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Abstract. In this paper we study the notion of modified Suzuki-Edelstein proximal contraction under
some auxiliary functions for non-self mappings and obtain best proximity point theorems in the setting of
complete metric spaces. As applications, we derive best proximity point and fixed point results for such
contraction mappings in partially ordered metric spaces. Some examples are given to show the validity of
our results. Our results extend and unify many existing results in the literature.

1. Introduction

A wide variety of problems arising in different areas of pure and applied mathematics, such as differ-
ence and differential equations, discrete and continuous dynamic systems and variational analysis can be
modeled as fixed point equations of the form x = Tx. Therefore, fixed point theory is quite useful in finding
the solutions of above equation and structural optimizations in science and engineering [17, 20, 29]. The
Banach contraction principle [15] was the key principle to provide the existence of solution of fixed point
equation x = Tx.

On contrary, in the case that T is not a self-mapping, it is probable that the equation Tx = x possesses
no solution, for a solution of the preceding equation necessitates the equality between an element in the
domain and an element in the co-domain of the mapping. In such scenarios, it is worthwhile to determine
an approximate solution that is optimal in the sense that the error due to approximation is minimum. That
is, if T : A → B is a non-self-mapping in the framework of a metric space, one desires to compute an
approximate solution x ∈ A such that the error d(x,Tx) is minimum. The value minx∈Ad(x,Tx) is basically
an ideal optimal approximate solution to the equation Tx = x which is unlikely to have a solution when
T is supposed to be a non-self mapping. Considering the fact that d(x,Tx) is at least d(A,B) for all x ∈ A,
a solution x to the aforementioned non-linear programming problem becomes an approximate solution
with the lowest possible error to the corresponding equation Tx = x if it satisfies the condition that
d(x,Tx) = d(A,B). Indeed, such a solution x is known as a best proximity point of the mapping and the
results that investigate the existence of best proximity points for non-self mappings are called best proximity
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point theorems. Best proximity point theorems for several types of non-self mappings have been derived
in [1–3, 7–13, 27, 28, 31, 35].

In 1962, Edelstein [19] obtained the following well known result:

Theorem 1.1. Let (X, d) be a compact metric space, and let T be a mapping on X. Assume d(Tx,Ty) < d(x, y) for all
x, y ∈ X with x , y. Then T has a unique fixed point.

In 2008, Suzuki [36] introduced a new type of mapping and presented a generalization of the Banach
contraction principle in which the completeness can also be characterized by the existence of a fixed point
of these mappings.

Theorem 1.2. Let (X, d) be a complete metric space, and let T be a mapping on X. Define a non-increasing function
θ from [0, 1) onto ( 1

2 , 1] by

θ(r) =


1 if 0 ≤ r ≤

√
5−1
2

1−r
r2 if

√
5−1
2 ≤ r ≤ 1

√
2

1
1+r if 1

√
2
≤ r < 1.

Assume that there exists r ∈ [0, 1) such that θ(r)d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X. Then
there exists a unique fixed point z of T. Moreover, lim

n→∞
Tnx = z for all x ∈ X.

Inspired by Theorem 1.2, Suzuki [36, 37] proved a generalization of Edelstein’s fixed point theorem.

Theorem 1.3. Let (X, d) be a compact metric space, and let T be a mapping on X. Assume that ( 1
2 )d(x,Tx) < d(x, y)

implies d(Tx,Ty) < d(x, y) for all x, y ∈ X. Then T has a unique fixed point.

Salimi et al. [33] prove the existence and uniqueness of a fixed point results of Suzuki-Edelstein mapping,
in a partially ordered complete metric space. In 2005, Eldred et al. [21] gave existence and convergence of
best proximity points in the setting of a uniformly convex Banach space. Al-Thagafi et al. [6] studied the
existence results of best proximity points for cyclicϕ-contraction. In 2011, Sadiq Basha [14] stated some best
proximity point theorems for proximal contractions. Jleli et al. [26] prove the existence of best proximity
point for generalized α − ψ-proximal contraction in the setting of complete metric space. Nawab et al. [22]
obtained best proximity point results for modified Suzuki α-ψ-proximal contractions.

