Equivalence Classes of Uninorms

Emel Aşıcı ${ }^{\text {a }}$
${ }^{a}$ Department of Software Engineering, Faculty of Technology, Karadeniz Technical University, 61830 Trabzon, Turkey

Abstract

In this paper, some properties of an order induced by uninorms are studied. The set of incomparable elements with respect to the U-partial order for any uninorm on bounded lattices is investigated. Also, an equivalence relation on the class of uninorms induced by a U-partial order is investigated and discussed. Finally, the relationships between an order induced by uninorms and distributivity property for uninorms are investigated.

1. Introduction

Uninorms were introduced by Yager and Rybalov [29]. Uninorms are special aggregation operators which have proven to be useful in many applications like fuzzy logic, expert systems, neural networks, fuzzy system modeling [14, 16, 28].

In [19], uninorms on bounded lattices were studied. Also, the smallest and the greatest uninorm with neutral element $e \in L \backslash\{0,1\}$ on L were obtained.

In [24], a natural order for semigroups was defined. Similarly, in [18], a partial order defined by means of t-norms on a bounded lattice was introduced.

In [15], an order induced by uninorms on bounded lattice was defined and some properties of such an order were investigated. The uninorms, t-norms (t-conorms) and the order induced by uninorm (nullnorm) were also studied by many other authors in other papers [1, 3, 8-13, 17, 26, 27, 29].

The present paper is organized as follows. We shortly recall some basic notions in Section 2. In Section 3, we survey that the set $I_{U}{ }^{L(x)}$, denoting the set of all incomparable elements with arbitrary but fixed $x \in L \backslash\{0,1\}$ according to the $\leq u$. Also, we investigate the set of incomparable elements with respect to the U-partial order for any uninorm on $(L, \leq, 0,1)$ and we determine the sets of incomparable elements w.r.t. U-partial order of the greatest and weakest uninorm on ($L, \leq, 0,1$). In Section 4 , we investigate an equivalence relation on the class of uninorms on the unit interval $[0,1]$ and we determine the equivalence classes of some special uninorms on $[0,1]$. In Section 5 , the relationship between an order induced by uninorms and distributiity property for uninorms on the unit interval $[0,1]$ are investigated. In Section 6, concluding remarks are given.

[^0]
2. Preliminaries

Let us now recall all necessary basic notions. A bounded lattice (L, \leq) is a lattice which has the top and bottom elements, which are written as 1 and 0 , respectively, that is there exist two elements $1,0 \in L$ such that $0 \leq x \leq 1$, for all $x \in L$.

Definition 2.1. ([6, 19]) Let $(L, \leq, 0,1)$ be a bounded lattice. An operation $U: L^{2} \rightarrow L$ is called a uninorm on L, if it is commutative, associative, monotone and has a neutral element $e \in L$.

We denote by $U(e)$ the set of all uninorms on L with the neutral element $e \in L$. In this paper, to make it short, the set $(0, e] \times[e, 1) \cup[e, 1) \times(0, e]$ for $e \in L \backslash\{0,1\}$ will be denoted by $A(e)$, that is $A(e)=$ $(0, e] \times[e, 1) \cup[e, 1) \times(0, e]$ for $e \in L \backslash\{0,1\}$. Clearly, U is a t-norm (t-conorm) if $e=1(e=0)$.

Example 2.2. ([22]) The four basic t-norms T_{M}, T_{P}, T_{L} and T_{D} on [0,1] are given by, respectively,
$T_{M}(x, y)=\min (x, y)$,
$T_{P}(x, y)=x y$,
$T_{L}(x, y)=\max (x+y-1,0)$,
$T_{D}(x, y)= \begin{cases}0, & \text { if }(x, y) \in[0,1)^{2} \\ \min (x, y), & \text { otherwise } .\end{cases}$
Example 2.3. ([22]) The four basic t-conorms S_{M}, S_{P}, S_{L} and S_{D} on [0,1] are given by, respectively,
$S_{M}(x, y)=\max (x, y)$,
$S_{P}(x, y)=x+y-x y$,
$S_{L}(x, y)=\min (x+y, 1)$,
$S_{D}(x, y)= \begin{cases}1, & \text { if }(x, y) \in(0,1)^{2} \\ \max (x, y), & \text { otherwise } .\end{cases}$
The t-norms T_{\wedge} and T_{W} on L are defined as follows, respectively:
$T_{\wedge}(x, y)=x \wedge y$
$T_{W}(x, y)= \begin{cases}x, & \text { if } y=1 \\ y, & \text { if } x=1 \\ 0, & \text { otherwise. }\end{cases}$
Similarly, the t-conorms S_{V} and S_{W} can be defined as above.
In particular, we have obtained $T_{W}=T_{D}$ and $T_{\wedge}=T_{M}$ for $L=[0,1]$.
Example 2.4. ([22]) The t-norm $T^{n M}$ on $[0,1]$ is defined as follows:

$$
T^{n M}(x, y)= \begin{cases}0, & x+y \leq 1 \\ \min (x, y), & \text { otherwise }\end{cases}
$$

$T^{n M}$ is called nilpotent minimum t-norm. This t-norm has been introduced by J. Fodor.
Definition 2.5. ([7]) A t-norm T on L is divisible if the following condition holds:

$$
\forall x, y \in L \quad \text { with } \quad x \leq y \quad \text { there is a } \quad z \in L \quad \text { such that } \quad x=T(y, z) .
$$

The infimum t-norm T_{\wedge} is divisible: $x \leq y$ is equivalent to $x \wedge y=x$. A basic example of a non-divisible t-norm on an arbitrary bounded lattice L (i.e., card $L>3$) is the t-norm T_{W}. Similarly, t-conorm S_{V} is divisible. S_{W} is a non-divisible t-conorm on an arbitrary bounded lattice L (i.e., card $L>3$).

Note: $([5,10])$ Given a bounded lattice $(L, \leq, 0,1)$ and $a, b \in L$, if a and b are incomparable, then we use the notation $a \| b$ in this case.

