Filomat 33:2 (2019), 571–582 https://doi.org/10.2298/FIL1902571A



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# **Equivalence Classes of Uninorms**

# Emel Aşıcı<sup>a</sup>

<sup>a</sup>Department of Software Engineering, Faculty of Technology, Karadeniz Technical University, 61830 Trabzon, Turkey

**Abstract.** In this paper, some properties of an order induced by uninorms are studied. The set of incomparable elements with respect to the *U*-partial order for any uninorm on bounded lattices is investigated. Also, an equivalence relation on the class of uninorms induced by a *U*-partial order is investigated and discussed. Finally, the relationships between an order induced by uninorms and distributivity property for uninorms are investigated.

# 1. Introduction

Uninorms were introduced by Yager and Rybalov [29]. Uninorms are special aggregation operators which have proven to be useful in many applications like fuzzy logic, expert systems, neural networks, fuzzy system modeling [14, 16, 28].

In [19], uninorms on bounded lattices were studied. Also, the smallest and the greatest uninorm with neutral element  $e \in L \setminus \{0, 1\}$  on *L* were obtained.

In [24], a natural order for semigroups was defined. Similarly, in [18], a partial order defined by means of t-norms on a bounded lattice was introduced.

In [15], an order induced by uninorms on bounded lattice was defined and some properties of such an order were investigated. The uninorms, t-norms (t-conorms) and the order induced by uninorm (nullnorm) were also studied by many other authors in other papers [1, 3, 8–13, 17, 26, 27, 29].

The present paper is organized as follows. We shortly recall some basic notions in Section 2. In Section 3, we survey that the set  $I_{U}^{L(x)}$ , denoting the set of all incomparable elements with arbitrary but fixed  $x \in L \setminus \{0, 1\}$  according to the  $\leq_{U}$ . Also, we investigate the set of incomparable elements with respect to the *U*-partial order for any uninorm on  $(L, \leq, 0, 1)$  and we determine the sets of incomparable elements w.r.t. *U*-partial order of the greatest and weakest uninorm on  $(L, \leq, 0, 1)$ . In Section 4, we investigate an equivalence relation on the class of uninorms on the unit interval [0, 1] and we determine the equivalence classes of some special uninorms on [0, 1]. In Section 5, the relationship between an order induced by uninorms and distributiity property for uninorms on the unit interval [0, 1] are investigated. In Section 6, concluding remarks are given.

Communicated by Ljubiša D.R. Kočinac

<sup>2010</sup> Mathematics Subject Classification. Primary 03E72; Secondary 03B52

Keywords. Equivalence, uninorm, partial order, bounded lattice

Received: 13 November 2017; Revised: 11 April 2018; Accepted: 29 June 2018

Email address: emelkalin@hotmail.com (Emel Aşıcı)

### 2. Preliminaries

Let us now recall all necessary basic notions. A bounded lattice  $(L, \leq)$  is a lattice which has the top and bottom elements, which are written as 1 and 0, respectively, that is there exist two elements  $1, 0 \in L$  such that  $0 \leq x \leq 1$ , for all  $x \in L$ .

**Definition 2.1.** ([6, 19]) Let  $(L, \le, 0, 1)$  be a bounded lattice. An operation  $U : L^2 \to L$  is called a uninorm on L, if it is commutative, associative, monotone and has a neutral element  $e \in L$ .

We denote by U(e) the set of all uninorms on L with the neutral element  $e \in L$ . In this paper, to make it short, the set  $(0, e] \times [e, 1) \cup [e, 1) \times (0, e]$  for  $e \in L \setminus \{0, 1\}$  will be denoted by A(e), that is  $A(e) = (0, e] \times [e, 1) \cup [e, 1) \times (0, e]$  for  $e \in L \setminus \{0, 1\}$ . Clearly, U is a t-norm (t-conorm) if e = 1 (e = 0).

**Example 2.2.** ([22]) The four basic t-norms  $T_M$ ,  $T_P$ ,  $T_L$  and  $T_D$  on [0, 1] are given by, respectively,

$$\begin{split} T_M(x,y) &= \min(x,y), \\ T_P(x,y) &= xy, \\ T_L(x,y) &= \max(x+y-1,0), \\ T_D(x,y) &= \begin{cases} 0, & \text{if } (x,y) \in [0,1)^2 \\ \min(x,y), & \text{otherwise.} \end{cases} \end{split}$$

**Example 2.3.** ([22]) The four basic t-conorms  $S_M$ ,  $S_P$ ,  $S_L$  and  $S_D$  on [0, 1] are given by, respectively,  $S_M(x, y) = \max(x, y)$ ,

 $S_{D}(x, y) = x + y - xy,$   $S_{L}(x, y) = \min(x + y, 1),$  $S_{D}(x, y) = \begin{cases} 1, & \text{if } (x, y) \in (0, 1)^{2} \\ \max(x, y), & \text{otherwise.} \end{cases}$ 

The t-norms  $T_{\wedge}$  and  $T_W$  on *L* are defined as follows, respectively:

$$T_{\wedge}(x, y) = x \wedge y$$
  
$$T_{W}(x, y) = \begin{cases} x, & \text{if } y = 1 \\ y, & \text{if } x = 1 \\ 0, & \text{otherwise} \end{cases}$$

Similarly, the t-conorms  $S_{\vee}$  and  $S_W$  can be defined as above.

In particular, we have obtained  $T_W = T_D$  and  $T_{\wedge} = T_M$  for L = [0, 1].

**Example 2.4.** ([22]) The t-norm  $T^{nM}$  on [0, 1] is defined as follows:

$$T^{nM}(x,y) = \begin{cases} 0, & x+y \le 1\\ \min(x,y), & \text{otherwise.} \end{cases}$$

 $T^{nM}$  is called nilpotent minimum t-norm. This t-norm has been introduced by J. Fodor.

**Definition 2.5.** ([7]) A t-norm *T* on *L* is *divisible* if the following condition holds:

 $\forall x, y \in L$  with  $x \leq y$  there is a  $z \in L$  such that x = T(y, z).

The infimum t-norm  $T_{\wedge}$  is divisible:  $x \le y$  is equivalent to  $x \land y = x$ . A basic example of a non-divisible t-norm on an arbitrary bounded lattice *L* (i.e., card L > 3) is the t-norm  $T_W$ . Similarly, t-conorm  $S_{\vee}$  is divisible.  $S_W$  is a non-divisible t-conorm on an arbitrary bounded lattice *L* (i.e., card L > 3).

