Filomat 33:2 (2019), 353–357 https://doi.org/10.2298/FIL1902353S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Filter Convergence of Nets in Uniform Spaces

Ekrem Savaş^a, Ulaş Yamancı^b

^aUşak University, Department of Mathematics, Uşak, Turkey ^bSüleyman Demirel University, Faculty of Arts and Sciences, Department of Statistics, Isparta, Turkey

Abstract. In this paper, we introduce \mathcal{F} -convergent and \mathcal{F}_{st} -fundamental nets in uniform spaces and study some their properties.

1. Introduction and Notations

The concept of statistical convergence was introduced by Fast [7] and Schonberg [21], and its topological properties were discussed by Fridy [8], Salat [18] and Maddox [15]. Fridy [8] also introduced the concept of statistically fundamental sequence and showed its equivalence to statistical convergence with respect to numerical sequences. This problem on the uniform space was raised in [16]. The authors [16] showed that if the sequence $\{x_n\}_{n\in\mathbb{N}}$ is statistically convergent in a uniform space, then it is statistically fundamental. Recently, Bilalov and Nazarova [3] gave the concept of \mathcal{F}_{st} -fundamental sequences in uniform spaces and obtain some results related with this concept.

Kostyrko et al. [12] introduced the notion of *I*-convergence of sequences in a metric space and discussed some properties of such convergence. Recall that *I*-convergence is a generalization of statistical convergence. Some problems about the ideals or filters can be found in [4, 5, 13, 14].

We now recall some concepts of ideal and filter [3, 12, 17].

A family of sets $I \subset 2^{\mathbb{N}}$ is said to be an *ideal* if (*i*) $\emptyset \in I$; (*ii*) $A, B \in I$ imply $A \cup B \in I$; (*iii*) $A \in I, B \subset A$ imply $B \in I$.

A family of sets $\mathcal{F} \subset 2^{\mathbb{N}}$ is said to be a *filter* if (*i*) $\emptyset \notin \mathcal{F}$; (*ii*) $A, B \in \mathcal{F}$ imply $A \cap B \in \mathcal{F}$; (*iii*) $A \in \mathcal{F}, A \subset B$ imply $B \in \mathcal{F}$.

If filter \mathcal{F} satisfy the following axioms:

(*iv*) if $A_1 \supset A_2 \supset ...$ and $A_n \in \mathcal{F}$ for all $n \in \mathbb{N}$, then there exists $\{n_m\}_{m \in \mathbb{N}} \subset \mathbb{N}$; $n_1 < n_2 < ...$ such that $\bigcup_{m=1}^{\infty} ((\alpha_m, \alpha_{m+1}] \cap A_{(m)}) \in \mathcal{F}$,

(v) $F^c(N \setminus F) \in \mathcal{F}$ for any finite subset $F \subset \mathbb{N}$,

then filter \mathcal{F} is said to be a *monotone closed filter* and a *right filter*, respectively [2, 3].

An ideal *I* is said to be *non-trivial* if $I \neq \emptyset$ and $I \neq \mathbb{N}$. $I \subset 2^{\mathbb{N}}$ is a non-trivial ideal if and only if $\mathcal{F} = \mathcal{F}(I) = \{\mathbb{N} \setminus A : A \in I\}$ is a filter. A non-trivial ideal *I* is said to be *admissible* if $I \supset \{\{n\} : n \in \mathbb{N}\}$. Filter convergence was introduced in [1] and described in details in the paper [9]. Convergence with respect to

²⁰¹⁰ Mathematics Subject Classification. Primary 40A35; Secondary 54A20, 54E15

Keywords. Ideal, filter, nets, \mathcal{F} -convergence, \mathcal{F}_{st} -convergence

Received: 02 June 2017; Revised: 11 October 2017; Accepted: 17 October 2017

Communicated by Ljubiša D.R. Kočinac

Email addresses: ekremsavas@yahoo.com (Ekrem Savaş), ulasyamanci@sdu.edu.tr (Ulaş Yamancı)

set of filters was studied in the paper [11]. More information about filters and convergence with respect to filters can be found in [1, 12, 17, 19, 20].

Now we recall the definition of uniformity on a set X [6, 10].

 $\Lambda = \{(x, x) : x \in X\} \text{ is said to be a diagonal or the identity relation. If } U \subset X \times X \text{ is a relation, then the inverse of this relation } U^{-1} \text{ is defined as the set of all pairs } (x, y) \text{ such that } (y, x) \in U, \text{ that is, } U^{-1} = \{(x, y) \in X \times X : (y, x) \in U\}. \text{ Let } U, V \subset X \times X \text{ be some relation. The composition } U \circ V \text{ of the relations } U \text{ and } V \text{ is defined as the set of all pairs } (x, z), \text{ we get } (x, y) \in V \text{ and } (y, z) \in U \text{ for some } y \in X, \text{ that is, } U \circ V = \{(x, z) : \exists y \in X, (x, y) \in V \text{ and } (y, z) \in U\}. \text{ Let } K \subset X \text{ be some set and } U \subset X \times X \text{ be a relation.} \text{ Assume } U[K] = \{y \in X : \exists x \in K \Longrightarrow (x, y) \in U\}. \text{ For } K = \{x\} \text{ suppose } U[K] = U[x]. \text{ Uniformity on the set } X \text{ is a non-empty family } \Omega \subset 2^{X \times X} \text{ which satisfies the following axioms:}$

(a) $\Lambda \subset U, \forall U \in \Omega$;

(b) $U \in \Omega$ imply $U^{-1} \in \Omega$;

(*c*) $U \in \Omega$ imply $\exists V \in \Omega$ such that $V \circ V \subset U$;

(*d*) $U, V \in \Omega$ imply $U \cap V \in \Omega$;

(e) $U \in \Omega$ and $U \subset V \subset X \times X$ imply $V \in \Omega$.

