Some Permanents of Hessenberg Matrices

Sibel Koparal ${ }^{\text {a }}$, Neşe Ömüria ${ }^{\text {a }}$, Cemile Duygu Şener ${ }^{\text {a }}$
${ }^{a}$ Kocaeli University Mathematics Department 41380 İzmit Kocaeli Turkey

Abstract

In this paper, we present new relationships between the terms of sequence $\left\{R_{n}\right\}$ and $\left\{S_{n}\right\}$ and permanents of some upper Hessenberg matrices.

1. Introduction

Matrix methods are useful tools for derivation some properties of linear recurrences. Some authors obtained many connections between certain sequences and permanents of Hessenberg matrices in the literature $[1,3-5,8-10]$. The permanent of an $n \times n$ matrix $\mathbf{A}_{\mathbf{n}}=\left[a_{i j}\right]$ is defined by

$$
\operatorname{per} \mathbf{A}_{\mathbf{n}}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where the summation extends over all permutations σ of the symmetric group S_{n}. The permanent of a matrix is analogous to the determinant, where all of the signs used in the Laplace expansion of minors are positive.

In [9], Minc defined the $n \times n(0,1)-$ matrix $\mathbf{F}(n, k)$, where $k \leq n+1$, with 1 in the (i, j) position for $i-1 \leq j \leq i+k-1$ and 0 otherwise. He showed that $\operatorname{per} \mathbf{F}(n, 3)=T_{n+1}$, where T_{n} is the nth tribonacci number.

In [5], Kılıç and Taşcı defined the $n \times n$ tridiagonal Toeplitz ($0,-1,1$)-matrix $\mathbf{K}_{\mathbf{n}}=\left[k_{i j}\right]$ with $k_{i i}=-1$ for $1 \leq i \leq n, k_{i, i+1}=k_{i+1, i}=1$ for $1 \leq i \leq n-1$ and 0 otherwise, and the $n \times n$ tridiagonal Toeplitz ($0,-1,1$)-matrix $\mathbf{L}_{\mathbf{n}}=\left[l_{i j}\right]$ with $l_{i i}=-1$ for $2 \leq i \leq n, l_{i, i+1}=l_{i+1, i}=1$ for $1 \leq i \leq n-1, l_{11}=-\frac{1}{2}$ and 0 otherwise. They showed $\operatorname{per} \mathbf{K}_{\mathbf{n}}=F_{-(n+1)}$ and $\operatorname{per} \mathbf{L}_{\mathbf{n}}=\frac{L_{-n}}{2}$, where F_{n} and L_{n} are the nth Fibonacci and Lucas numbers, respectively.

In [6], Kılıç and Taşcı defined some Hessenberg matrices. They showed the determinants or permanents of these matrices involving the generalized Fibonacci numbers.

Moreover the authors of [7] gave the relationships between the generalized Lucas sequence and the

[^0]permanent of some Hessenberg matrices. For example,
\[

\operatorname{per}\left[$$
\begin{array}{cccccc}
a^{2}+3 & 1 & 0 & \cdots & 0 & 0 \\
1 & a^{2}+1 & 1 & \cdots & \vdots & 0 \\
1 & 1 & a^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & 1 & 0 \\
1 & 1 & \cdots & 1 & a^{2}+1 & 1 \\
1 & 1 & 1 & \cdots & 1 & a^{2}+1
\end{array}
$$\right]=a^{n-2} v_{n+2}
\]

where the generalized Lucas sequence $\left\{v_{n}\right\}$ is defined by $v_{n+1}=a v_{n}+v_{n-1}, n \geq 1$ with the initial conditions $v_{0}=2$ and $v_{1}=a$.

In [2], Kalman showed that the $(n+k)$-th term of a sequence defined recursively as a linear combination of the preceding k terms:

$$
\begin{equation*}
R_{n+k}=c_{0} R_{n}+c_{1} R_{n+1}+\ldots+c_{k-1} R_{n+k-1} \tag{1}
\end{equation*}
$$

in which the initial terms $R_{0}=\ldots=R_{k-2}=0, R_{k-1}=1$ and $c_{0}, c_{1}, \ldots, c_{k-1}$ are constants. The author showed that

$$
\left[\begin{array}{c}
R_{n} \\
R_{n+1} \\
\vdots \\
R_{n+k}
\end{array}\right]=\mathbf{Z}^{n}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

where $\mathbf{Z}=\left[\begin{array}{cccccc}0 & 1 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 1 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & 1 \\ c_{0} & c_{1} & c_{2} & & c_{k-2} & c_{k-1}\end{array}\right]$.
In [10], Ramírez showed some relations between the generalized Fibonacci-Narayana sequence and permanent of one type of upper Hessenberg matrix. For example,