2. Preliminaries

Let (X, d) be a metric space, A and B two nonempty subsets of X. Define

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
A0 = {a ∈ A : there exists some b ∈ B such that d(a, b) = d(A,B)},
B0 = {b ∈ B : there exists some a ∈ A such that d(a, b) = d(A,B)}.

Definition 2.1. Let (X, d) be a metric space and A,B two nonempty subsets of X. An element x ∈ A is said
to be a best proximity point of the mapping T : A→ B if d(x,Tx) = d(A,B).

Definition 2.2. ([38]) Let (X, d) be a metric space and A0 , φ, we say that the pair (A,B) has weak P-property
if and only if d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)
implies d(x1, x2) ≤ d(y1, y2)

for all x1, x2 ∈ A and y1, y2 ∈ B.

In 2012, Samet et al. [34] introduced the concept of α-admissible mappings. This nice concept was
generalized and extended in many directions.
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Definition 2.3. Let (X, d) be a metric space, T be a self-mapping on X and α : X × X→ [0,∞) be a function.
The mapping T is an α-admissible if

∀ x, y ∈ X, α(x, y) ≥ 1⇒ α(Tx,Ty) ≥ 1.

Definition 2.4. ([32]) Let (X, d) be a metric space, T be a self-mapping on X and α, η : A×A→ [0,∞) be two
functions. The mapping T is an α-admissible with respect to η if

∀ x, y ∈ X, α(x, y) ≥ η(x, y)⇒ α(Tx,Ty) ≥ η(Tx,Ty).

Note that, if we take η(x, y) ≥ 1, then this definition reduces to the definition of α-admissible mapping.

Definition 2.5. ([26]) Let (X, d) be a metric space and A,B two subsets of X, a non-self mapping T : A→ B
is called α-proximal admissible if

α(x1, x2) ≥ 1,
d(u1,Tx1) = d(A,B), implies α(u1,u2) ≥ 1
d(u2,Tx2) = d(A,B).

for all x1, x2,u1,u2 ∈ A where α : A × A→ [0,∞).

Clearly, if A = B, T is α-proximal admissible implies that T is α-admissible.

Definition 2.6. ([22]) Let T : A → B and α, η : A × A → [0,∞) be a functions. Then T is called α-proximal
admissible with respect to η if

α(x1, x2) ≥ η(x1, x2),
d(u1,Tx1) = d(A,B), implies α(u1,u2) ≥ η(u1,u2)
d(u2,Tx2) = d(A,B).

for all x1, x2,u1,u2 ∈ A. Note that if we take η(x, y) = 1 for all x, y ∈ A, then this definition reduced to the
definition of α-proximal admissible.

In consistence with [33], we denote Φϕ the set of functions ϕ : [0,∞) → [0,∞) satisfying the following
condition:

ϕ(t) ≤
1
2

t ∀ t ≥ 0.

We denote by Φ the set of nondecreasing functions φ : [0,∞)→ [0,∞) such that

lim
n→∞

φn(t) = 0 ∀ t > 0.

Lemma 2.7. ([30]) If φ ∈ Φ, then φ(t) < t for all t > 0.

3. Best Proximity Point Results in Metric Space

We start this section with the following definition:

Definition 3.1. Suppose that A and B are two non-empty subsets of a metric space (X, d).A non-self mapping
T : A→ B is said to be modified Suzuki-Edelstein α-proximal contraction if

ϕ(d(x,Tx)) − 2d(A,B) ≤ α(x, y)d(x, y) ⇒ α(x, y)d(Tx,Ty) ≤ φ(d(x, y)) (1)

∀ x, y ∈ A, where ϕ ∈ Φϕ, φ ∈ Φ and α : A × A→ [0,∞].
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Theorem 3.2. Suppose that A and B are two non empty closed subsets of a complete metric space (X, d) with A0
is nonempty and let T : A → B with T(A0) ⊆ B0 be continuous modified Suzuki-Edelstein α-proximal admissible
mapping with respect to η(x, y) = 2 and the pair (A,B) satisfies the weak P-property. Moreover, the elements x0 and
x1 in A0 with d(x1,Tx0) = d(A,B) satisfies α(x0, x1) ≥ 2. Then T has a unique best proximity point.

