Filomat 33:2 (2019), 475–481 https://doi.org/10.2298/FIL1902475K



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Some Permanents of Hessenberg Matrices

Sibel Koparal<sup>a</sup>, Neşe Ömür<sup>a</sup>, Cemile Duygu Şener<sup>a</sup>

<sup>a</sup>Kocaeli University Mathematics Department 41380 İzmit Kocaeli Turkey

**Abstract.** In this paper, we present new relationships between the terms of sequence  $\{R_n\}$  and  $\{S_n\}$  and permanents of some upper Hessenberg matrices.

### 1. Introduction

Matrix methods are useful tools for derivation some properties of linear recurrences. Some authors obtained many connections between certain sequences and permanents of Hessenberg matrices in the literature [1, 3–5, 8–10]. The permanent of an  $n \times n$  matrix  $\mathbf{A}_{\mathbf{n}} = [a_{ij}]$  is defined by

$$per\mathbf{A_n} = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)},$$

where the summation extends over all permutations  $\sigma$  of the symmetric group  $S_n$ . The permanent of a matrix is analogous to the determinant, where all of the signs used in the Laplace expansion of minors are positive.

In [9], Minc defined the  $n \times n$  (0,1) –matrix  $\mathbf{F}(n,k)$ , where  $k \le n + 1$ , with 1 in the (i, j) position for  $i-1 \le j \le i+k-1$  and 0 otherwise. He showed that *per*  $\mathbf{F}(n,3) = T_{n+1}$ , where  $T_n$  is the *n*th tribonacci number.

In [5], Kılıç and Taşcı defined the  $n \times n$  tridiagonal Toeplitz (0, -1, 1)-matrix  $\mathbf{K}_{\mathbf{n}} = \begin{bmatrix} k_{ij} \end{bmatrix}$  with  $k_{ii} = -1$  for  $1 \le i \le n, k_{i,i+1} = k_{i+1,i} = 1$  for  $1 \le i \le n-1$  and 0 otherwise, and the  $n \times n$  tridiagonal Toeplitz (0, -1, 1)-matrix  $\mathbf{L}_{\mathbf{n}} = \begin{bmatrix} l_{ij} \end{bmatrix}$  with  $l_{ii} = -1$  for  $2 \le i \le n, l_{i,i+1} = l_{i+1,i} = 1$  for  $1 \le i \le n-1, l_{11} = -\frac{1}{2}$  and 0 otherwise. They showed  $per\mathbf{K}_{\mathbf{n}} = F_{-(n+1)}$  and  $per\mathbf{L}_{\mathbf{n}} = \frac{L_{-n}}{2}$ , where  $F_n$  and  $L_n$  are the *n*th Fibonacci and Lucas numbers, respectively.

In [6], Kılıç and Taşcı defined some Hessenberg matrices. They showed the determinants or permanents of these matrices involving the generalized Fibonacci numbers.

Moreover the authors of [7] gave the relationships between the generalized Lucas sequence and the

*Keywords*. Hessenberg matrix, relation recurrence, permanent

<sup>2010</sup> Mathematics Subject Classification. Primary 11B37; Secondary 05A15

Received: 22 September 2017; Revised: 15 December 2017; Accepted: 17 December 2017 Communicated by Ljubiša D.R. Kočinac

Email addresses: sibel.koparal@kocaeli.edu.tr (Sibel Koparal), neseomur@kocaeli.edu.tr (Neşe Ömür), cemileduygusener@hotmail.com (Cemile Duygu Şener)

permanent of some Hessenberg matrices. For example,

$$per\begin{bmatrix} a^{2}+3 & 1 & 0 & \dots & 0 & 0\\ 1 & a^{2}+1 & 1 & \dots & \vdots & 0\\ 1 & 1 & a^{2}+1 & \ddots & 0 & \vdots\\ \vdots & \vdots & \ddots & \ddots & 1 & 0\\ 1 & 1 & \dots & 1 & a^{2}+1 & 1\\ 1 & 1 & 1 & \dots & 1 & a^{2}+1 \end{bmatrix} = a^{n-2}v_{n+2},$$

where the generalized Lucas sequence  $\{v_n\}$  is defined by  $v_{n+1} = av_n + v_{n-1}$ ,  $n \ge 1$  with the initial conditions  $v_0 = 2$  and  $v_1 = a$ .

