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Abstract.
In this paper, we define Suzuki type generalized multivalued almost contraction mappings and prove

some related fixed point results. As an application, some coincidence and common fixed point results
are obtained. The results proved herein extend the recent results on fixed points of Kikkawa Suzuki type
and almost contraction mappings in the frame work of complete metric spaces. We provide examples to
show that obtained results are proper generalization of comparable results in the existing literature. Some
applications in homotopy, dynamic programming, integral equations and data dependence problems are
also presented.

1. Introduction and preliminaries

Let (X, d) be a metric space. We denote CL(X) ( CB(X) ) as the collection of closed (closed and bounded)
subsets of X. For A,B ∈ CL(X), define:

D(A,B) = {ε > 0 : A ⊆ Bε, B ⊆ Aε},

where

Bε = ∪y∈BNε(y),

and

Nε(y) = {x ∈ X : d(x, y) < ε},

for some y ∈ B. The Pompeiu-Hausdorff metric H on CL(X) induced by the metric d on X is given as:

H(A,B) =

{
inf
ε

D(A,B) if D(A,B) , φ,

∞ if D(A,B) = φ.
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Recall that a multivalued mapping T : X→ CL(X) is continuous at x ∈ X if

lim
n→∞

d(xn, x) = 0 implies that lim
n→∞

H(Txn,Tx) = 0.

Let f : X −→ X and T : X −→ CL(X). An element x in X is said to be:

a A fixed point of f if x = f x, the set of all fixed points of f is denoted by F( f );

b A fixed point of T if x ∈ Tx, the set of all fixed points of T is represented by F(T);

c A coincidence point of f and T if f x ∈ Tx, the set of all coincidence points of f and T is denoted by C( f ,T);

d A common fixed point of f and T if x = f x ∈ Tx, the set of all common fixed points of f and T is denoted
by F( f ,T).

The letter R, R+ andNwill denote the set of all real numbers, set of all non-negative real numbers and
the set of all positive integers, respectively.

For x, y ∈ X, set

M(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(y,Tx)

2

}
,

M f (x, y) = max
{

d(x, y), d(x, f x), d(y, f y),
d(x, f y) + d(y, f x)

2

}
,

N(x, y) = min{d(x,Tx), d(y,Tx)},

N f (x, y) = min{d(x, f x), d(y, f x)},

M f (x, y) = max
{

d( f x, f y), d( f x,Tx), d( f y,Ty),
d( f x,Ty) + d( f y,Tx)

2

}
,

N f (x, y) = min{d( f x,Tx), d( f y,Tx)}.

The well known Banach contraction principle [3] has been generalized in several directions [16–19, 28, 29].
Nadler [22] proved multivalued version of Banach contraction principle as follows:

Theorem 1.1. ([22]) Let (X, d) be a complete metric space and T : X → CB(X). If there exists a constant r ∈ [0, 1)
such that

H(Tx,Ty) ≤ rd(x, y)

for all x, y ∈ X. Then F(T) is nonempty.

For more results in this direction, we refer to [12, 20, 27].
Suzuki [29] presented an interesting generalization of Banach contraction principle and employed his

result to characterize metric completeness.
Throughout this paper, a mapping η : [0, 1)→ (0, 1] is defined as

η(θ) =

1 if 0 ≤ θ <
1
2
,

1 − θ if 1
2 ≤ θ < 1.

(1)

One interesting extension of Nadler’s theorem [22], Ciric’s result [11], and Suzuki-type result [29] is due
to Djorić and Lazović [13] in complete metric spaces.
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Theorem 1.2. ([13]) Let (X, d) be a complete metric space and T : X → CB(X). Suppose that there exists θ ∈
[0, 1) such that for x, y ∈ X

η(θ)d(x,Tx) ≤ d(x, y)

implies that

H(Tx,Ty) ≤ θM(x, y).

Then there exists z ∈ X such that z ∈ Tz.

Berinde [7] introduced weak contraction mappings. Later, Berinde et al. [8] extended this concept
for multivalued mappings. Berinde et al. [9] modified the definition of multivalued weak contraction to
generalized multivalued (θ,L)−strict almost contraction mappings and obtained a fixed point result for such
mappings. Note that V. Berinde in [9] generalized the term ”weak contraction” as ”almost contraction”,
so these terms are interchangeable. Kamran [15] introduced the notion of multivalued weak contraction
mappings for a hybrid pair of mappings ( f ,T) as follows:

Definition 1.3. ([15]) Let (X, d) be a metric space and ( f ,T) a hybrid pair of mappings. A mapping T is
generalized multivalued ( f , θ,L)−weak contraction if there exist constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx,Ty) ≤ θd( f x, f y) + Ld( f y,Tx)

for all x, y ∈ X.

Abbas [1] further generalized the concept of weak contraction mappings.
To obtain common fixed points of hybrid pair ( f ,T), Abbas et al. [2] introduced the notion of T−weakly

commuting and w−compatible mappings.

Definition 1.4. ([2]) A mapping f is called T−weakly commuting at x ∈ X if f 2x ∈ T f x.

Definition 1.5. ([2]) A hybrid pair ( f ,T) is w−compatible if f Tx ⊆ T f x whenever x ∈ C(T, f ).

Motivated by the work of Djorić et al. [13] and Abbas [1]) we give following definitions.

Definition 1.6. A mapping T : X → CL(X) is called Suzuki-type generalized multivalued (θ,L)−almost
contraction if there exist constants θ ∈ [0, 1) and L ≥ 0 such that for any x, y ∈ X with x , y

η(θ)d(x,Tx) ≤ d(x, y)

implies that

H(Tx,Ty) ≤ θM(x, y) + LN(x, y). (2)

Definition 1.7. Let ( f ,T) be a hybrid pair. A mapping T is called Suzuki-type generalized multivalued
( f , θ,L)−almost contraction if there exist constants θ ∈ [0, 1) and L ≥ 0 such that for any x, y ∈ X with x , y

η(θ)d( f x,Tx) ≤ d( f x, f y) (3)

implies that

H(Tx,Ty) ≤ θM f (x, y) + LN f (x, y). (4)

If f is an identity mapping on X in the above definition, then Suzuki-type generalized multivalued
( f , θ,L)−almost contraction mapping becomes Suzuki-type generalized multivalued (θ,L)−almost contrac-
tion.
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2. Fixed Points of Suzuki-Type Generalized Multivalued (θ, L)−Almost Contractions

In this section, we first obtain fixed point result of Suzuki-type generalized multivalued (θ,L)−almost
contractions and then coincidence and common fixed point results of Suzuki-type generalized multivalued
( f , θ,L)−almost contraction mapping.

