Bounds for Symmetric Division Deg Index of Graphs

Kinkar Ch. Das ${ }^{\text {a }}$, Marjan Matejićc ${ }^{\text {b }}$, Emina Milovanoviććb , Igor Milovanovićb ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
${ }^{b}$ Faculty of Electronics Engineering, University of Niš, A. Medvedeva 14, 18000 Niš, Serbia

Abstract

Let $G=(V, E)$ be a simple connected graph of order $n(\geq 2)$ and size m, where $V(G)=\{1,2, \ldots, n\}$. Also let $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta>0, d_{i}=d(i)$, be a sequence of its vertex degrees with maximum degree Δ and minimum degree δ. The symmetric division deg index, $S D D$, was defined in [D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261273] as $S D D=S D D(G)=\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}$, where $i \sim j$ means that vertices i and j are adjacent. In this paper we give some new bounds for this topological index. Moreover, we present a relation between topological indices of graph.

1. Introduction

Let $G=(V, E)$ be a simple connected graph with $n(\geq 2)$ vertices and m edges, where $V(G)=\{1,2, \ldots, n\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. The maximum vertex degree is denoted by Δ and the minimum by δ. For the edge e connecting the vertices i and j, the degree of edge is $d(e)=d_{i}+d_{j}-2$. Let $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta>0$, $d_{i}=d(i)$, and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right), \Delta_{e}=d\left(e_{1}\right)+2$ and $\delta_{e}=d\left(e_{m}\right)+2$, be sequences of its vertex and edge degrees, respectively. If vertices v_{i} and v_{j} are adjacent, we denote it as $i \sim j$ or $v_{i} v_{j} \in E$.

Two vertex-degree-based topological indices, the first and the second Zagreb indices, M_{1} and M_{2}, were defined in $[12,13]$ as

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2} \quad \text { and } \quad M_{2}=M_{2}(G)=\sum_{i \sim j} d_{i} d_{j} .
$$

As shown in [19], the first Zagreb index can also be expressed as

$$
M_{1}=\sum_{i \sim j}\left(d_{i}+d_{j}\right) .
$$

Bearing in mind that for the edge e connecting the vertices i and j we have that

$$
d(e)=d_{i}+d_{j}-2
$$

[^0]the index M_{1} can also be considered as an edge-degree-based topological index [17]
$$
M_{1}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)
$$

Multiplicative variants of the Zagreb indices, the first and the second multiplicative Zagreb indices, Π_{1} and Π_{2}, were defined in [15] as

$$
\Pi_{1}=\Pi_{1}(G)=\prod_{i=1}^{n} d_{i}^{2} \quad \text { and } \quad \Pi_{2}=\Pi_{2}(G)=\prod_{i \sim j} d_{i} d_{j}
$$

One year later, the multiplicative sum Zagreb index, Π_{1}^{*}, was introduced in [8]

$$
\Pi_{1}^{*}=\Pi_{1}^{*}(G)=\prod_{i \sim j}\left(d_{i}+d_{j}\right) .
$$

Since

$$
\Pi_{1}^{*}=\prod_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)
$$

this index can also be considered as an edge-degree-based topological index.
For an edge $i \sim j$ of G, its weight is defined to be $\frac{2}{d_{i}+d_{j}}$. The harmonic index of G is the sum of weights over all its edges. It is denoted by $H(G)$ and is defined in [9] as

$$
H=H(G)=\sum_{i \sim j} \frac{2}{d_{i}+d_{j}}
$$

For its basic mathematical properties, including lower bound, see, recent paper [2] and the references cited therein.

The general Randić index, R_{-1}, was defined as [22]

$$
R_{-1}=R_{-1}(G)=\sum_{i \sim j} \frac{1}{d_{i} d_{j}}
$$

The geometric-arithmetic vertex-degree-based topological index, GA, was introduced in [30]. It is defined as

$$
G A=G A(G)=\sum_{i \sim j} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} .
$$

Similarly, in [24], the arithmetic-geometric topological index, $A G$, was defined as

$$
A G=A G(G)=\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}
$$

A family of Adriatic indices was introduced in [28,29]. An especially interesting subclass of these descriptors consists of 148 discrete Adriatic indices. A so called inverse sum indeg index, ISI, was defined in [29] as a significant predictor of total surface area of octane isomers. The inverse sum indeg index is defined as

$$
I S I=\operatorname{ISI}(G)=\sum_{i \sim j} \frac{d_{i} d_{j}}{d_{i}+d_{j}} .
$$

The symmetric division deg index, $S D D$, was defined in [29] as

$$
S D D=S D D(G)=\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}
$$

In this paper we are interested in upper and lower bounds on topological index $S D D$. This problem was considered in [4, 11, 27]. Very recently in [10], the authors studied to test the physico-chemical applicability of SDD on a much wider empirical basis, and to compare it with other, most often used, vertex-degree-based topological indices.

2. Preliminary results

In this section we list some analytical inequalities for real number sequences that will be used in the subsequent considerations. Let $x=\left(x_{i}\right)$ and $a=\left(a_{i}\right), i=1,2, \ldots, m$, be positive real number sequences. Then for all $r, r \geq 0$, holds [21]

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=1}^{m} x_{i}\right)^{r+1}}{\left(\sum_{i=1}^{m} a_{i}\right)^{r}} \tag{1}
\end{equation*}
$$

with equality holding if and only if

$$
\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{m}}{a_{m}} .
$$

Let $a=\left(a_{i}\right), i=1,2, \ldots, m$, be a positive real number sequence. In [16] (see also [31]) the following inequalities were proven

