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Variations on the Strongly Lacunary Quasi Cauchy Sequences
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Abstract. In this paper,we introduce concepts of a strongly lacunary p-quasi-Cauchy sequence and strongly
lacunary p-ward continuity. We prove that a subset of R is bounded if and only if it is strongly lacunary
p-ward compact. It is obtained that any strongly lacunary p-ward continuous function on a subset A of
R is continuous in the ordinary sense. We also prove that the uniform limit of strongly lacunary p-ward
continuous functions on a subset A of R is strongly lacunary p-ward continuous.

Introduction

In this paper,N, andRwill denote the set of positive integers, and the set of real numbers, respectively.
p will always be a fixed element of N. Using the idea of sequential continuity of a real function, many
kinds of continuity have been introduced and investigated, we recall some of them in the following: ward
continuity ([1, 5]), p-ward continuity ([10]), statistical ward continuity ([6]), slowly oscillating continuity
([3, 21]), quasi-slowly oscillating continuity ([14]), upward and downward statistical continuities ([11]), δ2

lacunary statistical ward continuity ([22]), Nθ-ward continuity ([9, 13, 18]), which enabled some authors to
obtain interesting results.

The notion of strongly lacunary convergence (or Nθ convergence) was introduced, and studied by
Freedman, Sember, and M. Raphael in [16] in the sense that a sequence (αk) of points inR is strongly lacunary
convergent or Nθ convergent to an L ∈ R, which is denoted by Nθ − limαk = L, if limr→∞

1
hr

∑
k∈Ir
|αk −L| = 0,

where Ir = (kr−1, kr], and k0 , 0, hr := kr − kr−1 → ∞ when r → ∞ and θ = (kr) is an increasing sequence
of positive integers. In the sequel, it is assumed that lim infr

kr
kr−1

> 1. The sums of the form
∑kr

kr−1+1 |αk|

frequently occur, and will often be written for convenience as
∑

k∈Ir
|αk|.

1. Variations on Strongly Lacunary Ward Compactness

A sequence (αn) is called quasi Cauchy if limn→∞ ∆αn = 0, where ∆αn = αn+1 − αn for each n ∈ N
([1, 5, 12, 20, 23]). The set of all bounded quasi-Cauchy sequences is a closed subspace of the space of all
bounded sequences with respect to the norm defined for bounded sequences. A sequence (αk) of points
in R is slowly oscillating if limλ→1+ limn maxn+16k6[λn] |αk − αn| = 0, where [λn] denotes the integer part of
λn ([3]). A sequence (αk) is quasi-slowly oscillating if (∆αk) is slowly oscillating. A sequence (αn) is called
statistically convergent to a real number L if limn→∞

1
n |{k 6 n : |αk − L| > ε}| = 0 for each ε > 0 ([17]).
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A sequence (αn) is called strongly lacunary quasi Cauchy if limr→∞
1
hr

∑
k∈Ir
|∆αk| = 0 ([9]). Recently in

[10] it was proved that a real valued function is uniformly continuous on a bounded subset of R if it is
p-ward continuous. Now we introduce the concept of a strongly lacunary p-quasi-Cauchy sequence.

Definition 1.1. A sequence (αk) of points inR is called strongly lacunary p-quasi-Cauchy if Nθ−limk→∞ ∆pαk =

0, i.e. limr→∞
1
hr

∑
k∈Ir
|∆pαk| = 0, where ∆pαk = αk+p − αk for every k ∈N.

We denote the set of all strongly lacunary p-quasi-Cauchy sequences by ∆Nθ
p for each p ∈ N. The

sum of two strongly lacunary p-quasi-Cauchy sequences is strongly lacunary p-quasi-Cauchy, the product
of a strongly lacunary p-quasi-Cauchy sequence with a constant is strongly lacunary p-quasi-Cauchy, so
that the set of all strongly lacunary p-quasi-Cauchy sequences ∆Nθ

p is a vector subspace of the space of all
sequences. We note that a sequence is strongly lacunary quasi-Cauchy when p = 1, i.e. strongly lacunary
1-quasi-Cauchy sequences are strongly lacunary quasi-Cauchy sequences. From the following inequality

|αk+p − αk| 6 |αk+p − αk+p−1| + |αk+p−1 − αk+p−2| + ... + |αk+2 − αk+1| + |αk+1 − αk|

that any strongly lacunary quasi-Cauchy sequence is also strongly lacunary p-quasi-Cauchy, for any p ∈N,
but the converse of this fact is not always true as it can be seen by considering the sequence (αk) defined by
(αk) = (0, 1, 0, 1, ..., 0, 1, ...) is strongly lacunary 2-quasi Cauchy which is not strongly lacunary quasi Cauchy.

