Suborbital Graphs for a Non-Transitive Action of the Normalizer

Murat Beşenk ${ }^{\text {a }}$, Bahadır Özgür Güler ${ }^{\text {b }}$, Abdurrahman Büyükkaya ${ }^{\text {b }}$
${ }^{a}$ Pamukkale University, Faculty of Arts and Sciences, Department of Mathematics, 20070, Denizli, Turkey
${ }^{b}$ Karadeniz Technical University, Faculty of Science, Department of Mathematics, 61080, Trabzon, Turkey

Abstract

In this paper, we investigate a suborbital graph for the normalizer of $\Gamma_{0}(n)$ in $\operatorname{PSL}(2, \mathbb{R})$, where n will be of the form $3^{2} p^{2}, p$ is a prime and $p>3$. Then we give edge and circuit conditions on graphs arising from the non-transitive action of the normalizer.

1. Introduction

1.1. Triangle Groups

A triangle group is denoted by (l, m, n) where l, m, n are positive integers or ∞ and has the presentation

$$
\left\{x, y, z \mid x^{l}=y^{m}=z^{n}=x y z=1\right\}
$$

under the convention that if any of l, m, n is ∞ we ignore the corresponding relation.
For a geometric interpretation of the triangle group (l, m, n) we consider a triangle T with angles $\frac{\pi}{l}, \frac{\pi}{m}, \frac{\pi}{n}$ in a space X, where X is either the sphere, or the Euclidean plane, or the hyperbolic plane. Then, the group generated by the reflections of X in the sides of T has a subgroup of index 2 , consisting of orientation preserving transformation, isomorphic to (l, m, n).The integers l, m, n determine completely the space X, namely X is

$$
\begin{aligned}
& \text { the sphere if and only if } \frac{\pi}{l}+\frac{\pi}{m}+\frac{\pi}{n}>1 \\
& \text { the Euclidean plane if and only if } \frac{\pi}{l}+\frac{\pi}{m}+\frac{\pi}{n}=1 \\
& \text { the hyperbolic plane if and only if } \frac{\pi}{l}+\frac{\pi}{m}+\frac{\pi}{n}<1
\end{aligned}
$$

One of the most interesting, and definitely the most thoroughly studied, triangle groups in the literature is the modular group Γ defined as

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

[^0](see [9, 17] for more detailed). Seeing Γ as a triangle group we get the isomorphism $\Gamma \simeq(2,3, \infty)$. The cusp set of $\hat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$, and of course Γ acts on it by
\[

g=\left($$
\begin{array}{ll}
a & b \\
c & d
\end{array}
$$\right): \frac{x}{y} \rightarrow \frac{a x+b y}{c x+d y}
\]

under the usual convention to write ∞ as a fraction with denominator 0 .

1.2. The Normalizer

$\Gamma_{0}(n)=\{g \in \Gamma: c \equiv 0(\bmod n)\}$ is a well known congruence subgroup of the classical modular group Γ. The normalizer turns to be a very important group in the study of moonshine and for this reason has been studied by many authors $[5,6,13]$. It consists exactly of the matrices

$$
\left(\begin{array}{cc}
a e & b / h \\
c n / h & d e
\end{array}\right), a d e^{2}-b c n / h^{2}=e
$$

where $e \| \frac{n}{h^{2}}$ and h is the largest divisor of 24 for which $h^{2} \mid n$ with understandings that the determinant e of the matrix is positive, and that $r \| s$ means that $r \mid s$ and $(r, s / r)=1$ (r is called an exact divisor of s).

In some ways triangle groups are the simplest Fuchsian groups, in [5] it is shown that maps (tessellations of orientable surfaces) can be parametrized by subgroups of Fuchsian groups containing a period 2 and that the regular maps correspond to normal subgroups. For these reasons, the authors found all values for which $\operatorname{Nor}(n)$ is a triangle group as follows.

Lemma 1.1. ([2]) $\operatorname{Nor}(n)$ is a triangle group for precisely 26 values of n.
If $n=1,2^{2}, 2^{4}, 2^{6}, 3^{2}, 2^{2} .3^{2}, 2^{4} .3^{2}, 2^{6} \cdot 3^{2}$, then $\operatorname{Nor}(n)$ has signature $(2,3, \infty)$.
If $n=2,2^{3}, 2^{5}, 2^{7}, 2.3^{2}, 2^{3} \cdot 3^{2}, 2^{5} \cdot 3^{2}, 2^{7} \cdot 3^{2}$, then $\operatorname{Nor}(n)$ has signature $(2,4, \infty)$.
If $n=3,2^{2} \cdot 3,2^{4} \cdot 3,2^{6} \cdot 3,3^{3}, 2^{2} \cdot 3^{3}, 2^{4} \cdot 3^{3}, 2^{6} \cdot 3^{3}$, then $\operatorname{Nor}(n)$ has signature $(2,6, \infty)$.

