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Abstract. In this paper, some properties of an order induced by uninorms are studied. The set of incom-
parable elements with respect to the U-partial order for any uninorm on bounded lattices is investigated.
Also, an equivalence relation on the class of uninorms induced by a U-partial order is investigated and
discussed. Finally, the relationships between an order induced by uninorms and distributivity property for
uninorms are investigated.

1. Introduction

Uninorms were introduced by Yager and Rybalov [29]. Uninorms are special aggregation operators
which have proven to be useful in many applications like fuzzy logic, expert systems, neural networks,
fuzzy system modeling [14, 16, 28].

In [19], uninorms on bounded lattices were studied. Also, the smallest and the greatest uninorm with
neutral element e ∈ L \ {0, 1} on L were obtained.

In [24], a natural order for semigroups was defined. Similarly, in [18], a partial order defined by means
of t-norms on a bounded lattice was introduced.

In [15], an order induced by uninorms on bounded lattice was defined and some properties of such an
order were investigated. The uninorms, t-norms (t-conorms) and the order induced by uninorm (nullnorm)
were also studied by many other authors in other papers [1, 3, 8–13, 17, 26, 27, 29].

The present paper is organized as follows. We shortly recall some basic notions in Section 2. In Section
3, we survey that the set IU

L(x), denoting the set of all incomparable elements with arbitrary but fixed
x ∈ L \ {0, 1} according to the �U. Also, we investigate the set of incomparable elements with respect to
the U-partial order for any uninorm on (L,≤, 0, 1) and we determine the sets of incomparable elements
w.r.t. U-partial order of the greatest and weakest uninorm on (L,≤, 0, 1). In Section 4, we investigate an
equivalence relation on the class of uninorms on the unit interval [0, 1] and we determine the equivalence
classes of some special uninorms on [0, 1]. In Section 5, the relationship between an order induced by
uninorms and distributiity property for uninorms on the unit interval [0, 1] are investigated. In Section 6,
concluding remarks are given.
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2. Preliminaries

Let us now recall all necessary basic notions. A bounded lattice (L,≤) is a lattice which has the top and
bottom elements, which are written as 1 and 0, respectively, that is there exist two elements 1, 0 ∈ L such
that 0 ≤ x ≤ 1, for all x ∈ L.

Definition 2.1. ([6, 19]) Let (L,≤, 0, 1) be a bounded lattice. An operation U : L2
→ L is called a uninorm on

L, if it is commutative, associative, monotone and has a neutral element e ∈ L.

We denote by U(e) the set of all uninorms on L with the neutral element e ∈ L. In this paper, to
make it short, the set (0, e] × [e, 1) ∪ [e, 1) × (0, e] for e ∈ L \ {0, 1} will be denoted by A(e), that is A(e) =
(0, e] × [e, 1) ∪ [e, 1) × (0, e] for e ∈ L \ {0, 1}. Clearly, U is a t-norm (t-conorm) if e = 1 (e = 0).

Example 2.2. ([22]) The four basic t-norms TM, TP, TL and TD on [0, 1] are given by, respectively,
TM(x, y) = min(x, y),
TP(x, y) = xy,
TL(x, y) = max(x + y − 1, 0),

TD(x, y) =

0, if (x, y) ∈ [0, 1)2

min(x, y), otherwise.

Example 2.3. ([22]) The four basic t-conorms SM, SP, SL and SD on [0, 1] are given by, respectively,
SM(x, y) = max(x, y),
SP(x, y) = x + y − xy,
SL(x, y) = min(x + y, 1),

SD(x, y) =

1, if (x, y) ∈ (0, 1)2

max(x, y), otherwise.

The t-norms T∧ and TW on L are defined as follows, respectively:
T∧(x, y) = x ∧ y

TW(x, y) =


x, i f y = 1
y, i f x = 1
0, otherwise.

Similarly, the t-conorms S∨ and SW can be defined as above.
In particular, we have obtained TW = TD and T∧ = TM for L = [0, 1].

Example 2.4. ([22]) The t-norm TnM on [0, 1] is defined as follows:

TnM(x, y) =

0, x + y ≤ 1
min(x, y), otherwise.

TnM is called nilpotent minimum t-norm. This t-norm has been introduced by J. Fodor.