Proof. Consider x0 in A0, since T(A0) ⊆ B0, there exists element x1 in A0 such that

d(x1,Tx0) = d(A,B),

then by assumption, α(x0, x1) ≥ 2. Since x1 ∈ A0 and T(A0) ⊆ B0 then there exists x2 ∈ A0 such that

d(x2,Tx1) = d(A,B).

Since T is α−proximal admissible with respect to η(x, y) = 2, we have that α(x0, x1) ≥ 2.
Continuing in this fashion, we get that

d(xn+1,Txn) = d(A,B) satisfies α(xn, xn+1) ≥ 2 (2)

for all n ∈N. Now

ϕ(d(xn−1,Txn−1)) ≤
1
2

d(xn−1,Txn−1)

≤ 2(d(xn−1,Txn−1))
≤ 2(d(xn−1, xn) + d(xn,Txn−1))
= 2(d(xn−1, xn) + d(A,B))
= 2(d(xn−1, xn)) + 2d(A,B). (3)

By (3), we have

ϕ(d(xn−1,Txn−1)) − 2d(A,B) ≤ 2d(xn−1, xn)
≤ α(xn−1, xn)d(xn−1, xn).

Then by (1), we have

α(xn−1, xn)d(Txn−1,Txn) ≤ φ(d(xn−1, xn)).

Now

d(Txn−1,Txn) ≤ α(xn−1, xn)d(Txn−1,Txn) ≤ φ(d(xn−1, xn))

implies

d(Txn−1,Txn) ≤ φ(d(xn−1, xn)). (4)

If xn0 = xn0+1 for some n0 ∈N, we have

d(xn0 ,Txn0 ) = d(xn0+1,Txn0 ) = d(A,B).

Then xn0 is the point of best proximity. Therefore, we assume that xn0 , xn+1, i.e. d(xn, xn+1) > 0 for all
n ∈N ∪ {0}. Since φ is a nondecreasing, by (4) and weak P-property of (A,B), we have

d(xn+1, xn) ≤ d(Txn,Txn−1) ≤ φ(d(xn, xn−1)). (5)



A. Hussain et al. / Filomat 33:2 (2019), 435–447 439

So

d(xn+1, xn) ≤ φ(d(xn, xn−1))
≤ φ(d(Txn−1,Txn−2))
≤ φ(φ(d(xn−1, xn−2)))
= φ2(d(xn−1, xn−2))
.

.

.

≤ φn(d(x1, x0)).

Hence
d(xn+1, xn) ≤ φnd(x0, x1).

Taking limit as n→∞ in the above inequality, we have

lim
n→∞

d(xn+1, xn) = 0.

Now for a fixed ε, there exists N ∈N such that

d(xn+1, xn) < ε − φ(ε)

for all n ≥ N. As φ is nondecreasing. we get

φ(d(xn+1, xn)) ≤ φ(ε − φ(ε)) ≤ φ(ε)

for all n ∈N. Then

d(xn, xn+2) ≤ d(xn, xn+1) + d(xn+1, xn+2)
< ε − φ(ε) + φ(d(xn, xn+1))
≤ ε − φ(ε) + φ(ε) = ε.

Continuing this process, we get
d(xn, xn+k) < ε

for all n ≥ N and k ∈N. Consequently,
lim

m,n→∞
d(xm, xn) = 0.

Hence {xn} is a Cauchy sequence in A. Since X is a complete and A is closed, therefore there exists z ∈ A
such that xn → z and by the continuity of T we derive that Txn → Tz as n→∞. Thus (2) gives

d(A,B) = lim
n→∞

d(xn+1,Txn) = d(z,Tz).

Now we have to show that T has a unique best proximity point. On contrary suppose that y, z ∈ A0 are two
best proximity points of T with y , z, that is

d(y,Ty) = d(z,Tz) = d(A,B).

