E and t ∈ R.

The notation [D(A)] stands for the domain of the operator A endowed with the graph norm ‖y‖A =
‖y‖+ ‖Ay‖, y ∈ D(A). Moreover, in this work, X is the space formed by the vector y ∈ E for which C(·)y is of
class C1 on R. It was proved by Kisinsky [31] that X endowed with the norm

‖y‖X = ‖y‖ + sup
0≤t≤1

‖AS(t)y‖, y ∈ X,

is a Banach space. The operator valued function

G(t) =

(
C(t) S(t)

AS(t) C(t)

)
is a strongly continuous group of bounded linear operators on the space X × E generated by the operator

A =

(
0 I
A 0

)
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defined on D(A) × X. It follows that AS(t) : X → E is a bounded linear operator and AS(T)y → 0, t −→ 0,

for each y ∈ X. Furthermore, if y : [0,+∞)→ E is a locally integrable function, then z(t) =

∫ t

0
S(t − s)y(s)ds

defined an X−valued continuous function. This is a consequence of the fact that:

∫ t

0
G(t − s)

(
0

y(s)

)
ds =


∫ t

0
S(t − s)y(s)ds∫ t

0
C(t − s)y(s)ds


defines an X × E− valued continuous function. The existence of solutions for the second order abstract
Cauchy problem{

y′′(t) = Ay(t) + h(t), t ∈ J := [0,+∞),
y(0) = y0, y′(0) = y1,

(5)

where h : J → E is an integrable function has been discussed in [40]. Similarly, the existence of solutions of
the semilinear second order abstract Cauchy problem has been treated in [41].

Definition 2.3. The function y(·) given by

y(t) = C(t)y0 + S(t)y1 +

∫ t

0
S(t − s)h(s)ds, t ∈ J,

is called mild solution of (5).

Remark 2.4. Let y0 ∈ X, then y is continuously differentiable and we have

y′(t) = AS(t)y0 + C(t)y1 +

∫ t

0
C(t − s)h(s)ds.

For additional details about cosine function theory, we refer to the reader to [40, 41].
We need the following definitions in the sequel.

Definition 2.5. A map f : J × C([−r, 0],E)→ E is said to be Carathéodory if

(i) t→ f (t, y) is measurable for all y ∈ C([−r, 0],E),

(ii) y→ f (t, y) is continuous for almost each t ∈ J.

Remark 2.6. In the case of state-dependent delay we substitute C([−r, 0),E) by phase space B.

Theorem 2.7. (Schauder’s fixed point [22])
Let B be a closed, convex and nonempty subset of a Banach space E. Let N : B → B be a continuous mapping such
that N(B) is a relatively compact subset of E. Then N has at least one fixed point in B, that is, there exists y ∈ B such
that Ny = y.

Lemma 2.8. (Corduneanu [14])
Let D ⊂ BC([0,+∞),E). Then D is relatively compact if the following conditions hold:

(a) D is bounded in BC.

(b) The function belonging to D is almost equicontinuous on [0,+∞), i.e., equicontinuous on every compact of
[0,+∞).

(c) The set D(t) := {y(t) : y ∈ D} is relatively compact on every compact of [0,+∞).

(d) The function from D is equiconvergent, that is, given ε > 0, responds T(ε) > 0 such that |u(t)− lim
t→+∞

u(t)| < ε,
for any t ≥ T(ε) and u ∈ D.
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3. Existing result for the finite delay case

In this section by BC := BC([−r,+∞)) we denote the Banach space of all bounded and continuous
functions from [−r,+∞) into E equipped with the standard norm

‖y‖BC = sup
t∈[−r,+∞)

|y(t)|.

Now we give our main existence result for problem (1)-(2). Before starting and proving this result, we give
the definition of a mild solution.

Definition 3.1. We say that a continuous function y : [−r,+∞) → E is a mild solution of problem (1)-(2) if
y(t) = φ(t), t ∈ [−r, 0], y(.) and y′(0) = ϕ,and

y(t) = C(t)φ(0) + S(t)ϕ +

∫ t

0
C(t − s) f (s, ys)ds, t ∈ J.

Let
M = sup{‖C(t)‖B(E) : t ≥ 0}, M′ = sup{‖S(t)‖B(E) : t ≥ 0}.