Definition 2.5. ([7]) A t-norm T on L is divisible if the following condition holds:

∀ x, y ∈ L with x ≤ y there is a z ∈ L such that x = T(y, z).

The infimum t-norm T∧ is divisible: x ≤ y is equivalent to x ∧ y = x. A basic example of a non-divisible
t-norm on an arbitrary bounded lattice L (i.e., card L > 3) is the t-norm TW . Similarly, t-conorm S∨ is
divisible. SW is a non-divisible t-conorm on an arbitrary bounded lattice L (i.e., card L > 3).

Note: ([5, 10]) Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and b are incomparable, then we use
the notation a ‖ b in this case.
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Definition 2.6. ([5]) Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, a ≤ b, a subinterval [a, b] of L is defined
as

[a, b] = {x ∈ L | a ≤ x ≤ b}
Similarly, [a, b) = {x ∈ L | a ≤ x < b}, (a, b] = {x ∈ L | a < x ≤ b} and (a, b) = {x ∈ L | a < x < b}.

Definition 2.7. ([18]) Let L be a bounded lattice and T be a t-norm on L. The order defined as follows is
called a T− partial order (triangular order) for t-norm T:

x �T y :⇔ T(`, y) = x for some ` ∈ L.

Definition 2.8. ([15]) Let L be a bounded lattice and S be a t-conorm on L. The order defined as follows is
called a S− partial order for t-conorm S:

x �S y :⇔ S(k, x) = y for some k ∈ L.

Definition 2.9. ([15]) Let (L,≤, 0, 1) be a bounded lattice and U be a uninorm with neutral element e on L.
Define the following relation, for x, y ∈ L, as

x �U y :⇔


if x, y ∈ [0, e] and there exist k ∈ [0, e] such that U(k, y) = x or,
if x, y ∈ [e, 1] and there exist ` ∈ [e, 1] such that U(x, `) = y or,
if x, y ∈ L∗ and x ≤ y,

(1)

where Ie = {x ∈ L | x ‖ e} and L∗ = [0, e]× [e, 1]∪ [0, e]× Ie∪ [e, 1]× Ie∪ [e, 1]× [0, e]∪ Ie× [0, e]∪ Ie× [e, 1]∪ Ie× Ie.

Proposition 2.10. ([15]) The relation �U defined in (1) is a partial order on L.

Note: The partial order �U in (1) is called the U-partial order on L.

Definition 2.11. ([2]) Let U be a nullnorm on [0, 1] and let KU be defined by

KU = {x ∈ (0, 1) | for some y ∈ (0, 1), [x < y and x �U y] or [y < x and y �U x]}.

Definition 2.12. ([2]) Define a relation β on the class of all uninorms on [0, 1] by U1βU2,

U1βU2 :⇔ KU1 = KU2 .

3. Regarding the Set KL
U

on any Bounded Lattices

In this section, we investigate the set of all incomparable elements with arbitrary but fixed x ∈ L \ {0, 1}
according to the U-partial order. Also, we determine above introduced the sets of the smallest and the
greatest uninorms on (L,≤, 0, 1). Thus, we conclude for the some basic t-norms and t-conorms in Corollary
3.13, Corollary 3.14, Corollary 3.16, Corollary 3.17.

Definition 3.1. ([20]) Let U be a uninorm on (L,≤, 0, 1) with neutral element e and let IL(x)
U be defined by

IL(x)
U = {yx ∈ L\{0, 1} | [x < yx and x �U yx] or [yx < x and yx �U x] or x ‖ yx}.

In the following, the notation IL(x)
U is used to denote the set of all incomparable elements with x ∈ L\{0, 1}

according to �U. Clearly, IL(x)
U = ∅ for x = 0 and 1. By the definition of IL(x)

U , for any x ∈ L \ {0, 1}, the set
I

L(x)
U does not contain 0 and 1.

Definition 3.2. Let (L,≤, 0, 1) be a bounded lattice. The set IL
x for x ∈ L \ {0, 1} is defined by

IL
x = {y ∈ L\{0, 1} | x ‖ y}.
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Note: For any uninorm on (L,≤, 0, 1), we have that IL
x ⊆ IL(x)

U for x ∈ L.