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \sqrt{a_{i}}\right)^{2} \leq(m-1) \sum_{i=1}^{m} a_{i}+m\left(\prod_{i=1}^{m} a_{i}\right)^{\frac{1}{m}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \sqrt{a_{i}}\right)^{2} \geq \sum_{i=1}^{m} a_{i}+m(m-1)\left(\prod_{i=1}^{m} a_{i}\right)^{\frac{1}{m}} \tag{3}
\end{equation*}
$$

Let $p=\left(p_{i}\right)$ and $a=\left(a_{i}\right), i=1,2, \ldots, m$, be two positive real number sequences with the properties $p_{1}+p_{2}+\cdots+p_{m}=1$ and $0<r \leq a_{i} \leq R<+\infty$. In [23] (see also [18]) the following inequality was proven

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i}+r R \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq r+R \tag{4}
\end{equation*}
$$

Moreover, the equality holds in (4) if and only if $R=a_{1}=a_{2}=\cdots=a_{m}=r$, or for some $k, 1 \leq k \leq m-1$, $R=a_{1}=a_{2}=\cdots=a_{k} \geq a_{k+1}=\cdots=a_{m}=r$.

Let $p=\left(p_{i}\right)$ and $a=\left(a_{i}\right), b=\left(b_{i}\right), i=1,2, \ldots, m$, be non-negative real number sequences with the properties $r_{1} \leq a_{i} \leq R_{1}$ and $r_{2} \leq b_{i} \leq R_{2}$. Further, let S be a subset of $I=\{1,2, \ldots, m\}$ which minimizes the expression

$$
\begin{equation*}
\left|\sum_{i \in S} p_{i}-\frac{1}{2} \sum_{i=1}^{m} p_{i}\right| \tag{5}
\end{equation*}
$$

In [1] the following inequality was proven

$$
\begin{equation*}
\left|\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i}-\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i}\right| \leq\left(R_{1}-r_{1}\right)\left(R_{2}-r_{2}\right) \alpha(S)\left(\sum_{i=1}^{m} p_{i}\right)^{2} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(S)=\frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\left(1-\frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\right) . \tag{7}
\end{equation*}
$$

Moreover, the equality holds in (6) if and only if $R_{1}=a_{1}=a_{2}=\cdots=a_{m}=r_{1}$ or $R_{2}=b_{1}=b_{2}=\cdots=b_{m}=r_{2}$.
Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be real number sequences for which there exist real constants r and R so that for each $i, i=1,2, \ldots, n$, holds $r a_{i} \leq b_{i} \leq R a_{i}$. Then the following inequality holds [7]:

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{2}+r R \sum_{i=1}^{n} a_{i}^{2} \leq(r+R) \sum_{i=1}^{n} a_{i} b_{i} \tag{8}
\end{equation*}
$$

with equality holding if and only if for at least one $i, 1 \leq i \leq n$ holds $r a_{i}=b_{i}=R a_{i}$.

3. Main results

In this section we determine some lower and upper bounds for the $S D D$ index in terms of some other topological indices.

In the following theorem we establish lower bound for invariant $S D D$ in terms of parameter m and topological indices M_{1} and M_{2}.
Theorem 3.1. Let G be a connected graph of order n with $m(\geq 1)$ edges. Then

$$
\begin{equation*}
S D D \geq \frac{M_{1}^{2}}{M_{2}}-2 m \tag{9}
\end{equation*}
$$

with equality holding if and only if G is a regular graph or a semiregular bipartite graph.
Proof. Define $S=S(G)$ as

$$
S=\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}
$$

Then we have

$$
\begin{equation*}
S D D=\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}=\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}-2 d_{i} d_{j}}{d_{i} d_{j}}=S-2 m \tag{10}
\end{equation*}
$$

For $r=1, x_{i}:=d_{i}+d_{j}, a_{i}:=d_{i} d_{j}$, where summation is performed over all edges, the inequality (1) becomes

$$
\begin{equation*}
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}} \geq \frac{\left(\sum_{i \sim j}\left(d_{i}+d_{j}\right)\right)^{2}}{\sum_{i \sim j} d_{i} d_{j}}, \text { that is, } S \geq \frac{M_{1}^{2}}{M_{2}} \tag{11}
\end{equation*}
$$

with equality holding if and only if $\frac{1}{d_{i}}+\frac{1}{d_{i}}=\frac{1}{d_{k}}+\frac{1}{d_{\ell}}$ for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$. The inequality (9) follows from equality (10) and inequality (11). The first part of the proof is done.

Suppose that equality holds in (11). Then $\frac{1}{d_{i}}+\frac{1}{d_{j}}=\frac{1}{d_{k}}+\frac{1}{d_{\ell}}$ for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$. For $v_{j}, v_{k} \in N_{G}\left(v_{i}\right)$, we have $d_{j}=d_{k}$. Since G is connected, one can easily see that G is a regular graph or a semiregular bipartite graph.
Conversely, let G be a regular graph. Then

$$
S D D=\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}=2 m=\frac{M_{1}^{2}}{M_{2}}-2 m .
$$

Let G be an (r, s)-semiregular bipartite graph. Then

$$
S D D=\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}=\frac{r^{2}+s^{2}}{r s} m=\frac{(r+s)^{2}}{r s} m-2 m=\frac{M_{1}^{2}}{M_{2}}-2 m .
$$

Corollary 3.2. Let G be a connected graph with $m(\geq 2)$ edges. Then

$$
\begin{equation*}
\frac{M_{1}^{2}}{M_{2}} \leq S D D+2 m \leq m\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right)^{2} . \tag{12}
\end{equation*}
$$

Remark 3.3. Since $m \leq \frac{n(n-1)}{2}$, both inequalities in (12) are stronger than

$$
\frac{M_{1}^{2}}{M_{2}} \leq \frac{n(n-1)}{2}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right)^{2},
$$

which was proven in [20].
Since $M_{1}^{2} \geq M_{1} \delta_{e} m \geq m^{2} \delta_{e}^{2}$, the following corollary of Theorem 3.1 holds.
Corollary 3.4. Let G be a connected graph of order n with $m(\geq 2)$ edges. Then

$$
S D D \geq \frac{m \delta_{e} M_{1}}{M_{2}}-2 m \geq \frac{m^{2} \delta_{e}^{2}}{M_{2}}-2 m .
$$