In [2], Kalman showed that the (n + k)-th term of a sequence defined recursively as a linear combination of the preceding *k* terms:

$$R_{n+k} = c_0 R_n + c_1 R_{n+1} + \dots + c_{k-1} R_{n+k-1}$$
<sup>(1)</sup>

in which the initial terms  $R_0 = ... = R_{k-2} = 0$ ,  $R_{k-1} = 1$  and  $c_0, c_1, ..., c_{k-1}$  are constants. The author showed that

$$\begin{bmatrix} R_n \\ R_{n+1} \\ \vdots \\ R_{n+k} \end{bmatrix} = \mathbf{Z}^n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix},$$
  
where  $\mathbf{Z} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ c_0 & c_1 & c_2 & \dots & c_{k-2} & c_{k-1} \end{bmatrix}.$ 

In [10], Ramírez showed some relations between the generalized Fibonacci-Narayana sequence and permanent of one type of upper Hessenberg matrix. For example,

$$per\begin{bmatrix} a & c & c & \cdots & c & & & 0\\ 1 & a & 0 & 0 & \cdots & c & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \\ & & 1 & a & 0 & 0 & \cdots & c\\ & & & \ddots & \ddots & \ddots & \\ & & & 1 & a & 0 & 0\\ & & & & & 1 & a & 0\\ & & & & & & 1 & a \end{bmatrix} = G_{n+r-1}(a,c,r),$$
(2)

where the generalized Fibonacci-Narayana sequence  $\{G_n(a, c, r)\}_{n \in \mathbb{N}}$  is defined as follows:

$$G_n(a, c, r) = aG_{n-1}(a, c, r) + cG_{n-r}(a, c, r), \ 2 \le r \le n,$$

with the initial conditions  $G_0(a, c, r) = 0$ ,  $G_i(a, c, r) = 1$ , for i = 1, 2, ..., r - 1.

#### 2. Some Permanents

In this section, we give some relationships between the terms of the sequences  $\{R_n\}$  and  $\{S_n\}$ , and the permanents of some upper Hessenberg matrices.

476

For  $n \ge 1$ , define an  $n \times n$  matrix  $\mathbf{B}_{\mathbf{n}} = \begin{bmatrix} b_{i,j} \end{bmatrix}$  with  $b_{i+1,i} = 1$  for  $1 \le i \le n-1$ ,  $b_{i,i+kt-1} = c_0 - 1$  and  $b_{i,i+kt-1-m} = c_m$  for  $1 \le i \le n, 1 \le m \le k-1, 1 \le t \le \lfloor \frac{n}{k} \rfloor$ ; and 0 otherwise. For example, for k = 5 and n = 9,

$$\mathbf{B}_{9} = \begin{bmatrix} c_{4} & c_{3} & c_{2} & c_{1} & c_{0} - 1 & c_{4} & c_{3} & c_{2} & c_{1} \\ 1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} - 1 & c_{4} & c_{3} & c_{2} \\ 1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} - 1 & c_{4} & c_{3} \\ & 1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} - 1 & c_{4} \\ & & 1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} - 1 \\ & & & 1 & c_{4} & c_{3} & c_{2} & c_{1} \\ & 0 & & 1 & c_{4} & c_{3} & c_{2} \\ & & & & & 1 & c_{4} & c_{3} \\ & & & & & & 1 & c_{4} & c_{3} \\ & & & & & & & 1 & c_{4} & c_{3} \\ & & & & & & & & 1 & c_{4} \end{bmatrix}.$$

$$(3)$$

Then we give the following theorem.