Lemma 3.3. Let (L,≤, 0, 1) be a bounded lattice. For all uninorms U and all x ∈ L it holds that 0 �U x, x �U x and
x �U 1.

Proposition 3.4. Let (L,≤, 0, 1) be a bounded lattice. Consider the function on L defined as follows:

UT∧ (x, y) =



x ∧ y, (x, y) ∈ [0, e]2

x ∨ y, (x, y) ∈ [0, e] × (e, 1] ∪ (e, 1] × [0, e]
y, x ∈ [0, e], y ‖ e
x, y ∈ [0, e], x ‖ e
1, otherwise.

UT∧ is the greatest uninorm on L with neutral element e [19]. Then
a) IL(x)

UT∧
= {yx ∈ (e, 1) | x , yx} ∪ IL

x for x ∈ (e, 1).

b) IL(x)
UT∧

= IL
x for x ∈ (0, e) or x ‖ e.

Proof. a) Let yx ∈ IL(x)
UT∧

be arbitrary for x ∈ (e, 1). Based on Lemma 3.3, it must be x , yx. So, we will show

that yx ∈ (e, 1) or yx ∈ IL
x . Suppose that yx < (e, 1) and yx < IL

x . Since yx ∈ IL(x)
UT∧

, we have that yx < x and
yx �UT∧

x or x < yx and x �UT∧
yx or x ‖ yx.

Let yx < x and yx �UT∧
x.

Since yx < (e, 1), we have that yx = 1, yx ∈ [0, e] or yx ‖ e. It can not be yx = 1 by Lemma 3.3. Let yx ∈ [0, e].
Since yx ∈ [0, e] and x ∈ (e, 1), it is obtained that yx �UT∧

x, by the definition of �U. This is a contradiction.
Let yx ‖ e. Since yx < x and yx ‖ e, then it is obtained that yx �UT∧

x, a contradiction by the definition of �U.
Let x < yx and x �UT∧

yx.
If yx = 1, then we have x �UT∧

1, which is a contradiction.
Let yx ∈ [0, e]. Since x < yx ≤ e, then we have that UT∧ (x, yx) = x ∧ yx = x. So, it is obtained that x �UT∧

yx,
a contradiction. Let yx ‖ e. Since x < yx and yx ‖ e, then it is obtained that x �UT∧

yx, a contradiction by the
definition of �U.

Finally since yx < IL
x , it can not be x ‖ yx. So, we have that yx ∈ (e, 1) or yx ∈ IL

x .
Thus, we have IL(x)

UT∧
⊆ {yx ∈ (e, 1) | x , yx} ∪ IL

x for x ∈ (e, 1).

Conversely, let yx ∈ (e, 1) or yx ∈ IL
x such that x , yx for x ∈ (e, 1). We want to show that yx ∈ IL(x)

UT∧
.

Suppose that yx < IL(x)
UT∧

. In this case, yx < x and yx �UT∧
x or x < yx and x �UT∧

yx.
Let yx ∈ (e, 1) and x , yx for x ∈ (e, 1).

• Let yx < x and yx �UT∧
x. Then, there exists an element k ∈ [e, 1] such that UT∧ (yx, k) = x. If k = 1, then we

have x = yx, which is a contradiction. Since k ∈ [e, 1), it is obtained that

UT∧ (yx, k) = x = 1

a contradiction by the definition of UT∧ . So, it must be yx �UT∧
x.

• Let x < yx and x �UT∧
yx. Similar arguments are suggested for this case.

So, {yx ∈ (e, 1) | x , yx} ⊆ IL(x)
UT∧

for all x ∈ (e, 1).

Let yx ∈ IL
x for x ∈ (e, 1). By the definition of IL(x)

U , we have that IL
x ⊆ IL(x)

U .
Thus, we have IL(x)

UT∧
= {yx ∈ (e, 1) | x , yx} ∪ IL

x for all x ∈ (e, 1).

b) Let x ∈ (0, e). It is clear that IL
x ⊆ IL(x)

U for every uninorm on L. Conversely, let yx ∈ IL(x)
UT∧

. We need to
show that yx ∈ IL

x . We suppose that yx < IL
x . In this case x < yx or yx < x. Let x < yx. If x < yx < e, then we

have

x = yx ∧ x = UT∧ (yx, x).
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So we have that x �UT∧
yx, a contradiction. If x < e < yx, then it is obtained that x �UT∧

yx, a contradiction
by the definition of �U.
Let yx < x. Since yx < x < e, we have

yx = yx ∧ x = UT∧ (yx, x).