Note: ([5, 10]) Given a bounded lattice (L,  $\leq$ , 0, 1) and a,  $b \in L$ , if a and b are incomparable, then we use the notation  $a \parallel b$  in this case.

**Definition 2.6.** ([5]) Given a bounded lattice  $(L, \leq, 0, 1)$  and  $a, b \in L$ ,  $a \leq b$ , a subinterval [a, b] of L is defined as

 $[a, b] = \{x \in L \mid a \le x \le b\}$ Similarly,  $[a, b] = \{x \in L \mid a \le x \le b\}$ ,  $(a, b] = \{x \in L \mid a < x \le b\}$  and  $(a, b) = \{x \in L \mid a < x < b\}$ .

**Definition 2.7.** ([18]) Let *L* be a bounded lattice and *T* be a t-norm on *L*. The order defined as follows is called a T – *partial order* (triangular order) for t-norm *T*:

$$x \leq_T y :\Leftrightarrow T(\ell, y) = x$$
 for some  $\ell \in L$ .

**Definition 2.8.** ([15]) Let *L* be a bounded lattice and *S* be a t-conorm on *L*. The order defined as follows is called a S – *partial order* for t-conorm *S*:

$$x \leq_S y :\Leftrightarrow S(k, x) = y$$
 for some  $k \in L$ 

**Definition 2.9.** ([15]) Let  $(L, \le, 0, 1)$  be a bounded lattice and U be a uninorm with neutral element e on L. Define the following relation, for  $x, y \in L$ , as

$$x \leq_{U} y :\Leftrightarrow \begin{cases} \text{if } x, y \in [0, e] \text{ and there exist } k \in [0, e] \text{ such that } U(k, y) = x \text{ or,} \\ \text{if } x, y \in [e, 1] \text{ and there exist } \ell \in [e, 1] \text{ such that } U(x, \ell) = y \text{ or,} \\ \text{if } x, y \in L^* \text{ and } x \leq y, \end{cases}$$
(1)

where  $I_e = \{x \in L \mid x \parallel e\}$  and  $L^* = [0, e] \times [e, 1] \cup [0, e] \times I_e \cup [e, 1] \times I_e \cup [e, 1] \times [0, e] \cup I_e \times [0, e] \cup I_e \times [e, 1] \cup I_e \times I_e$ .

**Proposition 2.10.** ([15]) *The relation*  $\leq_U$  *defined in* (1) *is a partial order on L*.

Note: The partial order  $\leq_U$  in (1) is called the *U*-partial order on *L*.

**Definition 2.11.** ([2]) Let *U* be a nullnorm on [0, 1] and let  $K_U$  be defined by

$$K_U = \{x \in (0, 1) \mid \text{for some } y \in (0, 1), [x < y \text{ and } x \not\leq_U y] \text{ or } [y < x \text{ and } y \not\leq_U x] \}.$$

**Definition 2.12.** ([2]) Define a relation  $\beta$  on the class of all uninorms on [0, 1] by  $U_1\beta U_2$ ,

 $U_1\beta U_2 :\Leftrightarrow K_{U_1} = K_{U_2}.$ 

T ( )

# 3. Regarding the Set $K_{II}^L$ on any Bounded Lattices

In this section, we investigate the set of all incomparable elements with arbitrary but fixed  $x \in L \setminus \{0, 1\}$  according to the *U*-partial order. Also, we determine above introduced the sets of the smallest and the greatest uninorms on (L,  $\leq$ , 0, 1). Thus, we conclude for the some basic t-norms and t-conorms in Corollary 3.13, Corollary 3.14, Corollary 3.16, Corollary 3.17.

**Definition 3.1.** ([20]) Let *U* be a uninorm on  $(L, \leq, 0, 1)$  with neutral element *e* and let  $I_{U}^{L(x)}$  be defined by

$$I_{U}^{L(x)} = \{y_x \in L \setminus \{0, 1\} \mid [x < y_x \text{ and } x \not\leq_U y_x] \text{ or } [y_x < x \text{ and } y_x \not\leq_U x] \text{ or } x \parallel y_x\}.$$

In the following, the notation  $I_{U}^{L(x)}$  is used to denote the set of all incomparable elements with  $x \in L \setminus \{0, 1\}$  according to  $\leq_{U}$ . Clearly,  $I_{U}^{L(x)} = \emptyset$  for x = 0 and 1. By the definition of  $I_{U}^{L(x)}$ , for any  $x \in L \setminus \{0, 1\}$ , the set  $I_{U}^{L(x)}$  does not contain 0 and 1.

**Definition 3.2.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. The set  $I_x^L$  for  $x \in L \setminus \{0, 1\}$  is defined by

 $I_x^L = \{ y \in L \setminus \{0, 1\} \mid x \parallel y \}.$ 

Note: For any uninorm on  $(L, \leq, 0, 1)$ , we have that  $I_x^L \subseteq I_U^{L(x)}$  for  $x \in L$ .

**Lemma 3.3.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. For all uninorms U and all  $x \in L$  it holds that  $0 \leq_U x, x \leq_U x$  and  $x \leq_U 1$ .

**Proposition 3.4.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. Consider the function on L defined as follows:

$$U_{T_{\wedge}}(x,y) = \begin{cases} x \land y, & (x,y) \in [0,e]^{2} \\ x \lor y, & (x,y) \in [0,e] \times (e,1] \cup (e,1] \times [0,e] \\ y, & x \in [0,e], y \parallel e \\ x, & y \in [0,e], x \parallel e \\ 1, & \text{otherwise.} \end{cases}$$

 $\begin{array}{l} U_{T_{\wedge}} \text{ is the greatest uninorm on } L \text{ with neutral element } e \ [19]. \text{ Then} \\ \text{a) } I_{U_{T_{\wedge}}}^{L(x)} = \{y_x \in (e,1) \mid x \neq y_x\} \cup I_x^L \text{ for } x \in (e,1). \\ \text{b) } I_{U_{T_{\wedge}}}^{L(x)} = I_x^L \text{ for } x \in (0,e) \text{ or } x \parallel e. \end{array}$ 

*Proof.* a) Let  $y_x \in I_{U_{T_h}}^{L(x)}$  be arbitrary for  $x \in (e, 1)$ . Based on Lemma 3.3, it must be  $x \neq y_x$ . So, we will show that  $y_x \in (e, 1)$  or  $y_x \in I_x^L$ . Suppose that  $y_x \notin (e, 1)$  and  $y_x \notin I_x^L$ . Since  $y_x \in I_{U_{T_h}}^{L(x)}$ , we have that  $y_x < x$  and  $y_x \nleq_{U_{T_h}} x$  or  $x < y_x$  and  $x \measuredangle_{U_{T_h}} y_x$  or  $x \parallel y_x$ . Let  $y_x < x$  and  $y_x \nleq_{U_{T_h}} x$ .

