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Abstract. In this paper, we introduceF -convergent andFst-fundamental nets in uniform spaces and study
some their properties.

1. Introduction and Notations

The concept of statistical convergence was introduced by Fast [7] and Schonberg [21], and its topological
properties were discussed by Fridy [8], Salat [18] and Maddox [15]. Fridy [8] also introduced the concept
of statistically fundamental sequence and showed its equivalence to statistical convergence with respect to
numerical sequences. This problem on the uniform space was raised in [16]. The authors [16] showed that
if the sequence {xn}n∈N is statistically convergent in a uniform space, then it is statistically fundamental.
Recently, Bilalov and Nazarova [3] gave the concept of Fst-fundamental sequences in uniform spaces and
obtain some results related with this concept.

Kostyrko et al. [12] introduced the notion of I-convergence of sequences in a metric space and dis-
cussed some properties of such convergence. Recall that I-convergence is a generalization of statistical
convergence. Some problems about the ideals or filters can be found in [4, 5, 13, 14].

We now recall some concepts of ideal and filter [3, 12, 17].
A family of sets I ⊂ 2N is said to be an ideal if (i) ∅ ∈ I; (ii) A,B ∈ I imply A ∪ B ∈ I; (iii) A ∈ I, B ⊂ A

imply B ∈ I.
A family of sets F ⊂ 2N is said to be a filter if (i) ∅ < F ; (ii) A,B ∈ F imply A ∩ B ∈ F ; (iii) A ∈ F , A ⊂ B

imply B ∈ F .
If filter F satisfy the following axioms:
(iv) if A1 ⊃ A2 ⊃ ... and An ∈ F for all n ∈ N, then there exists {nm}m∈N ⊂ N; n1 < n2 < ... such that

∪
∞

m=1

(
(αm, αm+1] ∩ A(m)

)
∈ F ,

(v) Fc (N\F) ∈ F for any finite subset F ⊂N,
then filter F is said to be a monotone closed filter and a right filter, respectively [2, 3].

An ideal I is said to be non-trivial if I , ∅ and I , N. I ⊂ 2N is a non-trivial ideal if and only if
F = F (I) = {N\A : A ∈ I} is a filter. A non-trivial ideal I is said to be admissible if I ⊃ {{n} : n ∈N}. Filter
convergence was introduced in [1] and described in details in the paper [9]. Convergence with respect to
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set of filters was studied in the paper [11]. More information about filters and convergence with respect to
filters can be found in [1, 12, 17, 19, 20].

Now we recall the definition of uniformity on a set X [6, 10].
Λ = {(x, x) : x ∈ X} is said to be a diagonal or the identity relation. If U ⊂ X × X is a relation, then

the inverse of this relation U−1 is defined as the set of all pairs
(
x, y

)
such that

(
y, x

)
∈ U, that is, U−1 ={(

x, y
)
∈ X × X :

(
y, x

)
∈ U

}
. Let U,V ⊂ X × X be some relation. The composition U ◦ V of the relations

U and V is defined as the set of all pairs (x, z), we get
(
x, y

)
∈ V and

(
y, z

)
∈ U for some y ∈ X, that is,

U ◦ V =
{
(x, z) : ∃y ∈ X,

(
x, y

)
∈ V and

(
y, z

)
∈ U

}
. Let K ⊂ X be some set and U ⊂ X × X be a relation.

Assume U [K] =
{
y ∈ X : ∃x ∈ K =⇒

(
x, y

)
∈ U

}
. For K = {x} suppose U [K] = U [x]. Uniformity on the set X

is a non-empty family Ω ⊂ 2X×X which satisfies the following axioms:
(a) Λ ⊂ U, ∀U ∈ Ω;
(b) U ∈ Ω imply U−1

∈ Ω;
(c) U ∈ Ω imply ∃V ∈ Ω such that V ◦ V ⊂ U;
(d) U,V ∈ Ω imply U ∩ V ∈ Ω;
(e) U ∈ Ω and U ⊂ V ⊂ X × X imply V ∈ Ω.

(X,Ω) is said to be a uniform space. Subfamily ∆ ⊂ Ω of the uniformity Ω is said to be its base if any element
of the family Ω contains an element of the family ∆.

Let (X,Ω) be a uniform space. The topology τ, associated with a uniformity Ω, is the family of all sets
K ⊂ X such that for each x ∈ K there exists a U ∈ Ω such that U [x] ⊂ K.