So, it is obtained that yx �UT∧
x, a contradiction.

So, IL(x)
UT∧
⊆ IL

x for x ∈ (0, e). Consequently, we have IL(x)
UT∧

= IL
x for x ∈ (0, e).

If x ‖ e, then similarly it can be shown that IL(x)
UT∧

= IL
x .

Corollary 3.5. Let (L,≤, 0, 1) be a bounded lattice and card(L) > 3. For the drastic product t-conorm SW on L,
IL(x)
SW

= L \ {0, 1} for x ∈ L \ {0, 1}.

Corollary 3.6. Let (L,≤, 0, 1) be a bounded lattice. For the infimum t-norm T∧ on L, IL(x)
T∧

= IL
x for x ∈ L.

Proof. In Proposition 3.4, if we put a neutral element e = 0 and e = 1, then we obtain drastic product
t-conorm SW and infimum t-norm T∧ on L.

Proposition 3.7. Let (L,≤, 0, 1) be a bounded lattice. Consider the function on L defined as follows:

US∨ (x, y) =



x ∨ y, (x, y) ∈ [e, 1]2

x ∧ y, (x, y) ∈ [0, e) × [e, 1] ∪ [e, 1] × [0, e)
y, x ∈ [e, 1], y ‖ e
x, y ∈ [e, 1], x ‖ e
0, otherwise.

US∨ is the smallest uninorm on L with neutral element e [19]. Then
a) IL(x)

US∨
= {yx ∈ (0, e) | x , yx} ∪ IL

x for x ∈ (0, e).

b) IL(x)
US∨

= IL
x for x ∈ (e, 1) or x ‖ e.

The proof of this proposition is similar to the proof of Proposition 3.4.

Corollary 3.8. Let (L,≤, 0, 1) be a bounded lattice. For the t-conorm S∨ on L, IL(x)
S∨

= IL
x for x ∈ L.

Corollary 3.9. Let (L,≤, 0, 1) be a bounded lattice and card(L) > 3. For the weakest t-norm TW on L, IL(x)
TW

= L\ {0, 1}
for x ∈ L \ {0, 1}.

Proof. In Proposition 3.7, if we put a neutral element e = 0 and e = 1, then we get that a t-conorm S∨ and a
t-norm TW on L, respectively.

Now, we study on the set of all incomparable elements with respect to the U partial order with some
uninorm U on a bounded lattice (L,≤, 0, 1).

Definition 3.10. ([20]) Let U be a nullnorm on (L,≤, 0, 1) with neutral element e and let KL
U be defined by

KL
U = {x ∈ L\{0, 1} | for some y ∈ L\{0, 1}, [x < y implies x �U y] or [y < x implies y �U x] or x ‖ y}.

Definition 3.11. ([4]) Let (L,≤, 0, 1) be a bounded lattice. The set IL is defined by

IL = {x ∈ L | ∃ y ∈ L such that x ‖ y}.

Proposition 3.12. Let (L,≤, 0, 1) be a bounded lattice and card([e, 1]) > 3. Consider the greatest uninorm UT∧ with
neutral element e in Proposition 3.4. Then, we have that KL

UT∧
= (e, 1) ∪ IL.
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Proof. Let x ∈ (e, 1) ∪ IL. Then, we have that x ∈ (e, 1) or x ∈ IL. Let us show that x ∈ KL
UT∧

.
Let x ∈ (e, 1) and y ∈ (e, 1) such that x < y. Then, it must be the case that x �UT∧

y. Suppose that x �UT∧
y.

Then, there exists an element k ∈ [e, 1] such that

UT∧ (x, k) = y.