The following result complements and extends the comparable results in [1, 9, 13, 15, 22, 29].

Theorem 2.1. Let (X, d) be a complete metric space and T a Suzuki-type generalized multivalued (θ,L)−almost
contraction mapping. Then F(T) is nonempty.

Proof. Let θ1 ∈ R with 0 ≤ θ < θ1 < 1, u1 ∈ X and h =
1
√
θ
. As Tu1 is nonempty, we can choose u2 ∈ Tu1.

Since h > 1, there exists u3 ∈ Tu2 such that d(u2,u3) ≤ hH(Tu1,Tu2). If u2 = u1, then u1 ∈ Tu1 and hence the
result. Suppose that u2 , u1. Note that η(θ) ≤ 1. Thus

η(θ)d(u1,Tu1) ≤ d(u1,Tu1) ≤ d(u1,u2),

implies that

d(u2,u3) ≤
1
√
θ

H(Tu1,Tu2) ≤
1
√
θ

(θM(u1,u2) + LN(u1,u2))

≤

√

θmax
{

d(u1,u2), d(u1,Tu1), d(u2,Tu2),
d(u1,Tu2) + d(u2,Tu1)

2

}
+

L
√
θ

min{d(u1,Tu1), d(u2,Tu1)}

≤

√

θmax
{

d(u1,u2), d(u2,u3),
d(u1,u2) + d(u2,u3)

2

}
≤

√

θd(u1,u2) ≤
√
θ1d(u1,u2).

Continuing this way, we obtain a sequence {un} in X such that un+1 ∈ Tun and un+1 , un and it satisfies:

d(un,un+1) ≤
√
θ1d(un−1,un)

and

∞∑
n=1

d(un,un+1) ≤
∞∑

n=1

(
√
θ1)n−1d(u1,u2) < ∞.

Thus {un} is a Cauchy sequence in X. Assume that there exists z ∈ X such that lim
n→∞

un = z. We claim that

d(z,Tx) ≤ θmax{d(z, x), d(x,Tx)} (5)

for all z , x. Since lim
n→∞

un = z, there exists n0 ∈N such that

d(un, z) ≤
1
3

d(z, x)

holds for all n ≥ n0. Also, un , x for all n ≥ n0. As un+1 ∈ Tun, we have

η(θ)d(un,Tun) ≤ d(un,Tun) ≤ d(un,un+1)
≤ d(un, z) + d(z,un+1)

≤
2
3

d(z, x).
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Hence, for any n ≥ n0 we have

η(θ)d(un,Tun) ≤
2
3

d(z, x) = d(z, x) −
1
3

d(z, x)

≤ d(z, x) − d(z,un)
≤ d(un, x). (6)

Thus

η(θ)d(un,Tun) ≤ d(un, x) (7)

implies that

d(un+1,Tx) ≤ H(Tun,Tx)

≤ θmax
{

d(un, x), d(un,Tun), d(x,Tx),
d(un,Tx) + d(x,Tun)

2

}
+

L min{d(un,Tun), d(x,Tun)}. (8)

That is,

d(un+1,Tx) ≤ θmax
{

d(un, x), d(un,un+1), d(x,Tx),
d(un,Tx) + d(x,un+1)

2

}
+

L min{d(un,un+1), d(x,un+1)}.

On taking limit as n→∞, we have

d(z,Tx) ≤ θmax
{

d(z, x), d(x,Tx),
d(z,Tx) + d(x, z)

2

}
≤ θmax{d(z, x), d(x,Tx)}.

Consequently,

d(z,Tx) ≤ θmax{d(z, x), d(x,Tx)}, (9)

holds for all x , z. Now we prove that z ∈ Tz. For this, we consider the following cases:
(i) Let 0 ≤ θ < 1/2.
Assume on contrary that z < Tz. We choose an element a ∈ Tz such that

2θd(a, z) < d(z,Tz).

Clearly a , z. From (5) with x = a, we have

d(z,Ta) ≤ θmax{d(z, a), d(a,Ta)}. (10)

Now η(θ)d(z,Tz) ≤ d(z,Tz) ≤ d(z, a) implies that

d(a,Ta) ≤ H(Tz,Ta) ≤ θmax
{

d(z, a), d(z,Tz), d(a,Ta),
d(z,Ta) + d(a,Tz)

2

}
+

L min{d(z,Tz), d(a,Tz)}

≤ θmax
{

d(z, a), d(a,Ta),
d(z,Ta) + d(a, a)

2

}
≤ θmax

{
d(z, a), d(a,Ta),

d(z, a) + d(a,Ta)
2

}
.

That is,

d(a,Ta) ≤ θmax {d(z, a), d(a,Ta)} . (11)
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Hence

d(a,Ta) ≤ θd(z, a) < d(z, a).

From (10), we have

d(z,Ta) ≤ θd(z, a).

Hence

d(z,Tz) ≤ d(z,Ta) + H(Ta,Tz)
≤ d(z,Ta) + θmax {d(z, a), d(a,Ta)}
≤ 2θd(z, a) < d(z,Tz),

gives a contradiction. Thus z ∈ Tz.

(ii) Let
1
2
≤ θ < 1. We now show that

H(Tx,Tz) ≤ θmax
{

d(x, z), d(x,Tx), d(z,Tz),
d(x,Tz) + d(z,Tx)

2

}
+

L min{d(x,Tx), d(z,Tx)}, (12)

holds for all x ∈ X with x , z. For each positive integer n ∈N, there exists yn ∈ Tx such that

d(z, yn) ≤ d(z,Tx) +
1
n

d(x, z).

In this case we have

d(x,Tx) ≤ d(x, yn)
≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z,Tx) +
1
n

d(x, z).