Definition 2.6. ([5]) Given a bounded lattice $(L, \leq, 0,1)$ and $a, b \in L, a \leq b$, a subinterval $[a, b]$ of L is defined as

$$
[a, b]=\{x \in L \mid a \leq x \leq b\}
$$

Similarly, $[a, b)=\{x \in L \mid a \leq x<b\},(a, b]=\{x \in L \mid a<x \leq b\}$ and $(a, b)=\{x \in L \mid a<x<b\}$.
Definition 2.7. ([18]) Let L be a bounded lattice and T be a t-norm on L. The order defined as follows is called a T - partial order (triangular order) for t -norm T :

$$
x \leq_{T} y: \Leftrightarrow T(\ell, y)=x \text { for some } \ell \in L .
$$

Definition 2.8. ([15]) Let L be a bounded lattice and S be a t-conorm on L. The order defined as follows is called a S - partial order for t-conorm S :

$$
x \leq_{s} y: \Leftrightarrow S(k, x)=y \text { for some } k \in L .
$$

Definition 2.9. ([15]) Let $(L, \leq, 0,1)$ be a bounded lattice and U be a uninorm with neutral element e on L. Define the following relation, for $x, y \in L$, as

$$
x \leq u y: \Leftrightarrow\left\{\begin{array}{l}
\text { if } x, y \in[0, e] \text { and there exist } k \in[0, e] \text { such that } U(k, y)=x \text { or, } \tag{1}\\
\text { if } x, y \in[e, 1] \text { and there exist } \ell \in[e, 1] \text { such that } U(x, \ell)=y \text { or, } \\
\text { if } x, y \in L^{*} \text { and } x \leq y,
\end{array}\right.
$$

where $I_{e}=\{x \in L \mid x \| e\}$ and $L^{*}=[0, e] \times[e, 1] \cup[0, e] \times I_{e} \cup[e, 1] \times I_{e} \cup[e, 1] \times[0, e] \cup I_{e} \times[0, e] \cup I_{e} \times[e, 1] \cup I_{e} \times I_{e}$.
Proposition 2.10. ([15]) The relation \leq_{u} defined in (1) is a partial order on L.
Note: The partial order \leq_{u} in (1) is called the U-partial order on L.
Definition 2.11. ([2]) Let U be a nullnorm on [0,1] and let K_{U} be defined by

$$
K_{U}=\{x \in(0,1) \mid \text { for some } y \in(0,1),[x<y \text { and } x \npreceq u y] \text { or }[y<x \text { and } y \npreceq u x]\} .
$$

Definition 2.12. ([2]) Define a relation β on the class of all uninorms on [0,1] by $U_{1} \beta U_{2}$,

$$
U_{1} \beta U_{2}: \Leftrightarrow K_{U_{1}}=K_{U_{2}}
$$

3. Regarding the Set K_{U}^{L} on any Bounded Lattices

In this section, we investigate the set of all incomparable elements with arbitrary but fixed $x \in L \backslash\{0,1\}$ according to the U-partial order. Also, we determine above introduced the sets of the smallest and the greatest uninorms on ($L, \leq, 0,1$). Thus, we conclude for the some basic t-norms and t-conorms in Corollary 3.13, Corollary 3.14, Corollary 3.16, Corollary 3.17.

Definition 3.1. ([20]) Let U be a uninorm on $(L, \leq, 0,1)$ with neutral element e and let $I_{U}^{L(x)}$ be defined by

$$
I_{U}^{L(x)}=\left\{y_{x} \in L \backslash\{0,1\} \mid\left[x<y_{x} \text { and } x \not \AA_{U} y_{x}\right] \text { or }\left[y_{x}<x \text { and } y_{x} \not \not_{U} x\right] \text { or } x \| y_{x}\right\}
$$

In the following, the notation $I_{U}^{L(x)}$ is used to denote the set of all incomparable elements with $x \in L \backslash\{0,1\}$ according to \leq_{u}. Clearly, $\mathcal{I}_{U}^{L(x)}=\emptyset$ for $x=0$ and 1 . By the definition of $\mathcal{I}_{U}^{L(x)}$, for any $x \in L \backslash\{0,1\}$, the set $\mathcal{I}_{U}^{L(x)}$ does not contain 0 and 1.

Definition 3.2. Let $(L, \leq, 0,1)$ be a bounded lattice. The set I_{x}^{L} for $x \in L \backslash\{0,1\}$ is defined by

$$
I_{x}^{L}=\{y \in L \backslash\{0,1\} \mid x \| y\}
$$

Note: For any uninorm on ($L, \leq, 0,1$), we have that $I_{x}^{L} \subseteq I_{u}^{L(x)}$ for $x \in L$.
Lemma 3.3. Let $(L, \leq, 0,1)$ be a bounded lattice. For all uninorms U and all $x \in L$ it holds that $0 \leq u x, x \leq u x$ and $x \leq u 1$.

Proposition 3.4. Let $(L, \leq, 0,1)$ be a bounded lattice. Consider the function on L defined as follows:

$$
U_{T_{\wedge}}(x, y)= \begin{cases}x \wedge y, & (x, y) \in[0, e]^{2} \\ x \vee y, & (x, y) \in[0, e] \times(e, 1] \cup(e, 1] \times[0, e] \\ y, & x \in[0, e], y \| e \\ x, & y \in[0, e], x \| e \\ 1, & \text { otherwise } .\end{cases}
$$

$U_{T_{\wedge}}$ is the greatest uninorm on L with neutral element e [19]. Then
a) $I_{U_{T}}^{L(x)}=\left\{y_{x} \in(e, 1) \mid x \neq y_{x}\right\} \cup I_{x}^{L}$ for $x \in(e, 1)$.
b) $I_{U_{T_{\Lambda}}}^{L(x)}=I_{x}^{L}$ for $x \in(0, e)$ or $x \| e$.

Proof. a) Let $y_{x} \in I_{U_{\Lambda_{1}}}^{L(x)}$ be arbitrary for $x \in(e, 1)$. Based on Lemma 3.3, it must be $x \neq y_{x}$. So, we will show that $y_{x} \in(e, 1)$ or $y_{x} \in I_{x}^{L}$. Suppose that $y_{x} \notin(e, 1)$ and $y_{x} \notin I_{x}^{L}$. Since $y_{x} \in I_{U_{T_{\Lambda}}}^{L(x)}$, we have that $y_{x}<x$ and

Let $y_{x}<x$ and $y_{x} \not U_{I_{\lambda}} x$.
Since $y_{x} \notin(e, 1)$, we have that $y_{x}=1, y_{x} \in[0, e]$ or $y_{x} \| e$. It can not be $y_{x}=1$ by Lemma 3.3. Let $y_{x} \in[0, e]$. Since $y_{x} \in[0, e]$ and $x \in(e, 1)$, it is obtained that $y_{x} \leq u_{T_{\Lambda}} x$, by the definition of \leq_{u}. This is a contradiction. Let $y_{x} \| e$. Since $y_{x}<x$ and $y_{x} \| e$, then it is obtained that $y_{x} \leq u_{T_{\wedge}} x$, a contradiction by the definition of \leq_{u}.