If k = 1, we have that x = y, which is a contradiction.
If k ∈ [e, 1), it is obtained that UT∧ (x, k) = y = 1, which is a contradiction. Since for any x ∈ (e, 1), there exists
an element y ∈ (e, 1), x < y such that x �UT∧

y. That is x ∈ KL
UT∧

. So, (e, 1) ⊆ KL
UT∧

.
Let x ∈ IL. Then, there exists y ∈ L such that x ‖ y. Thus, we have that x ∈ KL

UT∧
, by the definition of KL

UT∧
.

So, IL ⊆ KL
UT∧

. So, it is obtained that (e, 1) ∪ IL ⊆ KL
UT∧

.
Conversely, let x ∈ KL

UT∧
. We need to show that x ∈ (e, 1)∪ IL. Suppose that x < (e, 1)∪ IL. That is, x < (e, 1)

and x < IL. Since x ∈ KL
UT∧

, there exists an element y ∈ L \ {0, 1} such that x < y and x �UT∧
y or y < x and

y �UT∧
x or x ‖ y.

Let x < y and x �UT∧
y. Since x < (e, 1), it must be x = 1, x ∈ [0, e] or x ‖ e.

It can not be x = 1 by Lemma 3.3
Let x ∈ [0, e]. In this case, e < y, y < e or y ‖ e. If y = e, then we have that x �UT∧

e = y, a contradiction.
If x < y < e, then we have that

UT∧ (x, y) = x ∧ y = x.

So, we have that x �UT∧
y, which is a contradiction.

If x ≤ e < y, it is obtained that x �UT∧
y, a contradiction, by the definition of �U.

If y ‖ e, since x < y, we have that x �UT∧
y, a contradiction, by the definition of �U.

Let y < x and y �UT∧
x.

If x = 1, then we have y �UT∧
1, which is a contradiction.

Let x ∈ [0, e]. Since y < x, we have that

UT∧ (x, y) = x ∧ y = x.

So, it is obtained that y �UT∧
x, which is a contradiction.

Finally, since x < IL, it can not be x ‖ y. Thus, we have that KL
UT∧
⊆ (e, 1) ∪ IL.

Consequently, we showed KL
UT∧

= (e, 1) ∪ IL.

Corollary 3.13. ([4]) Let (L,≤, 0, 1) be a bounded lattice. For the infimum t-norm T∧ on L, KL
T∧

= IL.

Corollary 3.14. Let (L,≤, 0, 1) be a bounded lattice. For the drastic product t-conorm SW on L,

KL
SW

=

∅, if card(L) ≤ 3
L \ {0, 1}, otherwise.

Proof. In Proposition 3.12, if we put a neutral element e = 0, then we have KL
SW

= L \ {0, 1} for card(L) > 3
.

Proposition 3.15. Let (L,≤, 0, 1) be a bounded lattice and card([0, e]) > 3. Consider the smallest uninorm US∨ with
neutral element e in Proposition 3.7. Then, we have that KL

US∨
= (0, e) ∪ IL.

The proof of this proposition is similar to the proof of Proposition 3.12.

Corollary 3.16. ([4]) Let (L,≤, 0, 1) be a bounded lattice. For the weakest t-norm TW on L,

KL
TW

=

∅, if card(L) ≤ 3
L \ {0, 1}, otherwise.
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Corollary 3.17. Let (L,≤, 0, 1) be a bounded lattice. For t-conorm S∨ on L, KL
S∨

= IL.

Proof. In Proposition 3.15, if we put a neutral element e = 0, then we have KL
S∨

= IL.

Remark 3.18. Let (L,≤, 0, 1) be a chain. For any uninorm U with neutral element e ∈ L\ {0, 1}, if | L |≤ 4, then
it is obtained that KL

U = ∅. If (L,≤, 0, 1) is not a chain, then it may not be true. For example, let L = {0, e, x, 1}
whose lattice diagram is displayed in Figure 1.

Figure 1: The order ≤ on L

It is clear that KL
U , ∅ for every uninorm U with neutral element e.

Proposition 3.19. ([19]) Let (L,≤, 0, 1) be a bounded lattice, e ∈ L \ {0, 1} and U be a uninorm with neutral element
e on L. Then,

(i) T∗ = U |[0,e]2 : [0, e]2
→ [0, e] is a t-norm on [0, e].

(ii) S∗ = U |[e,1]2 : [e, 1]2
→ [e, 1] is a t-conorm on [e, 1].