Hence from (5) we get

d(x,Tx) ≤ d(x, z) + θmax{d(z, x), d(x,Tx)} +
1
n

d(x, z). (13)

If

max{d(z, x), d(x,Tx)} = d(x, z),

then by (13), we have

d(x,Tx) ≤ d(x, z) + θd(z, x) +
1
n

d(x, z)

= [(1 + θ) +
1
n

]d(x, z)

which implies that[ 1
1 + θ

]
d(x,Tx) ≤

[
1 +

1
(1 + θ)n

]
d(x, z).

As η(θ) = 1 − θ, it follows that

η(θ)d(x,Tx) = (1 − θ)d(x,Tx)

≤

( 1
1 + θ

)
d(x,Tx) ≤

[
1 +

1
(1 + θ)n

]
d(x, z).
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On taking limit as n→∞, we obtain that

η(θ)d(x,Tx) ≤ d(x, z).

If

d(x, z) < d(x,Tx),

then by (2) we have

d(x,Tx) ≤ d(x, z) + θd(x,Tx) +
1
n

d(x, z),

and hence

(1 − θ)d(x,Tx) ≤ (1 +
1
n

)d(x, z).

On taking limit as n→∞, we have

(1 − θ)d(x,Tx) ≤ d(x, z).

That is,

η(θ)d(x,Tx) ≤ d(x, z),

and hence the claim follows.
Since un+1 , un for each n ∈ N, we have un+1 , z or un , z, and the set I = {n : un , z} is infinite. From (12)
with x = un, n ∈ I, we have

d(un+1,Tz) ≤ H(Tun,Tz)

≤ θmax
{

d(un, z), d(un,Tun), d(z,Tz),
d(un,Tz) + d(z,Tun)

2

}
+

L min{d(un,Tun), d(z,Tun)}

≤ θmax
{

d(un, z), d(un,un+1), d(z,Tz),
d(un,Tz) + d(z,un+1)

2

}
+

L min{d(un,un+1), d(z,un+1)}.

On taking limit as n→∞, we obtain that

d(z,Tz) ≤ θd(z,Tz)

which implies that d(z,Tz) = 0 and hence z ∈ Tz.

Example 2.2. Let X = {α, β, γ, δ, ζ} and d : X × X→ R+
∪ {0} be the metric defined by

d(α, β) = d(α, γ) = 5,
d(β, ζ) = d(γ, δ) = d(γ, ζ) = d(β, γ) = 10,
d(α, δ) = d(α, ζ) = 12,
d(β, δ) = 8,
d(δ, ζ) = 2,
d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈ X.

Define the mapping T : X −→ CL(X) by

Tx =


{α} if x ∈ {α, β, γ}
{α, β} if x = δ
{γ} if x = ζ.
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Note that T is Suzuki-type generalized multivalued (θ,L)−almost contraction with θ = 3
4 and L = 2. In

particular,

η(θ)d(δ,Tδ) = 2 ≤ d(δ, ζ) implies that

H(Tδ,Tζ) = H({α, β}, γ) = 10 ≤
35
2

= θd(δ, ζ) + L min{d(δ, β), d(ζ, β)}, and

H(Tζ,Tδ) = H(γ, {α, β}) = 10 ≤
43
2

= θd(ζ, δ) + L min{d(ζ, γ), d(δ, γ)}.

Moreover, x = α is a fixed point of T in X. On the other hand, if we take x = δ and y = ζ, then

M(δ, ζ) = max
{

d(δ, ζ), d(δ,Tδ), d(ζ,Tζ),
d(δ,Tζ) + d(ζ,Tδ)

2

}
,

= max
{

d(δ, ζ), d(δ, {α, β}), d(ζ, γ),
d(δ, γ) + d(ζ, {α, β})

2

}
,

= max {2, 8, 10, 10} = 10.

Note that

H(Tδ,Tζ) = 10 >
15
2

= θM(δ, ζ).

Hence Theorem 1.2 and Theorem 3 in [11] are not applicable in this case.

Corollary 2.3. Let (X, d) be a complete metric space and T : X → CL(X). If there exist constants θ ∈ [0, 1) and
L ≥ 0 such that for any x, y ∈ X with x , y

η(θ)d(x,Tx) ≤ d(x, y)

implies that

H(Tx,Ty) ≤ θmax{d(x, y), d(x,Tx), d(y,Ty)} + LN(x, y).

Then F(T) is nonempty.

Corollary 2.4. Let (X, d) be a complete metric space and T : X→ CL(X). If there exist positive constants α, β, γwith
θ = α + β + γ < 1 and L ≥ 0 such that for any x, y ∈ X with x , y,

η(θ)d(x,Tx) ≤ d(x, y)

implies that

H(Tx,Ty) ≤ αd(x, y) + βd(x,Tx) + γd(y,Ty) + LN(x, y).

Then there exists z ∈ X such that z ∈ Tz.

Corollary 2.5. Let (X, d) be a complete metric space and f : X → X. If there exists 0 ≤ θ < 1 and L ≥ 0 such that
for any x, y ∈ X with x , y

η(θ)d(x, f x) ≤ d(x, y) implies that d( f x, f y) ≤ θM f (x, y) + LN f (x, y).

Then f has a unique fixed point.

Proof. The existence of the fixed point of f follows from Theorem 2.1. For uniqueness, assume that there
exist z1, z2 ∈ X with z1 , z2 such that z1 = f z1 and z2 = f z2. Then

η(θ)d(z1, f z1) ≤ d(z1, f z1) = d(z1, z1) = 0 ≤ d(z1, z2)
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implies that

d(z1, z2) = d( f z1, f z2)

≤ θmax
{

d(z1, z2), d(z1, f z1), d(z2, f z2),
d(z2, f z1) + d(z1, f z2)

2

}
+

L min{d(z1, f z1), d(z2, f z1)}
≤ θmax{d(z1, z2), d(z1, z1), d(z2, z2)} + L min{d(z1, z1), d(z2, z1)}
≤ θd(z1, z2)

which is contradiction to our supposition that z1 , z2. Hence the result.