Let $x<y_{x}$ and $x \not U_{T_{\wedge}} y_{x}$.
If $y_{x}=1$, then we have $x \leq u_{T_{\Lambda}} 1$, which is a contradiction.
Let $y_{x} \in[0, e]$. Since $x<y_{x} \leq e$, then we have that $U_{T_{\wedge}}\left(x, y_{x}\right)=x \wedge y_{x}=x$. So, it is obtained that $x \leq u_{T_{\wedge}} y_{x}$, a contradiction. Let $y_{x} \| e$. Since $x<y_{x}$ and $y_{x} \| e$, then it is obtained that $x \leq_{T_{\wedge}} y_{x}$, a contradiction by the definition of $\leq u$.

Finally since $y_{x} \notin I_{x}^{L}$, it can not be $x \| y_{x}$. So, we have that $y_{x} \in(e, 1)$ or $y_{x} \in I_{x}^{L}$.
Thus, we have $I_{U_{T_{A}}}^{L(x)} \subseteq\left\{y_{x} \in(e, 1) \quad \mid x \neq y_{x}\right\} \cup I_{x}^{L}$ for $x \in(e, 1)$.
Conversely, let $y_{x} \in(e, 1)$ or $y_{x} \in I_{x}^{L}$ such that $x \neq y_{x}$ for $x \in(e, 1)$. We want to show that $y_{x} \in I_{u_{T_{\Lambda}}}^{L(x)}$. Suppose that $y_{x} \notin I_{u_{\tau_{\lambda}}}^{L(x)}$. In this case, $y_{x}<x$ and $y_{x} \leq u_{\tau_{\wedge}} x$ or $x<y_{x}$ and $x \leq u_{\tau_{\wedge}} y_{x}$.

Let $y_{x} \in(e, 1)$ and $x \neq y_{x}$ for $x \in(e, 1)$.

- Let $y_{x}<x$ and $y_{x} \leq u_{T_{\Lambda}} x$. Then, there exists an element $k \in[e, 1]$ such that $U_{T_{\wedge}}\left(y_{x}, k\right)=x$. If $k=1$, then we have $x=y_{x}$, which is a contradiction. Since $k \in[e, 1)$, it is obtained that

$$
U_{T_{\wedge}}\left(y_{x}, k\right)=x=1
$$

a contradiction by the definition of $U_{T_{\lambda}}$. So, it must be $y_{x} \not U_{T_{\Lambda}} x$.

- Let $x<y_{x}$ and $x \leq u_{T_{A}} y_{x}$. Similar arguments are suggested for this case.

So, $\left\{y_{x} \in(e, 1) \mid x \neq y_{x}\right\} \subseteq I_{u_{T_{\lambda}}}^{L(x)}$ for all $x \in(e, 1)$.
Let $y_{x} \in I_{x}^{L}$ for $x \in(e, 1)$. By the definition of $I_{u}^{L(x)}$, we have that $I_{x}^{L} \subseteq I_{u}^{L(x)}$.
Thus, we have $I_{U_{T_{\Lambda}}}^{L(x)}=\left\{y_{x} \in(e, 1) \mid x \neq y_{x}\right\} \cup I_{x}^{L}$ for all $x \in(e, 1)$.
b) Let $x \in(0, e)$. It is clear that $I_{x}^{L} \subseteq I_{u}^{L(x)}$ for every uninorm on L. Conversely, let $y_{x} \in I_{U_{\tau_{A}}}^{L(x)}$. We need to show that $y_{x} \in I_{x}^{L}$. We suppose that $y_{x} \notin I_{x}^{L}$. In this case $x<y_{x}$ or $y_{x}<x$. Let $x<y_{x}$. If $x<y_{x}<e$, then we have

$$
x=y_{x} \wedge x=U_{T_{\wedge}}\left(y_{x}, x\right) .
$$

So we have that $x \leq u_{T_{\wedge}} y_{x}$, a contradiction. If $x<e<y_{x}$, then it is obtained that $x \leq_{u_{T_{\wedge}}} y_{x}$, a contradiction by the definition of \leq_{u}.
Let $y_{x}<x$. Since $y_{x}<x<e$, we have

$$
y_{x}=y_{x} \wedge x=U_{T_{\wedge}}\left(y_{x}, x\right)
$$

So, it is obtained that $y_{x} \leq_{U_{T_{\wedge}}} x$, a contradiction.
So, $I_{U_{T_{\wedge}}}^{L(x)} \subseteq I_{x}^{L}$ for $x \in(0, e)$. Consequently, we have $I_{U_{T_{\wedge}}}^{L(x)}=I_{x}^{L}$ for $x \in(0, e)$.
If $x \| e$, then similarly it can be shown that $I_{U_{T_{\Lambda}}}^{L(x)}=I_{x}^{L}$.
Corollary 3.5. Let $(L, \leq, 0,1)$ be a bounded lattice and $\operatorname{card}(L)>3$. For the drastic product t-conorm S_{W} on L, $I_{S_{W}}^{L(x)}=L \backslash\{0,1\}$ for $x \in L \backslash\{0,1\}$.

Corollary 3.6. Let $(L, \leq, 0,1)$ be a bounded lattice. For the infimum t-norm T_{\wedge} on $L, I_{T_{\wedge}}^{L(x)}=I_{x}^{L}$ for $x \in L$.
Proof. In Proposition 3.4, if we put a neutral element $e=0$ and $e=1$, then we obtain drastic product t-conorm S_{W} and infimum t-norm T_{\wedge} on L.