Proposition 3.20. ([18]) Let (L,≤, 0, 1) be a bounded lattice and U be a uninorm with neutral element e on L. If
([0, e] ∪ [e, 1],�U) is a chain, then T∗ and S∗ are divisible on [0, e] and [e, 1], respectively.

Remark 3.21. The converse of the above Proposition 3.20 may not be true. Consider the lattice (L =
{0, a, b, c, d, e, f , 1},≤, 0, 1) whose lattice diagram is displayed in Figure 2.

Figure 2: The order ≤ on L
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Consider the uninorm U : L2
→ L with neutral element e defined as follows:

U(x, y) =

x ∧ y, (x, y) ∈ [0, e]2

x ∨ y, otherwise.

T∗(x, y) = U |[0,e]2 (x, y) = x ∧ y and S∗(x, y) = U |[e,1]2 (x, y) = x ∨ y are divisible t-norm and t-conorm for
x, y ∈ [0, e] and x, y ∈ [e, 1], respectively. It is clear that (L,�U) is not a chain.

4. The Equivalence Classes Obtained From U-Partial Order

U-partial order introduced above allows us to introduce the next equivalence relation on the class of all
uninorms on the unit interval [0, 1]. In this section, we investigate the equivalence relation on the class of
all uninorms on the unit interval [0, 1]. We determine the equivalence classes of the smallest and greatest
uninorms on [0, 1]. In this way, we obtain the equivalence classes of the some basic t-norms and t-conorms
in Corollary 4.7, Corollary 4.6, Corollary 4.10 and Corollary 4.11.

Definition 4.1. ([20]) Define a relation ∼ on the class of all uninorms on the unit interval [0, 1] by U1 ∼ U2
if and only if the U1-partial order coincides with the U2-partial order.

Lemma 4.2. ([20]) The relation ∼ is an equivalence relation.

Definition 4.3. ([20]) For a given uninorm U on a bounded lattice (L,≤, 0, 1), we denote the ∼ equivalence
class linked to U by U, i.e,

U = {U
′

| U
′

∼ U}.

Proposition 4.4. Consider the smallest uninorm Ue : [0, 1]2
→ [0, 1] with neutral element e ∈ (0, 1) defined by

Ue(x, y) =


0, (x, y) ∈ [0, e)2

max(x, y), (x, y) ∈ [e, 1]2

min(x, y), otherwise.

Then, the equivalence class of the t-conorm Ue |[e,1]2 is the set of all divisible t-conorms on [e, 1], and the equivalence
class of the t-norm Ue |[0,e]2 consists only the t-norm Ue |[0,e]2 .

Proof. Let S′ be a t-conorm on [e, 1]. Let S′ ∈ Ue |[e,1]2 and x ≤ y for x, y ∈ [e, 1]. Since x ≤ y, then we have that

Ue |[e,1]2 (x, y) = max(x, y) = y. So, it is obtained that x �Ue |[e,1]2 y. Since S′ ∈ Ue |[e,1]2 , then we have x �S′ y.
Then there exists an element k ∈ [e, 1] such that S′(x, k) = y. So, S′ is a divisible t-conorm on [e, 1].

Conversely, let S′ is a divisible t-conorm on [e, 1]. Let x �Ue |[e,1]2 y for x, y ∈ [e, 1]. Since x �Ue |[e,1]2 y, we
have that x ≤ y. Since S′ is a divisible t-conorm, there exists an element ` ∈ [e, 1] such that S′(x, `) = y. So,
we have that x �S′ y. Conversely, let x �S′ y. Similarly it can be shown that x �Ue |[e,1]2 y. So, �Ue |[e,1]2=�S′ .

The equivalence class of the t-norm Ue |[0,e]2 consists only the t-norm Ue |[0,e]2 by [21].

Remark 4.5. In Proposition 4.4, if a t-conorm is not divisible t-conorm on [e, 1], then �Ue |[e,1]2,�S. Consider
the t-norm SD on [e, 1] defined by

SD(x, y) =


y, x = e
x, y = e
1, otherwise.