Since  $y_x \notin (e, 1)$ , we have that  $y_x = 1$ ,  $y_x \in [0, e]$  or  $y_x \parallel e$ . It can not be  $y_x = 1$  by Lemma 3.3. Let  $y_x \in [0, e]$ . Since  $y_x \in [0, e]$  and  $x \in (e, 1)$ , it is obtained that  $y_x \leq_{U_{T_h}} x$ , by the definition of  $\leq_U$ . This is a contradiction. Let  $y_x \parallel e$ . Since  $y_x < x$  and  $y_x \parallel e$ , then it is obtained that  $y_x \leq_{U_{T_h}} x$ , a contradiction by the definition of  $\leq_U$ .

Let  $x < y_x$  and  $x \not\leq_{U_{T_h}} y_x$ . If  $y_x = 1$ , then we have  $x \leq_{U_{T_h}} 1$ , which is a contradiction. Let  $y_x \in [0, e]$ . Since  $x < y_x \leq e$ , then we have that  $U_{T_h}(x, y_x) = x \land y_x = x$ . So, it is obtained that  $x \leq_{U_{T_h}} y_x$ , a contradiction. Let  $y_x \parallel e$ . Since  $x < y_x$  and  $y_x \parallel e$ , then it is obtained that  $x \leq_{U_{T_h}} y_x$ , a contradiction by the definition of  $\leq_U$ .

Finally since  $y_x \notin I_x^L$ , it can not be  $x \parallel y_x$ . So, we have that  $y_x \in (e, 1)$  or  $y_x \in I_x^L$ . Thus, we have  $I_{U_{T_A}}^{L(x)} \subseteq \{y_x \in (e, 1) \mid x \neq y_x\} \cup I_x^L$  for  $x \in (e, 1)$ .

Conversely, let  $y_x \in (e, 1)$  or  $y_x \in I_x^L$  such that  $x \neq y_x$  for  $x \in (e, 1)$ . We want to show that  $y_x \in I_{U_{T_{\Lambda}}}^{L(x)}$ . Suppose that  $y_x \notin I_{U_{T_{\Lambda}}}^{L(x)}$ . In this case,  $y_x < x$  and  $y_x \leq_{U_{T_{\Lambda}}} x$  or  $x < y_x$  and  $x \leq_{U_{T_{\Lambda}}} y_x$ .

Let  $y_x \in (e, 1)$  and  $x \neq y_x$  for  $x \in (e, 1)$ .

• Let  $y_x < x$  and  $y_x \leq_{U_{T_h}} x$ . Then, there exists an element  $k \in [e, 1]$  such that  $U_{T_h}(y_x, k) = x$ . If k = 1, then we have  $x = y_x$ , which is a contradiction. Since  $k \in [e, 1)$ , it is obtained that

$$U_{T_{\wedge}}(y_x,k) = x = 1$$

a contradiction by the definition of  $U_{T_{\wedge}}$ . So, it must be  $y_x \not\leq_{U_{T_{\wedge}}} x$ . • Let  $x < y_x$  and  $x \leq_{U_{T_{\wedge}}} y_x$ . Similar arguments are suggested for this case. So,  $\{y_x \in (e, 1) \mid x \neq y_x\} \subseteq I_{U_{T_{\wedge}}}^{L(x)}$  for all  $x \in (e, 1)$ .

Let  $y_x \in I_x^L$  for  $x \in (e, 1)$ . By the definition of  $I_U^{L(x)}$ , we have that  $I_x^L \subseteq I_U^{L(x)}$ . Thus, we have  $I_{U_{T_h}}^{L(x)} = \{y_x \in (e, 1) \mid x \neq y_x\} \cup I_x^L$  for all  $x \in (e, 1)$ .

b) Let  $x \in (0, e)$ . It is clear that  $I_x^L \subseteq I_U^{L(x)}$  for every uninorm on *L*. Conversely, let  $y_x \in I_{U_{T_A}}^{L(x)}$ . We need to show that  $y_x \in I_x^L$ . We suppose that  $y_x \notin I_x^L$ . In this case  $x < y_x$  or  $y_x < x$ . Let  $x < y_x$ . If  $x < y_x < e$ , then we have

$$x = y_x \wedge x = U_{T_{\wedge}}(y_x, x).$$

So we have that  $x \leq_{U_{T_{A}}} y_x$ , a contradiction. If  $x < e < y_x$ , then it is obtained that  $x \leq_{U_{T_{A}}} y_x$ , a contradiction by the definition of  $\leq_{U}$ .

Let  $y_x < x$ . Since  $y_x < x < e$ , we have

$$y_x = y_x \wedge x = U_{T_{\wedge}}(y_x, x).$$

So, it is obtained that  $y_x \leq_{U_{T_A}} x$ , a contradiction. So,  $I_{U_{T_A}}^{L(x)} \subseteq I_x^L$  for  $x \in (0, e)$ . Consequently, we have  $I_{U_{T_A}}^{L(x)} = I_x^L$  for  $x \in (0, e)$ . If  $x \parallel e$ , then similarly it can be shown that  $I_{U_{T_A}}^{L(x)} = I_x^L$ .  $\Box$ 

**Corollary 3.5.** Let  $(L, \leq, 0, 1)$  be a bounded lattice and card(L) > 3. For the drastic product t-conorm  $S_W$  on L,  $I_{S_W}^{L(x)} = L \setminus \{0, 1\}$  for  $x \in L \setminus \{0, 1\}$ .