Equalities hold if and only if G is regular or semiregular bipartite graph.
Since $M_{1}^{2} \geq \frac{2 m^{2} M_{1}}{H} \geq \frac{4 m^{4}}{H^{2}}$ the following corollary of Theorem 3.1 is also valid.
Corollary 3.5. Let G be a connected graph with $m(\geq 2)$ edges. Then

$$
S D D \geq \frac{2 m^{2} M_{1}}{M_{2} H}-2 m \geq \frac{4 m^{4}}{M_{2} H^{2}}-2 m
$$

Equalities hold if and only if G is regular or semiregular bipartite graph.
Since $M_{2} \leq \Delta_{e}$ ISI, the following corollary of Theorem 3.1 holds.
Corollary 3.6. Let G be a connected graph with $m(\geq 2)$ edges. Then

$$
S D D \geq \frac{M_{1}^{2}}{\Delta_{e} I S I}-2 m .
$$

Equality holds if and only if G is regular or semiregular bipartite graph.

Theorem 3.7. Let G be a connected graph of order n with $m(\geq 2)$ edges. Then

$$
\begin{equation*}
S D D \geq \frac{m^{2} \Delta_{e} \delta_{e}}{\left(\Delta_{e}+\delta_{e}\right) I S I-M_{2}}-2 m \tag{13}
\end{equation*}
$$

with equality holding if and only if

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G)
$$

and $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)$.
Proof. Since $\delta_{e} \leq d_{i}+d_{j} \leq \Delta_{e}$ for any edge $v_{i} v_{j} \in E(G)$, we have

$$
\begin{array}{ll}
& \left(\Delta_{e}-d_{i}-d_{j}\right)\left(\delta_{e}-d_{i}-d_{j}\right) \leq 0 \\
\text { i.e., } & \left(d_{i}+d_{j}\right)^{2}+\Delta_{e} \delta_{e}-\left(d_{i}+d_{j}\right)\left(\Delta_{e}+\delta_{e}\right) \leq 0, \\
\text { i.e., } & 1+\frac{\Delta_{e} \delta_{e}}{\left(d_{i}+d_{j}\right)^{2}}-\frac{\Delta_{e}+\delta_{e}}{d_{i}+d_{j}} \leq 0 .
\end{array}
$$

Moreover, the above equality holds if and only if $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)$.
Using the above result, one can easily see that

$$
\sum_{i \sim j}\left[1+\frac{\Delta_{e} \delta_{e}}{\left(d_{i}+d_{j}\right)^{2}}-\frac{\Delta_{e}+\delta_{e}}{d_{i}+d_{j}}\right] d_{i} d_{j} \leq 0
$$

with equality holding if and only if $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)$. Thus we have

$$
\sum_{i \sim j} d_{i} d_{j}+\Delta_{e} \delta_{e} \sum_{i \sim j} \frac{d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}} \leq\left(\Delta_{e}+\delta_{e}\right) \sum_{i \sim j} \frac{d_{i} d_{j}}{d_{i}+d_{j}}
$$

that is,

$$
M_{2}+\Delta_{e} \delta_{e} \sum_{i \sim j} \frac{d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}} \leq\left(\Delta_{e}+\delta_{e}\right) \text { ISI, }
$$

that is,

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}} \leq \frac{\left(\Delta_{e}+\delta_{e}\right) I S I-M_{2}}{\Delta_{e} \delta_{e}} \tag{14}
\end{equation*}
$$

with equality holding if and only if $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)$.
By Cauchy-Schwarz inequality, we have

$$
m^{2}=\left(\sum_{i \sim j} \frac{\sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \cdot \frac{d_{i}+d_{j}}{\sqrt{d_{i} d_{j}}}\right)^{2} \leq \sum_{i \sim j} \frac{d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}} \sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}=S \sum_{i \sim j} \frac{d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}}
$$

with equality holding if and only if

$$
\frac{d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}}=\frac{d_{k} d_{\ell}}{\left(d_{k}+d_{\ell}\right)^{2}}, \text { that is, } \frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G)
$$

From the above result with (14), we have

$$
\frac{m^{2}}{S} \leq \frac{\left(\Delta_{e}+\delta_{e}\right) I S I-M_{2}}{\Delta_{e} \delta_{e}}, \text { that is, } S \geq \frac{m^{2} \Delta_{e} \delta_{e}}{\left(\Delta_{e}+\delta_{e}\right) I S I-M_{2}}
$$

with equality holding if and only if

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G)
$$

and $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)$.
From the above with identity (10), we arrive at (13). This completes the proof of the theorem.
Example 3.8. Let $H=(V, E)$ be a graph with vertex set $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{33}\right\}$ and $|E(H)|=72$ such that $v_{1} v_{i} \in E(H)(i=2,3, \ldots, 13)$ and $v_{j+1} v_{k+13} \in E(H)(j=1,2, \ldots, 12 ; k=(5 j-4 \bmod 20)$, $(5 j-3 \bmod 20)$, ($5 j-$ 2 mod 20), (5j-1 mod 20), (5j mod 20)). For graph H,

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{5}{2} \text { for any edge } v_{i} v_{j} \in E(H)
$$

and $\Delta_{e}=18, \delta_{e}=9$. Moreover, $d_{i}+d_{j}=18$ or 9 for any edge $v_{i} v_{j} \in E(H)$. This graph H is neither regular graph nor semiregular bipartite graph.