Definition 1.2. A subset A of R is called strongly lacunary p-ward compact if any sequence of points in A
has a strongly lacunary p-quasi-Cauchy subsequence.

After this definition, we have following remark:

Remark 1.3. Let A be a subset of R. Then, A is strongly lacunary p-ward compact if and only if −A := {−a :
a ∈ A} is strongly lacunary p-ward compact.

We note that this definition of strongly lacunary p-ward compactness cannot be obtained by any summa-
bility matrix in the sense of [4].

Since any strongly lacunary quasi-Cauchy sequence is strongly lacunary p-quasi-Cauchy then, it can
be said that any strongly lacunary ward compact subset of R is strongly lacunary p-ward compact for
any p ∈ N. A finite subset of R is strongly lacunary p-ward compact, the union of finite number of
strongly lacunary p-ward compact subsets of R is strongly lacunary p-ward compact, and the intersection
of any number of strongly lacunary p-ward compact subsets of R is strongly lacunary p-ward compact.
Furthermore any subset of a strongly lacunary p-ward compact set ofR is strongly lacunary p-ward compact
and any bounded subset of R is strongly lacunary p-ward compact. From these observations the following
result is obtained:

Theorem 1.4. A subset A of R is bounded if and only if it is strongly lacunary p-ward compact.

Proof. Any bounded subset of R is strongly lacunary p-ward compact, because of a sequence in a bounded
set is bounded. Therefore, it has a convergent subsequence which is also strongly lacunary p-quasi Cauchy.
To prove the converse (sufficiency part) suppose that A is an unbounded subset of real numbers. Especially
assume that A is unbounded above. Then, it can be constructed a sequence α = (αn) which satisfies

(i) α = (αn) is strictly increasing,
(ii) For any p ∈N, αn+1 > p + αn holds for all n ∈N.

It is clear from (ii) that αn > (n − 1)p + α1 holds for all n ∈N.
Therefore, for any r ∈Nwe have

kr∑
kr−1+1

|∆pα j| =

kr∑
kr−1+1

|α j+p − α j| > p2(kr − kr−1).
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So the following inequality

1
hr

kr∑
kr−1+1

|∆pα j| > p2

holds and this gives that the sequence α = (αn) is not strongly lacunary p-quasi Cauchy. From the
construction of the sequence α = (αn), it has no strongly lacunary p-quasi Cauchy subsequence.

Now assume that A is unbounded below. −A is unbounded above, and −A is not strongly lacunary
p-ward compact by the above proved fact. Hence, from Remark 1.3 given above, A is strongly lacunary
p-ward compact.

It follows from Theorem 1.4 that strongly lacunary p-ward compactness of a subset of A of R coincides
with either of the following kinds of compactness: p-ward compactness ([10, Theorem 2.3]), statistical ward
compactness ([6, Lemma 2]), strongly lacunary ward compactness ([9, Theorem 3.3]).

Corollary 1.5. A subset of R is strongly lacunary p ward compact if and only if:
(i) A is strongly lacunary q ward compact for any q ∈N,
(ii) A is both statistically upward half compact and statistically downward half compact,
(iii) A is both lacunary statistically upward half compact and lacunary statistically downward half compact.

Proof. The proof of (ii), and (iii) follow from [11, Corollary 3.9], and [2, Theorem 1.3 and Theorem 1.9],
respectively, whereas the proof of (i) follows from Theorem 1.4 straightforwardly.

2. Variations on Strongly Lacunary Ward Continuity

In this section, we investigate strongly lacunary p-ward continuity of functions. A function f : R −→ R
is continuous if and only if it preserves convergent sequences.