1.3. Motivation

The modular group acts transitively on $\hat{\mathbb{Q}}$ and in a paper of Jones, Singerman, Wicks, the suborbital graphs were studied and the most basic one turn out to be the well-known Farey graph [9].

Suborbital graphs of the normalizer were studied by same idea. All circuits in the suborbital graph were found when n is a square-free positive integer $[11,12]$ and when n satisfies the condition of transitive action [12]. Then, non-transitive cases have been examined to reach the general statement [7,10]. Our intuitive conclusion obtained from all these studies is that the general case is related the cases which $\operatorname{Nor}(n)$ is a triangle group. The transitive action is automatically provided for n values, which $\operatorname{Nor}(n)$ is also a triangle group. In this case, circuits in graphs are given in [12]. In non-transitive cases, if the decomposition of n contains n values which provide normalizer to be triangle group, there would be a circuit in the graphs. If not, graphs would be a forest. In the way of verification of this hypothesis, taking one of those values, we examine the combinatorial properties of $\operatorname{Nor}(n)$.

2. Main Results

Throughout the paper, n will be of the from $3^{2} p^{2}$, where p is a prime and $p>3$. In this case, since $h=2^{\min \{3,[\alpha / 2]\}} 3^{\min \{1,[\beta / 2]\}}, h$ is equal to 3 for $n=2^{\alpha} 3^{\beta} p_{3}^{\alpha_{3}} \cdots p_{r}^{\alpha_{r}}$. As $e \| \frac{n}{h^{2}}, e$ must be 1, p^{2}. Hence, $\operatorname{Nor}\left(3^{2} p^{2}\right)$ consists of the following two types of the element:

$$
T_{1}=\left(\begin{array}{cc}
a & b / 3 \\
3 p^{2} c & d
\end{array}\right): a d-b c p^{2}=1, T_{2}=\left(\begin{array}{cc}
a p^{2} & b / 3 \\
3 p^{2} c & d p^{2}
\end{array}\right): a d p^{2}-b c=1
$$

2.1. Transitive Action

Lemma 2.1. ([2]) Let n have the prime power decomposition as $2^{\alpha_{1}} \cdot 3^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \cdots p_{r}^{\alpha_{r}}$. Then Nor (n) acts transitively on $\hat{\mathbb{Q}}$ if and only if $\alpha_{1} \leq 7, \alpha_{2} \leq 3$ and $\alpha_{i} \leq 1$ for $i=3, \ldots, r$.

Hence, the following theorem holds.
Theorem 2.2. $\operatorname{Nor}\left(3^{2} p^{2}\right)$ is not transitive on $\hat{\mathbb{Q}}$.
Therefore, we will find a maximal subset of $\hat{\mathbb{Q}}$ on which $\operatorname{Nor}\left(3^{2} p^{2}\right)$ acts transitively. For this,
Lemma 2.3. ([7]) Let $d \mid n$. Then the orbit $\binom{a}{d}$ of a / d with $(a, d)=1$ under $\Gamma_{0}(n)$ is the set $\left\{x / y \in \hat{\mathbb{Q}}:(n, y)=d, a \equiv x \frac{y}{d}(\bmod (d, n / d))\right\}$. Furthermore the number of orbits $\binom{a}{d}$ with $d \mid n$ under $\Gamma_{0}(n)$ is just $\varphi(d, N / d)$ where $\varphi(n)$ is Euler's totient function which is the number of positive integers less than or equal to n that are coprime to n.

In the view of the above theorem, we can give the following
Theorem 2.4. The orbits of $\Gamma_{0}\left(3^{2} p^{2}\right)$ on $\hat{\mathbb{Q}}$ are as follows;

$$
\begin{gathered}
\binom{1}{1} ;\binom{1}{3},\binom{2}{3} ;\binom{1}{3^{2}} ;\binom{1}{p^{2}} ;\binom{1}{3 p^{2}},\binom{2}{3 p^{2}} ;\binom{1}{3^{2} p^{2}} ;\binom{1}{p},\binom{2}{p} \ldots\binom{p-1}{p} ; \\
\binom{1}{3 p},\binom{p+2}{3 p}, \ldots\binom{2 p-1}{3 p} ;\binom{1}{3^{2} p},\binom{p+2}{3^{2} p}, \ldots\binom{2 p-1}{3^{2} p} .
\end{gathered}
$$

Proof. Let us denote the representatives of the orbits by $\binom{a}{d}$. The possible values of d are $1,3,3^{2}, p, 3 p, 3^{2} p, p^{2}$, $3 p^{2}, 3^{2} p^{2}$ by Lemma 2.3. Hence, the number of non-conjugate classes of these orbits with Euler formula are $1 ; 2 ; p-1$ and $2(p-1)$ for $1,3^{2}, p^{2}, 3^{2} p^{2} ; 3,3 p^{2} ; p, 3^{2} p$ and $3 p$ respectively. Consequently, the number of orbits of $\Gamma_{0}\left(3^{2} p^{2}\right)$ on $\hat{\mathbb{Q}}$ is $4 p+4$.