Proposition 3.7. Let $(L, \leq, 0,1)$ be a bounded lattice. Consider the function on L defined as follows:

$$
U_{S_{\vee}}(x, y)= \begin{cases}x \vee y, & (x, y) \in[e, 1]^{2} \\ x \wedge y, & (x, y) \in[0, e) \times[e, 1] \cup[e, 1] \times[0, e) \\ y, & x \in[e, 1], y \| e \\ x, & y \in[e, 1], x \| e \\ 0, & \text { otherwise }\end{cases}
$$

$U_{S_{v}}$ is the smallest uninorm on L with neutral element e [19]. Then
a) $I_{u_{s v}}^{L(x)}=\left\{y_{x} \in(0, e) \quad \mid x \neq y_{x}\right\} \cup I_{x}^{L}$ for $x \in(0, e)$.
b) $I_{U_{s_{V}}}^{L(x)}=I_{x}^{L}$ for $x \in(e, 1)$ or $x \| e$.

The proof of this proposition is similar to the proof of Proposition 3.4.
Corollary 3.8. Let $(L, \leq, 0,1)$ be a bounded lattice. For the t-conorm S_{\vee} on $L, I_{S_{\vee}}^{L(x)}=I_{x}^{L}$ for $x \in L$.
Corollary 3.9. Let $(L, \leq, 0,1)$ be a bounded lattice and $\operatorname{card}(L)>3$. For the weakest t-norm T_{W} on $L, I_{T_{W}}^{L(x)}=L \backslash\{0,1\}$ for $x \in L \backslash\{0,1\}$.

Proof. In Proposition 3.7, if we put a neutral element $e=0$ and $e=1$, then we get that a t-conorm S_{V} and a t-norm T_{W} on L, respectively.

Now, we study on the set of all incomparable elements with respect to the U partial order with some uninorm U on a bounded lattice ($L, \leq, 0,1$).

Definition 3.10. ([20]) Let U be a nullnorm on $(L, \leq, 0,1)$ with neutral element e and let K_{U}^{L} be defined by $K_{U}^{L}=\left\{x \in L \backslash\{0,1\} \mid\right.$ for some $y \in L \backslash\{0,1\},[x<y$ implies $x \npreceq u y]$ or $\left[y<x \operatorname{implies} y \not{ }_{L} u x\right]$ or $\left.x \| y\right\}$.
Definition 3.11. ([4]) Let $(L, \leq, 0,1)$ be a bounded lattice. The set I_{L} is defined by

$$
I_{L}=\{x \in L \mid \exists y \in L \text { such that } x \| y\} .
$$

Proposition 3.12. Let $(L, \leq, 0,1)$ be a bounded lattice and card $([e, 1])>3$. Consider the greatest uninorm $U_{T_{\wedge}}$ with neutral element e in Proposition 3.4. Then, we have that $K_{U_{T_{\Lambda}}}^{L}=(e, 1) \cup I_{L}$.

Proof. Let $x \in(e, 1) \cup I_{L}$. Then, we have that $x \in(e, 1)$ or $x \in I_{L}$. Let us show that $x \in K_{U_{T_{\wedge}}}^{L}$.
Let $x \in(e, 1)$ and $y \in(e, 1)$ such that $x<y$. Then, it must be the case that $x \not \mathbb{U}_{T_{\wedge}} y$. Suppose that $x \leq_{U_{T \wedge}} y$. Then, there exists an element $k \in[e, 1]$ such that

$$
U_{T_{\wedge}}(x, k)=y .
$$

If $k=1$, we have that $x=y$, which is a contradiction.
If $k \in[e, 1)$, it is obtained that $U_{T_{\wedge}}(x, k)=y=1$, which is a contradiction. Since for any $x \in(e, 1)$, there exists an element $y \in(e, 1), x<y$ such that $x \nsubseteq U_{T_{\wedge}} y$. That is $x \in K_{U_{T_{\Lambda}}}^{L}$. So, $(e, 1) \subseteq K_{U_{T_{\Lambda}}}^{L}$.

Let $x \in I_{L}$. Then, there exists $y \in L$ such that $x \| y$. Thus, we have that $x \in K_{U_{T_{\wedge}}}^{L}$, by the definition of $K_{U_{T_{\wedge}}}^{L}$. So, $I_{L} \subseteq K_{U_{T_{\Lambda}}}^{L}$. So, it is obtained that $(e, 1) \cup I_{L} \subseteq K_{U_{T_{\Lambda}}}^{L}$.

Conversely, let $x \in K_{U_{T_{A}}}^{L}$. We need to show that $x \in(e, 1) \cup I_{L}$. Suppose that $x \notin(e, 1) \cup I_{L}$. That is, $x \notin(e, 1)$ and $x \notin I_{L}$. Since $x \in K_{U_{T_{\wedge}}}^{L}$, there exists an element $y \in L \backslash\{0,1\}$ such that $x<y$ and $x \not U_{T_{\wedge}} y$ or $y<x$ and $y \not 太_{u_{T_{\wedge}}} x$ or $x \| y$.

Let $x<y$ and $x \not \underbrace{}_{T_{\Lambda}} y$. Since $x \notin(e, 1)$, it must be $x=1, x \in[0, e]$ or $x \| e$.
It can not be $x=1$ by Lemma 3.3
Let $x \in[0, e]$. In this case, $e<y, y<e$ or $y \| e$. If $y=e$, then we have that $x \leq_{u_{T_{\wedge}}} e=y$, a contradiction. If $x<y<e$, then we have that

$$
U_{T_{\wedge}}(x, y)=x \wedge y=x
$$

So, we have that $x \leq_{u_{T}} y$, which is a contradiction.
If $x \leq e<y$, it is obtained that $x \leq_{u_{T}} y$, a contradiction, by the definition of \leq_{u}.
If $y \| e$, since $x<y$, we have that $x \leq_{U_{T_{\wedge}}} y$, a contradiction, by the definition of \leq_{u}.
Let $y<x$ and $y \not \mathbb{U}_{T_{\wedge}} x$.
If $x=1$, then we have $y \leq_{u_{T_{\wedge}}} 1$, which is a contradiction.
Let $x \in[0, e]$. Since $y<x$, we have that

$$
U_{T_{\wedge}}(x, y)=x \wedge y=x
$$

So, it is obtained that $y \leq_{U_{T_{\wedge}}} x$, which is a contradiction.
Finally, since $x \notin I_{L}$, it can not be $x \| y$. Thus, we have that $K_{U_{T_{\wedge}}}^{L} \subseteq(e, 1) \cup I_{L}$.
Consequently, we showed $K_{U_{T_{\Lambda}}}^{L}=(e, 1) \cup I_{L}$.
Corollary 3.13. ([4]) Let $(L, \leq, 0,1)$ be a bounded lattice. For the infimum t-norm T_{\wedge} on $L, K_{T_{\wedge}}^{L}=I_{L}$.
Corollary 3.14. Let $(L, \leq, 0,1)$ be a bounded lattice. For the drastic product t-conorm S_{W} on L,

$$
K_{S_{W}}^{L}= \begin{cases}\emptyset, & \text { if } \operatorname{card}(L) \leq 3 \\ L \backslash\{0,1\}, & \text { otherwise } .\end{cases}
$$