**Theorem 2.1.** Let  $\mathbf{B}_n$  be the matrix defined in (3). For  $1 \le n$  and  $2 \le k$ 

 $per\mathbf{B_n} = R_{n+k-1} - R_{n-1}.$ 

*Proof.* We proceed by induction on *n*. For n = 1, we have

$$per \mathbf{B_1} = c_{k-1} = R_k - R_0.$$

Suppose that the equation holds for n - 1. Then we show that the equation holds for n. Expanding the *per***B**<sub>n</sub> with respect to the last column *k* times, we write

$$per\mathbf{B}_{n} = c_{k-1}per\mathbf{B}_{n-1} + c_{k-2}per\mathbf{B}_{n-2} + \dots + (c_{0} - 1)per\mathbf{B}_{2} + per\mathbf{B}_{2}.$$

By our assumption, we have

$$per\mathbf{B_n} = c_{k-1} (R_{n+k-2} - R_{n-2}) + c_{k-2} (R_{n+k-3} - R_{n-3}) + \dots + c_0 (R_{k+1} - R_1)$$
  
=  $(c_{k-1}R_{n+k-2} + c_{k-2}R_{n+k-3} + \dots + c_0R_{k+1})$   
 $- (c_{k-1}R_{n-2} + c_{k-2}R_{n-3} + \dots + c_0R_1)$   
=  $R_{n+k-1} - R_{n-1}.$ 

Thus, the proof is completed.  $\Box$ 

For n > 1; we define an  $n \times n$  matrix  $X_n$  as in the compact form, by the definition of  $B_n$ ;

$$\mathbf{X}_{\mathbf{n}} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & & & \\ 0 & & & \\ \vdots & & \mathbf{B}_{\mathbf{n}-1} \\ 0 & & & \end{bmatrix}}.$$
 (4)

Now, we have the following theorem.

**Theorem 2.2.** Let  $X_n$  be the matrix defined in (4). Then, for  $2 \le n$  and  $2 \le k$ 

$$per \mathbf{X_n} = \sum_{i=1}^{n-1} (R_{i+k-1} - R_{i-1}) + 1.$$

477

*Proof.* We proceed by induction on *n*. For n = 2, we have

$$per \mathbf{X_2} = c_{k-1} + 1 = \sum_{i=1}^{1} (R_{i+k-1} - R_{i-1}).$$

Suppose that the equation holds for *n*. Then we show that the equation holds for n + 1. From the definitions of matrices **B**<sub>n</sub> and **X**<sub>n</sub>, expanding the *per***X**<sub>n+1</sub> with respect to the first column gives us

 $perX_{n+1} = perB_n + perX_n$ .

By our assumption and (1), we have

$$per\mathbf{X}_{n+1} = R_{n+k-1} - R_{n-1} + \sum_{i=1}^{n-1} (R_{i+k-1} - R_{i-1}) + 1 = \sum_{i=1}^{n} (R_{i+k-1} - R_{i-1}) + 1.$$

Thus the proof is obtained.  $\Box$ 

Now, we have the generalize of the equation in (1) as follows:

$$S_{n+dk} = c_0 S_{n+d-1} + c_1 S_{n+2d-1} + \dots + c_{k-1} S_{n+dk-1}, \ 1 \le d \le n \text{ and } 2 \le k,$$
(5)

in which the initial terms  $S_0 = ... = S_{dk-2} = 0$ ,  $S_{dk-1} = 1$  and  $c_0, c_1, ..., c_{k-1}$  are constants. For d = 1, the sequence  $\{S_{n+k}\}$  is reduced to the sequence  $\{R_{n+k}\}$  in (1). When k = 2 and  $c_0 = c_1 = d = 1$ , the sequence  $\{S_{n+2}\}$  is reduced to the Fibonacci sequence  $\{F_n\}$ . When  $k = c_0 = 2$  and  $c_1 = d = 1$ , the sequence  $\{S_{n+2}\}$  is reduced to the Pell sequence  $\{P_n\}$ .