By weak P-property, we get

d(y, z) ≤ d(Ty,Tz). (6)

Now,

d(y,Ty) = 2d(A,B) − d(A,B). (7)
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Since

ϕ(d(y,Ty)) ≤
1
2

d(y,Ty). (8)

Eq. (7) gives

ϕ(d(y,Ty)) ≤
1
2

d(y,Ty)

=
1
2

(2d(A,B) − d(A,B))

=
1
2

d(A,B)

≤ 2d(A,B). (9)

So (9) gives
ϕ(d(y,Ty)) − 2d(A,B) ≤ 0 ≤ α(y, z)d(y, z).

Thus by (1), we have

α(y, z)d(Ty,Tz) ≤ φ(d(y, z)). (10)

Since α(y, z) ≥ 2, from (10), we have

d(Ty,Tz) ≤ φ(d(y, z)). (11)

By (6), we get

d(y, z) ≤ φ(d(y, z)) < d(y, z), (12)

which is a contradiction. Hance y = z. This completes the proof.

Example 3.3. Let X = [0,∞)× [0,∞) with metric d defined as d((x1, x2), (y1, y2)) = |x1− y1|+ |x2− y2|. Suppose
A = {1} × [0,∞) and B = {0} × [0,∞). Then d(A,B) = d((1, 0), (0, 0)) = 1 and A0 = A,B0 = B. Define T : A→ B
by

T(1, x) =

(0, x
3 ) i f x,∈ [0, 1]

(0, x − 2
3 ) i f x > 1,

α : A × A→ [0,∞) by

α((x, y), (s, t)) =

2 i f (x, y), (s, t) ∈ [0, 1] × [0, 1]
0 otherwise,

and ψ : [0,∞) → [0,∞) by ψ(t) = 999
1000 t for all t ≥ 0. Clearly, T(A0) ⊆ B0. Now, let (1, x1), (1, x2) ∈ A and

(0,u1), (0,u2) ∈ B such that d((1, x1), (0,u1)) = d(A,B) = 1,
d((1, x2), (0,u2)) = d(A,B) = 1.

So
d((1, x1), (1, x2)) ≤ d((0,u1), (0,u2)),

that is, the pair (A,B) has weak P-property. Suppose
α((1, x1), (1, x2)) ≥ 1,
d((1,u1),T(1, x1)) = d(A,B) = 1,
d((1,u2),T(1, x2)) = d(A,B) = 1,
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then 
(1, x1), (1, x2) ∈ [0, 1],
d((1,u1),T(1, x1)) = 1,
d((1,u2),T(1, x2)) = 1.

Then, (x1, x2) ∈ [0, 1] × [0, 1]. We also have u1 = x1
3 and u2 = x2

3 , that is (1,u1 = x1
3 ) ∈ [0, 1] × [0, 1] and

(1,u2 = x2
3 ) ∈ [0, 1] × [0, 1], i.e. x1, x2 ∈ [0, 1]. So α((1,u1), (1,u2)) ≥ 2. That is, T is a α-proximal admissible

mapping with respect to η(x, y) = 2. If (1, x), (1, y) ∈ [0, 1] × [0, 1], then α((1, x), (1, y)) = 2

α((1, x), (1, y))d(T(1, x),T(1, y)) ≤ φ(d((1, x), (1, y)))
2d(T(1, x),T(1, y)) ≤ φ(d((1, x), (1, y)))

2d((0,
x
3

)(0,
y
3

)) ≤ φ(|1 − 1| + |x − y|)

2(|0 − 0| + |
x
3
−

y
3
|) ≤ φ(|x − y|),

2
1
3
|x − y| ≤

999
1000

|x − y|,

0.66|x − y| ≤ 0.99|x − y|.

Otherwise, α((1, x), (1, y)) = 0. That is

ϕ(d((1, x),T(1, x)) − 2d(A,B) ≤ α((1, x), (1, y)d((1, x), (1, y) = 0

implies
0 = α((1, x), (1, y))d(T(1, x),T(1, y)) ≤ φ(d((1, x), (1, y)).

Hance,
ϕ(d((1, x),T(1, x))) − 2d(A,B) ≤ α((1, x), (1, y)d((1, x), (1, y))

implies
α((1, x), (1, y))d(T(1, x),T(1, y)) ≤ φ(d((1, x), (1, y))).