Example 2.6. Let X and the metric d : X × X → R+
∪ {0} be as given in Example 2.2. Define the mapping

f : X −→ X by f (α) = f (β) = f (γ) = α, f (δ) = β and f (ζ) = γ. Note that that for any x, y ∈ X with x , y

η(θ)d(x, f x) ≤ d(x, y) implies that

d( f x, f y) ≤ θM f (x, y) + LN f (x, y)

where θ = 3
4 and L = 2. Thus all the conditions of Corollary 2.5 are satisfied. In particular,

η(θ)d(δ, fδ) = 2 ≤ d(δ, ζ) implies that

H( fδ, fζ) = d(β, γ) = 10 ≤
35
2

= θd(δ, ζ) + L min{d(δ, β), d(ζ, β)}, and

H( fζ, fδ) = d(γ, β) = 10 ≤
43
2

= θd(ζ, δ) + L min{d(ζ, γ), d(δ, γ)}.

Moreover x = α is a unique fixed point of f . On the other hand, if we take x = δ and y = ζ, then

M f (δ, ζ) = max
{

d(δ, ζ), d(δ, fδ), d(ζ, fζ),
d(δ, fζ) + d(ζ, fδ)

2

}
,

= max
{

d(δ, ζ), d(δ, β), d(ζ, γ),
d(δ, γ) + d(ζ, β)

2

}
,

= max {2, 8, 10, 10} = 10,

and

d( fδ, fζ) = d(β, γ) = 10 >
15
2

= θM f (δ, ζ).

Thus, Theorem 3 in [11] is not applicable in this case.

We now state the following Lemma in [14] which is crucial to prove a coincidence point result for a
hybrid pair ( f ,T).

Lemma 2.7. ([14]) Let X be a nonempty set and 1 : X → X. Then there exists a subset E ⊆ X such that
1(E) = 1(X) and 1 : E→ X is one-to-one.

Theorem 2.8. Let (X, d) be a metric space, ( f ,T) a hybrid pair with T(X) ⊆ f (X). If T is a Suzuki-type generalized
multivalued ( f , θ,L)−almost contraction and f (X) is a complete subspace of X. Then T and f have a coincidence
point. Also F( f ,T) , φ if any of the following conditions holds:

a T and f are w−compatible, lim
n→∞

f nx = u for some x ∈ C(T, f ), u ∈ X and f is continuous at u.

b f is T−weakly commuting for some x ∈ C(T, f ) and f 2x = f x.

c f is continuous at x for some x ∈ C(T, f ) and for some u ∈ X, lim
n→∞

f nu = x.
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Proof. By Lemma 2.7, there is a subset of E of X such that f : X→ X is one-to-one and f (E) = f (X). As f (X)
is complete, f (E) is complete. Define the mappingA : f (E)→ CB(X) by

A( f x) = T(x), for all f x ∈ f (E). (14)

Since f is one-to-one on E, soA is well defined. Now

η(θ)d( f x,A( f x)) = η(θ)d( f x,Tx) ≤ d( f x, f y)

implies that

H(A f x,A f y) = H(Tx,Ty) ≤ θM f (x, y) + LN f (x, y)

= θmax
{

d( f x, f y), d( f x,Tx), d( f y,Ty),
d( f x,Ty) + d( f y,Tx)

2

}
+

L min{d( f x,Tx), d( f y,Tx)}

= θmax
{

d( f x, f y), d( f x,A f x), d( f y,A f y),
d( f x,A f y) + d( f y,A f x)

2

}
+

L min{d( f x,A f x), d( f y,A f x)}.

Let f x = x∗ and f y = y∗, then we obtain that

η(θ)d(x∗,Ax∗) ≤ d(x∗, y∗)

and hence

H(Ax∗,Ay∗) ≤ θmax
{

d(x∗, y∗), d(x∗,Ax∗), d(y∗,Ay∗),
d(x∗,Ay∗) + d(y∗,Ax∗)

2

}
+

L min{d(x∗,Ax∗), d(y∗,Ax∗)}
= θM(x∗, y∗) + LN(x∗, y∗).

Thus all the conditions of Theorem 2.1 are satisfied and there exists u ∈ f (E) such that u ∈ Au. Now, we
prove that T and f have a coincidence point. As T(X) ⊆ f (X), there exist u1 ∈ X such that f u1 = u. Thus

f u1 ∈ A f u1 = Tu1.

Hence C(T, f ) is nonempty. Now suppose that condition (a) holds. That is, for some x ∈ C(T, f ), we have
lim
n→∞

f nx = u where u ∈ X and f is continuous at u. So u is a fixed point of f . As T and f are w−compatible,

f nx ∈ C(T, f ) for all n ≥ 1. That is, for all n ≥ 1, f nx ∈ T( f n−1x). By (3), we obtain that

η(θ)d( f nx,T f n−1x) ≤ d( f nx,T f n−1x) = 0
≤ d( f f n−1x, f u)

which implies that

d( f u,Tu) ≤ d( f u, f nx) + d( f nx,Tu) ≤ d( f u, f nx) + H(T( f n−1x),Tu)
≤ d( f u, f nx) + θM( f f n−1x, f u) + LN( f f n−1x, f u)

≤ d( f u, f nx) + θmax
{

d( f f n−1x, f u), d( f f n−1x,T f n−1x), d( f u,Tu),
d( f f n−1x,Tu) + d( f u,T f n−1x)

2

}
+

L min{d( f f n−1x,T f n−1x), d( f u,T f n−1x)}

≤ d( f u, f nx) + θmax
{

d( f nx, f u), d( f nx, f nx), d( f u,Tu),
d( f nx,Tu) + d( f u, f nx)

2

}
+

L min{d( f nx, f nx), d( f u, f nx)}.
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On taking limit n→∞we have

d( f u,Tu) ≤ θd( f u,Tu).

Since θ < 1, d( f u,Tu) = 0 and f u ∈ Tu. Hence u = f u ∈ Tu. Now suppose that (b) hold. That is, for some
x ∈ C(T, f ) and f is T−weakly commuting and f 2x = f x, then

f x = f 2x ∈ T( f x).

Hence, f x ∈ F( f ,T). Now suppose that condition (c) holds true, that is for some x ∈ C(T, f ) and for some
u ∈ X, lim

n→∞
f nu = x. Since f is continuous at x, we get

x = f x ∈ T(x).

Example 2.9. Let X = [1, 4] be equipped with a usual metric. Define T : X → CL(X) and f : X → X by

T(x) = [1, 2] and f (x) = 4−
3
4

x for all x ∈ X. Clearly all the conditions in Theorem 2.8 are satisfied. Note that

C( f ,T) =
[8
3
, 4

]
.