Theorem 2.5. The set $\hat{\mathbb{Q}}\left(3^{2} p^{2}\right):=\binom{1}{1} \cup\binom{1}{3} \cup\binom{2}{3} \cup\binom{1}{3^{2}} \cup\binom{1}{p^{2}} \cup\binom{1}{3 p^{2}} \cup\binom{2}{3 p^{2}} \cup\binom{1}{3^{2} p^{2}}$, is a maximal orbit of $\operatorname{Nor}\left(3^{2} p^{2}\right)$ on $\hat{\mathbb{Q}}$.

Proof. Let us consider the orbit $\binom{1}{1}$ under the action of the elements of $\operatorname{Nor}\left(3^{2} p^{2}\right)$. For the element T_{1}, taking into account $\operatorname{det}\left(T_{1}\right)$, we suppose that a, d-odd, one of b and c is even. Hence,
(i) If $3 \nVdash d$; then $T_{1}\binom{1}{1}=\binom{3 a+b}{3\left(3 p^{2} c+d\right)}=\binom{1}{3}$
(ii) If $3 \nVdash d$ and $3 a+b$-even; then $T_{1}\binom{1}{1}=\binom{2 a_{0}}{3\left(3 p^{2} c+d\right)}=\binom{2}{3}$.
(iii) If $3 \| d$; then $T_{1}\binom{1}{1}=\binom{3 a+b}{3^{2}\left(p^{2} c+d_{0}\right)}=\binom{1}{3^{2}}$.

For the element T_{2}, taking into account $\operatorname{det}\left(T_{2}\right)$, we suppose that a, d-odd, one of b and c is even. Hence,
(iv) If $3 \nVdash d$; then $T_{2}\binom{1}{1}=\binom{3 a p^{2}+b}{3 p^{2}(3 c+d)}=\binom{1}{3 p^{2}}$.
(v) If $3 \nVdash d$ and $3 a p^{2}+b$-even; then $T_{2}\binom{1}{1}=\binom{2 a_{0}}{3 p^{2}(3 c+d)}=\binom{2}{3 p^{2}}$.
(vi) If $3 \| d$; then $T_{2}\binom{1}{1}=\binom{3 a p^{2}+b}{3^{2} p^{2}\left(c+d_{0}\right)}=\binom{1}{3^{2} p^{2}}$.

Lastly, we suppose that a, d-even and b, c-odd for the element T_{2}.
(vii) If $3 \| b$; then $T_{2}\binom{1}{1}=\binom{a p^{2}+b_{0}}{p^{2}(3 c+d)}=\binom{1}{p^{2}}$.

Consequently, $\left(\operatorname{Nor}\left(3^{2} p^{2}\right), \hat{\mathbb{Q}}\left(3^{2} p^{2}\right)\right)$ is a transitive permutation group. We now consider the imprimitivity of the action of $\operatorname{Nor}\left(3^{2} p^{2}\right)$ on $\hat{\mathbb{Q}}\left(3^{2} p^{2}\right)$.

2.2. Imprimitive Action

Lemma 2.6. ([4]) Let (G, Δ) be a transitive permutation group. (G, Δ) is primitive if and only if G_{α}, the stabilizer of $\alpha \in \Delta$, is a maximal subgroup of G for each $\alpha \in \Delta$.

From the above lemma we see that whenever, for some $\alpha, G_{\alpha} \leq H \leq G$, then Ω admits some G-invariant equivalence relation other than the trivial cases. Because of the transitivity, every element of Ω has the form $g(\alpha)$ for some $g \in G$. Thus one of the non-trivial G-invariant equivalence relation on Ω is given as follows:

$$
g(\alpha) \approx g^{\prime}(\alpha) \text { if and only if } g^{\prime} \in g H
$$

The number of blocks (equivalence classes) is the index $|G: H|$ and the block containing α is just the orbit $H(\alpha)$.