$$
\operatorname{per}\left[\begin{array}{ccccccccc}
a & c & c & \cdots & c & & & 0 \tag{2}\\
1 & a & 0 & 0 & \cdots & c & & \\
& \ddots & \ddots & \ddots & \ddots & & \ddots & \\
& & 1 & a & 0 & 0 & \cdots & c \\
& & & \ddots & \ddots & \ddots & \ddots & \\
& & & & 1 & a & 0 & 0 \\
& & & & & 1 & a & 0 \\
& & & & & 1 & a
\end{array}\right]=G_{n+r-1}(a, c, r),
$$

where the generalized Fibonacci-Narayana sequence $\left\{G_{n}(a, c, r)\right\}_{n \in \mathbb{N}}$ is defined as follows:

$$
G_{n}(a, c, r)=a G_{n-1}(a, c, r)+c G_{n-r}(a, c, r), 2 \leq r \leq n,
$$

with the initial conditions $G_{0}(a, c, r)=0, G_{i}(a, c, r)=1$, for $i=1,2, \ldots, r-1$.

2. Some Permanents

In this section, we give some relationships between the terms of the sequences $\left\{R_{n}\right\}$ and $\left\{S_{n}\right\}$, and the permanents of some upper Hessenberg matrices.

For $n \geq 1$, define an $n \times n$ matrix $\mathbf{B}_{\mathbf{n}}=\left[b_{i, j}\right]$ with $b_{i+1, i}=1$ for $1 \leq i \leq n-1, b_{i, i+k t-1}=c_{0}-1$ and $b_{i, i+k t-1-m}=c_{m}$ for $1 \leq i \leq n, 1 \leq m \leq k-1,1 \leq t \leq\left\lceil\frac{n}{k}\right\rceil$; and 0 otherwise. For example, for $k=5$ and $n=9$,

$$
\mathbf{B}_{9}=\left[\begin{array}{ccccccccc}
c_{4} & c_{3} & c_{2} & c_{1} & c_{0}-1 & c_{4} & c_{3} & c_{2} & c_{1} \tag{3}\\
1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0}-1 & c_{4} & c_{3} & c_{2} \\
& 1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0}-1 & c_{4} & c_{3} \\
& & 1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0}-1 & c_{4} \\
& & & 1 & c_{4} & c_{3} & c_{2} & c_{1} & c_{0}-1 \\
& & & & 1 & c_{4} & c_{3} & c_{2} & c_{1} \\
& & & & & 1 & c_{4} & c_{3} & c_{2} \\
& & & & & & 1 & c_{4} & c_{3} \\
& & & & & & 1 & c_{4}
\end{array}\right] .
$$

Then we give the following theorem.
Theorem 2.1. Let $\mathbf{B}_{\mathbf{n}}$ be the matrix defined in (3). For $1 \leq n$ and $2 \leq k$

$$
\operatorname{per} \mathbf{B}_{\mathbf{n}}=R_{n+k-1}-R_{n-1} .
$$

Proof. We proceed by induction on n. For $n=1$, we have

$$
\operatorname{per} \mathbf{B}_{1}=c_{k-1}=R_{k}-R_{0} .
$$

Suppose that the equation holds for $n-1$. Then we show that the equation holds for n. Expanding the $\operatorname{per} \mathbf{B}_{\mathrm{n}}$ with respect to the last column k times, we write

$$
\begin{aligned}
& \operatorname{per} \mathbf{B}_{\mathbf{n}} \\
= & c_{k-1} \operatorname{per} \mathbf{B}_{\mathbf{n}-\mathbf{1}}+c_{k-2} \operatorname{per} \mathbf{B}_{\mathbf{n}-\mathbf{2}}+\ldots+\left(c_{0}-1\right) \operatorname{per} \mathbf{B}_{2}+\operatorname{per} \mathbf{B}_{2} .
\end{aligned}
$$

By our assumption, we have

$$
\begin{aligned}
\operatorname{per} \mathbf{B}_{\mathbf{n}}= & c_{k-1}\left(R_{n+k-2}-R_{n-2}\right)+c_{k-2}\left(R_{n+k-3}-R_{n-3}\right)+\ldots+c_{0}\left(R_{k+1}-R_{1}\right) \\
= & \left(c_{k-1} R_{n+k-2}+c_{k-2} R_{n+k-3}+\ldots+c_{0} R_{k+1}\right) \\
& -\left(c_{k-1} R_{n-2}+c_{k-2} R_{n-3}+\ldots+c_{0} R_{1}\right) \\
= & R_{n+k-1}-R_{n-1} .
\end{aligned}
$$

