Filomat 33:2 (2019), 493–498 https://doi.org/10.2298/FIL1902493K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Variations on the Strongly Lacunary Quasi Cauchy Sequences

Huseyin Kaplan^a

^aOmer Halisdemir University, Department of Mathematics, Faculty of Science and Letters, Nigde, Turkey

Abstract. In this paper, we introduce concepts of a strongly lacunary *p*-quasi-Cauchy sequence and strongly lacunary *p*-ward continuity. We prove that a subset of \mathbb{R} is bounded if and only if it is strongly lacunary *p*-ward compact. It is obtained that any strongly lacunary *p*-ward continuous function on a subset *A* of \mathbb{R} is continuous in the ordinary sense. We also prove that the uniform limit of strongly lacunary *p*-ward continuous functions on a subset *A* of \mathbb{R} is strongly lacunary *p*-ward continuous.

Introduction

In this paper, \mathbb{N} , and \mathbb{R} will denote the set of positive integers, and the set of real numbers, respectively. p will always be a fixed element of \mathbb{N} . Using the idea of sequential continuity of a real function, many kinds of continuity have been introduced and investigated, we recall some of them in the following: ward continuity ([1, 5]), p-ward continuity ([10]), statistical ward continuity ([6]), slowly oscillating continuity ([3, 21]), quasi-slowly oscillating continuity ([14]), upward and downward statistical continuities ([11]), δ^2 lacunary statistical ward continuity ([22]), N_{θ} -ward continuity ([9, 13, 18]), which enabled some authors to obtain interesting results.

The notion of strongly lacunary convergence (or N_{θ} convergence) was introduced, and studied by Freedman, Sember, and M. Raphael in [16] in the sense that a sequence (α_k) of points in \mathbb{R} is strongly lacunary convergent or N_{θ} convergent to an $L \in \mathbb{R}$, which is denoted by $N_{\theta} - \lim \alpha_k = L$, if $\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |\alpha_k - L| = 0$, where $I_r = (k_{r-1}, k_r]$, and $k_0 \neq 0$, $h_r := k_r - k_{r-1} \to \infty$ when $r \to \infty$ and $\theta = (k_r)$ is an increasing sequence of positive integers. In the sequel, it is assumed that $\liminf_r \frac{k_r}{k_{r-1}} > 1$. The sums of the form $\sum_{k_{r-1}+1}^{k_r} |\alpha_k|$ frequently occur, and will often be written for convenience as $\sum_{k \in I_r} |\alpha_k|$.

1. Variations on Strongly Lacunary Ward Compactness

A sequence (α_n) is called quasi Cauchy if $\lim_{n\to\infty} \Delta \alpha_n = 0$, where $\Delta \alpha_n = \alpha_{n+1} - \alpha_n$ for each $n \in \mathbb{N}$ ([1, 5, 12, 20, 23]). The set of all bounded quasi-Cauchy sequences is a closed subspace of the space of all bounded sequences with respect to the norm defined for bounded sequences. A sequence (α_k) of points in \mathbb{R} is slowly oscillating if $\lim_{n\to 1^+} \overline{\lim_n \max_{n+1 \le k \le [\lambda n]} |\alpha_k - \alpha_n|} = 0$, where $[\lambda n]$ denotes the integer part of λn ([3]). A sequence (α_k) is quasi-slowly oscillating if $(\Delta \alpha_k)$ is slowly oscillating. A sequence (α_n) is called statistically convergent to a real number L if $\lim_{n\to\infty} \frac{1}{n} |\{k \le n : |\alpha_k - L| \ge \varepsilon\}| = 0$ for each $\varepsilon > 0$ ([17]).

Communicated by Ljubiša D.R. Kočinac

²⁰¹⁰ Mathematics Subject Classification. Primary 40A05; Secondaries 40A35, 26A15

Keywords. Sequences, series, summability, continuity

Received: 18 October 2017; Revised: 02 January 2018; Accepted: 11 January 2018

Email address: hkaplan@ohu.edu.tr (Huseyin Kaplan)

A sequence (α_n) is called strongly lacunary quasi Cauchy if $\lim_{r\to\infty} \frac{1}{h_r} \sum_{k\in I_r} |\Delta \alpha_k| = 0$ ([9]). Recently in [10] it was proved that a real valued function is uniformly continuous on a bounded subset of \mathbb{R} if it is *p*-ward continuous. Now we introduce the concept of a strongly lacunary *p*-quasi-Cauchy sequence.