Proof. In Proposition 3.12, if we put a neutral element $e=0$, then we have $K_{S_{W}}^{L}=L \backslash\{0,1\}$ for $\operatorname{card}(L)>3$. \square

Proposition 3.15. Let $(L, \leq, 0,1)$ be a bounded lattice and card $([0, e])>3$. Consider the smallest uninorm $U_{S_{v}}$ with neutral element e in Proposition 3.7. Then, we have that $K_{U_{S_{V}}}^{L}=(0, e) \cup I_{L}$.

The proof of this proposition is similar to the proof of Proposition 3.12.
Corollary 3.16. ([4]) Let $(L, \leq, 0,1)$ be a bounded lattice. For the weakest t-norm T_{W} on L,

$$
K_{T_{W}}^{L}= \begin{cases}\emptyset, & \text { if } \operatorname{card}(L) \leq 3 \\ L \backslash\{0,1\}, & \text { otherwise } .\end{cases}
$$

Corollary 3.17. Let $(L, \leq, 0,1)$ be a bounded lattice. For t-conorm S_{\vee} on $L, K_{S_{\vee}}^{L}=I_{L}$.
Proof. In Proposition 3.15, if we put a neutral element $e=0$, then we have $K_{S_{V}}^{L}=I_{L}$.
Remark 3.18. Let $(L, \leq, 0,1)$ be a chain. For any uninorm U with neutral element $e \in L \backslash\{0,1\}$, if $|L| \leq 4$, then it is obtained that $K_{U}^{L}=\emptyset$. If $(L, \leq, 0,1)$ is not a chain, then it may not be true. For example, let $L=\{0, e, x, 1\}$ whose lattice diagram is displayed in Figure 1.

Figure 1: The order \leq on L
It is clear that $K_{U}^{L} \neq \emptyset$ for every uninorm U with neutral element e.
Proposition 3.19. ([19]) Let $(L, \leq, 0,1)$ be a bounded lattice, $e \in L \backslash\{0,1\}$ and U be a uninorm with neutral element e on L. Then,
(i) $T^{*}=\left.U\right|_{[0, e]^{2}}:[0, e]^{2} \rightarrow[0, e]$ is a t-norm on $[0, e]$.
(ii) $S^{*}=\left.U\right|_{[e, 1]^{2}}:[e, 1]^{2} \rightarrow[e, 1]$ is a t-conorm on $[e, 1]$.

Proposition 3.20. ([18]) Let $(L, \leq, 0,1)$ be a bounded lattice and U be a uninorm with neutral element e on L. If $([0, e] \cup[e, 1], \leq u)$ is a chain, then T^{*} and S^{*} are divisible on $[0, e]$ and $[e, 1]$, respectively.

Remark 3.21. The converse of the above Proposition 3.20 may not be true. Consider the lattice $(L=$ $\{0, a, b, c, d, e, f, 1\}, \leq, 0,1)$ whose lattice diagram is displayed in Figure 2.

Figure 2: The order \leq on L

Consider the uninorm $U: L^{2} \rightarrow L$ with neutral element e defined as follows:

$$
U(x, y)= \begin{cases}x \wedge y, & (x, y) \in[0, e]^{2} \\ x \vee y, & \text { otherwise }\end{cases}
$$

$T^{*}(x, y)=\left.U\right|_{[0, e]^{2}}(x, y)=x \wedge y$ and $S^{*}(x, y)=\left.U\right|_{[e, 1]^{2}}(x, y)=x \vee y$ are divisible t-norm and t-conorm for $x, y \in[0, e]$ and $x, y \in[e, 1]$, respectively. It is clear that $\left(L, \leq_{U}\right)$ is not a chain.

4. The Equivalence Classes Obtained From U-Partial Order

U-partial order introduced above allows us to introduce the next equivalence relation on the class of all uninorms on the unit interval $[0,1]$. In this section, we investigate the equivalence relation on the class of all uninorms on the unit interval $[0,1]$. We determine the equivalence classes of the smallest and greatest uninorms on $[0,1]$. In this way, we obtain the equivalence classes of the some basic t-norms and t-conorms in Corollary 4.7, Corollary 4.6, Corollary 4.10 and Corollary 4.11.
Definition 4.1. ([20]) Define a relation \sim on the class of all uninorms on the unit interval [0, 1] by $U_{1} \sim U_{2}$ if and only if the U_{1}-partial order coincides with the U_{2}-partial order.

Lemma 4.2. ([20]) The relation \sim is an equivalence relation.
Definition 4.3. ([20]) For a given uninorm U on a bounded lattice ($L, \leq, 0,1$), we denote the \sim equivalence class linked to U by \bar{U}, i.e,

$$
\bar{U}=\left\{U^{\prime} \mid \quad U^{\prime} \sim U\right\} .
$$

Proposition 4.4. Consider the smallest uninorm $\underline{U_{e}}:[0,1]^{2} \rightarrow[0,1]$ with neutral element $e \in(0,1)$ defined by

$$
\underline{U_{e}}(x, y)= \begin{cases}0, & (x, y) \in[0, e)^{2} \\ \max (x, y), & (x, y) \in[e, 1]^{2} \\ \min (x, y), & \text { otherwise }\end{cases}
$$

Then, the equivalence class of the t-conorm ${\underline{U_{e}}}^{\left.\left.\right|_{[e, 1]}\right]^{2}}$ is the set of all divisible t-conorms on $[e, 1]$, and the equivalence class of the t-norm $\left.\underline{U_{e}}\right|_{[0, e]^{2}}$ consists only the $\left.\overline{t-n o r m} \underline{U_{e}}\right|_{[0, e]^{2}}$.