Note that F( f ,T) is empty in this case.

Example 2.10. Let X = [0, 1] with usual metric d(x, y) =
∣∣∣x − y

∣∣∣ . Define T : X→ CL(X) and f : X→ X by

Tx =
[
0,

sin x
2

]
and f x =

2
3

x

for all x ∈ X. If sin x = sin y, then H(Tx,Ty) = 0. If sin x , sin y, then

H(Tx,Ty) ≤
3
4

d( f x, f y)

≤ θM f (x, y) + LN f (x, y)

for all x, y in X with θ = 3
4 . Thus all the conditions of Theorem 2.8 are satisfied. Moreover, 0 ∈ C(T, f ).

Corollary 2.11. Let (X, d) be a complete metric space. If ( f ,T) is a hybrid pair of mappings such that for any x, y ∈ X,

η(θ)d( f x,Tx) ≤ d( f x, f y)

implies that

H(Tx,Ty) ≤ θmax{d( f x, f y), d( f x,Tx), d( f y,Ty)} + LN f (x, y).

Then C( f ,T) , φ. Moreover F( f ,T) , φ if any one of given conditions holds:

a T and f are w−compatible, lim
n→∞

f nx = u for some x ∈ C(T, f ), u ∈ X, and f is continuous at u;

b f is T−weakly commuting for some x ∈ C(T, f ) and f x is fixed point of f , that is f 2x = f x;

c f is continuous at x for some x ∈ C(T, f ) and for some u ∈ X, lim
n→∞

f nu = x.
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Corollary 2.12. Let (X, d) be a complete metric space and and ( f ,T) a hybrid pair of mappings. If there exist positive
constants α, β, γ with θ = α + β + γ < 1 and L ≥ 0 such that for any x, y ∈ X with x , y,

η(θ)d( f x,Tx) 6 d( f x, f y)

implies

H(Tx,Ty) ≤ αd( f x, f y) + βd( f x,Tx) + γd( f y,Ty) + LN f (x, y).

Then C( f ,T) , φ. Moreover F( f ,T) , φ if any of the following conditions holds:

a T and f are w−compatible, lim
n→∞

f nx = u for some x ∈ C(T, f ), u ∈ X, and f is continuous at u.

b f is T−weakly commuting for some x ∈ C(T, f ) and f x is fixed point of f , that is f 2x = f x.

c f is continuous at x for some x ∈ C(T, f ) and for some u ∈ X, lim
n→∞

f nu = x.

For a self mapping, Theorem 2.8 becomes:

Corollary 2.13. Let (X, d) be a metric space and f , T : X → X with T(X) ⊆ f (X). Suppose that f (X) is a complete
subspace of X and for any x, y ∈ X, we have

η(θ)d(x,Tx) ≤ d( f x, f y) =⇒

d(Tx,Ty) ≤ θmax
{

d( f x, f y), d( f x,Tx), d( f y,Ty),
d( f x,Ty) + d( f y,Tx)

2

}
+L min{d( f x,Tx), d( f y,Tx)}

Then C( f ,T) is nonempty. Further F( f ,T) is nonempty and singleton provided that f and T are commuting at
x ∈ C( f ,T).

Proof. Using theorem 2.8 it follows that C( f ,T) , φ. Let x ∈ C( f ,T), that is f x = Tx. As f and T are
commuting at x, so f 2x = f Tx = T f x. We now show that f x = f 2x. If not, then we have

η(θ)( f x,T f x) ≤ d( f x,T f x) ≤ d( f x, f 2x)

which implies that

d( f x, f 2x) ≤ d(Tx,T f x) ≤ θM f (x, f x) + LN f (x, f x)

≤ θmax
{

d( f x, f f x), d( f x,Tx), d( f f x,T f x),
d( f x,T f x) + d( f f x,Tx)

2

}
+

L min{d( f x,Tx), d( f f x,Tx)}

≤ θmax
{

d( f x, f f x), d( f x, f x), d( f f x, f f x),
d( f x, f f x) + d( f f x, f x)

2

}
+

L min{d( f x, f x), d( f f x, f x)}
≤ θd( f x, f f x).

Hence (1−θ)d( f x, f f x) = 0 gives a contradiction. Consequently, F( f ,T) , φ. For uniqueness of the common
fixed point of f and T, Suppose that there exists z1, z2 in F( f ,T) such that z1 , z2. Clearly, η(θ)d(z1,Tz1) ≤
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d( f z1, f z2). Hence

d( f z1, f z2) = d(Tz1,Tz2) ≤ θM f (z1, z2) + LN f (z1, z2)

≤ θmax
{

d( f z1, f z2), d( f z1,Tz1), d( f z2,Tz2),
d( f z1,Tz2) + d( f z2,Tz1)

2

}
+

L min{d( f z1,Tz1), d( f z2,Tz1)}

≤ θmax
{

d( f z1, f z2), d( f z1, f z1), d( f z2, f z2),
d( f z1, f z2) + d( f z2, f z1)

2

}
+

L min{d( f z1, f z1), d( f z2, f z1)}
≤ θd( f z1, f z2),

a contradiction and the result follows.

3. Application in Dynamic Programming

Suppose that E and F are Banach spaces and W ⊆ E and D ⊆ F are state and decision spaces, respectively.
A state space is the set of all feasible state and a decision space is the resultant network formed by the nodes
of feasible states and all the feasible decisions. The main objective is to find the optimal decision in the
given state space using dynamic programming related with the problem of solving nonlinear-functional
equations

p(x) = sup
y∈D
{1(x, y) + Φ(x, y, p(τ(x, y)))}, for x ∈W,

q(x) = sup
y∈D
{h(x, y) + Ψ(x, y, q(τ(x, y)))}, for x ∈W,

where
τ : W ×D→W, 1, h : W ×D→ R, and Φ,Ψ : W ×D ×R→ R.

(15)

For detailed discussion on this topic, we refer to [4–6, 10, 23, 26].
In this section, we study the existence and uniqueness of the bounded solution of the above equations .