We can apply these ideas to the case where G is the $\operatorname{Nor}\left(3^{2} p^{2}\right)$ and Δ is $\hat{\mathbb{Q}}\left(3^{2} p^{2}\right)$ which is the orbit in Theorem 2.5, G_{α} is the stabilizer of ∞ in $\hat{\mathbb{Q}}\left(3^{2} p^{2}\right)$; that is, $\operatorname{Nor}\left(3^{2} p^{2}\right)_{\infty}=\left\langle\left(\begin{array}{cc}1 & 1 / 3 \\ 0 & 1\end{array}\right)\right\rangle$, and H is $H_{0}:=\left\langle\Gamma_{0}\left(3^{2} p^{2}\right), A, B\right\rangle$ where

$$
A=\left(\begin{array}{cc}
a p & b / 3 p \\
3 p c & d p
\end{array}\right) \text { and } B:=\left(\begin{array}{cc}
a p & b / p \\
3^{2} p c & d p
\end{array}\right) .
$$

Clearly, the relation $\operatorname{Nor}\left(3^{2} p^{2}\right)_{\infty}<H_{0}<\operatorname{Nor}\left(3^{2} p^{2}\right)$ produce an imprimitive action as desired.

2.3. Block Design

Lemma 2.7. ([1]) The index $\left|\operatorname{Nor}(n): \Gamma_{0}(n)\right|=2^{\rho} h^{2} \tau$,
where ρ is the number of prime factors of $n / h^{2}, \tau=\left(\frac{3}{2}\right)^{\varepsilon_{1}}\left(\frac{4}{3}\right)^{\varepsilon_{2}}$,

$$
\varepsilon_{1}=\left\{\begin{array}{ll}
1 & \text { if } 2^{2}, 2^{4}, 2^{6} \| n \\
0 & \text { otherwise }
\end{array}, \quad \varepsilon_{2}= \begin{cases}1 & \text { if } 9 \| n \\
0 & \text { otherwise }\end{cases}\right.
$$

Using Lemma 2.7, we get following easily:
Theorem 2.8. There are only two blocks which are [∞] and [0]. These are as following:

$$
[0]:=\binom{1}{1} \cup\binom{1}{3} \cup\binom{2}{3} \cup\binom{1}{3^{2}} \text { and }[\infty]:=\binom{1}{p^{2}} \cup\binom{1}{3 p^{2}} \cup\binom{2}{3 p^{2}} \cup\binom{1}{3^{2} p^{2}}
$$

Proof. First, let us calculate the index $\left|\operatorname{Nor}\left(3^{2} p^{2}\right): \Gamma_{0}\left(3^{2} p^{2}\right)\right|$ using Lemma 2.7. Since $h=3$, we have $\rho=1$. As $3^{2} \| 3^{2} p^{2}$, then $\varepsilon_{1}=0, \varepsilon_{2}=1$. Hence, it can be concluded that $\left|\operatorname{Nor}\left(3^{2} p^{2}\right): \Gamma_{0}\left(3^{2} p^{2}\right)\right|=2.3^{2} \cdot \frac{4}{3}=24$.

Second, we calculate the index $\left|H_{0}: \Gamma_{0}\left(3^{2} p^{2}\right)\right|$ using [1]. It is known that $A^{6} \in \Gamma_{0}\left(3^{2} p^{2}\right) \Leftrightarrow a+d \neq 3 k(k \in \mathbb{Z})$ and that $B^{2} \in \Gamma_{0}\left(3^{2} p^{2}\right)$. Hence, we have that

$$
\left\{I, A, A^{2}, A^{3}, A^{4}, A^{5}\right\} \times\{I, B\}=\left\{I, B, A, \ldots, A B, \ldots, A^{5} B\right\}
$$

as cosets. So, we obtain that $\left|H_{0}: \Gamma_{0}\left(3^{2} p^{2}\right)\right|=12$. Using the equation
$\left|\operatorname{Nor}\left(3^{2} p^{2}\right): \Gamma_{0}\left(3^{2} p^{2}\right)\right|=\left|\operatorname{Nor}\left(3^{2} p^{2}\right): H_{0}\right| \cdot\left|H_{0}: \Gamma_{0}\left(3^{2} p^{2}\right)\right|$, we have that $\left|\operatorname{Nor}\left(3^{2} p^{2}\right): H_{0}\right|=2$ and that

$$
\operatorname{Nor}\left(3^{2} p^{2}\right)=H_{0} \cup\left(\begin{array}{cc}
a & b / 3 \\
3 p^{2} c & d
\end{array}\right) H_{0} .
$$

As we observed in Theorem 2.8, the orbit $\hat{\mathbb{Q}}\left(3^{2} p^{2}\right)$ is divided into two blocks as the statement of the theorem taking into account orbit $\binom{1}{1}$ under the action of elements of H_{0}.