Definition 1.1. A sequence (α_k) of points in \mathbb{R} is called strongly lacunary *p*-quasi-Cauchy if N_{θ} -lim_{$k\to\infty$} $\Delta_p \alpha_k = 0$, i.e. $\lim_{r\to\infty} \frac{1}{h_r} \sum_{k\in I_r} |\Delta_p \alpha_k| = 0$, where $\Delta_p \alpha_k = \alpha_{k+p} - \alpha_k$ for every $k \in \mathbb{N}$.

We denote the set of all strongly lacunary *p*-quasi-Cauchy sequences by $\Delta_p^{N_\theta}$ for each $p \in \mathbb{N}$. The sum of two strongly lacunary *p*-quasi-Cauchy sequences is strongly lacunary *p*-quasi-Cauchy, the product of a strongly lacunary *p*-quasi-Cauchy sequence with a constant is strongly lacunary *p*-quasi-Cauchy, so that the set of all strongly lacunary *p*-quasi-Cauchy sequences $\Delta_p^{N_\theta}$ is a vector subspace of the space of all sequences. We note that a sequence is strongly lacunary quasi-Cauchy when p = 1, i.e. strongly lacunary 1-quasi-Cauchy sequences. From the following inequality

$$|\alpha_{k+p} - \alpha_k| \le |\alpha_{k+p} - \alpha_{k+p-1}| + |\alpha_{k+p-1} - \alpha_{k+p-2}| + \dots + |\alpha_{k+2} - \alpha_{k+1}| + |\alpha_{k+1} - \alpha_k|$$

that any strongly lacunary quasi-Cauchy sequence is also strongly lacunary *p*-quasi-Cauchy, for any $p \in \mathbb{N}$, but the converse of this fact is not always true as it can be seen by considering the sequence (α_k) defined by (α_k) = (0, 1, 0, 1, ..., 0, 1, ...) is strongly lacunary 2-quasi Cauchy which is not strongly lacunary quasi Cauchy.

Definition 1.2. A subset *A* of \mathbb{R} is called strongly lacunary *p*-ward compact if any sequence of points in *A* has a strongly lacunary *p*-quasi-Cauchy subsequence.

After this definition, we have following remark:

Remark 1.3. Let *A* be a subset of \mathbb{R} . Then, *A* is strongly lacunary *p*-ward compact if and only if $-A := \{-a : a \in A\}$ is strongly lacunary *p*-ward compact.

We note that this definition of strongly lacunary *p*-ward compactness cannot be obtained by any summability matrix in the sense of [4].

Since any strongly lacunary quasi-Cauchy sequence is strongly lacunary *p*-quasi-Cauchy then, it can be said that any strongly lacunary ward compact subset of \mathbb{R} is strongly lacunary *p*-ward compact for any $p \in \mathbb{N}$. A finite subset of \mathbb{R} is strongly lacunary *p*-ward compact, the union of finite number of strongly lacunary *p*-ward compact subsets of \mathbb{R} is strongly lacunary *p*-ward compact, and the intersection of any number of strongly lacunary *p*-ward compact subsets of \mathbb{R} is strongly lacunary *p*-ward compact. Furthermore any subset of a strongly lacunary *p*-ward compact set of \mathbb{R} is strongly lacunary *p*-ward compact and any bounded subset of \mathbb{R} is strongly lacunary *p*-ward compact. From these observations the following result is obtained:

Theorem 1.4. A subset A of \mathbb{R} is bounded if and only if it is strongly lacunary p-ward compact.