Let B(W) be the set of all bounded real-valued functions on W. For an arbitrary h ∈ B(W), define a norm as
on W as ‖h‖ = sup

x∈W
|h(x)|. The space of all bounded real functional (B(W), ‖·‖) endowed with the metric d

induced by the supremum norm is defined by

d(h, k) = sup
x∈W
|h(x) − k(x)| (16)

for all h, k ∈ B(W). Note that B(W) is a complete space. Suppose that the following conditions hold:

(C1): Φ,Ψ, 1 and h are bounded.

(C2): There exists constants θ ∈ [0, 1) and L ≥ 0 such that for every (x, y) ∈W ×D, h, k ∈ B(W) and a ∈W,

η(θ)d(Sh(a),Th(a)) ≤ d(Sh(a),Sk(a))

implies that∣∣∣Φ(x, y, h(a)) −Φ(x, y, k(a))
∣∣∣ ≤ θMS(h(a), k(a)) + LNS(h(a), k(a))

where MS(h(a), k(a)), NS(h(a), k(a)) and η(θ) are as given in section (1). Now for x ∈ W, h ∈ B(W),
mappings T and S are defined as

Th(x) = sup
y∈D
{1(x, y) + Φ(x, y, h(τ(x, y)))},

Sh(x) = sup
y∈D
{h(x, y) + Ψ(x, y, h(τ(x, y)))}.
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C3: For any h ∈ B(W), there exists k ∈ B(W) such that for x ∈W, we have

Th(x) = Sk(x).

C4: There exists h ∈ B(W) such that

Th(x) = Sh(x) implies that STh(x) = TSh(x)

Theorem 3.1. Suppose that (C1)-(C4) are satisfied, then the system of equation (15) has a unique, bounded and
common solution in B(W).

Proof. Note that T is selfmap on B(W) Let h1, h2 ∈ B(W). Then for every real number α and x ∈W, there exist
y1, y2 ∈ D such that

T(h1(a)) < 1(x, y1) + Φ(x, y1, h1(τ1)) + α (17)
T(h2(a)) < 1(x, y2) + Φ(x, y2, h2(τ2)) + α, (18)

where τ1 = τ(x, y1) and τ2 = τ(x, y2).
Thus

T(h1(a)) ≥ 1(x, y2) + Φ(x, y2, h1(τ1)), (19)
T(h2(a)) ≥ 1(x, y1) + Φ(x, y1, h2(τ2)). (20)

From (17) and (20), we obtain that

T(h1(a)) − T(h2(a)) < Φ(x, y1, h1(τ1)) −Φ(x, y1, h2(τ2)) + α

≤

∣∣∣Φ(x, y1, h1(τ1)) −Φ(x, y1, h2(τ2))
∣∣∣ + α

≤ θMS(h1(a), h2(a)) + LNS(h1(a), h2(a)) + α. (21)

Similarly, (18) and (19) imply that

T(h2(a)) − T(h1(a)) < Φ(x, y2, h1(τ1)) −Φ(x, y1, h2(τ1)) + α

≤

∣∣∣Φ(x, y2, h1(τ1)) −Φ(x, y1, h2(τ1))
∣∣∣ + α

≤ θMS(h1(a), h2(a)) + LNS(h1(a), h2(a)) + α. (22)

Hence from (21) and (22), we have

|T(h1(a)) − T(h2(a))| ≤ θMS(h1(a), h2(a)) + LNS(h1(a), h2(a)) + α. (23)

Since (23) holds true for any x ∈W and for an arbitrary x > 0, therefore

η(θ)d(S(h1),T(h1)) ≤ d(S(h1),S(h2))

implies that

d(T(h1),T(h2)) ≤ θMS(h1(a), h2(a)) + LNS(h1(a), h2(a)).

Thus all the conditions of Corollary 2.13 hold for T and S, and hence the system of equation (15) has a
unique, common and bounded solution.
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4. Application in Integral Equations

As an application of Corollary 2.13, the solution of the system of Volterra type integral equations will
be discussed in this section.

Such system can be represented as:

u(t) =

t∫
0

Φ(t, s,u(s))ds + 1(t)

w(t) =

t∫
0

Ψ(t, s,w(s))ds + f (t)

for t ∈ [0, a], where a > 0. Let C([0; a];R) be the space of all continuous functions defined on [0, a]. For
u ∈ C([0; a];R), define supremum norm as, ‖u‖τ = supt∈[0,a]{u(t)e−τt

}where τ > 0. Let C([0; a];R) be endowed
with the metric given by

dτ(u, v) = sup
t∈([0,a])

‖u(t) − v(t)‖τ

for all u, v ∈ C([0; a];R). Note that C([0; a];R; ‖·‖τ) is a Banach space.
For further details in this direction, we refer to [4].

Theorem 4.1. Assume the following conditions are satisfied:

(i) Φ ×Ψ : [0, a] × [0, a] ×R→ R and 1, f : [0, a]→ R are continuous;

Define

Tu(t) =

t∫
0

Φ(t, s,u(s))ds + 1(t) (24)

Su(t) =

t∫
0

Ψ(t, s,u(s))ds + f (t). (25)

Suppose there exists a τ ≥ 1 such that

|Φ(t, s,u) −Φ(t, s, v)| 6 τ[θMS(u, v) + LNS(u, v)]

for all t, s ∈ [0, a] and u, v ∈ C([0; a];R)

(ii) There exists u, v ∈ C([0; a];R) such that Tu(t) = Su(t) implies TSu(t) = STu(t). Then the system of integral
equations given in (24) and (25) has a unique common solution.

Proof. By assumption (ii), we have

|Tu(t) − Tv(t)| =

∫ t

0
|K1(t, s,u(s)) − K1(t, s, v(s))| ds

≤

∫ t

0
τ(θMS(u, v) + LNS(u, v))eτse−τsds ≤

∫ t

0
τ[(θMS(u, v) + LNS(u, v))e−τs]eτsds

≤

∫ t

0
τ ‖θMS(u, v) + LNS(u, v)‖τ eτsds ≤ τ ‖θMS(u, v) + LNS(u, v)‖τ

∫ t

0
eτsds

≤ τ ‖θMS(u, v) + LNS(u, v)‖τ
1
τ

eτt
≤ ‖θMS(u, v) + LNS(u, v)‖τ eτt,
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which implies that |Tu(t) − Tv(t)| e−τt 6 ‖θMS(u, v) + LNS(u, v)‖τ . That is

‖Tu(t) − Tv(t)‖τ 6 ‖θMS(u, v) + LNS(u, v)‖τ .