Let us introduce the following hypotheses.

(H1) C(t) is compact for t > 0.

(H2) The function f : J × C([−r, 0],E)→ E is Carathéodory.

(H3) There exists a continuous function k : J→ [0,+∞) such that:

| f (t,u)| ≤ k(t)‖u‖, t ∈ J, u ∈ C([−r, 0],E)

and

k∗ := sup
t∈J

∫ t

0
k(s)ds < ∞.

(H4) For each bounded B ⊂ BC and t ∈ J the set :{∫ t

0
C(t − s) f (s, yt)ds : y ∈ B

}
is relatively compact in E.

Remark 3.2. Condition (H4) is satisfied if for each t ∈ J, the function u 7→ f (t,u) maps bounded sets into relatively
compact sets.

Theorem 3.3. Assume that (H1) − (H4) hold. If K∗M < 1, then the problem (1)-(2) has at least one mild solution.

Proof. We transform the problem (1)-(2) into a fixed point problem. Consider the operator: N : BC → BC
define by:

N(y)(t) =


φ(t), if t ∈ [−r, 0],

C(t) φ(0) + S(t)ϕ +

∫ t

0
C(t − s) f (s, ys) ds, if t ∈ J.
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The operator N maps BC into BC; indeed the map N(y) is continuous on [−r,+∞) for any y ∈ BC, and for
each t ∈ J, we have

|N(y)(t)| ≤ M‖φ‖ + M′‖ϕ‖ + M
∫ t

0
| f (s, ys)|ds

≤ M‖φ‖ + M′‖ϕ‖ + M
∫ t

0
k(s)‖ys‖ds

≤ M‖φ‖ + M′‖ϕ‖ + M‖y‖BCk∗ := c.

Hence, N(y) ∈ BC. Let

C = M‖φ‖ + M′‖ϕ‖.

Moreover, let r > 0 be such that r ≥ C
1−Mk∗ , and Br be the closed ball in BC centered at the origin and of radius

r. Let y ∈ Br and t ∈ [0,+∞). Then,

|N(y)(t)| ≤ C + Mk∗r.

Thus,

‖N(y)‖BC ≤ r,

which means that the operator N transforms the ball Br into itself.

Now we prove that N : Br → Br satisfies the assumptions of Schauder’s fixed theorem. The proof will
be given in several steps.

Step 1: N is continuous in Br.
Let {yn} be a sequence such that yn → y in Br. We have

|N(yn)(t) −N(y)(t)| ≤M
∫ t

0
| f (s, ysn ) − f (s, ys)|ds.

Then by (H2) we have f (s, ysn ) → f (s, ys), as n → ∞, for a.e. s ∈ J, and by the Lebesgue dominated
convergence theorem we have

‖N(yn) −N(y)‖BC → 0, as n→∞.

Thus, N is continuous.

Step 2 : N(Br) ⊂ Br this is clear.

Step 3: N(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for b > 0. Let τ1, τ2 ∈ [0, b]
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with τ2 > τ1, we have

|N(y)(τ2) −N(y)(τ1)|
≤ ‖C(τ2 − s) − C(τ1 − s)‖B(E)‖φ‖ + ‖S(τ2 − s) − S(τ1 − s)‖B(E)‖ϕ‖

+

∫ τ1

0
‖C(τ2 − s) − C(τ1 − s)‖B(E)| f (s, ys)|ds

+

∫ τ2

τ1

‖C(τ2 − s)‖B(E)| f (s, ys)|ds

≤ ‖C(τ2 − s) − C(τ1 − s)‖B(E)‖φ‖ + ‖S(τ2 − s) − S(τ1 − s)‖B(E)‖ϕ‖

+

∫ τ1

0
‖C(τ2 − s) − C(τ1 − s)‖B(E)| f (s, ys)|ds

+

∫ τ2

τ1

‖C(τ2 − s)‖B(E)| f (s, ys)|ds

≤ ‖C(τ2 − s) − C(τ1 − s)‖B(E)‖φ‖ + ‖S(τ2 − s) − S(τ1 − s)‖B(E)‖ϕ‖

+ r
∫ τ1

0
‖C(τ2 − s) − C(τ1 − s)‖B(E)k(s)ds

+ r
∫ τ2

τ1

‖C(τ2 − s)‖B(E)k(s)ds.