Thus, the proof is completed.
For $n>1$; we define an $n \times n$ matrix $\mathbf{X}_{\mathbf{n}}$ as in the compact form, by the definition of $\mathbf{B}_{\mathbf{n}}$;

$$
\mathbf{X}_{\mathbf{n}}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{4}\\
1 & & & \\
0 & & & \\
\vdots & & \mathbf{B}_{\mathrm{n}-\mathbf{1}} & \\
& & &
\end{array}\right]
$$

Now, we have the following theorem.
Theorem 2.2. Let $\mathbf{X}_{\mathbf{n}}$ be the matrix defined in (4). Then, for $2 \leq n$ and $2 \leq k$

$$
\operatorname{per} \mathbf{X}_{\mathbf{n}}=\sum_{i=1}^{n-1}\left(R_{i+k-1}-R_{i-1}\right)+1
$$

Proof. We proceed by induction on n. For $n=2$, we have

$$
\operatorname{per} \mathbf{X}_{2}=c_{k-1}+1=\sum_{i=1}^{1}\left(R_{i+k-1}-R_{i-1}\right)
$$

Suppose that the equation holds for n. Then we show that the equation holds for $n+1$. From the definitions of matrices $\mathbf{B}_{\mathbf{n}}$ and \mathbf{X}_{n}, expanding the $\operatorname{per} \mathbf{X}_{\mathbf{n}+\mathbf{1}}$ with respect to the first column gives us

$$
\operatorname{per} \mathbf{X}_{\mathbf{n}+\mathbf{1}}=\operatorname{per} \mathbf{B}_{\mathbf{n}}+\operatorname{per} \mathbf{X}_{\mathbf{n}} .
$$

By our assumption and (1), we have

$$
\operatorname{per} \mathbf{X}_{\mathbf{n}+\mathbf{1}}=R_{n+k-1}-R_{n-1}+\sum_{i=1}^{n-1}\left(R_{i+k-1}-R_{i-1}\right)+1=\sum_{i=1}^{n}\left(R_{i+k-1}-R_{i-1}\right)+1
$$

Thus the proof is obtained.
Now, we have the generalize of the equation in (1) as follows:

$$
\begin{equation*}
S_{n+d k}=c_{0} S_{n+d-1}+c_{1} S_{n+2 d-1}+\ldots+c_{k-1} S_{n+d k-1}, 1 \leq d \leq n \text { and } 2 \leq k \tag{5}
\end{equation*}
$$

in which the initial terms $S_{0}=\ldots=S_{d k-2}=0, S_{d k-1}=1$ and $c_{0}, c_{1}, \ldots, c_{k-1}$ are constants. For $d=1$, the sequence $\left\{S_{n+k}\right\}$ is reduced to the sequence $\left\{R_{n+k}\right\}$ in (1). When $k=2$ and $c_{0}=c_{1}=d=1$, the sequence $\left\{S_{n+2}\right\}$ is reduced to the Fibonacci sequence $\left\{F_{n}\right\}$. When $k=c_{0}=2$ and $c_{1}=d=1$, the sequence $\left\{S_{n+2}\right\}$ is reduced to the Pell sequence $\left\{P_{n}\right\}$.

For $n \geq 1$, define an $n \times n$ matrix $\mathbf{E}_{\mathbf{n}}=\left[e_{i, j}\right]$ with $e_{i+1, i}=1$ for $1 \leq i \leq n-1, e_{i, i}=e_{1, t}=c_{k-1}, e_{i, i+d}=e_{1, t+d}=$ $c_{k-2}, \ldots, e_{i, i+(k-2) d}=e_{1, t+(k-2) d}=c_{1}, e_{i, i+(k-1) d}=e_{1, t+(k-1) d}=c_{0}$ for $2 \leq t \leq d \leq n, 1 \leq i \leq n$; and 0 otherwise. For example, for $k=d=3$ and $n=9$, we write

$$
\mathbf{E}_{9}=\left[\begin{array}{ccccccccc}
c_{2} & c_{2} & c_{2} & c_{1} & c_{1} & c_{1} & c_{0} & c_{0} & c_{0} \tag{6}\\
1 & c_{2} & 0 & 0 & c_{1} & 0 & 0 & c_{0} & 0 \\
& 1 & c_{2} & 0 & 0 & c_{1} & 0 & 0 & c_{0} \\
& & 1 & c_{2} & 0 & 0 & c_{1} & 0 & 0 \\
& & & 1 & c_{2} & 0 & 0 & c_{1} & 0 \\
& & & & 1 & c_{2} & 0 & 0 & c_{1} \\
& & 0 & & & 1 & c_{2} & 0 & 0 \\
& & & & & & 1 & c_{2} & 0 \\
& & & & & & & 1 & c_{2}
\end{array}\right] .
$$