The uniform space (X,Ω) is called Hausdorff if ∩U∈ΩU = Λ. Let (X,Ω) be a uniform space and {xn}n∈N
be some sequence. {xn}n∈N is called fundamental if ∀U ∈ Ω, there exists a n0 ∈ N such that (xn, xm) ∈ U for
all n,m ≥ n0.

Throughout the paper (D,≥) will denote a directed set and I a non-trivial proper ideal of D. A net is
a mapping from D to X and will be denoted by {sα : α ∈ D}. Let Dα =

{
β ∈ D : β ≥ α

}
for α ∈ D. Then the

collection F0 = {A ⊂ D : A ⊃ Dα for some α ∈ D} forms a filter in D. Let I0 = {A ⊂ D : Ac
∈ F0}. Then I0 is a

non-trivial ideal of D. A nontrivial ideal I of D will be said to be D-admissible if Dα ∈ F for all α ∈ D. A net
{sα : α ∈ D} in a topological space (X, τ) is called F -convergent to s ∈ X if {α ∈ D : sα ∈ U} ∈ F for any open
set U containing s.

2. Main Results

In this section, we introduce F -convergent and Fst-fundamental nets in uniform spaces and study some
of their properties.

Now we introduce our main definitions.

Definition 2.1. Let (X,Ω) be a uniform space and {sα : α ∈ D} be a net in X. The net {sα : α ∈ D} is said to
be F -convergent to s (in short, F -lim sα = s) if for every U ∈ Ω, {α ∈ D : (sα, s) ∈ U} ∈ F . In other words, for
∀U ∈ Ω, {α ∈ D : sα ∈ U [s]} ∈ F .

Definition 2.2. Let (X,Ω) be a uniform space and {sα : α ∈ D} be a net in X. The net {sα : α ∈ D} is said to be
Fst-fundamental in X if for every U ∈ Ω, there exist a α0 ∈ D such that

{
α ∈ D : sα ∈ U

[
sα0

]}
∈ F .

Lemma 2.3. Let (X,Ω) be a Hausdorff uniform space and {sα : α ∈ D} be a net in X. If there exists F -lim sα, then it
is unique.

Proof. Let (X,Ω) be a Hausdorff uniform space. Accordingly, {s} = ∩U∈ΩU [s]. Let {sα : α ∈ D} be a net in
X. We prove that if there exists F -lim sα, then it is unique. Supposed to contrary, that is, F -lim sα has
two values t1 , t2. Then it is obvious that there exists a Uk ∈ Ω such that t1 < U2 [t2] and t2 < U1 [t1]. If
U = U1 ∩ U2, then U ∈ Ω. Furthermore, t1 < U [t2] and t2 < U [t1]. Since U ∈ Ω, there exists a V ∈ Ω such
that V ◦ V ⊂ U and V = V−1. It is clear that t1 < V [t2] and t2 < V [t1]. Suppose that

A1 = {α ∈ D : sα ∈ V [t1]}
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and

A2 = {α ∈ D : sα ∈ V [t2]} .

If A1,A2 ∈ F , then A1 ∩ A2 ∈ F . On the other hand, A1 ∩ A2 = ∅ ∈ F . If A1 ∩ A2 , ∅, then there exists a
α0 ∈ D such that sα0 ∈ A1 ∩ A2. Moreover,

(
sα0 , t1

)
∈ V and

(
sα0 , t2

)
∈ V. From the symmetry of V, we have(

t2, sα0

)
∈ V. Consequently, (t1, t2) ∈ V ◦ V ⊂ U. This is a contradiction, that is, F -lim sα is unique.

Theorem 2.4. Let (X,Ω) be a Hausdorff uniform space and {sα : α ∈ D} be a net in X which is F -convergent. Then
{sα : α ∈ D} is Fst-fundamental.

Proof. Let (X,Ω) be a uniform space, {sα : α ∈ D} be a net in X and F -lim sα = s. Now we prove that
{sα : α ∈ D} is Fst-fundamental. Let U ∈ Ω. Then there exists a V ∈ Ω such that V ◦ V ⊂ U and V = V−1.
Take α0 ∈ {α ∈ D : sα ∈ V [s]} . It is obvious that

{α ∈ D : sα ∈ V [s]} ∈ F .

If sα ∈ V [s], then
(
sα, sα0

)
∈ V ◦ V ⊂ U. As a result,

{α ∈ D : sα ∈ V [s]} ⊂
{
α ∈ D : sα ∈ U

[
sα0

]}
and so{

α ∈ D : sα ∈ U
[
sα0

]}
∈ F .