2.4. Suborbital Graphs

In [16], Sims introduced the idea of the suborbital graphs of a permutation group G acting on a set Δ, these are graphs with vertex-set Δ, on which G induces automorphisms. We summarize Sims'theory as follows: Let (G, Δ) be transitive permutation group. Then G acts on $\Delta \times \Delta$ by $g(\alpha, \beta)=(g(\alpha), g(\beta))$ for $g \in G$ and $\alpha, \beta \in \Delta$. The orbits of this action are called suborbitals of G. The orbit containing (α, β) is denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of Δ, and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$. A directed edge from γ to δ is denoted by $(\gamma \rightarrow \delta)$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $(\gamma \rightarrow \delta)$ in $G(\alpha, \beta)$ and represent them as hyperbolic geodesics in the upper half plane $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.

If $\alpha=\beta$, the corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is self-paired: it consists of a loop based at each vertex $\alpha \in \Delta$. By a circuit of length m (or a closed edge path), we mean a sequence $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{m} \rightarrow v_{1}$ such that $v_{i} \neq v_{j}$ for $i \neq j$, where $m \geq 3$. If $m=3$ or 4 then the circuit is called a triangle or rectangle.

In this study, G and Δ will be the normalizer of $\Gamma_{0}(N)$ in $\operatorname{PSL}(2, \mathbb{R})$ and the extended rational $\hat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$, respectively. Since rational numbers are well ordered, we also used the notations $\gamma \xrightarrow{>} \delta$ or $\gamma \xrightarrow{<} \delta$ according to the order of vertices.
$\operatorname{Nor}\left(3^{2} p^{2}\right)$ acts transitively on $\hat{\mathbb{Q}}\left(3^{2} p^{2}\right)$, every suborbital $O(\alpha, \beta)$ contains a pair $\left(\infty, u / p^{2}\right)$ for $u / p^{2} \in \hat{\mathbb{Q}}\left(3^{2} p^{2}\right)$. As $\operatorname{Nor}\left(3^{2} p^{2}\right)$ permutes the blocks transitively, all subgraphs corresponding to blocks are isomorphic. Therefore we will only consider the subgraph $F\left(\infty, u / p^{2}\right)$ of $G\left(\infty, u / p^{2}\right)$ whose vertices form the block [∞].
Theorem 2.9. (Edge condition) Let r / s and x / y be in the block $[\infty]$. Then there is an edge $r / s \rightarrow x / y$ in $F\left(\infty, u / p^{2}\right)$ if and only if
(i) If $3^{2} p^{2} \| s$, then $x \equiv \pm u r\left(\bmod p^{2}\right), y \equiv \pm u s\left(\bmod p^{2}\right), r y-s x= \pm p^{2}$
(ii) If $3 p^{2} \| s$, then $x \equiv \pm 3 u r\left(\bmod p^{2}\right), y \equiv \pm 3 u s\left(\bmod p^{2}\right), r y-s x= \pm 3 p^{2}$
(iii) If $p^{2} \| s$, then $x \equiv \pm 9 u r\left(\bmod p^{2}\right), y \equiv \pm 9 u s\left(\bmod p^{2}\right), r y-s x= \pm p^{2}$,
(Plus and minus sign correspond to $r / s>x / y$ and $r / s<x / y$, respectively).
Proof. Assume first that $r / s \xrightarrow{>} x / y$ is an edge in $F\left(\infty, u / p^{2}\right)$. It means that there exists some T in the normalizer $\operatorname{Nor}\left(3^{2} p^{2}\right)$ such that T sends the pair $\left(\infty, u / p^{2}\right)$ to the pair $(r / s, x / y)$, that is $T(\infty)=r / s$ and $T\left(u / p^{2}\right)=x / y$.

Case 1. If $3^{2} p^{2} \| s$, taking into account that $T=\left(\begin{array}{cc}a & b / 3 \\ 3 p^{2} c & d\end{array}\right)$, suppose that $3 \nVdash a$ and $3 \| b, c$ by the equation $a d-b c p^{2}=1 . T(\infty)=\frac{a}{3^{2} p^{2} c}=\frac{r}{s}$ gives that $r=a$ and $s=3^{2} p^{2} c_{0} . T\left(u / p^{2}\right)=\frac{a u+b_{0} p^{2}}{3^{2} p^{2} c_{0} u+d p^{2}}=\frac{x}{y}$ gives that $x \equiv u r\left(\bmod p^{2}\right), y \equiv u s\left(\bmod p^{2}\right)$. Furthermore, we get $r y-s x=p^{2}$ from the equation

$$
\left(\begin{array}{cc}
a & b / 3 \\
3 p^{2} c & d
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
0 & p^{2}
\end{array}\right)=\left(\begin{array}{cc}
a & a u+b p^{2} / 3 \\
3 p^{2} c & 3 p^{2} c u+d p^{2}
\end{array}\right)=\left(\begin{array}{ll}
r & s \\
x & y
\end{array}\right) .
$$

