
Filomat 33:3 (2019), 749–759
https://doi.org/10.2298/FIL1903749E

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Existence of Multiple Positive Solutions for Semipositone Fractional
Boundary Value Problems

Şerife Müge Egea, Fatma Serap Topala

aDepartment of Mathematics, Ege University, 35100 Bornova, Izmir-Turkey

Abstract. In this paper, we study the existence and multiplicity of positive solutions to the four-point
boundary value problems of nonlinear semipositone fractional differential equations. Our results extend
some recent works in the literature.

1. Introduction

Fractional differential equations have been of great interest recently. This is because of both the
intensive development of the theory of fractional calculus itself and the applications of such constructions
in various scientific fields, such as physics, mechanics, chemistry, engineering, etc. For details we refer to
[3, 5, 6] and references therein. Such investigations will provide an important platform for gaining a deeper
understanding of our environment.

Motivated by the wide application of fractional differential equation, in the past few years, the study of
positive solutions on fractional boundary value problems had aroused extensive interest (see [1, 2, 9, 11, 12,
14-17] and the references therein). In [1, 9, 12, 14, 15], the authors considered the boundary value problems
of Riemann-Liouville differential equations and zero boundary values (Riemann-Liouville derivatives is
not suitable for non-zero boundary values). In [2, 11, 16, 17], the authors considered the boundary value
problems of Caputo fractional differential equations. However, to the best knowledge of the authors, there
is less literature available on paper concerned with the fractional four-point boundary value problems [18].

The purpose of this paper is to study of existence of positive solutions for the following four-point
boundary value problem for fractional differential equation

Dq (p(t)Dru(t)
)

+ f (t,u(t)) = 0, t ∈ (0, 1), (1)
α1u(0) − β1u′(0) = −γ1u(ξ1),
α2u(1) + β2u′(1) = −γ2u(ξ2),
Dru(0) = 0,

(2)

where α1, α2, β1, β2, γ1, γ2 are real constants with α1, α2, β1, β2 > 0, β1 > γ1, β2 > γ2, 0 < ξ1 ≤ ξ2 < 1, f ∈
C ([0, 1] ×R+,R) is semipositone, i.e., f (t,u) needn’t be positive for all t ∈ [0, 1] and all u ≥ 0, p ∈ C ([0, 1],R+)
with p(t) , 0 for all t ∈ [0, 1] and Dr and Dq are the standard Caputo fractional derivatives of fractional
order r and q with 1 < r ≤ 2, 0 < q ≤ 1.
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The remainder of the paper is organized as follows. In Section 2 we state some preliminary facts
needed in the proofs of the main results. We also state the Krasnosel’skiı̆’s and Leggett-Williams fixed
point theorems in this section. In Section 3, we give the main results of the paper, that establish existence
of at least one or multiple positive solutions for the problem (1)-(2). Finally, in this section we discuss an
example that illustrates the main results of the paper.

2. Preliminaries

In this section we collect some preliminary definitions and results that will be used in subsequent
section. Firstly, for convenience of the reader, we give some definitions and fundamental results of fractional
calculus theory.
Definition 2.1 For a function f given on the interval [a, b], the Caputo derivative of fractional order r is
defined as

Dr f (t) =
1

Γ(n − r)

∫ t

0
(t − s)n−r−1 f (n)(s)ds, n = [r] + 1, (3)

where [r] denotes the integer part of r.
Definition 2.2 The Riemann-Liouville fractional integral of order r for a function f is defined as

Ir f (t) =
1

Γ(r)

∫ t

0
(t − s)r−1 f (s)ds, r > 0, (4)

where [r] denotes the integer part of r.
Lemma 2.1 Let r > 0. Then the differential equation Drx(t) = 0 has solutions

x(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1, (5)

where ci ∈ R, i = 0, 1, 2, ...,n, n = [r] + 1.
Lemma 2.2 Let r > 0. Then

Ir(Drx)(t) = x(t) + c0 + c1t + c2t2 + ... + cn−1tn−1, (6)

where ci ∈ R, i = 0, 1, 2, ...,n, n = [r] + 1.
For finding a solution of the problem (1)-(2), we first consider the following fractional differential

equation

−Dru(t) = v(t) (7)

α1u(0) − β1u′(0) = −γ1u(ξ1)
α2u(1) + β2u′(1) = −γ2u(ξ2) (8)

where v ∈ C ([0, 1]).
Let we define d := α1(α2 + β2 + γ2ξ2) + γ1

(
β2 + α2(1 − ξ1) + γ2(ξ2 − ξ1)

)
+ β1(α2 + γ2).