Proof. Let S^{\prime} be a t-conorm on $[e, 1]$. Let $\left.S^{\prime} \in \underline{\overline{U_{e}}}\right|_{[e, 1]^{2}}$ and $x \leq y$ for $x, y \in[e, 1]$. Since $x \leq y$, then we have that $\left.\underline{U}_{e}\right|_{[e, 1]^{2}}(x, y)=\max (x, y)=y$. So, it is obtained that $x \leq\left._{u_{e}}\right|_{[e, 1]^{2}} y$. Since $\left.S^{\prime} \in{\overline{U_{e}}}\right|_{[e, 1]^{2}}$, then we have $x \leq_{S^{\prime}} y$. Then there exists an element $k \in[e, 1]$ such that $S^{\prime}(x, k)=y$. So, S^{\prime} is a divisible t-conorm on $[e, 1]$.

Conversely, let S^{\prime} is a divisible t-conorm on $[e, 1]$. Let $x \leq\left._{u_{e}}\right|_{[e, 1]^{2}} y$ for $x, y \in[e, 1]$. Since $x \leq \leq\left._{e}\right|_{[e, 1]^{2}} y$, we have that $x \leq y$. Since S^{\prime} is a divisible t-conorm, there exists an element $\ell \in[e, 1]$ such that $S^{\prime}(\overline{x, \ell})=y$. So, we have that $x \leq_{s^{\prime}} y$. Conversely, let $x \leq_{s^{\prime}} y$. Similarly it can be shown that $x \leq\left._{\underline{u_{e}}}\right|_{e, 1]^{\prime}} y$. So, $\leq_{u_{e}} \mid[e, 1]^{2}=\leq s^{\prime}$.

The equivalence class of the t-norm $\left.\underline{U_{e}}\right|_{[0, e]^{2}}$ consists only the t-norm $\left.\underline{U_{e}}\right|_{[0, e]^{2}}$ by [21].
Remark 4.5. In Proposition 4.4, if a t-conorm is not divisible t-conorm on $[e, 1]$, then $\leq\left.\underline{u_{e}}\right|_{[e, 1]^{2}} \neq \leq s$. Consider the t -norm S_{D} on $[e, 1]$ defined by

$$
S_{D}(x, y)= \begin{cases}y, & x=e \\ x, & y=e \\ 1, & \text { otherwise }\end{cases}
$$

It is clear that S_{D} is not divisible t-conorm. We claim that $\left.{\underline{u_{e}}}\right|_{[e, 1]^{2}} \neq \leq_{S_{D}}$.
Let $e=\frac{1}{2}$. Since $\left.\underline{U_{e}}\right|_{\left[\frac{1}{2}, 1\right]^{2}}\left(\frac{2}{3}, \frac{3}{4}\right)=\frac{3}{4}$, then it is obtained that $\frac{2}{3} \leq\left._{\underline{U_{e}}}\right|_{\left[\frac{1}{2}, 1\right]^{2}} \frac{3}{4}$. But $\frac{2}{3} \not S_{S_{D}} \frac{3}{4}$. Suppose that $\frac{2}{3} \leq S_{D} \frac{3}{4}$. Then there exists an element $k \in\left[\frac{1}{2}, 1\right]$ such that $S_{D}\left(\frac{2}{3}, k\right)=\frac{3}{4}$.
If $k=\frac{1}{2}$, then we have that $\frac{3}{4}=\frac{2}{3}$, a contradiction. If $k \in\left(\frac{1}{2}, 1\right]$, then it is obtained that $\frac{3}{4}=1$, a contradiction. So, $\leq\left._{\underline{u_{e}}}\right|_{\left[\frac{1}{2}, 1\right]^{2}} \neq \leq_{S_{D}}$.

Corollary 4.6. The equivalence class of the smallest t-conorm S_{M} on $[0,1]$ is the set of all divisible t-conorms on [0,1].

Proof. In Proposition 4.4, if we put a neutral element $e=0$, then we have a smallest t -conorm S_{M} on $[0,1]$.
Corollary 4.7. ([21]) The equivalence class of the smallest t-norm T_{D} on $[0,1]$ consists only the t-norm T_{D} on $[0,1]$.
Proposition 4.8. Consider the greatest uninorm $\overline{\bar{U}_{e}}:[0,1]^{2} \rightarrow[0,1]$ with neutral element $e \in(0,1)$ defined by

$$
\overline{U_{e}}(x, y)= \begin{cases}\min (x, y), & (x, y) \in[0, e]^{2} \\ 1, & (x, y) \in(e, 1]^{2} \\ \max (x, y), & \text { otherwise }\end{cases}
$$

Then, the equivalence class of the t-norm $\left.\overline{U_{e}}\right|_{[0, e]^{2}}$ is the set of all divisible t-norms on $[0, e]$, and the equivalence class of the t-conorm $\left.\overline{U_{e}}\right|_{[e, 1]^{2}}$ consists only the t-conorm $\left.\bar{U}_{e}\right|_{[, 1]^{2}}$.
Remark 4.9. In Proposition 4.8, if a t-norm is not divisible on $[0, e]$, then $\leq_{\bar{u}_{e}} \mid[0, e]^{2} \neq \leq_{T}$. Consider the t-conorm T_{D} on $[0, e]$ defined by

$$
T_{D}(x, y)= \begin{cases}y, & x=e \\ x, & y=e \\ 0, & \text { otherwise }\end{cases}
$$

It is clear that T_{D} is not divisible t-norm. We claim that $\leq \overline{U_{e}} \mid[0, e]^{2} \neq \leq_{T_{D}}$.
Let $e=\frac{1}{2}$. Since $\left.\overline{U_{e}}\right|_{\left[0, \frac{1}{2}\right]^{2}}\left(\frac{1}{5}, \frac{1}{6}\right)=\frac{1}{6}$, then it is obtained that $\frac{1}{6} \leq\left.{\overline{u_{e}}}\right|_{\left[0, \frac{1}{2}\right]^{2}} \frac{1}{5}$. But $\frac{1}{6} \not \not_{T_{D}} \frac{1}{5}$. On the condition that $\frac{1}{6} \leq_{T_{D}} \frac{1}{5}$, there exists an element $\ell \in\left[0, \frac{1}{2}\right]$ such that $T_{D}\left(\frac{1}{5}, \ell\right)=\frac{1}{6}$.
If $\ell=\frac{1}{2}$, we have that $\frac{1}{5}=\frac{1}{6}$, a contradiction. If $\ell \in\left[0, \frac{1}{2}\right)$, then it is obtained that $\frac{1}{6}=0$, a contradiction. So, $\leq\left._{\overline{u_{e}}}\right|_{\left[0, \frac{1}{2}\right]^{1}} \neq \leq_{T_{D}}$.