Case 2. If $3 p^{2} \| s$, taking into account that $T=\left(\begin{array}{cc}a & b / 3 \\ 3 p^{2} c & d\end{array}\right)$, suppose that $3 \sharp a, b, c$ by the equation $a d-b c p^{2}=1 . T(\infty)=\frac{a}{3^{2} p^{2} c}=\frac{r}{s}$ gives that $r=a$ and $s=3 p^{2} c . T\left(u / p^{2}\right)=\frac{a u+b p^{2} / 3}{3 p^{2} c u+d p^{2}}=\frac{3 a u+b p^{2}}{3^{2} p^{2} c u+3 d p^{2}}=\frac{x}{y}$ gives that $x \equiv 3 u r\left(\bmod p^{2}\right), y \equiv 3 u s\left(\bmod p^{2}\right)$. Furthermore, we get $r y-s x=3 p^{2}$ from the equation

$$
\left(\begin{array}{cc}
a & b / 3 \\
3 p^{2} c & d
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
0 & p^{2}
\end{array}\right)=\left(\begin{array}{cc}
a & a u+b p^{2} / 3 \\
3 p^{2} c & 3 p^{2} c u+d p^{2}
\end{array}\right)=\left(\begin{array}{cc}
r & x \\
s & y
\end{array}\right) .
$$

Case 3. If $p^{2} \| s$, taking into account that $T=\left(\begin{array}{cc}a & b / 3 \\ 3 p^{2} c & d\end{array}\right)$, suppose that $3 \| a$ and $3 \nVdash b, c$ by the equation $a d-b c p^{2}=1 . T(\infty)=\frac{a}{3 p^{2} c}=\frac{r}{s}$ gives that $r=a_{0}$ and $s=p^{2} c . T\left(u / p^{2}\right)=\frac{a u+b p^{2} / 3}{3 p^{2} c u+d p^{2}}=\frac{9 a_{0} u+b p^{2}}{9 p^{2} c u+3 d p^{2}}=\frac{x}{y}$ gives that $x \equiv 9 u r\left(\bmod p^{2}\right), y \equiv 9 u s\left(\bmod p^{2}\right)$. Furthermore, we get $r y-s x=p^{2}$ from the equation

$$
\left(\begin{array}{cc}
a & b / 3 \\
3 p^{2} c & d
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
0 & p^{2}
\end{array}\right)=\left(\begin{array}{cc}
a & a u+b p^{2} / 3 \\
3 p^{2} c & 3 p^{2} c u+d p^{2}
\end{array}\right)=\left(\begin{array}{ll}
r & x \\
s & y
\end{array}\right) .
$$

For the opposite direction, we assume that $3^{2} p^{2} \| s$ and $x \equiv u r\left(\bmod p^{2}\right), y \equiv u s\left(\bmod p^{2}\right), r y-s x=p^{2}$. In this case, there exist $b, d \in \mathbb{Z}$ such that $x=u r+b p^{2}$ and $y=u s+d p^{2}$. If we put these equivalences in $r y-s x=p^{2}$, we obtain $r d-b s=1$. So the element $T_{0}=\left(\begin{array}{ll}r & b \\ s & d\end{array}\right)$ is clearly in H_{0}. For minus sign and another conditions, similar calculations are done.

2.5. Circuit Condition

It is known that a graph which contains no circuit is called a forest. In introduction part, we also mentioned that the trivial suborbital graphs are self-paired ones. In this section, we will be mainly interested in the remaining non-trivial suborbital graphs.

Theorem 2.10. Let $F\left(\infty, u / p^{2}\right)$ contains a triangle if and only if $9 u^{2} \pm 3 u+1 \equiv 0\left(\bmod p^{2}\right)$.
Proof. We suppose that there is a triangle such as $\frac{k}{l} \rightarrow \frac{m}{n} \rightarrow \frac{x}{y} \rightarrow \frac{k}{l}$ in $F\left(\infty, u / p^{2}\right)$. Since H_{0} permutes the vertices transitively, we may suppose that the triangle has the form $\frac{1}{0} \rightarrow \frac{r_{0}}{s_{0} p^{2}} \rightarrow \frac{x_{0}}{y_{0} p^{2}} \rightarrow \frac{1}{0}$. Furthermore, without loss of generality, suppose $\frac{r_{0}}{s_{0} p^{2}}<\frac{x_{0}}{y_{0} p^{2}}$. From Theorem 2.9.(i), we have that $r_{0} \equiv u\left(\bmod p^{2}\right)$ and $s_{0}=1$ from the first edge. Hence, we get the second vertex as $\frac{u}{p^{2}}$. Applying to Theorem 2.9.(iv) to second edge, we obtain that $x_{0} \equiv-9 u^{2}\left(\bmod p^{2}\right)$ and $u y_{0}-x_{0}=-1$. Taking into account $x_{0}=u y_{0}+1$,