When τ2 → τ2 , the right-hand side of the above inequality tends to zero, since C(t),S(t) are a strongly
continuous operator and the compactness of C(t),S(t) for t > 0, implies the continuity in the uniform
operator topology (see [40, 41]). This proves the equicontinuity of the set N(Br).

Step 4:N(Br) is relatively compact on every compact interval of [0,∞) by (H5).

Step 5: N(Br) is equiconvergent.
Let y ∈ Br and t ∈ J. We have

|N(y)(t)| ≤ M‖φ‖ + M′‖ϕ‖ + M
∫ t

0
| f (s, ys)|ds

≤ C + Mr
∫ t

0
k(s)ds.

Then
|N(y)(t)| → l ≤ C + Mk∗r, as t→ +∞.

Hence,
|N(y)(t) −N(y)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-5, with Lemma 2.8, we can conclude that N : Br → Br is continuous and
compact. From Schauder’s theorem, we deduce that N has a fixed point y∗ which is a mild solution of the
problem (1)-(2).

4. The state-dependent delay case

In this section by BC := BC(−∞,+∞) we denote the Banach space of all bounded and continuous
functions from (−∞,+∞) into E equipped with the standard norm

‖y‖BC = sup
t∈(−∞,+∞)

|y(t)|.
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Finally, by BC′ := BC′([0,+∞)) we denote the Banach space of all bounded and continuous functions from
[0,+∞) into E equipped with the standard norm

‖y‖BC′ = sup
t∈[0,+∞)

|y(t)|.

Now we give our main existence result for problem (3)-(4). Before starting and proving this result, we
give the definition of a mild solution.

Definition 4.1. We say that a continuous function y : (−∞,+∞) → E is a mild solution of problem (3)-(4) if
y(t) = φ(t), t ∈ (−∞, 0], y(·) is continuously differentiable and y′(0) = ϕ and

y(t) = C(t)φ(0) + S(t)ϕ +

∫ t

0
C(t − s) f (s, yρ(t,yt))ds, t ∈ J.

Set
R(ρ−) = {ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0}.

We always assume that ρ : J × B → R is continuous. Additionally, we introduce following hypothesis:

(Hφ) The function t → φt is continuous from R(ρ−) into B and there exists a continuous and bounded
function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖ ≤ L
φ(t)‖φ‖ for every t ∈ R(ρ−).

Remark 4.2. The condition (Hφ), is frequently verified by functions continuous and bounded. For more details, see
for instance [30].

Lemma 4.3. ([29], Lemma 2.4) If y : (−∞,+∞)→ E is a function such that y0 = φ, then

‖ys‖B ≤ (m +Lφ)‖φ‖B + l sup{|y(θ)|;θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

L
φ(t).

Let us introduce the following hypotheses:

(D1) C(t) is compact for t > 0.

(D2) The function f : J × B → E is Carathéodory.

(D3) There exists a continuous function k : J→ [0,+∞) such that:

| f (t,u)| ≤ k(t)‖u‖, t ∈ J, u ∈ B

and

k∗ := sup
t∈J

∫ t

0
k(s)ds < ∞.

(D4) For each bounded B ⊂ BC′ and t ∈ J the set :{∫ t

0
C(t − s) f (s, yρ(t,yt))ds : y ∈ B

}
is relatively compact in E.
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Theorem 4.4. Assume that (D1) − (D5), (Hφ) hold. If K∗Ml < 1, then the problem (3)-(4) has at least one mild
solution on BC.