Thus all the conditions of Theorem 3.2 are satisfied. Hence there exist a unique best proximity point z = (1, 0)
of T.

Best proximity point can also be obtained if we replace the condition of continuity of T in Theorem 3.2
by the following property:

H : If {xn} is a sequence in A such that α(xn, xn+1) ≥ 2 and xn → z ∈ A as n→∞ then α(xn, z) ≥ 2 ∀ n ∈ N.

Theorem 3.4. Suppose that A and B are two non-empty closed subsets of a complete metric space (X, d) with A0
is nonempty and let T : A → B with T(A0) ⊆ B0 be modified Suzuki-Edelstein α-proximal admissible mapping
with respect to η(x, y) ≥ 2, the pair (A,B) satisfies the weak P-property and the elements x0 and x1 in A0 with
d(x1,Tx0) = d(A,B) satisfies α(x0, x1) ≥ 2. Moreover propertyH holds. Then T has a unique best proximity point.

Proof. Following the proof of Theorem 3.2, we have a Cauchy sequence xn → z as n→ ∞. By propertyH ,
we have α(xn, z) ≥ 2 for all n ∈N. From (5)

d(xn+2, xn+1) ≤ φ(d(xn+1, xn))
< d(xn+1, xn)

implies

d(xn+2, xn+1) < d(xn+1, xn) (13)
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for all n ∈N. Also
1
2

d(xn, xn+1) ≥ ϕ(d(xn, xn+1))

> α(xn, z)d(xn, z)
≥ d(xn, z),

that is

1
2

d(xn, xn+1) > d(xn, z). (14)

Similarly,

1
2

d(xn+1, xn+2) > d(xn+1, z) (15)

for some n ∈N. Now

d(xn, xn+1) ≤ d(xn, z) + d(xn+1, z)

<
1
2

d(xn, xn+1) +
1
2

d(xn+1, xn)

<
1
2

d(xn, xn+1) +
1
2

d(xn, xn+1)

= d(xn, xn+1).

A contradiction. Thus for all n ∈N, either

ϕ(xn, xn+1) ≤ α(xn, z)d(xn, z)

or
ϕ(xn+1, xn+2) ≤ α(xn+1, z)d(xn+1, z)

holds. Hence by (1), we have

d(Txn,Tz) ≤ α(xn, z)d(Txn,Tz)
≤ φ(d(xn, z)) (16)

or

d(Txn+1,Tz) ≤ α(xn+1, z)d(Txn+,Tz)
≤ φ(d(xn+1, z)). (17)

Taking limit as n→∞ in (16) and (17), we get

Txn → Tz or Txn+1 → Tz.

Consequently, there exists a subsequence {xnk } of {xn} such that Txnk → Tz as xnk → z. Therefore,

d(A,B) = lim
k→∞

d(xnk+1 ,Txnk ) = d(z,Tz).

Uniqueness follows from Theorem 3.2.

Theorem 3.5. Suppose that A and B are two non empty closed subsets of a complete metric space (X, d) with A0 is
nonempty, a function δ : [0, 1)→ (0, 1

2 ] and for all x, y ∈ A a mapping T : A→ B be such that

δ(r)(ϕ(d(x,Tx)) − 2d(A,B)) ≤ d(x, y) ⇒ δ(r)d(Tx,Ty) ≤ φ(d(x, y)) (18)

where r ∈ [0, 1), ϕ ∈ Φϕ and φ ∈ Φ. Moreover, T(A0) ⊆ B0 and the pair (A,B) satisfies the weak P-property. Then T
has a unique best proximity point.
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Proof. For a fixed r ∈ [0, 1), define αr(x, y) = 1
δ(r) for all x, y ∈ A. Since 1

δ(r) ≥ 2 for all r ∈ [0, 1), then αr(x, y) ≥ 2
for all x, y ∈ A. Now since αr(x, y) is constant and αr(x, y) ≥ 2 for all x, y ∈ A, so T is an αr-proximal
admissible mapping with respect to η(x, y) = 2 and propertyH holds. Now if

ϕ(d(x,Tx)) − 2d(A,B) ≤ αr(x, y)d(x, y)

then

δ(r)(ϕ(d(x,Tx)) − 2d(A,B)) ≤ d(x, y),

so by (18) we have

δ(r)d(Tx,Ty) ≤ φ(d(x, y)).