Theorem 2.3. Let $\mathbf{E}_{\mathbf{n}}$ be the matrix defined in (6). For $1 \leq n$, and $2 \leq k$,

$$
\operatorname{per} \mathbf{E}_{\mathbf{n}}=\sum_{i=0}^{d-1} S_{n+d k-1-i}
$$

where $d=1,2, \ldots, n$.
Proof. We proceed by induction on n. For $n=1$, we have

$$
\operatorname{per} \mathbf{E}_{\mathbf{1}}=c_{k-1}=S_{k}=\sum_{i=0}^{0} S_{k-i}
$$

Suppose that the equation holds for $n-1$. Then we show that the equation holds for n. Expanding the $\operatorname{per} \mathbf{E}_{\mathbf{n}}$ with respect to the last column k times, we write

$$
\operatorname{per} \mathbf{E}_{\mathbf{n}}=c_{k-1} \operatorname{per} \mathbf{E}_{\mathbf{n}-\mathbf{1}}+c_{k-2} \operatorname{per} \mathbf{E}_{\mathbf{n}-\mathbf{d}-\mathbf{1}}+\ldots+c_{0} \operatorname{per} \mathbf{E}_{\mathbf{n}-\mathbf{d}(k-1)-\mathbf{1}} .
$$

By our assumption, we write

$$
\begin{aligned}
\operatorname{per} \mathbf{E}_{\mathbf{n}} & =c_{k-1} \sum_{i=0}^{d-1} S_{n+d k-i-2}+c_{k-2} \sum_{i=0}^{d-1} S_{n+d(k-1)-i-2}+\ldots+c_{0} \sum_{i=0}^{d-1} S_{n+d-i-2} \\
& =\sum_{i=0}^{d-1}\left(c_{k-1} S_{n+d k-i-2}+c_{k-2} S_{n+d(k-1)-i-2}+\ldots+c_{0} S_{n+d-i-2}\right) .
\end{aligned}
$$

Thus, by the recurrence relation in (5), we have the proof.

3. Some Special Cases

In this section, we will give some special cases of the above theorems.

- For $d=c_{0}=1, k=2$ and $c_{1}=a$ in (5), the generalized Fibonacci sequence $\left\{U_{n}(a, 1)\right\}$,

$$
\operatorname{per} \mathbf{B}_{2 n}=\operatorname{per}\left[\begin{array}{ccccccc}
a & 0 & a & 0 & \cdots & a & 0 \\
1 & a & 0 & a & & \vdots & a \\
& & \ddots & & \ddots & & \\
& & \ddots & \ddots & \ddots & \vdots & \\
& & & \ddots & \ddots & & \\
& 0 & & & & a & 0 \\
& & & & & 1 & a
\end{array}\right]=a U_{2 n}(a, 1)
$$

and

$$
\operatorname{per} \mathbf{E}_{n}=\operatorname{per}\left[\begin{array}{cccccc}
a & 1 & & & & \\
1 & a & 1 & & 0 & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \vdots & \\
& 0 & & \ddots & a & 1 \\
& & & & 1 & a
\end{array}\right]=U_{n+1}(a, 1)
$$

If we take $a=1$, we have $\operatorname{per} \mathbf{B}_{2 n}=F_{2 n}$ and $\operatorname{per} \mathbf{E}_{n}=F_{n+1}$.

- For $d=c_{1}=1$ and $k=c_{0}=2$ in (5), $\left\{J_{n}\right\}$ is the Jacobsthal sequence,

$$
\operatorname{per} \mathbf{B}_{n}=\operatorname{per}\left[\begin{array}{ccccccc}
1 & 1 & & \cdots & & 1 & 1 \\
1 & 1 & 1 & & & \vdots & 1 \\
& \ddots & \ddots & \ddots & & & \\
& & \ddots & \ddots & \ddots & \vdots & \vdots \\
& & & \ddots & \ddots & & \\
& 0 & & & 1 & 1 & 1 \\
& & & & & 1 & 1
\end{array}\right]=J_{n+1}-J_{n-1},
$$

and

$$
\operatorname{per} \mathbf{E}_{\mathbf{n}}=\operatorname{per}\left[\begin{array}{cccccc}
1 & 2 & & & & \\
1 & 1 & 2 & & 0 & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& 0 & & \ddots & 1 & 2 \\
& & & & 1 & 1
\end{array}\right]=J_{n+1}
$$