Lemma 2.3 Let r ∈ (1, 2] and v ∈ C[0, 1]. The boundary value problem (7) − (8) has a unique solution u in
the form

u(t) =

∫ 1

0
G(t, s)v(s)ds, (9)
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where

G(t, s) =



−
1

Γ(r)
(t − s)r−1 +

γ1

dΓ(r)
[
α2 + β2 + γ1ξ2

−t(α2 + γ2)
]

(ξ1 − s)r−1 + 1
dΓ(r)

[
β1 − γ1ξ1

+(α1 + γ1)t
] [
γ2(ξ2 − s)r−1 + α2(1 − s)r−1

+rβ2(1 − s)r
− 2

]
, s ≤ ξ1, s ≤ t

γ1

dΓ(r)
[
α2 + β2 + γ1ξ2 − t(α2 + γ2)

]
(ξ1 − s)r−1

1
dΓ(r)

[
β1 − γ1ξ1 + (α1 + γ1)t

] [
γ2(ξ2 − s)r−1

+α2(1 − s)r−1 + rβ2(1 − s)r−2
]
, s ≤ ξ1, s ≥ t

−
1

Γ(r)
(t − s)r−1 +

1
dΓ(r)

[
β1 − γ1ξ1 + (α1 + γ1)t

][
γ2(ξ2 − s)r−1 + α2(1 − s)r−1 + rβ2(1 − s)r−2

]
, ξ1 ≤ s ≤ ξ2, s ≤ t

1
Γ(r)

[
β1 − γ1ξ1 + (α1 + γ1)t

] [
γ2(ξ2 − s)r−1

+rβ2(1 − s)r−2
]
, ξ1 ≤ s ≤ ξ2, s ≥ t

−
1

Γ(r)
(t − s)r−1 +

1
dΓ(r)

[
β1 − γ1ξ1 + (α1 + γ1)t

][
α2(1 − s)r−1 + rβ2(1 − s)r−2

]
, ξ2 ≤ s, s ≤ t

1
Γ(r)

[
β1 − γ1ξ1 + (α1 + γ1)t

] [
α2(1 − s)r−1

+rβ2(1 − s)r−2
]

ξ2 ≤ s, s ≥ t.

Proof. The equation Dru(t) + v(t) = 0 has a unique solution

u(t) = −
1

Γ(r)

∫ 1

0
(t − s)r−1v(s)ds + c0 + c1t (10)

where c0, c1 ∈ R. By α1u(0) − β1u′(0) = −γ1u(ξ1), α2u(1) + β2u′(1) = −γ2u(ξ2), we have

c0 =
γ1(α2 + β2 + γ2ξ2)

dΓ(r)

∫ ξ1

0
(ξ1 − s)r−1v(s)ds −

1
d

(γ1ξ1 − β1)
[
α2

Γ(r)

∫ 1

0
(1 − s)r−1v(s)ds

+
β2

Γ(r)

∫ 1

0
(1 − s)r−2v(s)ds +

γ2

Γ(r)

∫ ξ2

0
(ξ2 − s)r−1v(s)ds

]

and

c1 =
α1 + γ1

d

[
α2

Γ(r)

∫ 1

0
(1 − s)r−1v(s)ds +

β2

Γ(r − 1)

∫ 1

0
(1 − s)r−2v(s)ds

+
γ2

Γ(r)

∫ ξ2

0
(ξ2 − s)r−1v(s)ds

]
−
γ1(α2 + γ2)

dΓ(r)

∫ ξ1

0
(ξ1 − s)r−1v(s)ds.
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Substituting c0, c1 into equation (10) we find,

u(t) = −
1

Γ(r)

∫ 1

0
(t − s)r−1v(s)ds +

γ1(α2 + β2 + γ2ξ2)
dΓ(r)

∫ ξ1

0
(ξ1 − s)r−1v(s)ds −

1
d

(γ1ξ1 − β1)[
α2

Γ(r)

∫ 1

0
(1 − s)r−1v(s)ds +

β2

Γ(r)

∫ 1

0
(1 − s)r−2v(s)ds +

γ2

Γ(r)