Proof. We transform the problem (3)-(4) into a fixed point problem. Consider the operator N : BC → BC
define by:

N(y)(t) =


φ(t), if t ∈ (−∞, 0],

C(t) φ(0) + S(t)ϕ +

∫ t

0
C(t − s) f (s, yρ(t,yt)) ds, if t ∈ J.

Let x(·) : (−∞,+∞)→ E be the function defined by:

x(t) =

 φ(t); if t ∈ (−∞, 0];

C(t) φ(0); if t ∈ J,

then x0 = φ. For each z ∈ BC with z(0) = 0, y′(0) = ϕ = z′(0) = ϕ1, we denote by z the function

z(t) =

 0; if t ∈ (−∞, 0];

z(t); if t ∈ J.

If y satisfies y(t) = N(y)(t), we can decompose it as y(t) = z(t) + x(t), t ∈ J, which implies yt = zt + xt for
every t ∈ J and the function z(·) satisfies

z(t) = S(t)ϕ1 +

∫ t

0
C(t − s) f (s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

Set
BC′0 = {z ∈ BC′ : z(0) = 0}

and let
‖z‖BC′0 = sup{|z(t)| : t ∈ J}, z ∈ BC′0.

BC′0 is a Banach space with the norm ‖ · ‖BC′0 . We define the operatorA : BC′0 → BC′0 by:

A(z)(t) = S(t)ϕ1 +

∫ t

0
C(t − s) f (s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

We shall show that the operatorA satisfies all conditions of Schauder’s fixed point theorem. The operator
A maps BC′0 into BC′0, indeed the mapA(z) is continuous on [0,+∞) for any z ∈ BC′0, and for each t ∈ J we
have

|A(z)(t)| ≤ M′‖ϕ1‖ + M
∫ t

0
| f (s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤ M′‖ϕ1‖ + M
∫ t

0
k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖Bds

≤ M′‖ϕ1‖ + M
∫ t

0
k(s)(l|z(s)| + (m +Lφ + lMH)‖φ‖B)ds.

Let
C = (m +Lφ + lMH)‖φ‖B.

Then, we have:

|A(z)(t)| ≤ M′‖ϕ1‖ + MC
∫ t

0
k(s)ds + Ml

∫ t

0
k(s)|z(s)|ds

≤ M′‖ϕ1‖ + MCk∗ + Ml‖z‖BC′0 k∗.
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Hence,A(z) ∈ BC′0.

Moreover, let r > 0 be such that r ≥ M′‖ϕ1‖+MCk∗

1−Mlk∗ , and Br be the closed ball in BC′0 centered at the origin
and of radius r. Let y ∈ Br and t ∈ [0,+∞). Then,

|A(z)(t)| ≤ M′‖ϕ1‖ + MCk∗ + Mlk∗r.

Thus,

‖A(z)‖BC′0 ≤ r,

which means that the operator N transforms the ball Br into itself.

Now we prove that A : Br → Br satisfies the assumptions of Schauder’s fixed theorem. The proof will
be given in several steps.

Step 1: A is continuous in Br.
Let {zn} be a sequence such that zn → z in Br. At the first, we study the convergence of the sequences
(zn
ρ(s,zn

s ))n∈N, s ∈ J.
If s ∈ J is such that ρ(s, zs) > 0, then we have,

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B ≤ ‖zn
ρ(s,zn

s ) − zρ(s,zn
s )‖B + ‖zρ(s,zn

s ) − zρ(s,zs)‖B

≤ l‖zn − z‖Br + ‖zρ(s,zn
s ) − zρ(s,zs)‖B,

which proves that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n→∞ for every s ∈ J such that ρ(s, zs) > 0. Similarly, is ρ(s, zs) < 0
, we get

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B = ‖φn
ρ(s,zn

s ) − φρ(s,zs)‖B = 0

which also shows that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n → ∞ for every s ∈ J such that ρ(s, zs) < 0. Combining the
pervious arguments, we can prove that zn

ρ(s,zs)
→ φ for every s ∈ J such that ρ(s, zs) = 0. Finally,

|A(zn)(t) −A(z)(t)|

≤ M
∫ t

0
| f (s, zn

ρ(s,zn
s +xs)

+ xρ(s,zn
s +xs)) − f (s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds.