Hence all the conditions of Theorem 3.4 holds and T has a unique best proximity point.

If we take φ(t) = kt, k ∈ [0, 1), in Theorem 3.5 we have the following:

Corollary 3.6. Suppose that A and B are two non empty closed subsets of a complete metric space (X, d) with A0 , φ,
a function δ : [0, 1)→ (0, 1

2 ] and for all x, y ∈ A a mapping T : A→ B be such that

δ(r)(ϕ(d(x,Tx)) − 2d(A,B)) ≤ d(x, y) ⇒ δ(r)d(Tx,Ty) ≤ kd(x, y), (19)

where r ∈ [0, 1), ϕ ∈ Φϕ. Moreover T(A0) ⊆ B0 and the pair (A,B) satisfies the weak P-property. Then T has a
unique best proximity point.

Corollary 3.7. Suppose that A and B are two non empty closed subsets of a complete metric space (X, d) with A0 , φ,
a non-increasing function θ : [0, 1)→ ( 1

2 , 1] defined by

θ(r) =


1 i f 0 ≤ (

√
5 − 1)/2,

(1 − r)r−2 i f (
√

5 − 1)/2 < r < 2−1/2,

(1 + r)−1 i f 2−1/2
≤ r < 1,

and for all x, y ∈ A a mapping T : A→ B be such that

1
2
θ(r)(ϕ(d(x,Tx)) − 2d(A,B)) ≤ d(x, y) ⇒

1
2
θ(r)d(Tx,Ty) ≤ kd(x, y) (20)

where r ∈ [0, 1), ϕ ∈ Φϕ. Moreover T(A0) ⊆ B0 and the pair (A,B) satisfies the weak P-property. Then T has a
unique best proximity point.

Proof. Take δ(r) = 1
2θ(r) in Corollary 3.6, we get the required result.

Corollary 3.8. Suppose that A and B are two non empty closed subsets of a complete metric space (X, d) with A0 , φ,
a non-increasing function β : [0, 1)→ ( 1

2 , 1] defined by

β(r) =
1

2(1 + r)

and for all x, y ∈ A a mapping T : A→ B be such that

β(r)(ϕ(d(x,Tx)) − 2d(A,B)) ≤ d(x, y) ⇒ β(r)d(Tx,Ty) ≤ kd(x, y) (21)

where r ∈ [0, 1), ϕ ∈ Φϕ. Moreover T(A0) ⊆ B0 and the pair (A,B) satisfies the weak P-property. Then T has a
unique best proximity point.
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Proof. Take δ(r) = 1
2(1+r) in Corollary 3.6, we get the required result.

Corollary 3.9. Suppose that A and B are two non empty closed subsets of a complete metric space (X, d) with A0 , φ
and for all x, y ∈ A a mapping T : A→ B be such that

1
2

(ϕ(d(x,Tx)) − 2d(A,B)) ≤ d(x, y) ⇒
1
2

rd(Tx,Ty) ≤ kd(x, y) (22)

where r ∈ [0, 1), ϕ ∈ Φϕ. Moreover T(A0) ⊆ B0 and the pair (A,B) satisfies the weak P-property. Then T has a
unique best proximity point.

Proof. Take δ(r) = 1
2 in Corollary 3.6, we get the required result.

4. Best Proximtiy Point Results in Partially Ordered Metric Spaces

Fixed point theorems for monotone operators in ordered metric spaces are widely investigated and have
found various applications in differential and integral equations (see [[5, 23]] and references therein). The
existence of best proximity and fixed point results in partially ordered metric spaces has been considered
recently by many authors [4, 16, 18, 24, 25]. The aim of this section is to deduce some best proximity and
fixed point results in the context of partially ordered metric spaces. Moreover, we obtain certain recent
fixed point results as corollaries in partially ordered metric spaces.