∫ ξ2

0
(ξ2 − s)r−1v(s)ds

]
+

[
α1 + γ1

d

[
α2

Γ(r)

∫ 1

0
(1 − s)r−1v(s)ds +

β2

Γ(r − 1)

∫ 1

0
(1 − s)r−2v(s)ds

+
γ2

Γ(r)

∫ ξ2

0
(ξ2 − s)r−1v(s)ds

]
−
γ1(α2 + γ2)

dΓ(r)

∫ ξ1

0
(ξ1 − s)r−1v(s)ds

]
t

=

∫ 1

0
G(t, s)v(s)ds.

The proof is complete.

Throughout this study we will assume the following condition is satisfied:
(H1)

(
α2 + (r − 1)β2

)
(β1 − γ1ξ1) ≥ d.

Lemma 2.4 If (H1) holds, then there exist a constant N such that 0 ≤ G(t, s) ≤ N(1 − s)r−2, t, s ∈ [0, 1], where

N :=
1

dΓ(r)
[
γ1(α2 + β2 + γ1ξ2) + (α1 + β1)

(
γ2 + α2 + (r − 1)β2

)]
.

Proof. Obviously G(t, s) ≥ 0 also we get

max0≤t≤1G(t, s) ≤
γ1

dΓ(r)
(
α2 + β2 + γ1ξ2 − (α2 + γ2)t

)
(ξ1 − s)r−1

+
γ2

dΓ(r)
(
β1 − γ1ξ1 + (α1 + γ1)t

)
(ξ2 − s)r−1

+
α2 + (r − 1)β2

dΓ(r)
(
β1 − γ1ξ1 + (α1 + γ1)t

)
(1 − s)r−2

≤
γ1

dΓ(r)
(α2 + β2 + γ1ξ2)(1 − s)r−2

+
γ2

dΓ(r)
(
β1 − γ1ξ1 + α1 + γ1

)
(1 − s)r−2

+
α2 + (r − 1)β2

dΓ(r)
(
β1 − γ1ξ1 + α1 + γ1

)
(1 − s)r−2

≤
1

dΓ(r)
[
γ1(α2 + β2 + γ1ξ2) + (α1 + β1)

(
γ2 + α2 + (r − 1)β2

)]
(1 − s)r−2

≤ N(1 − s)r−2.

The proof is complete.
Lemma 2.5 If 0 < s < 1, θ ∈ (0, 1

2 ), then there exists a constant µ such that

min
t∈[θ,1−θ]

G(t, s) ≥ µN(1 − s)r−2, (11)

where

µ :=
−d + (α2 + (r − 1)β2)

(
β1 − γ1ξ1 + min{θ, 1 − θ}(α1 + γ1)

)
γ1(α2 + β2 + γ1ξ2) + (α1 + β1)

(
γ2 + α2 + (r − 1)β2

) . (12)

Proof: We have two cases:



S. M. Ege, F. S. Topal / Filomat 33:3 (2019), 749–759 753

Case 1. For 0 ≤ s ≤ t ≤ 1 − θ, we get

G(t, s) ≥ −
1

Γ(r)
(1 − s)r−2 +

α2 + (r − 1)β2

dΓ(r)
[
β1 − γ1ξ1 + (α1 + γ1)t

]
(1 − s)r−2. (13)

Case 2. For θ ≤ t ≤ s ≤ 1, we get

G(t, s) ≥
α2 + (r − 1)β2

dΓ(r)
[
β1 − γ1ξ1 + (α1 + γ1)t

]
(1 − s)r−2. (14)

Hence we have

G(t, s) ≥
−d + (α2 + (r − 1)β2)

(
β1 − γ1ξ1 + (α1 + γ1)min{θ, 1 − θ}

)
dΓ(r)

(1 − s)r−2. (15)

Lemma 2.6 Let f ∈ C ([0, 1] ×R+), then the problem (1)-(2) has a unique solution

u(t) =

∫ 1

0
G(t, s)

1
p(s)

Iq f (s,u(s))ds. (16)

Proof. Let p(t)Drx(t) = h(t), we have the following problem

Dqh(t) + f (t, x(t)) = 0
h(0) = 0. (17)

By Lemma 2.2, we have

h(t) = c1tq−1
− Iq ( f (t, x(t))

)
. (18)