**Corollary 3.6.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. For the infimum t-norm  $T_{\wedge}$  on L,  $I_{T_{\wedge}}^{L(x)} = I_x^L$  for  $x \in L$ .

*Proof.* In Proposition 3.4, if we put a neutral element e = 0 and e = 1, then we obtain drastic product t-conorm  $S_W$  and infimum t-norm  $T_{\wedge}$  on L.

**Proposition 3.7.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. Consider the function on L defined as follows:

$$U_{S_{\vee}}(x,y) = \begin{cases} x \lor y, & (x,y) \in [e,1]^2 \\ x \land y, & (x,y) \in [0,e) \times [e,1] \cup [e,1] \times [0,e) \\ y, & x \in [e,1], y \parallel e \\ x, & y \in [e,1], x \parallel e \\ 0, & \text{otherwise.} \end{cases}$$

 $\begin{array}{l} U_{S_{\vee}} \text{ is the smallest uninorm on } L \text{ with neutral element } e \ [19]. \ Then \\ \text{a) } I_{U_{S_{\vee}}}^{L(x)} = \{y_x \in (0,e) \mid x \neq y_x\} \cup I_x^L \text{ for } x \in (0,e). \\ \text{b) } I_{U_{S_{\vee}}}^{L(x)} = I_x^L \text{ for } x \in (e,1) \text{ or } x \parallel e. \end{array}$ 

The proof of this proposition is similar to the proof of Proposition 3.4.

**Corollary 3.8.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. For the t-conorm  $S_{\vee}$  on  $L, I_{S_{\vee}}^{L(x)} = I_x^L$  for  $x \in L$ .

**Corollary 3.9.** Let  $(L, \leq, 0, 1)$  be a bounded lattice and card(L) > 3. For the weakest t-norm  $T_W$  on L,  $I_{T_W}^{L(x)} = L \setminus \{0, 1\}$  for  $x \in L \setminus \{0, 1\}$ .

*Proof.* In Proposition 3.7, if we put a neutral element e = 0 and e = 1, then we get that a t-conorm  $S_{\vee}$  and a t-norm  $T_W$  on L, respectively.

Now, we study on the set of all incomparable elements with respect to the *U* partial order with some uninorm *U* on a bounded lattice (L,  $\leq$ , 0, 1).

**Definition 3.10.** ([20]) Let *U* be a nullnorm on  $(L, \leq, 0, 1)$  with neutral element *e* and let  $K_{U}^{L}$  be defined by

 $K_{U}^{L} = \{x \in L \setminus \{0, 1\} \mid \text{for some } y \in L \setminus \{0, 1\}, \ [x < y \text{ implies } x \not\leq_{U} y] \text{ or } [y < x \text{ implies } y \not\leq_{U} x] \text{ or } x \parallel y\}.$ 

**Definition 3.11.** ([4]) Let  $(L, \leq, 0, 1)$  be a bounded lattice. The set  $I_L$  is defined by

 $I_L = \{x \in L \mid \exists y \in L \text{ such that } x \parallel y\}.$ 

**Proposition 3.12.** Let  $(L, \leq, 0, 1)$  be a bounded lattice and card([e, 1]) > 3. Consider the greatest uninorm  $U_{T_{\wedge}}$  with neutral element e in Proposition 3.4. Then, we have that  $K_{U_{T_{\wedge}}}^{L} = (e, 1) \cup I_{L}$ .

*Proof.* Let  $x \in (e, 1) \cup I_L$ . Then, we have that  $x \in (e, 1)$  or  $x \in I_L$ . Let us show that  $x \in K_{U_L}^L$ .

Let  $x \in (e, 1)$  and  $y \in (e, 1)$  such that x < y. Then, it must be the case that  $x \not\leq_{U_{T_{\wedge}}} y$ . Suppose that  $x \leq_{U_{T_{\wedge}}} y$ . Then, there exists an element  $k \in [e, 1]$  such that

 $U_{T_{\wedge}}(x,k)=y.$ 

If k = 1, we have that x = y, which is a contradiction.

If  $k \in [e, 1)$ , it is obtained that  $U_{T_{\wedge}}(x, k) = y = 1$ , which is a contradiction. Since for any  $x \in (e, 1)$ , there exists an element  $y \in (e, 1)$ , x < y such that  $x \not\leq_{U_{T_{\wedge}}} y$ . That is  $x \in K_{U_{T_{\wedge}}}^{L}$ . So,  $(e, 1) \subseteq K_{U_{T_{\wedge}}}^{L}$ .

Let  $x \in I_L$ . Then, there exists  $y \in L$  such that  $x \parallel y$ . Thus, we have that  $x \in K_{U_{T_{\Lambda}}}^L$ , by the definition of  $K_{U_{T_{\Lambda}}}^L$ . So,  $I_L \subseteq K_{U_{T_{\Lambda}}}^L$ . So, it is obtained that  $(e, 1) \cup I_L \subseteq K_{U_{T_{\Lambda}}}^L$ .

Conversely, let  $x \in K_{U_{T_{h}}}^{L}$ . We need to show that  $x \in (e, 1) \cup I_{L}$ . Suppose that  $x \notin (e, 1) \cup I_{L}$ . That is,  $x \notin (e, 1)$  and  $x \notin I_{L}$ . Since  $x \in K_{U_{T_{h}}}^{L}$ , there exists an element  $y \in L \setminus \{0, 1\}$  such that x < y and  $x \not\leq_{U_{T_{h}}} y$  or y < x and  $y \not\leq_{U_{T_{h}}} x$  or  $x \parallel y$ .

Let x < y and  $x \not\leq_{U_{T_{A}}} y$ . Since  $x \notin (e, 1)$ , it must be  $x = 1, x \in [0, e]$  or  $x \parallel e$ . It can not be x = 1 by Lemma 3.3

Let  $x \in [0, e]$ . In this case, e < y, y < e or  $y \parallel e$ . If y = e, then we have that  $x \leq_{U_{T_{A}}} e = y$ , a contradiction. If x < y < e, then we have that

 $U_{T_{\wedge}}(x,y) = x \wedge y = x.$ 

So, we have that  $x \leq_{U_{T_{\wedge}}} y$ , which is a contradiction.

If  $x \le e < y$ , it is obtained that  $x \le_{U_{T_{A}}} y$ , a contradiction, by the definition of  $\le_{U}$ .