The following result is the corollary of Theorem 3.7.
Corollary 3.9. Let G be a connected graph with $m(\geq 2)$ edges. Then

$$
S D D \geq \frac{m^{2} \delta_{e}}{I S I}-2 m
$$

Equality holds if and only if G is a regular graph or a semiregular bipartite graph.
Proof. Since $d_{i}+d_{j} \geq \delta_{e}$, we have

$$
I S I=\sum_{i \sim j} \frac{d_{i} d_{j}}{d_{i}+d_{j}} \leq \frac{1}{\delta_{e}} \sum_{i \sim j} d_{i} d_{j}=\frac{M_{2}}{\delta_{e}}
$$

with equality holding if and only if $d_{i}+d_{j}=\delta_{e}$ for any edge $v_{i} v_{j} \in E(G)$, that is, if and only if G is a regular graph or a semiregular bipartite graph [3].

The above result with Theorem 3.7, we get the required result. Moreover, the equality holds if and only if G is a regular graph or a semiregular bipartite graph.

In the following theorem we determine lower bound for the invariant $S D D$ depending on parameter m and topological index GA.

Theorem 3.10. Let G be a simple graph of order n with $m(\geq 1)$ edges. Then

$$
\begin{equation*}
S D D \geq \frac{4 m^{3}}{(G A)^{2}}-2 m \tag{15}
\end{equation*}
$$

with equality holding if and only if

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G)
$$

Proof. By Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\left(\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}\right)^{2} \leq m \sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{4 d_{i} d_{j}}, \text { that is, } \frac{m}{4} S \geq(A G)^{2} \tag{16}
\end{equation*}
$$

with equality holding if and only if

$$
\frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}=\frac{d_{k}+d_{\ell}}{2 \sqrt{d_{k} d_{\ell}}} \text {, that is, } \sqrt{\frac{d_{i}}{d_{j}}}+\sqrt{\frac{d_{j}}{d_{i}}}=\sqrt{\frac{d_{k}}{d_{\ell}}}+\sqrt{\frac{d_{\ell}}{d_{k}}},
$$

that is, $\quad \frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}}$ for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$.
Using the arithmetic-harmonic mean inequality for real numbers (see e.g. [18]), we have

$$
\begin{equation*}
(A G)(G A) \geq m^{2} \tag{17}
\end{equation*}
$$

with equality holding if and only if

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G) .
$$

From this inequality and inequality (16) follows

$$
S \geq \frac{4 m^{3}}{(G A)^{2}}
$$

with equality holding if and only if

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G) .
$$

According to this inequality and (10), we obtain (15). Moreover, the equality holds in (15) if and only if

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G) \text {. }
$$

In the next theorem we establish lower and upper bounds for SDD in terms of parameter m and invariants $G A, A G, \Pi_{1}^{*}$ and Π_{2}.

Theorem 3.11. Let G be a connected graph with $m(\geq 2)$ edges. Then

$$
\begin{equation*}
S D D \geq \frac{4 m^{4}}{(m-1)(G A)^{2}}-\frac{m\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{(m-1)\left(\Pi_{2}\right)^{\frac{1}{m}}}-2 m \tag{18}
\end{equation*}
$$

with equality holding if and only if

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G),
$$

and

$$
\begin{equation*}
S D D \leq 4(A G)^{2}-\frac{m(m-1)\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{\left(\Pi_{2}\right)^{\frac{1}{m}}}-2 m . \tag{19}
\end{equation*}
$$

Moreover, the equality holds in (19) for

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G) .
$$

Proof. Lower bound: For $a_{i}:=\frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}$, where summation goes over all edges in graph G, the inequality (2) becomes

$$
\left(\sum_{i \sim j} \frac{d_{i}+d_{j}}{\sqrt{d_{i} d_{j}}}\right)^{2} \leq(m-1) \sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}+m\left(\prod_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}\right)^{\frac{1}{m}}
$$

that is,

$$
4(A G)^{2} \leq(m-1) S+m \frac{\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{\left(\Pi_{2}\right)^{\frac{1}{m}}}
$$

According to this and inequality (17) we get

$$
\frac{4 m^{4}}{(G A)^{2}} \leq(m-1) S+m \frac{\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{\left(\Pi_{2}\right)^{\frac{1}{m}}}
$$

The inequality (18) is obtained from the above inequality and equality (10). The first part of the proof is done.

Suppose that equality holds in (18). Then all the above inequalities must be equalities. From the equality in (17), we have

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G)
$$

Conversely, let

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}}=p \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G)
$$

Then one can easily see that

$$
\sqrt{\frac{d_{i}}{d_{j}}}+\sqrt{\frac{d_{j}}{d_{i}}}=\sqrt{p+2} \text { for any edge } v_{i} v_{j} \in E(G)
$$

Now,

$$
\begin{aligned}
& \frac{4 m^{4}}{(m-1)(G A)^{2}}-\frac{m\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{(m-1)\left(\Pi_{2}\right)^{\frac{1}{m}}}-2 m \\
= & \frac{m^{2}(p+2)}{(m-1)}-\frac{m}{(m-1)}\left(\prod_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}\right)^{\frac{1}{m}}-2 m \\
= & \frac{m^{2}(p+2)}{(m-1)}-\frac{m(p+2)}{(m-1)}-2 m \\
= & m p=S D D .
\end{aligned}
$$

Upper bound: For $a_{i}:=\frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}$, where summation goes over all edges in graph G, the inequality (3) becomes

$$
\left(\sum_{i \sim j} \frac{d_{i}+d_{j}}{\sqrt{d_{i} d_{j}}}\right)^{2} \geq \sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}+m(m-1)\left(\prod_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}\right)^{\frac{1}{m}}
$$

that is,

$$
4(A G)^{2} \geq S+m(m-1) \frac{\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{\left(\Pi_{2}\right)^{\frac{1}{m}}}
$$