Corollary 4.10. The equivalence class of the greatest t-conorm S_{D} on $[0,1]$ consists only the t-conorm S_{D} on $[0,1]$.
Proof. In Proposition 4.8, if we put a neutral element $e=0$, then we have a greatest t-conorm S_{D} on $[0,1]$.
Corollary 4.11. ([21]) The equivalence class of the greatest t-norm T_{M} on $[0,1]$ is the set of all divisible t-norms on [0,1].

5. Distributivity f0r Uninorms

In this section, we investigate the relationship between an order induced by uninorms and distributivity property for uninorms on the unit interval $[0,1]$. Thus, we give sufficiency condition for equivalent according to the β in Corollary 5.6.

Definition 5.1. ([23]) Let U_{1} and U_{2} be uninorms on [0,1]. U_{1} is distributive over U_{2} if it is satisfies the following condition:

$$
\begin{equation*}
U_{1}\left(x, U_{2}(y, z)\right)=U_{2}\left(U_{1}(x, y), U_{1}(x, z)\right) \tag{2}
\end{equation*}
$$

for all $x, y, z \in[0,1]$.
Proposition 5.2. Let U_{1} and U_{2} be uninorms on $[0,1]$ with the same neutral elements. If U_{1} is distributive over U_{2}, then $K_{U_{2}} \subseteq K_{U_{1}}$.

Proof. Let U_{1} and U_{2} be uninorms on the unit interval [0,1] and U_{1} is distributive over U_{2}. Let $x \in K_{U_{2}}$. Then there exists an element $y \in(0,1)$ such that $x<y$ and $x \not \mathbb{K}_{u_{2}} y$ or $y<x$ and $y \not \mathbb{K}_{u_{2}} x$. Suppose that $x \notin K_{U_{1}}$. Then there exists an element $y \in(0,1)$ such that $x<y$ and $x \leq_{u_{1}} y$ or $y<x$ and $y \leq u_{1} x$. Without loss of generality, we assume that $x<y$ and $x \leq u_{1} y$.

Let $x, y \in[0, e]$. Then there exists an element $k \in[0, e]$ such that $U_{1}(y, k)=x$.

$$
x=U_{1}(y, k)=U_{1}\left(y, U_{2}(k, e)\right)
$$

Since U_{1} is distributive over U_{2}, then we get that

$$
x=U_{1}\left(y, U_{2}(k, e)\right)=U_{2}\left(U_{1}(y, k), U_{1}(y, e)\right)=U_{2}(x, y)
$$

So, it is obtained that $x \leq u_{2} y$, which is a contradiction.
Similar arguments are suggested for $x, y \in[e, 1]$. Since $x \in K_{U_{2}}$, it can not be $x, y \notin[0, e]$ and $x, y \notin[e, 1]$. Because if $x, y \notin[0, e]$ and $x, y \notin[e, 1]$, then we have that $x \leq_{u} y$, by the definition of \leq_{u}.

Proposition 5.3. Let U_{1} and U_{2} be uninorms on $[0,1]$. If U_{1} is distributive over U_{2} and U_{2} is distributive over U_{1}, then $K_{U_{1}}=K_{U_{2}}$.
Remark 5.4. The converse of the above Proposition 5.3 may not be true. Here is an example illustrating a such case.

Example 5.5. Consider the uninorms $U:[0,1]^{2} \rightarrow[0,1]$ and $\underline{U_{\frac{1}{2}}}:[0,1]^{2} \rightarrow[0,1]$ with neutral elements $\frac{1}{2}$ defined as follows:

$$
U(x, y)= \begin{cases}0, & (x, y) \in\left[0, \frac{1}{2}\right]^{2} \text { and } x+y \leq \frac{1}{2} \text { and }(x, y) \neq\left(\frac{1}{4}, \frac{1}{4}\right) \\ \frac{1}{4}, & (x, y)=\left(\frac{1}{4}, \frac{1}{4}\right) \\ \max (x, y), & (x, y) \in\left[\frac{1}{2}, 1\right]^{2} \\ \min (x, y), & \text { otherwise }\end{cases}
$$

and

$$
\underline{U_{\underline{1}}^{2}}(x, y)= \begin{cases}0, & (x, y) \in\left[0, \frac{1}{2}\right)^{2} \\ \max (x, y), & (x, y) \in\left[\frac{1}{2}, 1\right]^{2} \\ \min (x, y), & \text { otherwise }\end{cases}
$$

We have that $K_{U}=K_{U_{\frac{1}{2}}}=\left(0, \frac{1}{2}\right)$ (see [2]). But U is not distributive over $\underline{U_{\frac{1}{2}}}$. Now, let us show that this claim.

$$
U\left(\frac{1}{4}, \underline{U_{\frac{1}{2}}}\left(\frac{1}{4}, \frac{2}{3}\right)\right)=U\left(\frac{1}{4}, \frac{1}{4}\right)=\frac{1}{4} \text { and } \underline{U_{\frac{1}{2}}}\left(U\left(\frac{1}{4}, \frac{1}{4}\right), U\left(\frac{1}{4}, \frac{2}{3}\right)\right)=\underline{U_{\underline{\frac{1}{2}}}}\left(\frac{1}{4}, \frac{1}{4}\right)=0 .
$$

Since $0 \neq \frac{1}{4}, U_{1}$ is not distributive over U_{2}.
Corollary 5.6. Let U_{1} and U_{2} be uninorms on $[0,1]$. If U_{1} is distributive over U_{2} and U_{2} is distributive over U_{1}, then U_{1} and U_{2} are equivalent according to the β.