It is clear that SD is not divisible t-conorm. We claim that �Ue |[e,1]2,�SD .
Let e = 1

2 . Since Ue |[ 1
2 ,1]2 ( 2

3 ,
3
4 ) = 3

4 , then it is obtained that 2
3 �Ue |[ 1

2 ,1]2
3
4 . But 2

3 �SD
3
4 . Suppose that 2

3 �SD
3
4 .

Then there exists an element k ∈ [ 1
2 , 1] such that SD( 2

3 , k) = 3
4 .

If k = 1
2 , then we have that 3

4 = 2
3 , a contradiction. If k ∈ ( 1

2 , 1], then it is obtained that 3
4 = 1, a contradiction.

So, �Ue |[ 1
2 ,1]2,�SD .
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Corollary 4.6. The equivalence class of the smallest t-conorm SM on [0, 1] is the set of all divisible t-conorms on
[0, 1].

Proof. In Proposition 4.4, if we put a neutral element e = 0, then we have a smallest t-conorm SM on [0, 1].

Corollary 4.7. ([21]) The equivalence class of the smallest t-norm TD on [0, 1] consists only the t-norm TD on [0, 1].

Proposition 4.8. Consider the greatest uninorm Ue : [0, 1]2
→ [0, 1] with neutral element e ∈ (0, 1) defined by

Ue(x, y) =


min(x, y), (x, y) ∈ [0, e]2

1, (x, y) ∈ (e, 1]2

max(x, y), otherwise.

Then, the equivalence class of the t-norm Ue |[0,e]2 is the set of all divisible t-norms on [0, e], and the equivalence class
of the t-conorm Ue |[e,1]2 consists only the t-conorm Ue |[e,1]2 .

Remark 4.9. In Proposition 4.8, if a t-norm is not divisible on [0, e], then�Ue
|[0,e]2,�T. Consider the t-conorm

TD on [0, e] defined by

TD(x, y) =


y, x = e
x, y = e
0, otherwise.

It is clear that TD is not divisible t-norm. We claim that �Ue
|[0,e]2,�TD .

Let e = 1
2 . Since Ue |[0, 1

2 ]2 ( 1
5 ,

1
6 ) = 1

6 , then it is obtained that 1
6 �Ue

|[0, 1
2 ]2

1
5 . But 1

6 �TD
1
5 . On the condition that

1
6 �TD

1
5 , there exists an element ` ∈ [0, 1

2 ] such that TD( 1
5 , `) = 1

6 .
If ` = 1

2 , we have that 1
5 = 1

6 , a contradiction. If ` ∈ [0, 1
2 ), then it is obtained that 1

6 = 0, a contradiction. So,
�Ue
|[0, 1

2 ]2,�TD .

Corollary 4.10. The equivalence class of the greatest t-conorm SD on [0, 1] consists only the t-conorm SD on [0, 1].

Proof. In Proposition 4.8, if we put a neutral element e = 0, then we have a greatest t-conorm SD on [0, 1].

Corollary 4.11. ([21]) The equivalence class of the greatest t-norm TM on [0, 1] is the set of all divisible t-norms on
[0, 1].

5. Distributivity f0r Uninorms

In this section, we investigate the relationship between an order induced by uninorms and distributivity
property for uninorms on the unit interval [0, 1]. Thus, we give sufficiency condition for equivalent
according to the β in Corollary 5.6.

Definition 5.1. ([23]) Let U1 and U2 be uninorms on [0, 1]. U1 is distributive over U2 if it is satisfies the
following condition:

U1(x,U2(y, z)) = U2(U1(x, y),U1(x, z)) (2)

for all x, y, z ∈ [0, 1].

Proposition 5.2. Let U1 and U2 be uninorms on [0, 1] with the same neutral elements. If U1 is distributive over U2,
then KU2 ⊆ KU1 .
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Proof. Let U1 and U2 be uninorms on the unit interval [0, 1] and U1 is distributive over U2. Let x ∈ KU2 .
Then there exists an element y ∈ (0, 1) such that x < y and x �U2 y or y < x and y �U2 x. Suppose that
x < KU1 . Then there exists an element y ∈ (0, 1) such that x < y and x �U1 y or y < x and y �U1 x. Without
loss of generality, we assume that x < y and x �U1 y.