Proof. Any bounded subset of \mathbb{R} is strongly lacunary *p*-ward compact, because of a sequence in a bounded set is bounded. Therefore, it has a convergent subsequence which is also strongly lacunary *p*-quasi Cauchy. To prove the converse (sufficiency part) suppose that *A* is an unbounded subset of real numbers. Especially assume that *A* is unbounded above. Then, it can be constructed a sequence $\alpha = (\alpha_n)$ which satisfies

(i) $\alpha = (\alpha_n)$ is strictly increasing,

(ii) For any $p \in \mathbb{N}$, $\alpha_{n+1} \ge p + \alpha_n$ holds for all $n \in \mathbb{N}$.

It is clear from (ii) that $\alpha_n \ge (n-1)p + \alpha_1$ holds for all $n \in \mathbb{N}$.

Therefore, for any $r \in \mathbb{N}$ we have

$$\sum_{k_{r-1}+1}^{k_r} |\Delta_p \alpha_j| = \sum_{k_{r-1}+1}^{k_r} |\alpha_{j+p} - \alpha_j| \ge p^2 (k_r - k_{r-1}).$$

So the following inequality

$$\frac{1}{h_r}\sum_{k_{r-1}+1}^{k_r} |\Delta_p \alpha_j| \ge p^2$$

holds and this gives that the sequence $\alpha = (\alpha_n)$ is not strongly lacunary *p*-quasi Cauchy. From the construction of the sequence $\alpha = (\alpha_n)$, it has no strongly lacunary *p*-quasi Cauchy subsequence.

Now assume that *A* is unbounded below. -A is unbounded above, and -A is not strongly lacunary *p*-ward compact by the above proved fact. Hence, from Remark 1.3 given above, *A* is strongly lacunary *p*-ward compact. \Box

It follows from Theorem 1.4 that strongly lacunary *p*-ward compactness of a subset of *A* of \mathbb{R} coincides with either of the following kinds of compactness: *p*-ward compactness ([10, Theorem 2.3]), statistical ward compactness ([6, Lemma 2]), strongly lacunary ward compactness ([9, Theorem 3.3]).

Corollary 1.5. *A subset of* \mathbb{R} *is strongly lacunary p ward compact if and only if:*

(*i*) *A* is strongly lacunary q ward compact for any $q \in \mathbb{N}$,

(ii) A is both statistically upward half compact and statistically downward half compact,

(iii) A is both lacunary statistically upward half compact and lacunary statistically downward half compact.

Proof. The proof of (ii), and (iii) follow from [11, Corollary 3.9], and [2, Theorem 1.3 and Theorem 1.9], respectively, whereas the proof of (i) follows from Theorem 1.4 straightforwardly.

2. Variations on Strongly Lacunary Ward Continuity

In this section, we investigate strongly lacunary *p*-ward continuity of functions. A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is continuous if and only if it preserves convergent sequences.

Definition 2.1. A function *f* is called strongly lacunary *p*-ward continuous on a subset *A* of \mathbb{R} if it preserves strongly lacunary *p*-quasi-Cauchy sequences, i.e. the sequence $(f(\alpha_n))$ is strongly lacunary *p*-quasi-Cauchy whenever (α_n) is a strongly lacunary *p*-quasi-Cauchy sequence of points in *A*.

We see that this definition of strongly lacunary *p*-ward continuity can not be obtained by any summability matrix *A* (see [15]).

We note that the sum of two strongly lacunary *p*-ward continuous functions is strongly lacunary *p*-ward continuous, and for any constant $c \in \mathbb{R}$, cf is strongly lacunary *p*-ward continuous whenever *f* is a strongly lacunary *p*-ward continuous function, so that the set of all strongly lacunary *p* ward continuous functions is a vector subspace of the space of all continuous functions. The composite of two strongly lacunary *p*-ward continuous functions is strongly lacunary *p*-ward continuous functions is strongly lacunary *p*-ward continuous functions is strongly lacunary *p*-ward continuous as it can be seen by considering product of the strongly lacunary *p*-ward continuous function f(x) = x with itself. If *f* is a strongly lacunary *p*-ward continuous function, then |f| is also strongly lacunary *p*-ward continuous since

$$||f(\alpha_{k+p})| - |f(\alpha_k)|| \leq |f(\alpha_{k+p}) - f(\alpha_k)|.$$

If *f* and *g* are strongly lacunary *p*-ward continuous, then $max\{f, g\}$ is also strongly lacunary *p*-ward continuous, which follows from the equality $max\{f, g\} = \frac{1}{2}\{|f - g| + |f + g|\}$. Also, $min\{f, g\}$ is a strongly lacunary *p*-ward continuous function, if *f* and *g* are strongly lacunary *p*-ward continuous.