Case 1. If $y_{0}=1$, then second edge will be of the form $\frac{u}{p^{2}} \rightarrow \frac{u+1}{p^{2}}$. By Theorem 2.9, we have that $u+1 \equiv-9 u^{2}\left(\bmod p^{2}\right)$ and $9 u^{2}+9 u+1 \equiv 0\left(\bmod p^{2}\right)$ from second and third edge, respectively. These equivalences gives a contradiction as $u \equiv 0\left(\bmod p^{2}\right)$.

Case 2. If $y_{0}=2$, then second edge will be of the form $\frac{u}{p^{2}} \rightarrow \frac{2 u+1}{2 p^{2}}$. In this case, the third edge $\frac{2 u+1}{2 p^{2}} \rightarrow \frac{1}{0}$ contradict to Theorem 2.9.

Case 3. If $y_{0}=3$, then second edge will be of the form $\frac{u}{p^{2}} \rightarrow \frac{3 u+1}{3 p^{2}}$. In this case, we have that $x_{0} \equiv-9 u^{2}$ $\left(\bmod p^{2}\right)$ and $9 u^{2}+3 u+1 \equiv 0\left(\bmod p^{2}\right)$ by Theorem 2.9.

If the inequalities $\frac{r_{0}}{s_{0} p^{2}}>\frac{x_{0}}{y_{0} p^{2}}$ hold then we conclude that $9 u^{2}-3 u+1 \equiv 0\left(\bmod p^{2}\right)$.
For the opposite direction, we assume that $9 u^{2} \pm 3 u+1 \equiv 0\left(\bmod p^{2}\right)$. Using Theorem 2.9 , it is clear that $\frac{1}{0} \rightarrow \frac{u}{p^{2}} \rightarrow \frac{3 u \pm 1}{3 p^{2}} \rightarrow \frac{1}{0}$ is a triangle in $F\left(\infty, u / p^{2}\right)$.

Example 2.11. We can use easy number-theoretical techniques to calculate which suborbital graphs contains a triangle. Suppose that p is equal to 13 . Since $9 u^{2}+3 u+1 \equiv 0\left(\bmod 13^{2}\right)$, then $9 u^{2}+3 u+1 \equiv 0(\bmod 13)$, giving $u=1+13 k$ such that $k \in \mathbb{Z}$. Hence, we have $9(1+13 k)^{2}+3(1+13 k)+1 \equiv 0(\bmod 169)$, then $1521 k^{2}+273 k+13 \equiv 0(\bmod 169)$. As $117 k^{2}+21 k+1 \equiv 0(\bmod 13)$, we obtain $k=8$ and $u=105$. Since $9(105)^{2}+3(105)+1 \equiv 0(\bmod 169), F(\infty, 105 / 169)$ contains a triangle like as in $F(\infty, 6 / 49)$ for $p=7$.

3. Conclusion

We know that every prime $p \neq 3$ has the form $3 q+1$ or $3 q+2$ for some integer q. We suppose that $p \equiv 2$ $(\bmod 3)$. In this case $9 u^{2}+3 u+1=2+3 t$ for some $t \in \mathbb{Z}$. This equation gives a contradiction that $3 \mid 1$. As a consequence,

Corollary 3.1. The prime divisors p of $9 u^{2} \pm 3 u+1$, for any $u \in \mathbb{Z}$, are of the form $p \equiv 1(\bmod 3)$.
Corollary 3.2. Let $k / l \rightarrow m / n \rightarrow x / y \rightarrow k / l$ be a triangle in $F\left(\infty, u / p^{2}\right)$. There exists an unique elliptic element Ψ in H_{0} of order 3 such that $\Psi(k / l)=m / n, \Psi(m / n)=x / y, \Psi(x / y)=k / l$.