Since h(0) = 0 we get

h(t) = −Iq ( f (t, x(t))
)
, 0 < t < 1. (19)

So, using Lemma 2.3, the problem

Dru(t) =
1

p(t)
Iq (
− f (t,u(t))

)
= −

1
p(t)

Iq f (t,u(t))

α1u(0) − β1u′(0) = −γ1u(ξ1)
α2u(1) − β2u′(1) = −γ2u(ξ2)

(20)

has a unique solution

u(t) =

∫ 1

0
G(t, s)

1
p(s)

Iq f (s,u(s))ds. (21)

Lemma 2.7 Let ω be a solution of

Dq (p(t)Dru(t)
)

+ 1 = 0 (22)

with the boundary condition (2), then ω(t) ≤
N

Γ(q + 1)
P where P =

∫ 1

0

1
p(s)

ds.

Proof. Using Lemma 2.6, we obtain the solution of the problem (22)-(2) is

ω(t) =

∫ 1

0
G(t, s)

1
p(s)

Iq(1)ds.
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Since

Iq (1) =
1

Γ(q)

∫ t

0
(t − s)q−1ds =

tq

Γ(q + 1)
,

we get, for t ∈ [0, 1],

ω(t) ≤
1

Γ(q + 1)

∫ 1

0
G(t, s)s

1
p(s)

ds ≤
1

Γ(q + 1)

∫ 1

0
N(1 − s)r−2 1

p(s)
ds

≤
N

Γ(q + 1)

∫ 1

0

1
p(s)

ds =
N

Γ(q + 1)
P.

This completes the proof.
The following fixed point theorems are fundamental and important to the proof of our main results.

Theorem 2.1. [7] Let E = (E, ‖ . ‖) be a Banach space, P ⊂ E be a cone in E. Suppose that Ω1 and Ω2 are open
subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that T : P ∩ (Ω2 \ Ω1) → P is a completely continuous
operator such that either
(1) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2, or
(2) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2 holds.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

Define the sets Pc := {u ∈ P :‖ u ‖< c} and P(α, a, b) := {u ∈ P : a ≤ α(u), ‖ u ‖≤ b} where a, b, c > 0 and α on
P is a nonnegative functional.

Theorem 2.2. [8] Let E = (E, ‖ . ‖) be a Banach space, P ⊂ E a cone of E and c > 0 a constant. Suppose that there
exists a nonnegative continuous concave functional α on P with α(u) ≤‖ u ‖ for u ∈ Pc and let T : Pc → Pc be a
completely continuous map. Assume that there exist a, b, c, d with 0 < a < b < d ≤ c such that
(S1) {u ∈ P(α, b, d) : α(u) > b} , ∅ and α(Tu) > b for all u ∈ P(α, b, d);
(S2) ‖ Tu ‖< a for all u ∈ Pa;
(S3) α(Tu) > b for all u ∈ P(α, b, c) with ‖ Tu ‖> d.

Then T has at least three fixed points u1,u2,u3 ∈ P such that ‖ u1 ‖< a, α(u2) > b, ‖ u3 ‖> a and α(u3) < b.

We consider the Banach space E = C ([0, 1],R) endowed with the norm defined by ‖u‖ = sup0≤t≤1 |u(t)|. Let
P = {u ∈ E : µ ‖ u ‖≤ mint∈[θ,1−θ]u(t)}, then P is a cone in E.

3. Main Result

In this section, we prove the existence of multiple positive solutions of the problem (1)− (2) by using
Theorem 2.1 and Theorem 2.2.

First we shall show that the following boundary value problem

Dq (p(t)
(
Dry(t)

))
+ F

(
t, y∗(t)

)
= 0 (23)

α1y(0) − β1y′(0) = −γ1y(ξ1)
α2y(1) + β2y′(1) = −γ2y(ξ2)
Dry(0) = 0,

(24)

has at least one and three positive solutions where F : [0, 1] ×R+
→ R+,

F(t, z) =


f (t, z) + M, z ≥ 0,

f (t, 0) + M, z ≤ 0,
(25)
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y∗(t) = max{(y−x)(t), 0} and x(t) = Mω(t) such thatω is the unique solution of the problem (22)-(2). Thereafter
we shall obtain the existence of multiple positive solutions of the problem (1) − (2)

We give the following assumptions:
(H2) f (t,u(t)) . 0 for (t,u) ∈ [0, 1] × (0,∞),
(H3) There exists a constant M > 0 such that f (t,u) ≥ −M for all (t,u) ∈ [0, 1] × [0,∞].