Definition 4.1. ([23]) A mapping T : A → B is said to be proximally order-preserving if and only if it
satisfies the condition 

x1 � x2,

d(u1,Tx1) = d(A,B),
d(u2,Tx2) = d(A,B).

⇒ u1 � u2,

for all x1, x2,u1,u2 ∈ A.

Clearly, if B = A, then the proximally order-preserving map T : A→ A reduces to a nondecreasing map.

Theorem 4.2. Let A and B be two non-empty closed subsets of a partially ordered complete metric space (X, d,�)
with A0 is nonempty, let T : A→ B with T(A0) ⊆ B0 is continuous proximally order preserving map, the pair (A,B)
satisfies the weak P-property and

1
2
ϕ(d(x,Tx)) − d(A,B) ≤ d(x, y)⇒

1
2

d(Tx,Ty) ≤ φ(d(x, y)) (23)

hold, where ϕ ∈ Φϕ and φ ∈ Φ. Moreover the elements x0 and x1 in A0 with d(x1,Tx0) = d(A,B) satisfies x0 � x1.
Then T has a unique best proximity point.

Proof. Define α : A × A→ [0,+∞) by

α(x, y) =

2, i f x � y,
0, otherwise.

Now we prove that T is an α-proximal admissible mapping with respect to η(x, y) = 2. For this, assume
α(x, y) ≥ 2,
d(u,Tx) = d(A,B),
d(v,Ty) = d(A,B),

so 
x � y,
d(u,Tx) = d(A,B),
d(v,Ty) = d(A,B).



A. Hussain et al. / Filomat 33:2 (2019), 435–447 445

Now, since T is proximally order-preserving, u � v. Thus, α(u, v) ≥ 2. Furthermore, by assumption that for
the comparable elements x0 and x1 in A0 with d(x1,Tx0) = d(A,B) satisfies α(x0, x1) ≥ 2. Finally, suppose that

ϕ(d(x,Tx)) − 2d(A,B) ≤ α(x, y)d(x, y).

Then for all comparable x, y ∈ A we have α(x, y) ≥ 2 and hence by (23), we have

α(x, y)d(Tx,Ty) ≤ φ(d(x, y)).

That is, T is a modified Suzuki-Edelstein α-proximal contraction. Thus all conditions of Theorem 3.2 hold
and T has a unique best proximity point.

H
′: If {xn} is a non-decreasing sequence in A such that xn → x ∈ A as n→∞ then xn � x for all n ∈N.

Theorem 4.3. Let A and B be two non-empty closed subsets of a partially ordered complete metric space (X, d,�)
with A0 , φ let T : A→ B with T(A0) ⊆ B0 is continuous proximally order preserving map, the pair (A,B) satisfies
the weak P-property and

1
2
ϕ(d(x,Tx)) − d(A,B) ≤ d(x, y)⇒

1
2

d(Tx,Ty) ≤ φ(d(x, y)) (24)

hold. Moreover the elements x0 and x1 in A0 with d(x1,Tx0) = d(A,B) satisfies x0 � x1 along with property H ′.
Then T has a unique best proximity point.

Proof. Following the definition of α : A × A→ [0,∞) as in the proof of Theorem 4.2, one can easily observe
that T is an α-proximal admissible mapping with respect to η(x, y) = 2 and is modified Suzuki-Edelstein
α-proximal contraction. Suppose that α(xn, xn+1) ≥ 2 such that xn → x as n → ∞, then xn � xn+1 for all
n ∈N. Hence by propertyH ′, we conclude xn � x and so α(xn, x) ≥ 1 for all n ∈N. Thus all the conditions
of Theorem 3.4 are satisfied and T has a unique best proximity point.

If we take φ(t) = kt in Theorem 4.2, we obtain the following result:

Corollary 4.4. Let A and B be two non-empty closed subsets of a partially ordered complete metric space (X, d,�)
with A0 is nonempty let T : A → B with T(A0) ⊆ B0 is continuous proximally order preserving map and the pair
(A,B) satisfies the weak P-property and

1
2
ϕ(d(x,Tx)) − d(A,B) ≤ d(x, y)⇒

1
2

d(Tx,Ty) ≤ kd(x, y) (25)

hold, where 0 ≤ k < 1 and ϕ ∈ Φϕ. Moreover the elements x0 and x1 in A0 with d(x1,Tx0) = d(A,B) satisfies x0 � x1.
Then T has a unique best proximity point.