Let x, y ∈ [0, e]. Then there exists an element k ∈ [0, e] such that U1(y, k) = x.

x = U1(y, k) = U1(y,U2(k, e))

Since U1 is distributive over U2, then we get that

x = U1(y,U2(k, e)) = U2(U1(y, k),U1(y, e)) = U2(x, y).

So, it is obtained that x �U2 y, which is a contradiction.
Similar arguments are suggested for x, y ∈ [e, 1]. Since x ∈ KU2 , it can not be x, y < [0, e] and x, y < [e, 1].

Because if x, y < [0, e] and x, y < [e, 1], then we have that x �U y, by the definition of �U.

Proposition 5.3. Let U1 and U2 be uninorms on [0, 1]. If U1 is distributive over U2 and U2 is distributive over U1,
then KU1 = KU2 .

Remark 5.4. The converse of the above Proposition 5.3 may not be true. Here is an example illustrating a
such case.

Example 5.5. Consider the uninorms U : [0, 1]2
→ [0, 1] and U 1

2
: [0, 1]2

→ [0, 1] with neutral elements 1
2

defined as follows:

U(x, y) =


0, (x, y) ∈ [0, 1

2 ]
2

and x + y ≤ 1
2 and (x, y) , ( 1

4 ,
1
4 ),

1
4 , (x, y) = ( 1

4 ,
1
4 ),

max(x, y), (x, y) ∈ [ 1
2 , 1]

2
,

min(x, y), otherwise

and

U 1
2
(x, y) =


0, (x, y) ∈ [0, 1

2 )
2
,

max(x, y), (x, y) ∈ [ 1
2 , 1]

2
,

min(x, y), otherwise.

We have that KU = KU 1
2

= (0, 1
2 ) (see [2]). But U is not distributive over U 1

2
. Now, let us show that this

claim.

U( 1
4 ,U 1

2
( 1

4 ,
2
3 )) = U( 1

4 ,
1
4 ) = 1

4 and U 1
2
(U( 1

4 ,
1
4 ),U( 1

4 ,
2
3 )) = U 1

2
( 1

4 ,
1
4 ) = 0.

Since 0 , 1
4 , U1 is not distributive over U2.

Corollary 5.6. Let U1 and U2 be uninorms on [0, 1]. If U1 is distributive over U2 and U2 is distributive over U1,
then U1 and U2 are equivalent according to the β.

Remark 5.7. Let U1 and U2 be uninorms on [0, 1]. If U1 is distributive over U2, then it can not be KU1 ⊆ KU2 .
Consider the functions on [0, 1] defined as follows:

U1(x, y) =



0, (x, y) ∈ [0, 1
2 )

2
,

1, (x, y) ∈ ( 1
2 , 1]

2
,

y, x = 1
2 ,

x, y = 1
2 ,

min(x, y), otherwise,
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and

U2(x, y) =

min(x, y), (x, y) ∈ [0, 1
2 ]

2
,

max(x, y), otherwise.

U1 and U2 are uninorms with neutral elements 1
2 . It is clear that �U1⊆�U2 and U1 is distributive over U2. It

can be shown that KU1 = {x ∈ (0, 1) | x , e} and KU2 = ∅. Hence, we get that KU1 * KU2 .

6. Concluding Remarks

We have discussed and investigated some properties of U-partial order, denoted by �U. We have
investigated that the set IF

(x), denoting the set of all incomparable elements with arbitrary but fixed
x ∈ L \ {0, 1} according to �U. We have determined the sets of incomparable elements w.r.t. U-partial
order of the greatest and smallest uninorm on L. Also, we have investigated an equivalence relation on the
class of uninorms on a bounded lattice (L,≤, 0, 1) and we have determined the equivalence classes of some
special uninorms on the unit interval [0, 1]. Finally, we have investigated the relationship between an order
induced by uninorms and distributivity property for uninorms on the unit interval [0, 1].

Acknowledgement

We are grateful to the anonymous reviewers and the editor for their valuable comments, which helped
to improve the original version of our manuscript greatly.

References
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[2] E. Aşıcı, Some remarks on an order induced by uninorms, In: J. Kacprzyk, E. Szmidt, S. Zadroźny, K. Atanassov, M. Krawczak
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