Definition 2.1. A function f is called strongly lacunary p-ward continuous on a subset A ofR if it preserves
strongly lacunary p-quasi-Cauchy sequences, i.e. the sequence ( f (αn)) is strongly lacunary p-quasi-Cauchy
whenever (αn) is a strongly lacunary p-quasi-Cauchy sequence of points in A.

We see that this definition of strongly lacunary p-ward continuity can not be obtained by any summability
matrix A (see [15]).

We note that the sum of two strongly lacunary p-ward continuous functions is strongly lacunary p-ward
continuous, and for any constant c ∈ R, c f is strongly lacunary p-ward continuous whenever f is a strongly
lacunary p-ward continuous function, so that the set of all strongly lacunary p ward continuous functions
is a vector subspace of the space of all continuous functions. The composite of two strongly lacunary
p-ward continuous functions is strongly lacunary p-ward continuous, but the product of two strongly
lacunary p-ward continuous functions need not be strongly lacunary p-ward continuous as it can be seen
by considering product of the strongly lacunary p-ward continuous function f (x) = x with itself. If f is a
strongly lacunary p-ward continuous function, then | f | is also strongly lacunary p-ward continuous since

|| f (αk+p)| − | f (αk)|| 6 | f (αk+p) − f (αk)|.

If f and 1 are strongly lacunary p-ward continuous, then max{ f , 1} is also strongly lacunary p-ward contin-
uous, which follows from the equality max{ f , 1} = 1

2 {| f − 1| + | f + 1|}. Also, min{ f , 1} is a strongly lacunary
p-ward continuous function, if f and 1 are strongly lacunary p-ward continuous.

In connection with strongly lacunary p-quasi-Cauchy sequences, slowly oscillating sequences, and
convergent sequences the problem arises to investigate the following types of continuity of a function on
R.

(∆Nθ
p )] (αn) ∈ ∆Nθ

p ⇒ ( f (αn)) ∈ ∆Nθ
p ,

(∆Nθ
p c) (αn) ∈ ∆Nθ

p ⇒ ( f (αn)) ∈ c,
(∆Nθ ) (αn) ∈ ∆Nθ ⇒ ( f (αn)) ∈ ∆Nθ ,
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(c) (αn) ∈ c⇒ ( f (αn)) ∈ c,
(d) (αn) ∈ c⇒ ( f (αn)) ∈ ∆Nθ

p ,
(e) (αn) ∈ w⇒ ( f (αn)) ∈ ∆Nθ

p ,

where w denotes the set of slowly oscillating sequences, and ∆Nθ = ∆Nθ

1 . Meaning of the symbol (∆Nθ
p ) and

c given above are strongly lacunary p-ward continuity, and the ordinary continuity of f , respectively. It
is easy to see that (∆Nθ

p c) implies (∆Nθ
p ), and (∆Nθ

p ) does not imply (∆Nθ
p c); ∆Nθ

p implies (d), and (d) does not
imply (∆Nθ

p ); and (∆Nθ
p ) implies (e), and (e) does not imply (∆Nθ

p ); (∆Nθ
p c) implies (c) and (c) does not imply

(∆Nθ
p c); and (c) implies (d).

Theorem 2.2. If f is strongly lacunary p-ward continuous on a subset A ofR, then it is strongly lacunary continuous
on A.

Proof. If p = 1, then it is obvious. So we would suppose that p > 1. Take any strongly lacunary p-ward
continuous function f on A. Let (αk) be any strongly lacunary convergent sequence of points in A with
strongly lacunary limit `. Write

(ξi) = (α1, α1, ..., α1, , `, `, ..., `, α2, α2, ..., α2, ..., αn, αn, ..., αn, ...),

where the same term repeats p times. The sequence

(α1, α1, ..., α1, , `, `, ..., `, α2, α2, ..., α2, ..., αn, αn, ..., αn, ...)

is also strongly lacunary quasi-Cauchy so it is strongly lacunary p-quasi-Cauchy. By the strongly lacunary
p-ward continuity of f , the sequence

( f (α1), f (α1), ..., f (α1), f (`), f (`), ..., f (`), f (α2), f (α2), ..., f (α2), , f (`), f (`), ..., f (`), ..., , f (`), f (`), ..., f (`),

f (αn), f (αn), ..., f (αn), ...)

is strongly lacunary p-quasi-Cauchy, where the same term repeats p-times. Thus the sequence

( f (α1), f (α1), ..., f (α1), f (`), f (`), ..., f (`), f (α2), f (α2), ..., f (α2), , f (`), f (`), ..., f (`), ..., , f (`), f (`), ..., f (`),

f (αn), f (αn), ..., f (αn), ...)

is also strongly lacunary convergent with strongly lacunary limit f (`), which completes the proof of the
theorem.