If  $y \parallel e$ , since x < y, we have that  $x \leq_{U_{T_{A}}} y$ , a contradiction, by the definition of  $\leq_{U}$ .

Let y < x and  $y \not\leq_{U_{T_{A}}} x$ .

If x = 1, then we have  $y \leq_{U_{T_h}} 1$ , which is a contradiction. Let  $x \in [0, e]$ . Since y < x, we have that

 $U_{T_{\wedge}}(x,y) = x \wedge y = x.$ 

So, it is obtained that  $y \leq_{U_{T_{\Lambda}}} x$ , which is a contradiction.

Finally, since  $x \notin I_L$ , it can not be  $x \parallel y$ . Thus, we have that  $K_{U_{T_A}}^L \subseteq (e, 1) \cup I_L$ .

Consequently, we showed  $K_{U_{T_{A}}}^{L} = (e, 1) \cup I_{L}$ .  $\Box$ 

**Corollary 3.13.** ([4]) Let  $(L, \leq, 0, 1)$  be a bounded lattice. For the infimum t-norm  $T_{\wedge}$  on  $L, K_{T_{+}}^{L} = I_{L}$ .

**Corollary 3.14.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. For the drastic product t-conorm  $S_W$  on L,

$$K_{S_W}^L = \begin{cases} \emptyset, & \text{if } \operatorname{card}(L) \le 3\\ L \setminus \{0, 1\}, & \text{otherwise.} \end{cases}$$

*Proof.* In Proposition 3.12, if we put a neutral element e = 0, then we have  $K_{S_W}^L = L \setminus \{0, 1\}$  for card(L) > 3.

**Proposition 3.15.** Let  $(L, \leq, 0, 1)$  be a bounded lattice and card([0, e]) > 3. Consider the smallest uninorm  $U_{S_{\vee}}$  with neutral element e in Proposition 3.7. Then, we have that  $K_{U_{S_{\vee}}}^{L} = (0, e) \cup I_{L}$ .

The proof of this proposition is similar to the proof of Proposition 3.12.

**Corollary 3.16.** ([4]) Let  $(L, \leq, 0, 1)$  be a bounded lattice. For the weakest t-norm  $T_W$  on L,

$$K_{T_W}^L = \begin{cases} \emptyset, & \text{if } \operatorname{card}(L) \le 3\\ L \setminus \{0, 1\}, & \text{otherwise.} \end{cases}$$

576

**Corollary 3.17.** Let  $(L, \leq, 0, 1)$  be a bounded lattice. For t-conorm  $S_{\vee}$  on  $L, K_{S_{\vee}}^{L} = I_{L}$ .

*Proof.* In Proposition 3.15, if we put a neutral element e = 0, then we have  $K_{S_v}^L = I_L$ .

**Remark 3.18.** Let  $(L, \leq, 0, 1)$  be a chain. For any uninorm *U* with neutral element  $e \in L \setminus \{0, 1\}$ , if  $|L| \leq 4$ , then it is obtained that  $K_{U}^{L} = \emptyset$ . If  $(L, \le, 0, 1)$  is not a chain, then it may not be true. For example, let  $L = \{0, e, x, 1\}$  whose lattice diagram is displayed in Figure 1.



Figure 1: The order  $\leq$  on *L* 

It is clear that  $K_{U}^{L} \neq \emptyset$  for every uninorm *U* with neutral element *e*.

**Proposition 3.19.** ([19]) Let  $(L, \leq, 0, 1)$  be a bounded lattice,  $e \in L \setminus \{0, 1\}$  and U be a uninorm with neutral element e on L. Then,

- (i) T\* = U |<sub>[0,e]<sup>2</sup></sub>: [0,e]<sup>2</sup> → [0,e] is a t-norm on [0,e].
  (ii) S\* = U |<sub>[e,1]<sup>2</sup></sub>: [e,1]<sup>2</sup> → [e,1] is a t-conorm on [e,1].

**Proposition 3.20.** ([18]) Let  $(L, \leq, 0, 1)$  be a bounded lattice and U be a uninorm with neutral element e on L. If  $([0,e] \cup [e,1], \leq_U)$  is a chain, then  $T^*$  and  $S^*$  are divisible on [0,e] and [e,1], respectively.

**Remark 3.21.** The converse of the above Proposition 3.20 may not be true. Consider the lattice (L = $\{0, a, b, c, d, e, f, 1\}, \leq 0, 1\}$  whose lattice diagram is displayed in Figure 2.



Figure 2: The order  $\leq$  on *L* 

Consider the uninorm  $U: L^2 \rightarrow L$  with neutral element *e* defined as follows:

$$U(x, y) = \begin{cases} x \land y, & (x, y) \in [0, e]^2 \\ x \lor y, & \text{otherwise.} \end{cases}$$

 $T^*(x, y) = U|_{[0,e]^2}(x, y) = x \land y$  and  $S^*(x, y) = U|_{[e,1]^2}(x, y) = x \lor y$  are divisible t-norm and t-conorm for  $x, y \in [0, e]$  and  $x, y \in [e, 1]$ , respectively. It is clear that  $(L, \leq_U)$  is not a chain.

### 4. The Equivalence Classes Obtained From U-Partial Order

*U*-partial order introduced above allows us to introduce the next equivalence relation on the class of all uninorms on the unit interval [0, 1]. In this section, we investigate the equivalence relation on the class of all uninorms on the unit interval [0, 1]. We determine the equivalence classes of the smallest and greatest uninorms on [0, 1]. In this way, we obtain the equivalence classes of the some basic t-norms and t-conorms in Corollary 4.7, Corollary 4.6, Corollary 4.10 and Corollary 4.11.

**Definition 4.1.** ([20]) Define a relation ~ on the class of all uninorms on the unit interval [0, 1] by  $U_1 \sim U_2$  if and only if the  $U_1$ -partial order coincides with the  $U_2$ -partial order.