Theorem 3.1. Assume that (H1)-(H3) are satisfied. Let F satisfies the following conditions:

(A1) There exist t1, t2 ∈ (0, 1) such that limy→∞s
F(t, y)

y
= ∞ uniformly on [t1, t2],

(A2) R1 is a positive real number such that R1 ≥M1
NP

Γ(q + 1)
where M1 = max{F(t, y) : (t, y) ∈ [0, 1]× [0,R1]}, then

the problem (23)-(24) has at least one positive solution.

Proof: It is well known that the existence of positive solution to the boundary value problem (23)-(24) is
equivalent to the existence of fixed point of the operator T. So we shall seek a fixed point of T in our cone
P where the operator T : E→ E is defined by

Ty(t) =

∫ 1

0
G(t, s)

1
p(s)

IqF
(
s, y∗(s)

)
ds, t ∈ [0, 1]. (26)

First it is obvious that T is completely continuous. Now we will prove that T(P) ⊂ P.

Ty(t) =

∫ 1

0
G(t, s)

1
p(s)

IqF
(
s, y∗(s)

)
ds

≤

∫ 1

0
N(1 − s)r−2 1

p(s)
IqF

(
s, y∗(s)

)
ds

≤ mint∈[θ,1−θ]

∫ 1

0

1
µ

G(t, s)
1

p(s)
IqF

(
s, y∗(s)

)
ds.

and so

‖ Ty ‖=
1
µ

∫ 1

0
mint∈[θ,1−θ]G(t, s)

1
p(s)

IqF
(
s, y∗(s)

)
ds, t ∈ [0, 1]. (27)

thus, we get

µ ‖ Ty ‖≤ mint∈[θ,1−θ]Ty(t). (28)

This shows that T(P) ⊂ P. Let ΩR1 = {y ∈ E :‖ y ‖< R1}. We shall prove that ‖ Ty ‖≤‖ y ‖, for y ∈ P
⋂
∂ΩR1 .

Then ‖ y ‖= R1. It is clear that y∗(t) ≤ y(t) ≤ R1, for all t ∈ [0, 1]. Then, using the definition of F, we find for
t ∈ [0, 1],

Ty(t) =

∫ 1

0
G(t, s)

1
p(s)

IqF
(
s, y∗(s)

)
ds

≤

∫ 1

0
G(t, s)

1
p(s)

Iq (M1) ds

= M1

∫ 1

0
G(t, s)

1
p(s)

Iq (1) ds

= M1ω(t) ≤M1
NP

Γ(q + 1)
≤ R1.
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Therefore ‖ Ty ‖≤ R1 =‖ y ‖ for y ∈ P
⋂
∂ΩR1.

Let K be a positive real number such that

KLµN(1 − t2)r−2
tq
1

Γ(q + 1)
P∗R−1

2 ≥ 1, (29)

where P∗ :=
∫ t2

t1

1
p(s)

ds. In the view of (A2), there is a constant L > 0 such that F(t, y) ≥ Ky, ∀y ≥ L

and t ∈ [t1, t2]. Now set, R2 := R1 + max{
2MNP
Γ(q + 1)

, 2L} and define ΩR2 = {y ∈ E :‖ y ‖< R2}. Since

x(t) = Mω(t) ≤
MNP

Γ(q + 1)
≤

R2

2
, we get y∗(t) = y(t) − x(t) ≥ R2 −

R2

2
=

R2

2
> L for t ∈ [t1, t2]. Therefore for

y ∈ P
⋂
∂ΩR2 , we have

F(t, y∗(t)) ≥ Ky∗(t) ≥ KL, t ∈ [t1, t2], (30)

which implies that

Ty(t) =

∫ 1

0
G(t, s)

1
p(s)

IqF(s, y∗(s))ds

≥

∫ t2

t1

µN(1 − s)r−2 1
p(s)

Iq (KL) ds

≥ KLµN
∫ t2

t1

(1 − s)r−2 1
p(s)

Iq (1) ds

≥ KLµN(1 − t2)r−2
∫ t2

t1

1
p(s)

tq

Γ(q + 1)
ds

≥ KLµN(1 − t2)r−2
tq
1

Γ(q + 1)

∫ t2

t1

1
p(s)

ds

= KLµN(1 − t2)r−2
tq
1

Γ(q + 1)
P∗ ≥ R2 =‖ y ‖,

so we get ‖ Ty ‖≥ R2 =‖ y ‖.
Then it follows from Theorem 2.1 that T has a fixed y with R1 ≤‖ y ‖≤ R2.