Corollary 2.3. If f is strongly lacunary p-ward continuous on a subset A of R, then it is continuous on A in the
ordinary case.

Proof. The proof follows from the previous theorem and [7, Theorem 3] since the sequential method method
Nθ is regular and subsequential.

Theorem 2.4. Strongly lacunary p-ward continuous image of any strongly lacunary p-ward compact subset of R is
strongly lacunary p-ward compact.

Proof. Let f be a strongly lacunary p-ward continuous function, and A be a strongly lacunary p-ward
compact subset of R. Take any sequence β = (βn) of terms in f (E). Write βn = f (αn) where αn ∈ E
for each n ∈ N, α = (αn). strongly lacunary p-ward compactness of A implies that there is a strongly
lacunary p-quasi-Cauchy subsequence ξ = (ξk) = (αnk ) of α. Since f is strongly lacunary p-ward continuous,
(tk) = f (ξ) = ( f (ξk)) is strongly lacunary p-quasi-Cauchy. Thus (tk) is a strongly lacunary p-quasi-Cauchy
subsequence of the sequence f (α). This completes the proof of the theorem.

Corollary 2.5. Strongly lacunary p-ward continuous image of any G-sequentially connected subset of R is G-
sequentially connected for a regular subsequential method G (see [7]).
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Proof. The proof follows from the preceding theorem, so is omitted (see [8] for the definition of G-sequential
connectedness and related concepts).

Theorem 2.6. If f is uniformly continuous on a subset A of R, then ( f (αn)) is strongly lacunary p-quasi-Cauchy
whenever (αn) is a p-quasi-Cauchy sequence of points in A.

Proof. Let (αn) be any p-quasi-Cauchy sequence of points in A. Take any ε > 0. Uniform continuity of f
on A implies that there exists a δ > 0, depending on ε, such that | f (x) − f (y)| < ε whenever |x − y| < δ and
x, y ∈ A. Since (αn) is p-quasi Cauchy, then there exists an N = N(δ) ∈ N such that |∆pαn| < δ whenever
n > N. From the uniform continuity of f we have |∆p f (αn)| < ε if n > N. Therefore

1
hr

∑
k∈Ir

|∆p f (αk)| <
1
hr

(kr − kr−1)ε = ε.

It follows from this that ( f (αn)) is a strongly lacunary p-quasi-Cauchy sequence. This completes the proof
of the theorem.

Corollary 2.7. If f is slowly oscillating continuous on a bounded subset A of R, then ( f (αn)) is strongly lacunary
p-quasi-Cauchy whenever (αn) is a p quasi-Cauchy sequence of points in A.

Proof. If f is a slowly oscillating continuous function on a bounded subset A of R, then it is uniformly
continuous on A by [14, Theorem 2.3]. Hence the proof follows from Theorem 2.6.

3. Conclusion

In this paper, we introduce strongly lacunary p-ward continuity via strongly lacunary p-quasi Cauchy
sequences, and prove results related to this kind of continuity and some other kinds of continuities. The
results in this paper not only involves the related results in [9] and [13] as a special case for p = 1, but
also some interesting results which are also new for the special case p = 1. The strongly lacunary p-quasi
Cauchy concept for p > 1 might find more interesting applications than strongly lacunary quasi Cauchy
sequences to the cases when strongly lacunary quasi Cauchy does not apply. For a further study, we
suggest to investigate strongly lacunary p-quasi-Cauchy sequences of soft points and strongly lacunary p-
quasi-Cauchy sequences of fuzzy points. We also suggest to investigate strongly lacunary p-quasi-Cauchy
double sequences of points in R. For another further study, we suggest to investigate strongly lacunary
p-quasi-Cauchy sequences in abstract normed spaces (see [19]).
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[23] Ş. Yıldız, Lacunary statistical p-quasi Cauchy sequences, Maltepe J. Math. 1 (2019) 9–17.