From this inequality and equality (10) we arrive at (19). Let

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}}=p \text { for any edges } v_{i} v_{j}, v_{k} v_{\ell} \in E(G)
$$

Then

$$
\sqrt{\frac{d_{i}}{d_{j}}}+\sqrt{\frac{d_{j}}{d_{i}}}=\sqrt{p+2} \text { for any edge } v_{i} v_{j} \in E(G)
$$

Now,

$$
\begin{aligned}
& 4(A G)^{2}-\frac{m(m-1)\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{\left(\Pi_{2}\right)^{\frac{1}{m}}}-2 m \\
= & m^{2}(p+2)-m(m-1)(p+2)-2 m \\
= & m p=S D D
\end{aligned}
$$

This completes the proof of the theorem.
Corollary 3.12. Let G be a connected graph with $m(\geq 2)$ edges. Then

$$
S D D \geq \frac{m}{m-1}\left(2(m+1)-\frac{\left(\Pi_{1}^{*}\right)^{\frac{2}{m}}}{\left(\Pi_{2}\right)^{\frac{1}{m}}}\right)
$$

Equality holds if and only if G is a regular graph.
Proof. In [5], we have that $G A \leq m$ with equality holding if and only if G is a regular graph as G is connected. Using this result with Theorem 3.11, we get the required result. Moreover, the equality holds if and only if G is a regular graph.

In the following theorem we determine an upper bound for $S D D$ in terms of parameters $n, m, \Delta_{e}, \delta_{e}$ and topological index R_{-1}.

Theorem 3.13. Let G be a connected graph with $n(\geq 2)$ vertices and m edges. Then

$$
\begin{equation*}
S D D \leq n\left(\delta_{e}+\Delta_{e}\right)-\delta_{e} \Delta_{e} R_{-1}-2 m . \tag{20}
\end{equation*}
$$

Equality holds if and only if G is a regular graph or a semiregular bipartite graph, or $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)\left(\Delta_{e} \neq \delta_{e}\right)$.

Proof. For $p_{i}:=\frac{d_{i}+d_{j}}{n d_{i} d_{j}}, a_{i}:=d_{i}+d_{j}, r=\delta_{e}, R=\Delta_{e}$, where summation goes over all edges in graph G, the inequality (4) becomes

$$
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{n d_{i} d_{j}}+\delta_{e} \Delta_{e} \sum_{i \sim j} \frac{1}{n d_{i} d_{j}} \leq \delta_{e}+\Delta_{e}
$$

that is,

$$
\begin{equation*}
S+\delta_{e} \Delta_{e} R_{-1} \leq n\left(\delta_{e}+\Delta_{e}\right) \tag{21}
\end{equation*}
$$

The inequality (20) is obtained from this inequality and equality (10).
Moreover, the equality holds in (4) if and only if $R=a_{1}=a_{2}=\cdots=a_{m}=r$, or for some $k, 1 \leq k \leq m-1$, $R=a_{1}=a_{2}=\cdots=a_{k} \geq a_{k+1}=\cdots=a_{m}=r$. It follows that equality holds in (21) if and only if $d_{i}+d_{j}=\Delta_{e}=\delta_{e}$ for any edge $v_{i} v_{j} \in E(G)$, or $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)\left(\Delta_{e} \neq \delta_{e}\right)$. Consequently, the equality holds in (20) if and only if G is a regular graph or a semiregular bipartite graph [3], or $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edge $v_{i} v_{j} \in E(G)\left(\Delta_{e} \neq \delta_{e}\right)$.

Corollary 3.14. Let G be a connected graph with $n(\geq 2)$ vertices and m edges. Then

$$
\begin{equation*}
S D D \leq n\left(\delta_{e}+\Delta_{e}\right)-\frac{m^{2} \delta_{e} \Delta_{e}}{M_{2}}-2 m . \tag{22}
\end{equation*}
$$

Equality holds if and only if G is a regular graph or a semiregular bipartite graph.
Proof. By Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
m^{2}=\left(\sum_{i \sim j} \sqrt{d_{i} d_{j}} \frac{1}{\sqrt{d_{i} d_{j}}}\right)^{2} \leq \sum_{i \sim j} d_{i} d_{j} \sum_{i \sim j} \frac{1}{d_{i} d_{j}}, \text { that is, } m^{2} \leq M_{2} R_{-1} \tag{23}
\end{equation*}
$$

with equality holding if and only if $d_{i} d_{j}=d_{k} d_{\ell}$, for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$. By Theorem 3.13 with (23), we get the required result in (22). The first part of the proof is done.

We have to prove that $d_{i} d_{j}=d_{k} d_{\ell}$, for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$ if and only if G is a regular graph or a semiregular bipartite graph. For this we suppose that $d_{i} d_{j}=d_{k} d_{\ell}$, for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$. From the equality $d_{i} d_{j}=d_{i} d_{k}, v_{i} v_{j} \in E(G)$ and $v_{i} v_{k} \in E(G)$, follows $d_{j}=d_{k}$. Similarly, from the equality $d_{j} d_{i}=d_{j} d_{t}, v_{i} v_{j} \in E(G)$ and $v_{j} v_{t} \in E(G)$, it follows that $d_{i}=d_{t}$. Hence all the vertices adjacent to any vertex v_{i} $(i=1,2, \ldots, n)$ have the same degree. First we assume that G contains an odd cycle. Since G is connected, then using the above result, we conclude that $d_{1}=d_{2}=\cdots=d_{n}$, that is, G is a regular graph. Next we assume that G contains only even cycles. In this case G is semiregular bipartite graph as G is connected. Hence G is a regular graph or a semiregular bipartite graph. Conversely, one can easily see that $d_{i} d_{j}=d_{k} d_{\ell}$, for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$ holds for regular graph or semiregular bipartite graph.