- For $d=c_{0}=c_{1}=c_{2}=1$ and $k=3$ in (5), $\left\{T_{n}\right\}$ is the tribonacci sequence,

$$
\operatorname{per} \mathbf{B}_{3 n}=\operatorname{per}\left[\begin{array}{cccccccc}
1 & 1 & 0 & & \cdots & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & & & 1 & 1 \\
& 1 & & & & & & 1 \\
& & & \ddots & \ddots & \ddots & & \vdots \\
& & & \ddots & \ddots & \ddots & \ddots & \\
& & 0 & & & & & 0 \\
& & & & & 1 & 1 & 1 \\
& & & & & & 1 & 1
\end{array}\right]=T_{3 n+1}+T_{3 n}
$$

and

$$
\operatorname{per} \mathbf{E}_{\mathbf{n}}=\operatorname{per}\left[\begin{array}{ccccccc}
1 & 1 & 1 & & & & \\
1 & 1 & 1 & 1 & & 0 & \\
& \ddots & \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & & \\
& & & \ddots & \ddots & & 1 \\
& 0 & & & & 1 & 1 \\
& & & & & 1 & 1
\end{array}\right]=T_{n+2}
$$

- For $c_{0}=c_{2}=d=1, c_{1}=0$ and $k=3$ in (5), $\left\{N_{n}\right\}$ is the Narayana sequence,

$$
\operatorname{per} \mathbf{B}_{3 n}=\operatorname{per}\left[\begin{array}{ccccccccc}
1 & 0 & 0 & & \cdots & & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & & & & 1 & 0 \\
& 1 & & & & & & & 1 \\
& & & \ddots & \ddots & \ddots & & & \\
& & & & \ddots & \ddots & \ddots & & \vdots \\
& & & & & \ddots & \ddots & & \\
& & 0 & & & & & & 0 \\
& & & & & & & 1 & 0 \\
1 & 1
\end{array}\right]=N_{3 n+1},
$$

and

$$
\operatorname{per} \mathbf{E}_{\mathbf{n}}=\operatorname{per}\left[\begin{array}{ccccccc}
1 & 0 & 1 & & & & \\
1 & 1 & 0 & 1 & & 0 & \\
& \ddots & \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & \ddots & \ddots & \ddots & 1 \\
& 0 & & & & 1 & 0 \\
& & & & & 1 & 1
\end{array}\right]=N_{n+2}
$$

References

[1] R.A. Brualdi, P.M. Gibson, Convex polyhedra of doubly stochastic matrices I: Applications of the permanents function, J. Combin. Theory A 22 (1977) 194-230.
[2] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982) 73-76.
[3] E. Kılıç, D. Taşcı, On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers, Rocky Mountain J. Math. 37:6 (2007) 203-219.
[4] E. Kılıç, D. Taşcı, On families of bipartite graphs associated with sums of Fibonacci and Lucas numbers, Ars Combin. 89 (2008) 31-40.
[5] E. Kılıç, D. Taşcı, Negatively subscripted Fibonacci and Lucas numbers and their complex factorizations, Ars Combin. 96 (2010) 275-288
[6] E. Kılıç, D. Taşçı, On the generalized Fibonacci and Pell sequences by Hessenberg matrices, Ars Combin. 94 (2010) 161-174
[7] E. Kılıç, D. Taşcı, P. Haukkanen, On the generalized Lucas sequences by Hessenberg matrices, Ars Combin. 95 (2010) 383-395.
[8] H.-C. Li, On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers, Appl. Math. Comput. 218 (2012) 8353-8358.
[9] H. Minc, Permanents of (0,1)-circulants, Canadian Math. Bull. 7 (1964) 253-263.
[10] J.L. Ramírez, Hessenberg matrices and the generalized Fibonacci-Narayana sequence, Filomat 29 (2015) 1557-1563.

[^0]: 2010 Mathematics Subject Classification. Primary 11B37; Secondary 05A15
 Keywords. Hessenberg matrix, relation recurrence, permanent
 Received: 22 September 2017; Revised: 15 December 2017; Accepted: 17 December 2017
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: sibel.koparal@kocaeli.edu.tr (Sibel Koparal), neseomur@kocaeli.edu.tr (Neşe Ömür), cemileduygusener@hotmail.com (Cemile Duygu Şener)