For  $n \ge 1$ , define an  $n \times n$  matrix  $\mathbf{E}_{\mathbf{n}} = [e_{i,j}]$  with  $e_{i+1,i} = 1$  for  $1 \le i \le n - 1$ ,  $e_{i,i} = e_{1,t} = c_{k-1}$ ,  $e_{i,i+d} = e_{1,t+d} = c_{k-2}$ , ...,  $e_{i,i+(k-2)d} = e_{1,t+(k-1)d} = e_{1,t+(k-1)d} = c_0$  for  $2 \le t \le d \le n$ ,  $1 \le i \le n$ ; and 0 otherwise. For example, for k = d = 3 and n = 9, we write

$$\mathbf{E_9} = \begin{bmatrix} c_2 & c_2 & c_2 & c_1 & c_1 & c_1 & c_0 & c_0 & c_0 \\ 1 & c_2 & 0 & 0 & c_1 & 0 & 0 & c_0 & 0 \\ & 1 & c_2 & 0 & 0 & c_1 & 0 & 0 & c_0 \\ & 1 & c_2 & 0 & 0 & c_1 & 0 & 0 \\ & & 1 & c_2 & 0 & 0 & c_1 & 0 \\ & & & 1 & c_2 & 0 & 0 & c_1 \\ & & 0 & & 1 & c_2 & 0 & 0 \\ & & & & & 1 & c_2 & 0 \\ & & & & & & 1 & c_2 & 0 \end{bmatrix}.$$

**Theorem 2.3.** Let  $\mathbf{E}_{\mathbf{n}}$  be the matrix defined in (6). For  $1 \le n$ , and  $2 \le k$ ,

$$per\mathbf{E}_{\mathbf{n}} = \sum_{i=0}^{d-1} S_{n+dk-1-i},$$

where d = 1, 2, ..., n.

*Proof.* We proceed by induction on *n*. For n = 1, we have

$$per\mathbf{E_1} = c_{k-1} = S_k = \sum_{i=0}^0 S_{k-i}.$$

478

479

Suppose that the equation holds for n - 1. Then we show that the equation holds for n. Expanding the  $perE_n$  with respect to the last column k times, we write

$$per\mathbf{E}_{\mathbf{n}} = c_{k-1}per\mathbf{E}_{\mathbf{n}-1} + c_{k-2}per\mathbf{E}_{\mathbf{n}-\mathbf{d}-1} + \dots + c_0per\mathbf{E}_{\mathbf{n}-\mathbf{d}(k-1)-1}.$$

By our assumption, we write

$$per\mathbf{E}_{\mathbf{n}} = c_{k-1} \sum_{i=0}^{d-1} S_{n+dk-i-2} + c_{k-2} \sum_{i=0}^{d-1} S_{n+d(k-1)-i-2} + \dots + c_0 \sum_{i=0}^{d-1} S_{n+d-i-2}$$
$$= \sum_{i=0}^{d-1} \left( c_{k-1} S_{n+dk-i-2} + c_{k-2} S_{n+d(k-1)-i-2} + \dots + c_0 S_{n+d-i-2} \right).$$

Thus, by the recurrence relation in (5), we have the proof.  $\Box$ 

## 3. Some Special Cases

In this section, we will give some special cases of the above theorems.