**Lemma 4.2.** ([20]) *The relation*  $\sim$  *is an equivalence relation.* 

**Definition 4.3.** ([20]) For a given uninorm *U* on a bounded lattice  $(L, \leq, 0, 1)$ , we denote the ~ equivalence class linked to *U* by  $\overline{U}$ , i.e,

$$U = \{ U' \mid U' \sim U \}.$$

**Proposition 4.4.** Consider the smallest uninorm  $U_e : [0,1]^2 \rightarrow [0,1]$  with neutral element  $e \in (0,1)$  defined by

$$\underline{U_e}(x, y) = \begin{cases} 0, & (x, y) \in [0, e)^2 \\ \max(x, y), & (x, y) \in [e, 1]^2 \\ \min(x, y), & \text{otherwise.} \end{cases}$$

Then, the equivalence class of the t-conorm  $\underline{U}_e |_{[e,1]^2}$  is the set of all divisible t-conorms on [e, 1], and the equivalence class of the t-norm  $\underline{U}_e |_{[0,e]^2}$  consists only the t-norm  $\underline{U}_e |_{[0,e]^2}$ .

*Proof.* Let *S'* be a t-conorm on [e, 1]. Let  $S' \in \overline{\underline{U_e}} |_{[e,1]^2}$  and  $x \leq y$  for  $x, y \in [e, 1]$ . Since  $x \leq y$ , then we have that  $\underline{U_e} |_{[e,1]^2} (x, y) = max(x, y) = y$ . So, it is obtained that  $x \leq \underline{U_e} |_{[e,1]^2} y$ . Since  $S' \in \overline{\underline{U_e}} |_{[e,1]^2}$ , then we have  $x \leq_{S'} y$ . Then there exists an element  $k \in [e, 1]$  such that  $S'(x, k) = \overline{y}$ . So, *S'* is a divisible t-conorm on [e, 1].

Conversely, let *S'* is a divisible t-conorm on [e, 1]. Let  $x \leq \underline{U}_{\ell}|_{[e,1]^2} y$  for  $x, y \in [e, 1]$ . Since  $x \leq \underline{U}_{\ell}|_{[e,1]^2} y$ , we have that  $x \leq y$ . Since *S'* is a divisible t-conorm, there exists an element  $\ell \in [e, 1]$  such that  $S'(x, \ell) = y$ . So, we have that  $x \leq \underline{S}' y$ . Conversely, let  $x \leq \underline{S}' y$ . Similarly it can be shown that  $x \leq \underline{U}_{\ell}|_{[e,1]^2} y$ . So,  $\leq \underline{U}_{\ell}|_{[e,1]^2} = \leq \underline{S}'$ .

The equivalence class of the t-norm  $U_e \mid_{[0,e]^2}$  consists only the t-norm  $U_e \mid_{[0,e]^2}$  by [21].

**Remark 4.5.** In Proposition 4.4, if a t-conorm is not divisible t-conorm on [e, 1], then  $\leq \underline{U}_e |_{[e,1]^2} \neq \leq_S$ . Consider the t-norm  $S_D$  on [e, 1] defined by

$$S_D(x, y) = \begin{cases} y, & x = e \\ x, & y = e \\ 1, & \text{otherwise} \end{cases}$$

It is clear that  $S_D$  is not divisible t-conorm. We claim that  $\leq_{\underline{U}_e}|_{[e,1]^2} \neq \leq_{S_D}$ . Let  $e = \frac{1}{2}$ . Since  $\underline{U}_e|_{[\frac{1}{2},1]^2}(\frac{2}{3},\frac{3}{4}) = \frac{3}{4}$ , then it is obtained that  $\frac{2}{3} \leq_{\underline{U}_e}|_{[\frac{1}{2},1]^2} \frac{3}{4}$ . But  $\frac{2}{3} \not\leq_{S_D} \frac{3}{4}$ . Suppose that  $\frac{2}{3} \leq_{S_D} \frac{3}{4}$ . Then there exists an element  $k \in [\frac{1}{2}, 1]$  such that  $S_D(\frac{2}{3}, k) = \frac{3}{4}$ .

If  $k = \frac{1}{2}$ , then we have that  $\frac{3}{4} = \frac{2}{3}$ , a contradiction. If  $k \in (\frac{1}{2}, 1]$ , then it is obtained that  $\frac{3}{4} = 1$ , a contradiction. So,  $\leq \underline{U}_{\ell}|_{[\frac{1}{2},1]^2} \neq \leq S_D$ . **Corollary 4.6.** The equivalence class of the smallest t-conorm  $S_M$  on [0,1] is the set of all divisible t-conorms on [0,1].

*Proof.* In Proposition 4.4, if we put a neutral element e = 0, then we have a smallest t-conorm  $S_M$  on [0, 1].

**Corollary 4.7.** ([21]) The equivalence class of the smallest t-norm  $T_D$  on [0, 1] consists only the t-norm  $T_D$  on [0, 1].

**Proposition 4.8.** Consider the greatest uninorm  $\overline{U_e}: [0,1]^2 \to [0,1]$  with neutral element  $e \in (0,1)$  defined by

$$\overline{U_e}(x,y) = \begin{cases} \min(x,y), & (x,y) \in [0,e]^2\\ 1, & (x,y) \in (e,1]^2\\ \max(x,y), & \text{otherwise.} \end{cases}$$

Then, the equivalence class of the t-norm  $\overline{U_e}|_{[0,e]^2}$  is the set of all divisible t-norms on [0,e], and the equivalence class of the t-conorm  $\overline{U_e}|_{[e,1]^2}$  consists only the t-conorm  $\overline{U_e}|_{[e,1]^2}$ .

**Remark 4.9.** In Proposition 4.8, if a t-norm is not divisible on [0, e], then  $\leq_{\overline{U_e}}|_{[0,e]^2} \neq \leq_T$ . Consider the t-conorm  $T_D$  on [0, e] defined by

$$T_D(x, y) = \begin{cases} y, & x = e \\ x, & y = e \\ 0, & \text{otherwise.} \end{cases}$$

It is clear that  $T_D$  is not divisible t-norm. We claim that  $\leq_{\overline{U_r}}|_{[0,e]^2} \neq \leq_{T_D}$ .