Theorem 3.2. Assume that (H1)-(H3) are satisfied. Let 0 < a < b < c ≤ e and suppose that F satisfies the following
conditions:

(B1) F(t, y) ≤ a
Γ(q + 1)

NP
, for all (t, y) ∈ [0, 1] × [0, a],

(B2) F(t, y) ≥ b
Γ(q + 1)

µNθq+r−2Pθ
, for all (t, y) ∈ [θ, 1 − θ] × [b −

MNP
Γ(q + 1)

, c],

(B3) F(t, y) ≤ e
Γ(q + 1)

NP
, for all (t, y) ∈ [0, 1] × [0, e],

where Pθ :=
∫ 1−θ

θ

1
p(s)

ds, then the problem (3.23)-(3.24) has at least three positive solutions y1, y2, y3 such that

‖ y1 ‖< a, α(y2) > b, ‖ y3 ‖> a and α(y3) < b.

Proof: We shall seek fixed points of T in our cone P where the operator T : E→ E is defined by (26). In
what follows, we show that the all conditions of Theorem 2.2 are satisfied. We first define the nonnegative,
continuous concave functional α : P → [0,∞) by α(y) = mint∈[θ,1−θ] |y(t)|. For each y ∈ P, it is easy to see
α(y) ≤‖ y ‖. Let e > 0 be a constant. We prove that T(Pe) ⊆ Pe. Let y ∈ Pe. Then
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(i) if y(t) ≥ x(t), we have 0 ≤ y(t) − x(t) ≤ y(t) ≤ c and F
(
t, y∗(t)

)
= f

(
t, y(t) − x(t)

)
+ M ≥ 0. By (B3) we have

F(t, y(t) − x(t)) ≤ e
Γ(q + 1)

NP
.

(ii) if y(t) < x(t), we have y(t) − x(t) < 0 and F
(
t, y∗(t)

)
= f (t, 0) + M ≥ 0. By (B3) we have F(t, y(t) − x(t)) ≤

e
Γ(q + 1)

NP
.

So, we proved that, if y ∈ Pe, then F(t, y(t) − x(t)) ≤ e
Γ(q + 1)

NP
for t ∈ [0, 1]. Then,

Ty(t) =

∫ 1

0
G(t, s)

1
p(s)

IqF
(
s, y∗(s)

)
ds

≤

∫ 1

0
G(t, s)

1
p(s)

Iq
(

eΓ(q + 1)
NP

)
ds

=
eΓ(q + 1)

NP

∫ 1

0
G(t, s)

1
p(s)

Iq (1) ds

=
eΓ(q + 1)

NP
ω(t) ≤

eΓ(q + 1)
NP

NP
Γ(q + 1)

= e.

Therefore, we have T(Pe) ⊆ Pe.

Especially, if y ∈ Pa, then (B1) yields F(t, y(t) − z(t)) ≤ a
Γ(q + 1)

NP
for t ∈ [0, 1]. Hence condition (S2) of

Theorem 2.2 is satisfied.

Next we show that condition (S1) of Theorem 2.2 holds. To check that, we choose y0(t) =
b + c

2
for

t ∈ [0, 1]. It is easy to see that y0 ∈ P, ‖ y0 ‖=
b + c

2
≤ c and α(y0) =

b + c
2

> b. That is y0 ∈ {y ∈ P(α, b, c) :
α(y) > b}, in other words {y ∈ P(α, b, c) : α(y) > b} , ∅. Moreover, if y ∈ P(α, b, c) we have b < y(t) ≤ c for

t ∈ [θ, 1 − θ] and so b −
MNP

Γ(q + 1)
< y? = y − x < y < c. By (B2) and Lemma 2.5, we have

α(Ty) = min
t∈[θ,1−θ]

(Ty(t)) ≥

∫ 1−θ

θ
µN(1 − s)r−2 1

p(s)
IqF

(
s, y∗(s)