So all the conditions of Corollary (2.13) are satisfied. Hence the given system of integral equations has a
unique common solution.

5. Application in Data Dependence

Following are some definitions needed in the sequel (see also, [21, 24, 25]).

Definition 5.1. A multivalued mapping T : X→ P(X) is called multivalued weakly Picard (briefly MWP)
operator if and only if for every x ∈ X and for every y ∈ T(x), there exists a sequence {xn} such that

(d-1) x0 = x and x1 = y,

(d-2) xn+1 ∈ Txn ∀n ∈N,

(d-3) the sequence {xn} converges to the fixed point of T.

A sequence defined above is known as a sequence of successive approximations of T starting from (x, y).
Let G(T) = {(x, y) : y ∈ Tx} be the graph of MWP−operator T. Define T∞ from G(T) into P(Fix(T)) as

follows:

T∞(x, y) = {z ∈ F(T) : there exists a sequence of successive approximations
of T starting from (x, y) that converges to z}.

Definition 5.2. ([25]) Let c > 0. A MWP−operator T is known as c−multivalued weakly Picard (briefly
c−MWP) operator if there exists a selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ cd(x, y) (26)

for all (x, y) ∈ G(T).

In the following, we present a data dependence result for Suzuki-type generalized multivalued (θ,L)−almost
contraction mappings.

Theorem 5.3. Let (X, d) be a complete metric space and Ti : X → CL(X) Suzuki-type generalized multivalued
(θi,Li)−almost contractions for each i ∈ {1, 2}. If there exists λ > 0 such that H(T1x,T2x) ≤ λ, for all x ∈ X. Then:

(a) F(Ti) ∈ CB(X), i ∈ {1, 2};

(b) Each Ti is an MWP operator and satisfies

H(Fix(T1),Fix(T2)) ≤
λ

1 −max{r1, r2}
. (27)

Proof. From theorem 2.1, F(Ti) is nonempty for each i ∈ {1, 2}. Choose a convergent sequence xn ∈ F(T1) be
such that xn → x as n→∞, that is,

lim
n→∞

d(xn, x) = 0. (28)

Note that

η(θ)(d(xn,T1xn)) = 0 ≤ d(xn, x).
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Thus

d(x,T1x) ≤ d(x, xn) + d(xn,T1x) ≤ d(x, xn) + H(T1xn,T1x)

≤ d(x, xn) + θ1 max
{

d(x, xn), d(x,T1x), d(T1xn, xn),
d(x,T1xn) + d(xn,T1x)

2

}
+L1 min{d(xn,T1xn), d(x,T1xn)}

≤ d(x, xn) + θ1d(x, xn).

On taking limit as n → ∞, we obtain that d(x,T1x) = 0, that is, x ∈ T1x. Hence F(T1) is closed. Similarly,
we can show that F(T2) is closed. Following arguments similar to those in proof of Theorem 2.1, each Ti

is an MWP operator. Now we prove that H(F(T1),F(T2)) ≤
λ

1 −max{r1, r2}
. Let a > 1. Then for an arbitrary

x0 ∈ F(T1), there exists x1 ∈ T2x0 such that

d(x0, x1) ≤ aH(T1x0,T2x0).

As x1 ∈ T2x0, there exists x2 ∈ T2x1 such that

η(θ2)(d(x0,T2x0)) ≤ η(θ2)d(x0, x1) ≤ d(x0, x1),

which implies that

d(x1, x2) ≤ aH(T2x0,T2x1)

≤ aθ2 max
{

d(x0, x1), d(x0,T2x0), d(x1,T2x1),
d(x0,T2x1) + d(x1,T2x0)

2

}
+aL min{d(x0,T2x0), d(x1,T2x0)}

≤ aθ2d(x0, x1).

Continuing this way, we can obtain a sequence {xn} in X such that xn+1 ∈ T2xn and

d(xn, xn+1) ≤ aθ2d(xn, xn+1)
≤ ... ≤ (aθ2)nd(x0, x1).

Thus

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+p−1, xn+p)

≤ (ar2)nd(x0, x1) + ... + (ar2)n+p−1d(x0, x1)

≤
(aθ2)n

1 − aθ2
d(x0, x1). (29)

Choose 1 < a < min{
1
θ1
,

1
θ2
}. Hence {xn} is a Cauchy sequence in X. Consequently, there exists z in X such

that xn → z as n → ∞. Following arguments similar to those given in proof of Theorem 2.1, it follows that
z ∈ T2z. By (29), we obtain that

d(xn, z) ≤
(aθ2)n

1 − aθ2
d(x0, x1)

Thus, in particular

d(x0, z) ≤
1

1 − aθ2
d(x0, x1) ≤

aλ
1 − aθ2

. (30)

Similarly, we conclude that for each z0 ∈ F(T2), there is an x ∈ F(T1) such that

d(z0, x) ≤
1

1 − aθ1
d(z0, z1) ≤

aλ
1 − aθ1

. (31)
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By (30) and (31), we have

H(F(T1),F(T2)) ≤
λ

1 −max{θ1, θ2}
.

6. Application in Homotopy

We first present a local fixed point theorem for Suzuki-type generalized multivalued (θ,L)−almost
contractions.

Theorem 6.1. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Suppose that T : B(x0, r) → CL(X) be
Suzuki-type generalized multivalued (θ,L)−almost contraction and d(x0,Tx0) < (1 − θ)r. Then F(T) , ∅.

Proof. Choose 0 < s < r such that B̃(x0, s) ⊂ B(x0, r) and d(x0,Tx0) < (1 − θ)s. Thus (1 − θ)s − d(x0,Tx0) > 0.
For ε = (1 − θ)s − d(x0,Tx0) > 0, there exists x1 ∈ Tx0 such that d(x0, x1) < d(x0,Tx0) + ε. Hence

d(x0, x1) < (1 − θ)s.