In connection with strongly lacunary *p*-quasi-Cauchy sequences, slowly oscillating sequences, and convergent sequences the problem arises to investigate the following types of continuity of a function on \mathbb{R} .

$$\begin{aligned} & (\Delta_p^{N_{\theta}})] (\alpha_n) \in \Delta_p^{N_{\theta}} \Rightarrow (f(\alpha_n)) \in \Delta_p^{N_{\theta}}, \\ & (\Delta_p^{N_{\theta}}c) (\alpha_n) \in \Delta_p^{N_{\theta}} \Rightarrow (f(\alpha_n)) \in c, \\ & (\Delta^{N_{\theta}}) (\alpha_n) \in \Delta^{N_{\theta}} \Rightarrow (f(\alpha_n)) \in \Delta^{N_{\theta}}, \end{aligned}$$

(c)
$$(\alpha_n) \in c \Rightarrow (f(\alpha_n)) \in c,$$

(d) $(\alpha_n) \in c \Rightarrow (f(\alpha_n)) \in \Delta_p^{N_{\theta}},$
(e) $(\alpha_n) \in w \Rightarrow (f(\alpha_n)) \in \Delta_n^{N_{\theta}},$

where *w* denotes the set of slowly oscillating sequences, and $\Delta^{N_{\theta}} = \Delta_1^{N_{\theta}}$. Meaning of the symbol $(\Delta_p^{N_{\theta}})$ and *c* given above are strongly lacunary *p*-ward continuity, and the ordinary continuity of *f*, respectively. It is easy to see that $(\Delta_p^{N_{\theta}}c)$ implies $(\Delta_p^{N_{\theta}})$, and $(\Delta_p^{N_{\theta}})$ does not imply $(\Delta_p^{N_{\theta}}c)$; $\Delta_p^{N_{\theta}}$ implies (*d*), and (*d*) does not imply $(\Delta_p^{N_{\theta}}c)$; and $(\Delta_p^{N_{\theta}})$; and (c) does not imply $(\Delta_p^{N_{\theta}}c)$; $(\Delta_p^{N_{\theta}}c)$ implies (*c*) and (*c*) does not imply $(\Delta_p^{N_{\theta}}c)$; and (*c*) implies (*d*).

Theorem 2.2. If f is strongly lacunary p-ward continuous on a subset A of \mathbb{R} , then it is strongly lacunary continuous on A.

Proof. If p = 1, then it is obvious. So we would suppose that p > 1. Take any strongly lacunary *p*-ward continuous function *f* on *A*. Let (α_k) be any strongly lacunary convergent sequence of points in *A* with strongly lacunary limit ℓ . Write

 $(\xi_i) = (\alpha_1, \alpha_1, ..., \alpha_1, , \ell, \ell, ..., \ell, \alpha_2, \alpha_2, ..., \alpha_2, ..., \alpha_n, \alpha_n, ..., \alpha_n, ...),$

where the same term repeats p times. The sequence

$$(\alpha_1, \alpha_1, ..., \alpha_1, , \ell, \ell, ..., \ell, \alpha_2, \alpha_2, ..., \alpha_2, ..., \alpha_n, \alpha_n, ..., \alpha_n, ...)$$

is also strongly lacunary quasi-Cauchy so it is strongly lacunary *p*-quasi-Cauchy. By the strongly lacunary *p*-ward continuity of *f*, the sequence