Hence, the theorem is proved.

Theorem 2.5. Let (X,Ω) be a Hausdorff, complete uniform space with a countable base and {sα : α ∈ D} be a net in
X. If the net {sα : α ∈ D} is Fst-fundamental, then there exists s ∈ X such that F -lim sα = s.

Proof. Let (X,Ω) be a complete uniform space. We suppose that (X,Ω) has a countable base and it is
Hausdorff. Then, there exists Uα ∈ Ω such that ∩α∈DUα = Λ and Uα ⊂ U for all α ∈ D. Without loss of
generality, we suppose that U(α+1)

◦U(α+1)
⊂ U(α) and U(α) =

(
U(α)

)−1
. Let {sα : α ∈ D} be Fst-fundamental in

X. Hence, by definition there exists αi ∈ D such that Ai ∈ F , where Ai =
{
α ∈ D : sα ∈ U(i) [sαi

]}
for i = 1, 2. It

is obvious that A(1) = A1 ∩ A2 ∈ F . Let B1 = U(1) [sα1

]
∩U(2) [sα2

]
. Clearly, sα ∈ B1 for all α ∈ A(1). Likewise,

there exists α3 ∈ D such that A3 =
{
α ∈ D : sα ∈ U(3) [sα3

]}
∈ F . Suppose that A(2) = A(1) ∩ A3. It is obvious

that A(2) ∈ F . Put B2 = B1 ∩ U(3) [sα3

]
. As a result, B2 , ∅ and so sα ∈ B2 for all α ∈ A(2). Continuing in the

same way, we get the net of open non-empty sets {Bα}α∈D ⊂ X such that

B1 ⊃ B2 ⊃ ..., Bn ⊂ U(α+1) [skα+1

]
for all α ∈ D,

such as A(i) ∈ F such that A(i) = {k ∈ D : sk ∈ Bi} for all i ∈ D. Take s̃α ∈ Bα for all α ∈ D. Now we prove that{̃
sα : α ∈ D

}
is a fundamental net. Let U ∈ Ω be an arbitrary element. Then, it is clear that there exists α0 ∈ D

such that U(α0)
⊂ U for α ≥ α0. Let α ≥ α0 be arbitrary. We obtain s̃α+p ∈ Bα+p ⊂ Bα for all p ∈ D. Since, we

have Bα such that Bα+p ⊂ U(α+1) [skα+1

]
, it is obvious that

(̃
sα, skα+1

)
∈ U(α+1) and s̃α+p ∈ U(α+1) [skα+1

]
. Moreover,(̃

sα, s̃α+p

)
∈ U(α+1)

◦U(α+1)
⊂ U(α) for all p ∈ D. As a result,

(̃
sα, s̃α+p

)
∈ U for all α ≥ α0 and p ∈ D. Since U is

arbitrary, the net
{̃
sα : α ∈ D

}
is fundamental in (X,Ω) and let lim s̃α = s. Now prove that F -lim sα = s. Take

U ∈ Ω. Then, there exists a α0 ∈ D such that U(α)
⊂ U for all α ≥ α0. Since Bα ⊂ U(α+1) [skα+1

]
, we have

A(α) ⊂
{
α ∈ D : sα ∈ U(α+1) [skα+1

]}
∈ F

for all α ∈ D. Let α1 ∈ D such that s̃k ∈ U(α0+1) [s] for all k ≥ α1. Without loss of generality, we suppose that
α1 ≥ α0+1. As a result, s̃α1 ∈ Bα1 ⊂ U(α1+1)

[
skα1+1

]
.We put

(
sk, skα1+1

)
∈ U(α1+1). Then

(
sk, s̃α1

)
∈ U(α1+1)

◦U(α1+1)
⊂

U(α1). Since,
(̃
sα1 , skα1+1

)
∈ U(α1+1)

⊂ U(α1), then it is obvious that(
sk, skα1+1

)
∈ U(α1)

◦U(α1)
⊂ U(α1−1)

∈ U(α0)
⊂ U.
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This implies that{
α ∈ D : sα ∈ Bα0

}
⊂ {α ∈ D : sα ∈ U [s]} .

Therefore,

A(α0) =
{
α ∈ D : sα ∈ Bα0

}
∈ F .

From the previous inclusion it follows that

{α ∈ D : sα ∈ U [s]} ∈ F .

Since U was arbitrary, we have F -lim sα = s.