Proof. Because of the transitive action, there exists an element Ψ in H_{0} maps the triangle $\frac{k}{l} \rightarrow \frac{m}{n} \rightarrow \frac{x}{y} \rightarrow \frac{k}{l}$ to the ideal triangle $\frac{1}{0} \rightarrow \frac{u}{p^{2}} \rightarrow \frac{3 u \pm 1}{3 p^{2}} \rightarrow \frac{1}{0}$ as follows

$$
\Psi\binom{1}{0}=\binom{u}{p^{2}}, \Psi\binom{u}{p^{2}}=\binom{3 u \pm 1}{3 p^{2}}, \Psi\binom{3 u \pm 1}{3 p^{2}}=\binom{1}{0} .
$$

By Theorem 2.10, this means that $9 u^{2} \pm 3 u+1 \equiv 0\left(\bmod p^{2}\right)$. Hence,

$$
\Psi:=\left(\begin{array}{cc}
-3^{2} u & \left(9 u^{2} \pm 3 u+1\right) / p^{2} \\
-3^{2} p^{2} & 3^{2} u+3
\end{array}\right)
$$

is an elliptic element in H_{0} of order 3 and satisfies the desired conditions. Uniqueness is obvious.
Proof of Corollary 3.1. Let u be any integer and p a prime divisor of $9 u^{2} \pm 3 u+1$. Then, without any difficulty, it can be easily seen that the normalizer $\operatorname{Nor}\left(3^{2} p\right)$, like $\operatorname{Nor}\left(3^{2} p^{2}\right)$, has the elliptic element $\Psi:=$ $\left(\begin{array}{cc}-3^{2} u & \left(9 u^{2} \pm 3 u+1\right) / p \\ -3^{2} p & 3^{2} u+3\end{array}\right)$ of order 3. From [2], we get that $p \equiv 1(\bmod 3)$.

Acknowledgements

Thanks to Professor Mehmet Akbaş for his constant support and valuable suggestions.

References

[1] M. Akbaş, D. Singerman, The normalizer of $\Gamma_{0}(N)$ in $\operatorname{PSL}(2, \mathbb{R})$, Glasgow Math. J. 32 (1990) 317-327.
[2] M. Akbaş, D. Singerman, The signature of the normalizer of $\Gamma_{0}(N)$, London Math. Soc. Lecture Note Ser. 165 (1992) 77-86.
[3] M. Akbaş, T. Başkan, Suborbital graphs for the normalizer of $\Gamma_{0}(N)$, Turkish J. Math. 20 (1996) 379-387.
[4] N.L. Biggs, A.T. White, Permutation Groups and Combinatorial Structures, Cambridge University Press, Cambridge, 1979.
[5] K.S. Chua, M.L. Lang, Congruence subgroups associated to the monster, Experimental Math. 13 (2004) 343-360.
[6] J.H. Conway, S.P. Norton, Monstrous Moonshine, London Math. Soc. Lecture Note Ser. 11 (1977) 308-339.
[7] B. Ö. Güler, M. Beşenk, A.H. Değer, S. Kader, Elliptic elements and circuits in suborbital graphs, Hacettepe J. Math. Stat. 40 (2011) 203-210.
[8] B. Ö. Güler, T. Kör, Z. Şanh, Solution to some congruence equations via suborbital graphs, Springer Plus 5(2016) 1-11.
[9] G.A. Jones, D. Singerman, K. Wicks, The modular group and generalized Farey graphs, London Math. Soc. Lecture Note Ser. 160 (1991) 316-338.
[10] S. Kader, B. Ö. Güler, A.H. Değer, Suborbital graphs for a special subgroup of the normalizer, Iranian J. Sci. Technology 34 (2010) 305-312.
[11] R. Keskin, Suborbital graphs for the normalizer $\Gamma_{0}(m)$, European J. Combin. 27 (2006) 193-206.
[12] R. Keskin, B. Demirtürk, On suborbital graphs for the normalizer $\Gamma_{0}(n)$, Electronic J. Combin. 16 (2009) 1-18.
[13] C. Maclachlan, Groups of units of zero ternary quadratic forms, Proc. Royal Soc. Edinburg 88 (1981) 141-157.
[14] M. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Dover Publications, New York, 2004.
[15] H.E. Rose, A Course in Number Theory, Oxford University Press, Oxford, 1982.
[16] C.C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967) 76-86.
[17] D. Singerman, Universal tessellations, Rev. Mat. Univ. Complut. Madrid 1 (1988) 111-123.

[^0]: 2010 Mathematics Subject Classification. Primary 05C25; Secondary 11F06, 20H05
 Keywords. Normalizer, imprimitive action, suborbital graphs
 Received: 07 June 2017; Revised: 26 November 2017; Accepted: 27 November 2017
 Communicated by Ljubiša D.R. Kočinac
 This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. 118F018
 Email addresses: mbesenk@pau. edu.tr (Murat Beșenk), boguler@ktu. edu.tr (Bahadır Özgür Güler),
 abdurrahman.giresun@hotmail.com (Abdurrahman Büyükkaya)