Let  $e = \frac{1}{2}$ . Since  $\overline{U_e}|_{[0,\frac{1}{2}]^2}(\frac{1}{5},\frac{1}{6}) = \frac{1}{6}$ , then it is obtained that  $\frac{1}{6} \leq_{\overline{U_e}}|_{[0,\frac{1}{2}]^2}(\frac{1}{5})$ . But  $\frac{1}{6} \not\leq_{T_D} \frac{1}{5}$ . On the condition that  $\frac{1}{6} \leq_{T_D} \frac{1}{5}$ , there exists an element  $\ell \in [0, \frac{1}{2}]$  such that  $T_D(\frac{1}{5}, \ell) = \frac{1}{6}$ . If  $\ell = \frac{1}{2}$ , we have that  $\frac{1}{5} = \frac{1}{6}$ , a contradiction. If  $\ell \in [0, \frac{1}{2})$ , then it is obtained that  $\frac{1}{6} = 0$ , a contradiction. So,  $\leq_{\overline{U_e}}|_{[0,\frac{1}{2}]^2} \neq \leq_{T_D}$ .

**Corollary 4.10.** The equivalence class of the greatest t-conorm  $S_D$  on [0, 1] consists only the t-conorm  $S_D$  on [0, 1].

*Proof.* In Proposition 4.8, if we put a neutral element e = 0, then we have a greatest t-conorm  $S_D$  on [0, 1].

**Corollary 4.11.** ([21]) *The equivalence class of the greatest t-norm*  $T_M$  *on* [0, 1] *is the set of all divisible t-norms on* [0, 1]*.* 

### 5. Distributivity for Uninorms

In this section, we investigate the relationship between an order induced by uninorms and distributivity property for uninorms on the unit interval [0,1]. Thus, we give sufficiency condition for equivalent according to the  $\beta$  in Corollary 5.6.

**Definition 5.1.** ([23]) Let  $U_1$  and  $U_2$  be uninorms on [0,1].  $U_1$  is distributive over  $U_2$  if it is satisfies the following condition:

$$U_1(x, U_2(y, z)) = U_2(U_1(x, y), U_1(x, z))$$
(2)

for all  $x, y, z \in [0, 1]$ .

**Proposition 5.2.** Let  $U_1$  and  $U_2$  be uninorms on [0, 1] with the same neutral elements. If  $U_1$  is distributive over  $U_2$ , then  $K_{U_2} \subseteq K_{U_1}$ .

*Proof.* Let  $U_1$  and  $U_2$  be uninorms on the unit interval [0,1] and  $U_1$  is distributive over  $U_2$ . Let  $x \in K_{U_2}$ . Then there exists an element  $y \in (0,1)$  such that x < y and  $x \not\leq_{U_2} y$  or y < x and  $y \not\leq_{U_2} x$ . Suppose that  $x \notin K_{U_1}$ . Then there exists an element  $y \in (0,1)$  such that x < y and  $x \leq_{U_1} y$  or y < x and  $y \leq_{U_1} x$ . Without loss of generality, we assume that x < y and  $x \leq_{U_1} y$ .

Let  $x, y \in [0, e]$ . Then there exists an element  $k \in [0, e]$  such that  $U_1(y, k) = x$ .

 $x = U_1(y,k) = U_1(y,U_2(k,e))$ 

Since  $U_1$  is distributive over  $U_2$ , then we get that

$$x = U_1(y, U_2(k, e)) = U_2(U_1(y, k), U_1(y, e)) = U_2(x, y).$$

So, it is obtained that  $x \leq_{U_2} y$ , which is a contradiction.

Similar arguments are suggested for  $x, y \in [e, 1]$ . Since  $x \in K_{U_2}$ , it can not be  $x, y \notin [0, e]$  and  $x, y \notin [e, 1]$ . Because if  $x, y \notin [0, e]$  and  $x, y \notin [e, 1]$ , then we have that  $x \leq_U y$ , by the definition of  $\leq_U$ .  $\Box$ 

**Proposition 5.3.** Let  $U_1$  and  $U_2$  be uninorms on [0, 1]. If  $U_1$  is distributive over  $U_2$  and  $U_2$  is distributive over  $U_1$ , then  $K_{U_1} = K_{U_2}$ .

**Remark 5.4.** The converse of the above Proposition 5.3 may not be true. Here is an example illustrating a such case.

**Example 5.5.** Consider the uninorms  $U : [0,1]^2 \rightarrow [0,1]$  and  $\underline{U_{\frac{1}{2}}} : [0,1]^2 \rightarrow [0,1]$  with neutral elements  $\frac{1}{2}$  defined as follows:

$$U(x,y) = \begin{cases} 0, & (x,y) \in [0,\frac{1}{2}]^2 \text{ and } x + y \le \frac{1}{2} \text{ and } (x,y) \neq (\frac{1}{4},\frac{1}{4}), \\ \frac{1}{4}, & (x,y) = (\frac{1}{4},\frac{1}{4}), \\ \max(x,y), & (x,y) \in [\frac{1}{2},1]^2, \\ \min(x,y), & \text{otherwise} \end{cases}$$

and

$$\underline{U_{\frac{1}{2}}}(x,y) = \begin{cases} 0, & (x,y) \in [0,\frac{1}{2})^2, \\ \max(x,y), & (x,y) \in [\frac{1}{2},1]^2, \\ \min(x,y), & \text{otherwise.} \end{cases}$$

We have that  $K_U = K_{U_{\frac{1}{2}}} = (0, \frac{1}{2})$  (see [2]). But *U* is not distributive over  $U_{\frac{1}{2}}$ . Now, let us show that this claim.

$$U(\frac{1}{4}, U_{\frac{1}{2}}(\frac{1}{4}, \frac{2}{3})) = U(\frac{1}{4}, \frac{1}{4}) = \frac{1}{4} \text{ and } U_{\frac{1}{2}}(U(\frac{1}{4}, \frac{1}{4}), U(\frac{1}{4}, \frac{2}{3})) = U_{\frac{1}{2}}(\frac{1}{4}, \frac{1}{4}) = 0.$$

Since  $0 \neq \frac{1}{4}$ ,  $U_1$  is not distributive over  $U_2$ .

**Corollary 5.6.** Let  $U_1$  and  $U_2$  be uninorms on [0,1]. If  $U_1$  is distributive over  $U_2$  and  $U_2$  is distributive over  $U_1$ , then  $U_1$  and  $U_2$  are equivalent according to the  $\beta$ .