Remark 5.7. Let U_{1} and U_{2} be uninorms on [0,1]. If U_{1} is distributive over U_{2}, then it can not be $K_{U_{1}} \subseteq K_{U_{2}}$. Consider the functions on $[0,1]$ defined as follows:

$$
U_{1}(x, y)= \begin{cases}0, & (x, y) \in\left[0, \frac{1}{2}\right)^{2} \\ 1, & (x, y) \in\left(\frac{1}{2}, 1\right]^{2} \\ y, & x=\frac{1}{2} \\ x, & y=\frac{1}{2} \\ \min (x, y), & \text { otherwise }\end{cases}
$$

and

$$
U_{2}(x, y)= \begin{cases}\min (x, y), & (x, y) \in\left[0, \frac{1}{2}\right]^{2} \\ \max (x, y), & \text { otherwise }\end{cases}
$$

U_{1} and U_{2} are uninorms with neutral elements $\frac{1}{2}$. It is clear that $\leq U_{1} \subseteq \leq_{U_{2}}$ and U_{1} is distributive over U_{2}. It can be shown that $K_{U_{1}}=\{x \in(0,1) \mid x \neq e\}$ and $K_{U_{2}}=\emptyset$. Hence, we get that $K_{U_{1}} \nsubseteq K_{U_{2}}$.

6. Concluding Remarks

We have discussed and investigated some properties of U-partial order, denoted by $\leq u$. We have investigated that the set $\mathcal{I}_{F}{ }^{(x)}$, denoting the set of all incomparable elements with arbitrary but fixed $x \in L \backslash\{0,1\}$ according to $\leq u$. We have determined the sets of incomparable elements w.r.t. U-partial order of the greatest and smallest uninorm on L. Also, we have investigated an equivalence relation on the class of uninorms on a bounded lattice $(L, \leq, 0,1)$ and we have determined the equivalence classes of some special uninorms on the unit interval [0,1]. Finally, we have investigated the relationship between an order induced by uninorms and distributivity property for uninorms on the unit interval $[0,1]$.

Acknowledgement

We are grateful to the anonymous reviewers and the editor for their valuable comments, which helped to improve the original version of our manuscript greatly.

References

[1] E. Aşıcı, Some notes on the F-partial order, In: J. Kacprzyk, E. Szmidt, S. Zadroźny, K. Atanassov, M. Krawczak (eds.), Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol 641, Springer, Cham, 2018, pp. 78-84.
[2] E. Aşıcı, Some remarks on an order induced by uninorms, In: J. Kacprzyk, E. Szmidt, S. Zadroźny, K. Atanassov, M. Krawczak (eds.), Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol 641, Springer, Cham, 2018, pp. 69-77.
[3] E. Aşıcı, On the properties of the F-partial order and the equivalence of nullnorms, Fuzzy Sets Syst. 346 (2018) 72-84.
[4] E. Aşıcı, F. Karaçal, Incomparability with respect to the triangular order, Kybernetika 52 (2016) 15-27.
[5] G. Birkhoff, Lattice Theory, (3rd edition), Providence, 1967.
[6] T. Calvo, B. De Baets, J. Fodor, The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Sets Syst. 120 (2001) 385-394.
[7] J. Casasnovas, G. Mayor, Discrete t-norms and operations on extended multisets, Fuzzy Sets Syst. 159 (2008) 1165-1177.
[8] G.D. Çaylı, On a new class of t-norms and t-conorms on bounded lattices, Fuzzy Sets Systs. 332 (2018) 129-143.
[9] G.D. Çaylı, P. Drygaś, Some properties of idempotent uninorms on a special class of bounded lattices, Inf. Sci. 422 (2018) $352-363$.
[10] G.D. Çaylı, F. Karaçal, R.Mesiar, On a new class of uninorms on bounded lattices, Inf. Sci.367-368 (2016) 221-231.
[11] B. De Baets, R. Mesiar, Triangular norms on product lattices, Fuzzy Sets Syst. 104 (1999) 61-75.
[12] J. Drewniak, P. Drygaś, E. Rak, Distributivity between uninorms and nullnorms, Fuzzy Sets Syst. 159 (2008) 1646-1657.
[13] P. Drygas, Distributivity between semi-t-operators and semi-nullnorms, Fuzzy Sets Syst. 264 (2015) 100-109.
[14] D. Dubois, H. Prade, Fundamentals of Fuzzy Sets, Kluwer Acad. Publ., Boston, 2000.
[15] U. Ertuğrul, M.N. Kesicioğlu, F. Karaçal, Ordering based on uninorms, Inf. Sci. 330 (2016) 315-327.
[16] J. Fodor, I.J. Rudas, A. Rybalov, Structure of uninorms, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997) 411-427.
[17] B. Jayaram, T-subnorms with strong associated negation: Some properties, Fuzzy Sets Syst. 323 (2017) 94-102.
[18] F. Karaçal, M.N. Kesicioğlu, A T-partial order obtained from t-norms, Kybernetika 47 (2011) 300-314.
[19] F. Karaçal, R. Mesiar, Uninorms on bounded lattices, Fuzzy Sets Syst. 261 (2015) 33-43.
[20] M.N. Kesicioğlu, U. Ertuğrul, F. Karaçal, An equivalence relation based on the U-partial order, Inf. Sci. 411 (2017) 39-51.
[21] M.N. Kesicioğlu, F. Karaçal, R. Mesiar, Order-equivalent triangular norms, Fuzzy Sets Syst. 268 (2015) 59-71.
[22] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
[23] M. Mas, G. Mayor, J. Torrens, The distributivity condition for uninorms and t-operators, Fuzzy Sets Syst. 128 (2002) 209-225.
[24] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 97 (1986) 384-388.
[25] E. Palmeira, B. Bedregal, R. Mesiar, J. Fernandez, A new way to extend t-norms, t-conorms and negations, Fuzzy Sets Syst. 240 (2014) 1-21.
[26] D. Ruiz-Aquilera, J. Torrens, Distributivity and conditional distributivity of a uninorm and a continuous t-conorm, IEEE Trans. Fuzzy Syst. 14 (2006) 180-190.
[27] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, Amsterdam, 1983.
[28] R.R. Yager, Uninorms in fuzzy system modeling, Fuzzy Sets Syst. 122 (2001) 167-175.
[29] R.R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets Syst. 80 (1996) 111-120.

[^0]: 2010 Mathematics Subject Classification. Primary 03E72; Secondary 03B52
 Keywords. Equivalence, uninorm, partial order, bounded lattice
 Received: 13 November 2017; Revised: 11 April 2018; Accepted: 29 June 2018
 Communicated by Ljubiša D.R. Kočinac
 Email address: emelkalin@hotmail.com (Emel Aşıcı)