Then by (D2) we have

f (s, zn
ρ(s,zn

s +xs)
+ xρ(s,zn

s +xs))→ f (s, zρ(s,zs+xs) + xρ(s,zs+xs)), as n→∞,

and by the Lebesgue dominated convergence theorem we get,

‖A(zn) −A(z)‖BC′0 → 0, as n→∞.

ThusA is continuous.

Step 2 : A(Br) ⊂ Br this is clear.

Step 3: A(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for b > 0. Let τ1, τ2 ∈ [0, b]
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with τ2 > τ1, we have

|A(z)(τ2) −A(z)(τ1)|
≤ ‖S(τ2 − s) − S(τ1 − s)‖B(E)‖ϕ1‖

+

∫ τ1

0
‖C(τ2 − s) − C(τ1 − s)‖B(E)| f (s, zn

ρ(s,zn
s +xs)

+ xρ(s,zn
s +xs))|ds

+

∫ τ2

τ1

‖C(τ2 − s)‖B(E)| f (s, zn
ρ(s,zn

s +xs)
+ xρ(s,zn

s +xs))|ds

≤ ‖S(τ2 − s) − S(τ1 − s)‖B(E)‖ϕ1‖

+

∫ τ1

0
‖C(τ2 − s) − C(τ1 − s)‖B(E)| f (s, zn

ρ(s,zn
s +xs)

+ xρ(s,zn
s +xs))|ds

+

∫ τ2

τ1

‖C(τ2 − s)‖B(E)| f (s, zn
ρ(s,zn

s +xs)
+ xρ(s,zn

s +xs))|ds

≤ ‖S(τ2 − s) − S(τ1 − s)‖B(E)‖ϕ1‖

+ C
∫ τ1

0
‖C(τ2 − s) − C(τ1 − s)‖B(E)k(s)ds

+ lr
∫ τ1

0
‖C(τ2 − s) − C(τ1 − s)‖B(E)k(s)ds

+ C
∫ τ2

τ1

‖C(τ2 − s)‖B(E)k(s)ds

+ lr
∫ τ2

τ1

‖C(τ2 − s)‖B(E)k(s)ds.

When τ2 → τ2 , the right-hand side of the above inequality tends to zero, since C(t) are a strongly continuous
operator and the compactness of C(t) for t > 0, implies he continuity in the uniform operator topology (see
[40, 41]). This proves the equicontinuity of the setA(Br).

Step 4:N(Br) is relatively compact on every compact interval of [0,∞). This is a consequence of (D5).

Step 5: N(Br) is equiconvergent.
Let y ∈ Br, we have:

|A(z)(t)| ≤ M′‖ϕ1‖ + M
∫ t

0
| f (s, zn

ρ(s,zn
s +xs)

+ xρ(s,zn
s +xs))|ds

≤ M′‖ϕ1‖ + MCk∗ + Mrl
∫ t

0
k(s)ds.

Then
|A(z)(t)| → l1 ≤M′‖ϕ1‖ + Mk∗(C + lr), as t→ +∞.

Hence,
|A(z)(t) −A(z)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-5, with Lemma 2.8, we can conclude that A : Br → Br is continuous and
compact. we deduce thatA has a fixed point z∗. Then y∗ = z∗ + x is a fixed point of the operators N, which
is a mild solution of the problem (3)-(4).

5. Examples

Example 1. Consider the functional partial differential equation of second order

∂2

∂t2 z(t, x) =
∂2

∂x2 z(t, x) +
1

2et
|z(t − 1, x)|

1 + |z(t − 1, x)|
, x ∈ [0, π], t ∈ J = [0,+∞), (6)
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z(t, 0) = z(t, π) = 0, t ∈ J, (7)

z(t, x) = φ(t),
∂z(0, x)
∂t

= w(x), t ∈ [−1, 0], x ∈ [0, π]. (8)

Take E = L2[0, π] and define A : E→ E by Aω = ω′′ with domain

D(A) = {ω ∈ E;ω,ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine function (C(t))t∈Ron
E, respectively. Moreover, A has discrete spectrum, the eigenvalues are −n2,n ∈ N with corresponding
normalized eigenvectors

zn(τ) :=
( 2
π

) 1
2

sin nτ,

and the following properties hold:

(a) {zn : n ∈N} is an orthonormal basis of E.