$$(f(\alpha_1), f(\alpha_1), ..., f(\alpha_1), f(\ell), f(\ell), ..., f(\ell), f(\alpha_2), f(\alpha_2), ..., f(\alpha_2), , f(\ell), f(\ell), ..., f(\ell), ..., f(\ell), f(\ell), ..., f(\ell), f(\ell), ..., f(\ell), f(\ell), ..., f(\ell), ..., f(\ell), ..., f(\ell), f(\ell), ..., f(\ell), ..$$

is strongly lacunary *p*-quasi-Cauchy, where the same term repeats *p*-times. Thus the sequence

$$(f(\alpha_1), f(\alpha_1), ..., f(\alpha_1), f(\ell), f(\ell), ..., f(\ell), f(\alpha_2), f(\alpha_2), ..., f(\alpha_2), ., f(\ell), f(\ell), ..., f(\ell), ..., f(\ell), f(\ell), ..., f(\ell), ...,$$

$$f(\alpha_n), f(\alpha_n), \dots, f(\alpha_n), \dots)$$

is also strongly lacunary convergent with strongly lacunary limit $f(\ell)$, which completes the proof of the theorem. \Box

Corollary 2.3. If f is strongly lacunary p-ward continuous on a subset A of \mathbb{R} , then it is continuous on A in the ordinary case.

Proof. The proof follows from the previous theorem and [7, Theorem 3] since the sequential method method N_{θ} is regular and subsequential.

Theorem 2.4. *Strongly lacunary p-ward continuous image of any strongly lacunary p-ward compact subset of* \mathbb{R} *is strongly lacunary p-ward compact.*

Proof. Let *f* be a strongly lacunary *p*-ward continuous function, and *A* be a strongly lacunary *p*-ward compact subset of \mathbb{R} . Take any sequence $\beta = (\beta_n)$ of terms in f(E). Write $\beta_n = f(\alpha_n)$ where $\alpha_n \in E$ for each $n \in \mathbb{N}$, $\alpha = (\alpha_n)$. strongly lacunary *p*-ward compactness of *A* implies that there is a strongly lacunary *p*-quasi-Cauchy subsequence $\xi = (\xi_k) = (\alpha_{n_k})$ of α . Since *f* is strongly lacunary *p*-ward continuous, $(t_k) = f(\xi) = (f(\xi_k))$ is strongly lacunary *p*-quasi-Cauchy. Thus (t_k) is a strongly lacunary *p*-quasi-Cauchy subsequence of the sequence $f(\alpha)$. This completes the proof of the theorem. \Box

Corollary 2.5. Strongly lacunary p-ward continuous image of any G-sequentially connected subset of \mathbb{R} is G-sequentially connected for a regular subsequential method G (see [7]).

Proof. The proof follows from the preceding theorem, so is omitted (see [8] for the definition of *G*-sequential connectedness and related concepts). \Box

Theorem 2.6. If *f* is uniformly continuous on a subset *A* of \mathbb{R} , then $(f(\alpha_n))$ is strongly lacunary *p*-quasi-Cauchy whenever (α_n) is a *p*-quasi-Cauchy sequence of points in *A*.

Proof. Let (α_n) be any *p*-quasi-Cauchy sequence of points in *A*. Take any $\varepsilon > 0$. Uniform continuity of *f* on *A* implies that there exists a $\delta > 0$, depending on ε , such that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$ and $x, y \in A$. Since (α_n) is *p*-quasi Cauchy, then there exists an $N = N(\delta) \in \mathbb{N}$ such that $|\Delta_p \alpha_n| < \delta$ whenever n > N. From the uniform continuity of *f* we have $|\Delta_p f(\alpha_n)| < \varepsilon$ if n > N. Therefore

$$\frac{1}{h_r}\sum_{k\in I_r}|\Delta_p f(\alpha_k)| < \frac{1}{h_r}(k_r - k_{r-1})\varepsilon = \varepsilon.$$

It follows from this that $(f(\alpha_n))$ is a strongly lacunary *p*-quasi-Cauchy sequence. This completes the proof of the theorem. \Box

Corollary 2.7. If *f* is slowly oscillating continuous on a bounded subset *A* of \mathbb{R} , then $(f(\alpha_n))$ is strongly lacunary *p*-quasi-Cauchy whenever (α_n) is a *p* quasi-Cauchy sequence of points in *A*.