By Theorem 3.13 with the above result, we conclude that the equality holds in (22) if and only if G is a regular graph or a semiregular bipartite graph.

Corollary 3.15. Let G be a connected graph with $n(\geq 2)$ vertices and m edges. Then

$$
\begin{equation*}
S D D \leq \frac{n^{2}}{4 R_{-1}} \frac{\left(\Delta_{e}+\delta_{e}\right)^{2}}{\Delta_{e} \delta_{e}}-2 m \tag{24}
\end{equation*}
$$

with equality holding if and only if G is a regular graph or a semiregular bipartite graph, or $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edges $v_{i} v_{j} \in E(G)\left(\Delta_{e} \neq \delta_{e}\right)$ with

$$
\Delta_{e} \sum_{v_{i} v_{j} \in S} \frac{1}{d_{i} d_{j}}=\delta_{e} \sum_{v_{i} v_{j} \in W} \frac{1}{d_{i} d_{j}}
$$

where $S=\left\{v_{i} v_{j} \in E(G): d_{i}+d_{j}=\Delta_{e}\right\}$ and $W=\left\{v_{i} v_{j} \in E(G): d_{i}+d_{j}=\delta_{e}\right\}$.
Moreover,

$$
\begin{equation*}
S D D \leq \frac{n^{2} M_{2}}{4 m^{2}} \frac{\left(\Delta_{e}+\delta_{e}\right)^{2}}{\Delta_{e} \delta_{e}}-2 m \tag{25}
\end{equation*}
$$

Equality in (25) holds if and only if G is a regular graph or a semiregular bipartite graph.

Proof. Using the arithmetic-geometric mean inequality for real numbers (see e.g. [18]), according to (21) we have that

$$
2 \sqrt{S \Delta_{e} \delta_{e} R_{-1}} \leq S+\delta_{e} \Delta_{e} R_{-1} \leq n\left(\Delta_{e}+\delta_{e}\right), \text { that is, } S \leq \frac{n^{2}\left(\Delta_{e}+\delta_{e}\right)^{2}}{4 \Delta_{e} \delta_{e} R_{-1}}
$$

According to this inequality and equality (10) we obtain (24).
By Theorem 3.13 with the above results, we conclude that the equality holds in (24) if and only if G is a regular graph or a semiregular bipartite graph, or $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edges $v_{i} v_{j} \in E(G)\left(\Delta_{e} \neq \delta_{e}\right)$ with $S=\delta_{e} \Delta_{e} R_{-1}$, that is, if and only if G is a regular graph or a semiregular bipartite graph, or $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edges $v_{i} v_{j} \in E(G)\left(\Delta_{e} \neq \delta_{e}\right)$ with

$$
\Delta_{e}^{2} \sum_{v_{i}, j \in S} \frac{1}{d_{i} d_{j}}+\delta_{e}^{2} \sum_{v_{i}, j \in W} \frac{1}{d_{i} d_{j}}=\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}=S=\delta_{e} \Delta_{e} \sum_{i \sim j} \frac{1}{d_{i} d_{j}}=\Delta_{e} \delta_{e} \sum_{v_{i} i_{j} \in S} \frac{1}{d_{i} d_{j}}+\Delta_{e} \delta_{e} \sum_{v_{i} v_{j} \in W} \frac{1}{d_{i} d_{j}},
$$

that is, if and only if G is a regular graph or a semiregular bipartite graph, or $d_{i}+d_{j}=\Delta_{e}$ or δ_{e} for any edges $v_{i} v_{j} \in E(G)\left(\Delta_{e} \neq \delta_{e}\right)$ with

$$
\Delta_{e} \sum_{v_{i} v_{j} \in S} \frac{1}{d_{i} d_{j}}=\delta_{e} \sum_{v_{i} v_{j} \in W} \frac{1}{d_{i} d_{j}}
$$

where $S=\left\{v_{i} v_{j} \in E(G): d_{i}+d_{j}=\Delta_{e}\right\}$ and $W=\left\{v_{i} v_{j} \in E(G): d_{i}+d_{j}=\delta_{e}\right\}$.
The inequality (25) is obtained from (24) and $R_{-1} M_{2} \geq m^{2}$. Since $R_{-1} M_{2}=m^{2}$ if and only if G is a regular graph or a semiregular bipartite graph (see proof of the Corollary 3.14). Hence the equality in (25) is attained if and only if G is a regular graph or a semiregular bipartite graph.
In the following theorem we determine lower bound for SDD in terms of parameters n, m and invariant R_{-1}.

Theorem 3.16. Let G be a connected graph with $n(\geq 2)$ vertices and m edges. Then

$$
\begin{equation*}
S D D \geq \frac{n^{2}}{R_{-1}}-2 m \tag{26}
\end{equation*}
$$

Equality holds if and only if G is a regular graph or a bipartite semiregular graph.
Proof. By Cauchy-Schwarz inequality, we have

$$
\sum_{i \sim j} \frac{1}{d_{i} d_{j}} \sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}} \geq\left(\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}}\right)^{2}
$$

with equality holding if and only if $d_{i}+d_{j}=d_{k}+d_{\ell}$ for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$.
Since

$$
\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}}=\sum_{i \sim j}\left(\frac{1}{d_{i}}+\frac{1}{d_{j}}\right)=\sum_{i=1}^{n} 1=n
$$

the inequality becomes

$$
R_{-1} S \geq n^{2}
$$

According to this inequality and equality (10), we obtain the inequality (26). Moreover, the equality holds in (26) if and only if $d_{i}+d_{j}=d_{k}+d_{\ell}$ for any edges $v_{i} v_{j}, v_{k} v_{\ell} \in E(G)$. Since G is connected, the equality holds in (26) if and only if G is a regular graph or a bipartite semiregular graph [3].
In the following theorem we prove an inequality opposite to the inequality (26).