(b) If y ∈ E, then Ay = −
∑
∞

n=1 n2 < y, zn > zn.

(c) For y ∈ E,C(t)y =
∑
∞

n=1 cos(nt) < y, zn > zn, and the associated sine family is

S(t)y =

∞∑
n=1

sin(nt)
n

< y, zn > zn

which implies that the operator S(t) is compact for all t > 0 and that

‖C(t)‖ = ‖S(t)‖ ≤ 1, for all t ≥ 0.

(d) If Φ denotes the group of translations on E defined by

Φ(t)y(ξ) = ỹ(ξ + t),

where ỹ is the extension of y with period 2π, then

C(t) =
1
2

(Φ(t) + Φ(−t)); A = B2,

where B is the infinitesimal generator of the group Φ on

X = {y ∈ H1(0, π) : y(0) = x(π) = 0}.

For more details, see [20].

Then the problem (1)-(2) in an abstract formulation of the problem (6)-(8). It is clear that (H1) − (H4) are
satisfied with k∗ = 1

2 . Theorem 3.3 implies that the problem (6)-(8) has at least one mild solution.

Example 2. Take E = L2[0, π];B = C0 × L2(1,E) and define A : E→ E by Aω = ω′′ with domain

D(A) = {ω ∈ E;ω,ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine function (C(t))t∈Ron
E, respectively. Moreover, A has discrete spectrum, the eigenvalues are −n2,n ∈ N with corresponding
normalized eigenvectors

zn(τ) :=
( 2
π

) 1
2

sin nτ,

and the following properties hold.
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(a) {zn : n ∈N} is an orthonormal basis of E.

(b) If y ∈ E, then Ay = −
∑
∞

n=1 n2 < y, zn > zn.

(c) For y ∈ E,C(t)y =
∑
∞

n=1 cos(nt) < y, zn > zn, and the associated sine family is

S(t)y =

∞∑
n=1

sin(nt)
n

< y, zn > zn

which implies that the operator S(t) is compact, for all t ∈ J and that

‖C(t)‖ = ‖S(t)‖ ≤ 1, for all t ∈ R.

(d) If Φ denotes the group of translations on E defined by

Φ(t)y(ξ) = ỹ(ξ + t),

where ỹ is the extension of y with period 2π. Then

C(t =
1
2

(Φ(t) + Φ(−t)); A = B2,

where B is the infinitesimal generator of the group Φ on

X = {y ∈ H1(0, π) : y(0) = x(π) = 0}.

For more details, see [20].

Consider the functional partial differential equation of second order

∂2

∂t2 z(t, x) =
∂2

∂x2 z(t, x) +

∫ 0

−∞

a(s − t)z(s − ρ1(t)ρ2(|z(t)|), x)ds, x ∈ [0, π], t ∈ J, (9)

z(t, 0) = z(t, π) = 0, t ∈ J, (10)

z(t, x) = φ(t),
∂z(0, x)
∂t

= ω(x), t ∈ [−r, 0], x ∈ [0, π], (11)

where J := [0,+∞), ρi : [0,∞)→ [0,∞), a : R→ R be continuous, and

L f =

(∫ 0

−∞

a2(s)
1(s)

ds
) 1

2

< ∞.

We define the functions f : J × B → E, ρ : J × B → R by

f (t, ψ)(x) =

∫ 0

−∞

a(s)ψ(s, x)ds,

ρ(s, ψ) = s − ρ1(s)ρ2(‖ψ(0)‖).

We have ‖ f (t, ·)‖B ≤ L f .
Then the problem (3)-(4) in an abstract formulation of the problem (9)-(11). Theorem 4.4 implies that

the problem (9)-(11) has at least one mild solution.
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