5. Applications

As an application of our results, we deduce new fixed point results for Suzuki-Edelstien contraction in
the frame work of metric and partially ordered metric spaces.

If we take A = B = X in Theorem 3.2 and 3.4, we obtain the following fixed point results:

Theorem 5.1. Suppose that (X, d) is a complete metric space and let T : X→ X be continuous α-admissible mapping
with respect to η(x, y) = 2 such that

ϕ(d(x,Tx)) ≤ α(x, y)d(x, y) ⇒ α(x, y)d(Tx,Ty) ≤ φ(d(x, y))

for all x, y ∈ X, where ϕ ∈ Φϕ and φ ∈ Φ. Moreover, there exists element x0 ∈ X such that α(x0,Tx0) ≥ 2. Then T
has a unique fixed point.
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Theorem 5.2. Suppose that (X, d) is a complete metric space and let T : X→ X be continuous α-admissible mapping
with respect to η(x, y) = 2 such that

ϕ(d(x,Tx)) ≤ α(x, y)d(x, y) ⇒ α(x, y)d(Tx,Ty) ≤ φ(d(x, y))

for all x, y ∈ X, where ϕ ∈ Φϕ and φ ∈ Φ. Moreover, there exists element x0 ∈ X such that α(x0,Tx0) ≥ 2 along with
propertyH . Then T has a unique fixed point.

If φ(t) = kt in Theorem 5.1 and 5.2, where 0 ≤ k < 1, we get the following result:

Theorem 5.3. Suppose that (X, d) is a complete metric space and let T : X → X be α-admissible mapping with
respect to η(x, y) = 2 such that

ϕ(d(x,Tx)) ≤ α(x, y)d(x, y) ⇒ α(x, y)d(Tx,Ty) ≤ kd(x, y)

for all x, y ∈ X, where ϕ ∈ Φϕ. Moreover, there exists element x0 ∈ X such that α(x0,Tx0) ≥ 2 and either T is
continuous or propertyH holds. Then T has a unique fixed point.

If we take A = B = X in Theorem 4.2 and 4.3, we obtain the following fixed point results of [33] in
complete partially ordered metric spaces:

Theorem 5.4. Let (X, d,�) be partially ordered complete metric space, T : X → X be continuous non-decreasing
satisfying

1
2
ϕ(d(x,Tx)) − d(A,B) ≤ d(x, y)⇒

1
2

d(Tx,Ty) ≤ φ(d(x, y)) (26)

for all comparable x, y ∈ X with x � y where ϕ ∈ Φϕ and φ ∈ Φ. Moreover, there exist an elements x0 ∈ X such that
x0 � Tx0. Then T has a unique fixed point.

Theorem 5.5. Let (X, d,�) be partially ordered complete metric space, T : X→ X be non-decreasing satisfying

1
2
ϕ(d(x,Tx)) − d(A,B) ≤ d(x, y)⇒

1
2

d(Tx,Ty) ≤ φ(d(x, y)) (27)

for all comparable x, y ∈ X with x � y where ϕ ∈ Φϕ and φ ∈ Φ. Moreover, there exist an elements x0 ∈ X such that
x0 � Tx0 along with propertyH ′. Then T has a unique fixed point.

If φ(t) = kt in Theorem 5.4 and 5.5, where 0 ≤ k < 1, we get the following result:

Theorem 5.6. Let (X, d,�) be partially ordered complete metric space, T : X→ X be non-decreasing satisfying

1
2
ϕ(d(x,Tx)) − d(A,B) ≤ d(x, y)⇒

1
2

d(Tx,Ty) ≤ kd(x, y)

for all comparable x, y ∈ X with x � y where ϕ ∈ Φϕ. Moreover, there exist an elements x0 ∈ X such that x0 � Tx0
and either T is continuous or propertyH ′ holds. Then T has a unique fixed point.
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