Theorem 3.17. Let G be a connected graph with n vertices and $m(\geq 2)$ edges. Let S be a subset of $I=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ which minimizes the expression

$$
\begin{equation*}
\left|\sum_{e \in S} \frac{1}{d_{i} d_{j}}-\frac{1}{2} R_{-1}\right| \tag{27}
\end{equation*}
$$

Then

$$
\begin{equation*}
S D D \leq \frac{n^{2}}{R_{-1}}-2 m+\left(\Delta_{e}-\delta_{e}\right)^{2} \alpha(S) R_{-1} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(S)=\frac{\sum_{e \in S} \frac{1}{d_{i} d_{j}}}{R_{-1}}\left(1-\frac{\sum_{e \in S} \frac{1}{d_{i} d_{j}}}{R_{-1}}\right) \tag{29}
\end{equation*}
$$

Equality holds in (28) if and only if G is a regular graph or a semiregular bipartite graph.
Proof. For $p_{i}:=\frac{1}{d_{i} d_{j}}$ the expressions (5) and (7) become (27) and (29). Now, for $p_{i}:=\frac{1}{d_{i} d_{j}}, a_{i}=b_{i}:=d_{i}+d_{j}$, $R_{1}=R_{2}=\Delta_{e}, r_{1}=r_{2}=\delta_{e}$, where summation goes over all adjacent vertices in graph G, i.e., over all edges, the inequality (6) becomes

$$
\sum_{i \sim j} \frac{1}{d_{i} d_{j}} \sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}-\left(\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}}\right)^{2} \leq\left(\Delta_{e}-\delta_{e}\right)^{2} \alpha(S)\left(\sum_{i \sim j} \frac{1}{d_{i} d_{j}}\right)^{2}
$$

i.e.

$$
\begin{equation*}
R_{-1} S-n^{2} \leq\left(\Delta_{e}-\delta_{e}\right)^{2} \alpha(S) R_{-1}^{2} \tag{30}
\end{equation*}
$$

According to this inequality and (10) we obtain (28).
Moreover, the equality holds in (6) if and only if $R_{1}=a_{1}=a_{2}=\cdots=a_{m}=r_{1}$ or $R_{2}=b_{1}=b_{2}=\cdots=b_{m}=$ r_{2}. It follows that equality holds in (30) if and only if $\Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$, that is, if and only if G is a regular graph or a semiregular bipartite graph [3]. Consequently, the equality holds in (28) if and only if G is a regular graph or a semiregular bipartite graph.

Using the arithmetic-geometric mean inequality for real numbers (see e.g. [18]), we have that $\alpha(S) \leq \frac{1}{4}$ for every subset $S \subset I$. Therefore, we have the following corollary of Theorem 3.17.
Corollary 3.18. Let G be a connected graph with n vertices and $m(\geq 2)$ edges. Then

$$
S D D \leq \frac{n^{2}}{R_{-1}}-2 m+\frac{\left(\Delta_{e}-\delta_{e}\right)^{2} R_{-1}}{4}
$$

Equality holds if and only if G is a regular graph or a semiregular bipartite graph.
We now give a relation between different topological indices of graphs:
Theorem 3.19. Let G be a graph of order n with m edges and maximum degree Δ, minimum degree δ. Then

$$
\begin{equation*}
S D D+2 m+R \cdot r \cdot I S I \leq(r+R) \sqrt{(m-1) M_{1}+m\left(\Pi_{1}^{*}\right)^{1 / m}} \tag{31}
\end{equation*}
$$

where

$$
r=\sqrt{\frac{8}{\Delta}}, \quad R=\sqrt{\frac{\Delta}{\delta^{2}}+\frac{1}{\Delta}+\frac{6}{\delta}}
$$

Moreover, the equality holds if and only if G is a regular graph.

Proof. We have

$$
\begin{align*}
\sqrt{\frac{\left(d_{i}+d_{j}\right)^{3}}{d_{i}^{2} d_{j}^{2}}} & =\sqrt{\frac{1}{d_{i}}\left(3+\frac{d_{j}}{d_{i}}\right)+\frac{1}{d_{j}}\left(3+\frac{d_{i}}{d_{j}}\right)} \\
& \leq \frac{1}{\sqrt{\delta}} \sqrt{6+\frac{d_{j}}{d_{i}}+\frac{d_{i}}{d_{j}}} \\
& =\frac{1}{\sqrt{\delta}} \sqrt{8+\left(\sqrt{\frac{d_{i}}{d_{j}}}-\sqrt{\frac{d_{j}}{d_{i}}}\right)^{2}} \\
& \leq \frac{1}{\sqrt{\delta}} \sqrt{8+\left(\sqrt{\frac{\Delta}{\delta}}-\sqrt{\frac{\delta}{\Delta}}\right)^{2}}=\sqrt{\frac{\Delta}{\delta^{2}}+\frac{1}{\Delta}+\frac{6}{\delta}}=R, \text { (say) } \tag{32}
\end{align*}
$$

and

$$
\begin{equation*}
\sqrt{\frac{\left(d_{i}+d_{j}\right)^{3}}{d_{i}^{2} d_{j}^{2}}} \geq \frac{1}{\sqrt{\Delta}} \sqrt{6+\frac{d_{j}}{d_{i}}+\frac{d_{i}}{d_{j}}} \geq \sqrt{\frac{8}{\Delta}}=r, \text { (say), as } \frac{d_{j}}{d_{i}}+\frac{d_{i}}{d_{j}} \geq 2 . \tag{33}
\end{equation*}
$$