Proof. If *f* is a slowly oscillating continuous function on a bounded subset *A* of \mathbb{R} , then it is uniformly continuous on *A* by [14, Theorem 2.3]. Hence the proof follows from Theorem 2.6. \Box

3. Conclusion

In this paper, we introduce strongly lacunary *p*-ward continuity via strongly lacunary *p*-quasi Cauchy sequences, and prove results related to this kind of continuity and some other kinds of continuities. The results in this paper not only involves the related results in [9] and [13] as a special case for p = 1, but also some interesting results which are also new for the special case p = 1. The strongly lacunary *p*-quasi Cauchy concept for p > 1 might find more interesting applications than strongly lacunary quasi Cauchy sequences to the cases when strongly lacunary quasi Cauchy does not apply. For a further study, we suggest to investigate strongly lacunary *p*-quasi-Cauchy sequences of fuzzy points. We also suggest to investigate strongly lacunary *p*-quasi-Cauchy double sequences of points in \mathbb{R} . For another further study, we suggest to investigate strongly lacunary *p*-quasi-Cauchy sequences in abstract normed spaces (see [19]).

Acknowledgement

The author would like to thank the referees for the valuable remarks and suggestions which improved the paper.

References

- [1] D. Burton, J. Coleman, Quasi-Cauchy sequences, Amer. Math. Monthly 117:4 (2010) 328–333.
- [2] H. Çakalli, O. Mucuk, Lacunary statistically upward and downward half quasi-Cauchy sequences, J. Math. Anal. 7:2 (2016) 12–23.
- [3] H. Çakallı, Slowly oscillating continuity, Abstr. Appl. Anal. 2008 (2008), Article ID 485706.
- [4] H. Çakallı, Sequential definitions of compactness, Appl. Math. Lett. 21 (2008) 594–598.
- [5] H. Çakallı, Forward continuity, J. Comput. Anal. Appl. 13 (2011) 225–230.
- [6] H. Çakallı, Statistical ward continuity, Appl. Math. Lett. 24 (2011) 1724–1728.
- [7] H. Çakallı, On G-continuity, Comput. Math. Appl. 61 (2011) 313-318.
- [8] H. Çakallı, Sequential definitions of connectedness, Appl. Math. Lett. 25 (2012) 461–465.
- [9] H. Çakallı, N_{θ} -ward continuity, Abstr. Appl. Anal. 2012 (2012), Article ID 680456, 8 pages.
- [10] H. Çakallı, Variations on quasi-Cauchy sequences, Filomat 29 (2015) 13-19.
- [11] H. Çakallı, Upward and downward statistical continuities, Filomat 29 (2015) 2265–2273.

- [12] H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe J. Math. 1 (2019) 1-8.
- [13] H. Çakallı, H. Kaplan, A study on N_{θ} quasi-Cauchy sequences, Abstr. Appl. Anal. 2013 (2013), Article ID 836970, 4 pages.
- [14] I. Çanak, M. Dik, New types of continuities, Abstr. Appl. Anal. 2010 (2010), Article ID 258980, 6 pages.
- [15] J. Connor, K.-G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math. 33 (2003) 93-121.
- [16] A.R. Freedman, J.J. Sember, M.Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc. 3 (1978) 508-520.
- [17] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301–313.
- [18] H. Kaplan, H. Cakalli, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9 (2016) 4371–4380.
- [19] A. Sonmez, H. Çakalli, A variation on strongly lacunary ward continuity, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 62:3 (2016), 745–755.
- [20] I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers, Maltepe J. Math. 1 (2019) 18-23.
- [21] R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions, (with an appendix by Vallin and H. Cakalli), Acta Math. Univ. Comenianae 25 (2011) 71-78.
- [22] Ş. Yıldız, İstatistiksel boşluklu delta 2 quasi Cauchy dizileri, Sakarya University Journal of Science 21 (2017) 1408–1412.
 [23] Ş. Yıldız, Lacunary statistical p-quasi Cauchy sequences, Maltepe J. Math. 1 (2019) 9–17.