• For  $d = c_0 = 1$ , k = 2 and  $c_1 = a$  in (5), the generalized Fibonacci sequence  $\{U_n(a, 1)\}$ ,

$$per\mathbf{B}_{2n} = per\begin{bmatrix} a & 0 & a & 0 & \cdots & a & 0\\ 1 & a & 0 & a & & \vdots & a\\ & \ddots & & \ddots & & \ddots & \\ & & \ddots & \ddots & \ddots & & \vdots\\ & & & \ddots & \ddots & & \\ 0 & & & & a & 0\\ & & & & & & 1 & a \end{bmatrix} = aU_{2n}(a, 1),$$

and

$$per\mathbf{E}_{n} = per\begin{bmatrix} a & 1 & & & \\ 1 & a & 1 & & 0 \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \vdots \\ & 0 & & \ddots & a & 1 \\ & & & & 1 & a \end{bmatrix} = U_{n+1}(a, 1).$$

If we take a = 1, we have  $per\mathbf{B}_{2n} = F_{2n}$  and  $per\mathbf{E}_n = F_{n+1}$ .

• For  $d = c_1 = 1$  and  $k = c_0 = 2$  in (5),  $\{J_n\}$  is the Jacobsthal sequence,

$$per\mathbf{B}_{n} = per\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & & \vdots & 1 \\ & \ddots & \ddots & \ddots & & & \\ & & \ddots & \ddots & \ddots & & \vdots & \vdots \\ & & & \ddots & \ddots & & \vdots & \vdots \\ & & & & \ddots & \ddots & & \\ & 0 & & 1 & 1 & 1 \\ & & & & & 1 & 1 \end{bmatrix} = J_{n+1} - J_{n-1},$$

and

$$per\mathbf{E}_{\mathbf{n}} = per \begin{bmatrix} 1 & 2 & & & \\ 1 & 1 & 2 & & 0 & \\ & \ddots & \ddots & \ddots & & \\ & & \ddots & \ddots & \ddots & \\ & 0 & & \ddots & 1 & 2 \\ & & & & 1 & 1 \end{bmatrix} = J_{n+1} .$$

• For  $d = c_0 = c_1 = c_2 = 1$  and k = 3 in (5),  $\{T_n\}$  is the tribonacci sequence,

$$per\mathbf{B}_{3n} = per\begin{bmatrix} 1 & 1 & 0 & \dots & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & \dots & 1 & 1 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \\ & 0 & & & & 0 \\ & & & & 1 & 1 & 1 \\ & & & & & 1 & 1 \end{bmatrix} = T_{3n+1} + T_{3n},$$

and

• For  $c_0 = c_2 = d = 1$ ,  $c_1 = 0$  and k = 3 in (5),  $\{N_n\}$  is the Narayana sequence,

and

#### References

- R.A. Brualdi, P.M. Gibson, Convex polyhedra of doubly stochastic matrices I: Applications of the permanents function, J. Combin. Theory A 22 (1977) 194–230.
- [2] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982) 73–76.
- [3] E. Kılıç, D. Taşcı, On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers, Rocky Mountain J. Math. 37:6 (2007) 203–219.
- [4] E. Kılıç, D. Taşcı, On families of bipartite graphs associated with sums of Fibonacci and Lucas numbers, Ars Combin. 89 (2008) 31–40.
- [5] E. Kılıç, D. Taşcı, Negatively subscripted Fibonacci and Lucas numbers and their complex factorizations, Ars Combin. 96 (2010) 275–288
- [6] E. Kılıç, D. Taşçı, On the generalized Fibonacci and Pell sequences by Hessenberg matrices, Ars Combin. 94 (2010) 161–174.
- [7] E. Kılıç, D. Taşcı, P. Haukkanen, On the generalized Lucas sequences by Hessenberg matrices, Ars Combin. 95 (2010) 383–395.
- [8] H.-C. Li, On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers, Appl. Math. Comput. 218 (2012) 8353–8358.
- [9] H. Minc, Permanents of (0,1)-circulants, Canadian Math. Bull. 7 (1964) 253–263.
- [10] J.L. Ramírez, Hessenberg matrices and the generalized Fibonacci-Narayana sequence, Filomat 29 (2015) 1557–1563.