**Remark 5.7.** Let  $U_1$  and  $U_2$  be uninorms on [0, 1]. If  $U_1$  is distributive over  $U_2$ , then it can not be  $K_{U_1} \subseteq K_{U_2}$ . Consider the functions on [0, 1] defined as follows:

$$U_{1}(x,y) = \begin{cases} 0, & (x,y) \in [0,\frac{1}{2})^{2}, \\ 1, & (x,y) \in (\frac{1}{2},1]^{2}, \\ y, & x = \frac{1}{2}, \\ x, & y = \frac{1}{2}, \\ \min(x,y), & \text{otherwise}, \end{cases}$$

and

$$U_2(x, y) = \begin{cases} \min(x, y), & (x, y) \in \left[0, \frac{1}{2}\right]^2 \\ \max(x, y), & \text{otherwise.} \end{cases}$$

 $U_1$  and  $U_2$  are uninorms with neutral elements  $\frac{1}{2}$ . It is clear that  $\leq_{U_1} \subseteq \leq_{U_2}$  and  $U_1$  is distributive over  $U_2$ . It can be shown that  $K_{U_1} = \{x \in (0, 1) \mid x \neq e\}$  and  $K_{U_2} = \emptyset$ . Hence, we get that  $K_{U_1} \nsubseteq K_{U_2}$ .

#### 6. Concluding Remarks

We have discussed and investigated some properties of *U*-partial order, denoted by  $\leq_U$ . We have investigated that the set  $I_F^{(x)}$ , denoting the set of all incomparable elements with arbitrary but fixed  $x \in L \setminus \{0,1\}$  according to  $\leq_U$ . We have determined the sets of incomparable elements w.r.t. *U*-partial order of the greatest and smallest uninorm on *L*. Also, we have investigated an equivalence relation on the class of uninorms on a bounded lattice ( $L, \leq, 0, 1$ ) and we have determined the equivalence classes of some special uninorms on the unit interval [0, 1]. Finally, we have investigated the relationship between an order induced by uninorms and distributivity property for uninorms on the unit interval [0, 1].

#### Acknowledgement

We are grateful to the anonymous reviewers and the editor for their valuable comments, which helped to improve the original version of our manuscript greatly.

#### References

- E. Aşıcı, Some notes on the F-partial order, In: J. Kacprzyk, E. Szmidt, S. Zadroźny, K. Atanassov, M. Krawczak (eds.), Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol 641, Springer, Cham, 2018, pp. 78–84.
- [2] E. Aşıcı, Some remarks on an order induced by uninorms, In: J. Kacprzyk, E. Szmidt, S. Zadroźny, K. Atanassov, M. Krawczak (eds.), Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol 641, Springer, Cham, 2018, pp. 69–77.
- [3] E. Aşıcı, On the properties of the F-partial order and the equivalence of nullnorms, Fuzzy Sets Syst. 346 (2018) 72–84.
- [4] E. Aşıcı, F. Karaçal, İncomparability with respect to the triangular order, Kybernetika 52 (2016) 15–27.
- [5] G. Birkhoff, Lattice Theory, (3rd edition), Providence, 1967.
- [6] T. Calvo, B. De Baets, J. Fodor, The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Sets Syst. 120 (2001) 385–394.
- [7] J. Casasnovas, G. Mayor, Discrete t-norms and operations on extended multisets, Fuzzy Sets Syst. 159 (2008) 1165–1177.
- [8] G.D. Çaylı, On a new class of t-norms and t-conorms on bounded lattices, Fuzzy Sets Systs. 332 (2018) 129–143.
- [9] G.D. Çaylı, P. Drygaś, Some properties of idempotent uninorms on a special class of bounded lattices, Inf. Sci. 422 (2018) 352–363.
- [10] G.D. Çaylı, F. Karaçal, R.Mesiar, On a new class of uninorms on bounded lattices, Inf. Sci.367-368 (2016) 221–231.
- [11] B. De Baets, R. Mesiar, Triangular norms on product lattices, Fuzzy Sets Syst. 104 (1999) 61–75.
- [12] J. Drewniak, P. Drygaś, E. Rak, Distributivity between uninorms and nullnorms, Fuzzy Sets Syst. 159 (2008) 1646–1657.
- [13] P. Drygas, Distributivity between semi-t-operators and semi-nullnorms, Fuzzy Sets Syst. 264 (2015) 100–109.
- [14] D. Dubois, H. Prade, Fundamentals of Fuzzy Sets, Kluwer Acad. Publ., Boston, 2000.
- [15] U. Ertuğrul, M.N. Kesicioğlu, F. Karaçal, Ordering based on uninorms, Inf. Sci. 330 (2016) 315-327.
- [16] J. Fodor, I.J. Rudas, A. Rybalov, Structure of uninorms, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997) 411-427.
- [17] B. Jayaram, T-subnorms with strong associated negation: Some properties, Fuzzy Sets Syst. 323 (2017) 94–102.
- [18] F. Karaçal, M.N. Kesicioğlu, A T-partial order obtained from t-norms, Kybernetika 47 (2011) 300–314.
- [19] F. Karaçal, R. Mesiar, Uninorms on bounded lattices, Fuzzy Sets Syst. 261 (2015) 33-43.
- [20] M.N. Kesicioğlu, U. Ertuğrul, F. Karaçal, An equivalence relation based on the U-partial order, Inf. Sci. 411 (2017) 39–51.
- [21] M.N. Kesicioğlu, F. Karaçal, R. Mesiar, Order-equivalent triangular norms, Fuzzy Sets Syst. 268 (2015) 59-71.
- [22] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
- [23] M. Mas, G. Mayor, J. Torrens, The distributivity condition for uninorms and t-operators, Fuzzy Sets Syst. 128 (2002) 209-225.
- [24] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 97 (1986) 384-388.
- [25] E. Palmeira, B. Bedregal, R. Mesiar, J. Fernandez, A new way to extend t-norms, t-conorms and negations, Fuzzy Sets Syst. 240 (2014) 1–21.
- [26] D. Ruiz-Aquilera, J. Torrens, Distributivity and conditional distributivity of a uninorm and a continuous t-conorm, IEEE Trans. Fuzzy Syst. 14 (2006) 180–190.

- [27] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, Amsterdam, 1983.
  [28] R.R. Yager, Uninorms in fuzzy system modeling, Fuzzy Sets Syst. 122 (2001) 167–175.
  [29] R.R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets Syst. 80 (1996) 111–120.