Setting $a_{i}:=d_{i}+d_{j}$, where summation is performed over all edges, the inequality (2) becomes

$$
\left(\sum_{i \sim j} \sqrt{d_{i}+d_{j}}\right)^{2} \leq(m-1) \sum_{i \sim j}\left(d_{i}+d_{j}\right)+m\left(\prod_{i \sim j}\left(d_{i}+d_{j}\right)\right)^{1 / m}
$$

that is,

$$
\begin{equation*}
\sum_{i \sim j} \sqrt{d_{i}+d_{j}} \leq \sqrt{(m-1) M_{1}+m\left(\Pi_{1}^{*}\right)^{1 / m}} \tag{34}
\end{equation*}
$$

Setting $a_{i}:=\sqrt{\frac{d_{i} d_{j}}{d_{i}+d_{j}}}$ and $b_{i}:=\sqrt{\frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}}$ with $r \leq \frac{b_{i}}{a_{i}} \leq R$, where summation is performed over all edges, the inequality (8) becomes

$$
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}}+r R \sum_{i \sim j} \frac{d_{i} d_{j}}{d_{i}+d_{j}} \leq(r+R) \sum_{i \sim j} \sqrt{d_{i}+d_{j}},
$$

that is,

$$
S D D+2 m+R \cdot r \cdot I S I \leq(r+R) \sqrt{(m-1) M_{1}+m\left(\Pi_{1}^{*}\right)^{1 / m}}
$$

where

$$
r=\sqrt{\frac{8}{\Delta}}, \quad R=\sqrt{\frac{\Delta}{\delta^{2}}+\frac{1}{\Delta}+\frac{6}{\delta}}, \quad \text { by (32), (33) and (34). }
$$

The first part of the proof is done.
Suppose that equality holds in (31). Then all the above inequalities must be equalities. From the equality in (8), we have that there exists at least one $i, r=\frac{b_{i}}{a_{i}}=R$, that is, $\sqrt{\frac{8}{\Delta}}=\sqrt{\frac{\Delta}{\delta^{2}}+\frac{1}{\Delta}+\frac{6}{\delta}}$, that is, $\Delta=\delta$. Hence G is a regular graph.

Conversely, let G be a d-regular graph. Then $S D D=m, I S I=m d / 2, M_{1}=n d^{2}$ and $\Pi_{1}^{*}=2^{m} d^{m}$ and hence

$$
S D D+2 m+R \cdot r \cdot I S I=8 m=(r+R) \sqrt{(m-1) M_{1}+m\left(\Pi_{1}^{*}\right)^{1 / m}}
$$

Hence the equality holds in (31).

Acknowledgement. The first author is supported by the Sungkyun research fund, Sungkyunkwan University, 2017, and National Research Foundation of the Korean government with grant No. 2017R1D1A1B03028642. M. M. Matejić, E. I. Milovanović and I. Ž. Milovanović are supported by the Serbian Ministry of Education, Science and Technological development.

References

[1] D. Andrica, C. Badea, Grüss' inequality for positive linear functionals, Period. Math. Hungar. 19 (1988) 155-167.
[2] M. Cheng, L. Wang, A lower bound for the Harmonic index of a graph with minimum degree at least three, Filomat 30 (8) (2016) 2249-2260.
[3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66.
[4] K. C. Das, I. Gutman, B. Furtula, On spectral radius and energy of extended adjacency matrix of graphs, Appl. Math. Comput. 296 (2017) 116-123.
[5] K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 619-630.
[6] K. C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 595-644.
[7] J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G. Pólya-G. Szegö and L. V. Kantorovich, Bull. Amer. Math. Soc. 69 (1963) 415-418.
[8] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (1) (2012) 217-230.
[9] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187-197.
[10] B. Furtula, K. C. Das, I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, International Journal of Quantum Chemistry (in press)
[11] C. K. Gupta, V. Lokesha, S. B. Shwetha, P. S. Ranjini, On the symmetric division deg index of graphs, Sout. Asian Bullet. Math. 40 (2016) 59-80.
[12] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[13] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[14] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 146 (2014) 39-52.
[15] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011) 13-19.
[16] H. Kober, On the arithmetic and geometric means and on Hölder's inequality, Proc. Amer. Math. Soc. 9 (1958) 452-459.
[17] I. Ž. Milovanović, E. I. Milovanović, I. Gutman, B. Furtula, Some inequalities for the forgotten topological index, Int. J. Appl. Graph Theory 1(1) (2017) 1-15.
[18] D. S. Mitrinović, P. M. Vasić, Analytic inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.
[19] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[20] K. Pattabiraman, M. Seenivasan, Bounds on vertex Zagreb indices of graphs, Global J. Sci. Front. Research 17 (6) (2017) 43-47.
[21] J. Radon, Über die absolut additiven Mengenfunktionen, Wiener Sitzungsber. 122 (1913) 1295-1438.
[22] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[23] B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963) 442-448.
[24] V. S. Shegehalli, R. Kanabur, Arithmetic-geometric indices of path graph, J. Comput. Math. Sci. 16 (1) (2015) 19-24.
[25] G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem. 4 (2013) 213-220.
[26] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2) (2010) 359-372.
[27] A. Vasilyev, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem. 5 (2) (2014) 91-98.
[28] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010) 243-260.
[29] D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) $261-273$.
[30] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
[31] B. Zhou, I. Gutman, T. Aleksić, A note on the Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 441-446.

[^0]: 2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C50
 Keywords. Symmetric division deg index, Zagreb indices, multiplicative Zagreb indices.
 Received: 20 February 2018; Accepted: 23 July 2018
 Communicated by Francesco Belardo
 Email addresses: kinkardas2003@gmail.com (Kinkar Ch. Das), marjan.matejic@elfak.ni.ac.rs (Marjan Matejić), ema@elfak.ni.ac.rs (Emina Milovanović), igor@elfak.ni.ac.rs (Igor Milovanović)