)
ds

≥ µN
∫ 1−θ

θ
(1 − s)r−2 1

p(s)
Iq

(
b

Γ(q + 1)
µNθq+r−2Pθ

)
ds

≥ µNb
Γ(q + 1)

µNθq+r−2Pθ
θr−2

∫ 1−θ

θ

1
p(s)

Iq (1) ds

= µNb
Γ(q + 1)

µNθq+r−2Pθ
θr−2

∫ 1−θ

θ

1
p(s)

tq

Γ(q + 1)
ds

≥ µNb
Γ(q + 1)

µNθq+r−2Pθ
θr−2 θq

Γ(q + 1)

∫ 1−θ

θ

1
p(s)

ds

=
µNθq+r−2

Γ(q + 1)
b

Γ(q + 1)
µNθq+r−2Pθ

Pθ = b.

Hence condition (S1) of Theorem 2.3 is satisfied. If c = e, then condition (S1) of Theorem 2.3 implies the
condition (S3) of this theorem, so condition (S3) of Theorem 2.3 is satisfied.

To sum up, all the hypotheses of Theorem 2.3 are satisfied. The proof is complete.

Lemma 3.3 y(t) is the solution of the boundary value problem (23)-(24) with y(t) > x(t) for all t ∈ [0, 1] if and
only if u(t) = y(t) − x(t) is the positive solution of the boundary value problem (1)-(2).
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Proof: Let y(t) is the solution of the boundary value problem (23)-(24). Then

y(t) =

∫ 1

0
G(t, s)

1
q(s)

IqF(s, y?(s))ds

=

∫ 1

0
G(t, s)

1
q(s)

Iq( f (s, y?(s)) + M)ds

=

∫ 1

0
G(t, s)

1
q(s)

Iq f (s, (y − x)(s))ds + M
∫ 1

0
G(t, s)

1
q(s)

Iq(1)ds.

Noticing that,

ω(t) =

∫ 1

0
G(t, s)

1
q(s)

Iq(1)ds and x(t) = Mω(t), we have for t ∈ [0, 1],

y(t) =

∫ 1

0
G(t, s)

1
q(s)

Iq f (s, (y − x)(s))ds + Mω(t),

or

y(t) − x(t) =

∫ 1

0
G(t, s)

1
q(s)

Iq f (s, (y − x)(s))ds,

and hence

u(t) =

∫ 1

0
G(t, s)

1
q(s)

Iq f (s,u(s))ds.

This completes the proof.

Example 3.3. Consider the following fractional boundary value problem

D
1
2

(
et−1D

3
2 u(t)

)
+ f (t,u(t)) = 0, t ∈ (0, 1), (31)

1
2

u(0) −
1
4

u′(0) = −
1
6

u(
1
3

),
1
3

u(1) +
1
4

u′(1) = −
1
5

u(
1
2

),

Dru(0) = 0,

(32)

(i) Consider the fractional boundary value problem (31)-(32) with the function f (t,u(t)) =
1

100(t + 1)
(u(t) −

1)(u(t) − 2). It is easy to check that the assumptions (H1) − (H3) hold and calculate d � 0.6,N � 1.26,P = e − 1.

Choosing M = 1 we get M1 = 1.02 and so M1
NP

Γ(q + 1)
� 2.79. Set R1 = 3 and [t1, t2] = [

1
6
,

5
6

]. Thus we can verify

that conditions (A1) − (A2) are satisfied. Then applying Theorem 3.1 and choosing R2 = 10, the problem (31) − (32)
has a positive solution y ∈ P with 3 ≤‖ y ‖≤ 10.

(ii) Consider the fractional boundary value problem (31)-(32) with the function f (t,u(t)) =
et

103 sin(u(t)). It is
easy to check that the assumptions (H1)− (H3) hold. We can choose M = 1 and easily calculate d � 0.6,N � 1.26,P =

e − 1, µ � −0.77 and also
NP

Γ(q + 1)
� 2.74. Let θ = 1

4 , we get Pθ � 0.83. Set a = 5, b = 10, d = 20, c = 22.

Thus we can verify that conditions (B1) − (B3) are satisfied. Then applying Theorem 3.2 the problem (31)-(32) has at
least three positive solutions y1, y2, y3 such that ‖ y1 ‖< 5, α(y2) > 10, ‖ y3 ‖> 5 and α(y3) < 10.
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