Theorem 2.6. Let (X,Ω) be a uniform space with a countable base and let {sα : α ∈ D} be an Fst-fundamental net in
X. Then:

i) if F is monotone closed filter and F -lim sα = s, then there exists {tα}α∈D ⊂ X such that lim tα = s and
{α ∈ D : sα = tα} ∈ F ;

ii) if F is a right filter and lim tα = s and {α ∈ D : sα = tα} ∈ F , then F -lim sα = s.

Proof. i) Suppose that the net {sα : α ∈ D} is Fst-fundamental, F is monotone closed filter and the space
(X,Ω) has a countable base. Consider the net

{
A(α)

}
α∈D

, constructed in the proof of Theorem 2.5. We get

A(1) ⊃ A(2) ⊃ ... and A(α) ∈ F for α ∈ D.

Then by condition (iv) of filter we get {αm : α1 < α2 < ...} such that

∪
∞

m=1

(
(αm, αm+1] ∩ A(m)

)
∈ F .

Suppose that

D0 =
{
k ∈ D : k ∈ (αm, αm+1] ∩ Ac

(m), m ∈ D
}
∪ [1, α1] .

Define

tk =

{
s, k ∈ D0
sk, k < D0

,

where s = F -lim sα. Now we prove that lim tk = s. Let U ∈ Ω be an arbitrary element. If k ∈ D0, then it is
obvious that tk ∈ U [s]. If k < D0, then there exists a m ∈ D such that αm < k ≤ αm+1 and k < Ac

(m). Moreover,
if k ∈ A(m), then sk ∈ Bm. Let α0 ∈ D be a number such that U(α0−1)

⊂ U. Let k be sufficiently large m ≥ α0. We
get sk ∈ U(α0) [s] and so sk ∈ U(α0+1)

[
skα0 +1

]
and skα0 +1 ∈ U(α0+1) [s]. Hence, (tk, s) ∈ U(α0)

⊂ U, since, in this case

sk = tk. Since U is arbitrary, lim tk = s. Now we prove that Ã = {k ∈ D : sk = tk} ∈ F . It is clear that

∪
∞

m=1

(
(αm, αm+1] ∩ A(m)

)
⊂ Ã.

Hence, ∪∞m=1

(
(αm, αm+1] ∩ A(m)

)
∈ F and we obtain Ã ∈ F from the condition (iii) of filter. Therefore, if

F -lim sα = s, then there exists an Ã ∈ F such that lim tα = s and sα = tα for all α ∈ Ã.
ii) Suppose that lim tα = s, Ã = {α ∈ D : sα = tα} ∈ F and F is a right filter. Let U ∈ Ω be arbitrary. Then

there exists α0 ∈ D such that tα ∈ U [s] for all α ≥ α0. We get(
{α ∈ D : α ≥ α0} ∩ Ã

)
⊂ {α ∈ D : sα ∈ U [s]} .

It is obvious that(
{α ∈ D : α ≥ α0} ∩ Ã

)
∈ F .

Then we have {α ∈ D : sα ∈ U [s]} ∈ F from the condition (iii) of filter.
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The following results are immediate consequences of Theorems 2.5 and 2.6.

Corollary 2.7. Let (X,Ω) be a uniform space with a countable base, {sα : α ∈ D} be a net in X and F be a monotone
closed and a right filter. Then the followings are equivalent:

i) F -lim sα = s,
ii) {sα : α ∈ D} is Fst-fundamental,
iii) lim tα = s and {α ∈ D : sα = tα} ∈ F .

Corollary 2.8. Let (X,Ω) be a uniform space with a countable base, {sα : α ∈ D} be an Fst-fundamental net in X,
and F be a right filter. If F -lim sα = s, then there exists a {αk : α1 < α2 < ...} ∈ F such that lim sαk = s.

Acknowledgement

The authors are most grateful to anonymous referees for careful reading of the manuscript and valuable
suggestions.

References

[1] A.I. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970) 185–193.
[2] B.T. Bilalov, T.Y. Nazarova, Statistical convergence of functional sequences, Rocky Mountain J. Math. 45 (5) (2015) 1413–1423.
[3] B.T. Bilalov, T.Y. Nazarova, On statistical type convergence in uniform spaces, Bull. Iranian Math. Soc. 42 (2016) 975–986.
[4] P. Das, S.K. Ghosal, On I-Cauchy nets and completeness, Topology Appl. 157 (2010) 1152–1156.
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