Now for h = 1
√
θ
> 1 and x1 ∈ Tx0, there exists x2 ∈ Tx1 such that

d(x1, x2) ≤ hH(Tx0,Tx1)

Since η(θ)d(x0,Tx0) ≤ η(θ)d(x0, x1) ≤ d(x0, x1), therefore we obtain

d(x1, x2) ≤ hH(Tx0,Tx1) =
1
√
θ

H(Tx0,Tx1) ≤
√

θM(x0, x1) +
L
√
θ

N(x0, x1)

≤

√

θmax
{

d(x0, x1), d(x0,Tx0), d(x1,Tx1),
d(x0,Tx1) + d(Tx0, x1)

2

}
+

L
√
θ

min {d(x0,Tx0), d(x1,Tx0)}

≤

√

θmax
{

d(x0, x1), d(x0, x1), d(x1, x2),
d(x0, x1) + d(x1, x2)

2

}
+

L
√
θ

min {d(x0, x1), d(x1, x1)}

≤

√

θmax
{

d(x0, x1), d(x0, x1), d(x1, x2),
d(x0, x1) + d(x1, x2)

2

}
≤

√

θd(x0, x1) <
√

θ(1 − θ)s.

Note that x2 ∈ B(x0, s). Indeed, d(x0, x2) ≤ d(x0, x1) + d(x1, x2) < (1 − θ)s +
√
θ(1 − θ)s = (1 − θ)(1 +

√
θ)s < s.

Inductively, we obtain a sequence {xn}which satisfies
i) xn ∈ B(x0, s); for each n ∈N,
ii) xn+1 ∈ Txn, for all n ∈N,
iii) d(xn, xn+1) ≤ (

√
θ)n(1 − θ)s for each n ∈N.

From (iii) the sequence {xn} is Cauchy which converges to some x ∈ B(x0, r). Following arguments similar
to those in the proof of Theorem 2.1, we have x ∈ F(T).

Now we present a homotopy result for “Suzuki-type generalized multivalued (θ,L)−almost contrac-
tions”.

Theorem 6.2. Let V an open subset of a complete metric space (X, d). If G : V× [0, 1]→ P(X) satisfies the following
conditions
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p-1 x < G(x, t), for each x ∈ ∂V and each t ∈ [0, 1];

p-2 G(., t) : V → P(X) is a “Suzuki-type generalized multivalued (θ,L)−almost contraction for each t ∈ [0, 1];

p-3 there exists a increasing and continuous function ψ : [0, 1]→ R such that

H(G(x, t),G(x, s)) ≤
∣∣∣ψ(t) − ψ(s)

∣∣∣ for all t, s ∈ [0, 1] and each x ∈ V;

p-4 G : V × [0, 1]→ P(X) is closed.

Then G(., 0) has a fixed point if and only if G(., 1) has a fixed point.

Proof. If z is a fixed point of G(., 0), then ( p-1 ) implies that z ∈ V. Define

Ω = {(t, x) ∈ [0, 1] × V | x ∈ G(x, t)}.

Now (0, z) ∈ Ω implies Ω , ∅. We define a partial order on Ω as follows:

(t, x) ≤ (s, y) if and only if t ≤ s and d(x, y) ≤
2

1 − θ
[
ψ(s) − ψ(t)

]
.

Let N be a totally ordered subset of Ω and t∗ := sup{t | (t, x) ∈ N}. Suppose that {(tn, xn)} is a sequence in N
such that (tn, xn) ≤ (tn+1, xn+1) and tn → t∗ as n→∞. Then

d(xm, xn) ≤
2

1 − θ
[ψ(tm) − ψ(tn)], for each m,n ∈N, m > n.

On taking limit as m,n→∞,we have d(xm, xn)→ 0. Thus {xn} is a Cauchy sequence and converges to some
x∗ in X. As G is closed and xn ∈ G(xn, tn), n ∈ N, so x∗ ∈ G(x∗, t∗). From condition ( p-1 ), we have x∗ ∈ V.
Hence (t∗, x∗) ∈ Ω. Since N is totally ordered, so (t, x) ≤ (t∗, x∗), for each (t, x) ∈ N. That is, (t∗, x∗) is an upper
bound of N. By Zorn’s Lemma, Ω has a maximal element (t0, x0) ∈ Ω.We now show that t0 = 1.Assume on
contrary that t0 < 1. Choose r = 2

1−θ [ψ(t) − ψ(t0)] > 0 with t ∈ (t0, 1] such that B(x0, r) ⊂ V. Note that

d(x0,G(x0, t)) ≤ d(x0,G(x0, t0)) + H(G(x0, t0),G(x0, t))

≤ [ψ(t) − ψ(t0)] =
(1 − θ)r

2
< (1 − θ)r.

Thus G(., t) : B(x0, r)→ CL(X) satisfies all the conditions of Theorem 6.1 for all t ∈ [0, 1]. Hence, there exists
x ∈ B(x0, r) such that x ∈ G(x, t) which implies that (t, x) ∈ Ω for all t ∈ [0, 1]. Now

d(x0, x) ≤ r =
2

1 − θ
[ψ(t) − ψ(t0)],

gives (t0, x0) < (t, x), a contradiction to the maximality of (t0, x0). Conversely suppose that G(., 1) has a fixed
point, then following the similar arguments to those given above, we show that G(., 0) has a fixed point.

7. Conclusion

In this article, we generalized already existing definitions in [9] and [15] by proposing the concept of
Suzuki-type generalized multivalued ( f , θ,L)− almost contractions. We then proved a fixed point result
which is a proper generalization of comparable results in 1.2 in [13]. We studied some applications of our
result in (a) dynamic programming, (b) solution of integral equations, (c) in data dependence problem and
in Homotopy.

Acknowledgement

The authors are thankful to reviewers for their useful suggestions and remarks that significantly con-
tributed to an improvement of the manuscript.



N. Saleem et al. / Filomat 33:2 (2019), 499–518 518

References

[1] M. Abbas, Coincidence points of multivalued f−almost nonexpansive mappings, Fixed Point Theory 13 (2012) 3–10.
[2] M. Abbas, L. Ćirić, B. Damjanović, M.A. Khan, Coupled coincidence and common fixed point theorems for hybrid pair of

mappings, Fixed Point Theory Appl. (2012), doi:10.1186/1687-1812-2012-4.
[3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922)
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