 (X, Ω) is said to be a *uniform space*. Subfamily $\Delta \subset \Omega$ of the uniformity Ω is said to be its *base* if any element of the family Ω contains an element of the family Δ .

Let (X, Ω) be a uniform space. The topology τ , associated with a uniformity Ω , is the family of all sets $K \subset X$ such that for each $x \in K$ there exists a $U \in \Omega$ such that $U[x] \subset K$.

The uniform space (X, Ω) is called Hausdorff if $\cap_{U \in \Omega} U = \Lambda$. Let (X, Ω) be a uniform space and $\{x_n\}_{n \in \mathbb{N}}$ be some sequence. $\{x_n\}_{n \in \mathbb{N}}$ is called *fundamental* if $\forall U \in \Omega$, there exists a $n_0 \in \mathbb{N}$ such that $(x_n, x_m) \in U$ for all $n, m \ge n_0$.

Throughout the paper (D, \geq) will denote a directed set and I a non-trivial proper ideal of D. A *net* is a mapping from D to X and will be denoted by $\{s_{\alpha} : \alpha \in D\}$. Let $D_{\alpha} = \{\beta \in D : \beta \geq \alpha\}$ for $\alpha \in D$. Then the collection $\mathcal{F}_0 = \{A \subset D : A \supset D_{\alpha} \text{ for some } \alpha \in D\}$ forms a filter in D. Let $I_0 = \{A \subset D : A^c \in \mathcal{F}_0\}$. Then I_0 is a non-trivial ideal of D. A nontrivial ideal I of D will be said to be D-admissible if $D_{\alpha} \in \mathcal{F}$ for all $\alpha \in D$. A net $\{s_{\alpha} : \alpha \in D\}$ in a topological space (X, τ) is called \mathcal{F} -convergent to $s \in X$ if $\{\alpha \in D : s_{\alpha} \in U\} \in \mathcal{F}$ for any open set U containing s.

2. Main Results

In this section, we introduce \mathcal{F} -convergent and \mathcal{F}_{st} -fundamental nets in uniform spaces and study some of their properties.

Now we introduce our main definitions.

Definition 2.1. Let (X, Ω) be a uniform space and $\{s_{\alpha} : \alpha \in D\}$ be a net in *X*. The net $\{s_{\alpha} : \alpha \in D\}$ is said to be \mathcal{F} -convergent to *s* (in short, \mathcal{F} -lim $s_{\alpha} = s$) if for every $U \in \Omega$, $\{\alpha \in D : (s_{\alpha}, s) \in U\} \in \mathcal{F}$. In other words, for $\forall U \in \Omega, \{\alpha \in D : s_{\alpha} \in U[s]\} \in \mathcal{F}$.

Definition 2.2. Let (X, Ω) be a uniform space and $\{s_{\alpha} : \alpha \in D\}$ be a net in X. The net $\{s_{\alpha} : \alpha \in D\}$ is said to be \mathcal{F}_{st} -fundamental in X if for every $U \in \Omega$, there exist a $\alpha_0 \in D$ such that $\{\alpha \in D : s_{\alpha} \in U[s_{\alpha_0}]\} \in \mathcal{F}$.

Lemma 2.3. Let (X, Ω) be a Hausdorff uniform space and $\{s_{\alpha} : \alpha \in D\}$ be a net in X. If there exists \mathcal{F} -lim s_{α} , then it is unique.

Proof. Let (X, Ω) be a Hausdorff uniform space. Accordingly, $\{s\} = \bigcap_{U \in \Omega} U[s]$. Let $\{s_{\alpha} : \alpha \in D\}$ be a net in X. We prove that if there exists \mathcal{F} -lim s_{α} , then it is unique. Supposed to contrary, that is, \mathcal{F} -lim s_{α} has two values $t_1 \neq t_2$. Then it is obvious that there exists a $U_k \in \Omega$ such that $t_1 \notin U_2[t_2]$ and $t_2 \notin U_1[t_1]$. If $U = U_1 \cap U_2$, then $U \in \Omega$. Furthermore, $t_1 \notin U[t_2]$ and $t_2 \notin U[t_1]$. Since $U \in \Omega$, there exists a $V \in \Omega$ such that $V \circ V \subset U$ and $V = V^{-1}$. It is clear that $t_1 \notin V[t_2]$ and $t_2 \notin V[t_1]$. Suppose that

 $A_1 = \{ \alpha \in D : s_\alpha \in V[t_1] \}$

and

$$A_2 = \{ \alpha \in D : s_\alpha \in V[t_2] \}.$$

If $A_1, A_2 \in \mathcal{F}$, then $A_1 \cap A_2 \in \mathcal{F}$. On the other hand, $A_1 \cap A_2 = \emptyset \in \mathcal{F}$. If $A_1 \cap A_2 \neq \emptyset$, then there exists a $\alpha_0 \in D$ such that $s_{\alpha_0} \in A_1 \cap A_2$. Moreover, $(s_{\alpha_0}, t_1) \in V$ and $(s_{\alpha_0}, t_2) \in V$. From the symmetry of V, we have $(t_2, s_{\alpha_0}) \in V$. Consequently, $(t_1, t_2) \in V \circ V \subset U$. This is a contradiction, that is, \mathcal{F} -lim s_{α} is unique. \Box

Theorem 2.4. Let (X, Ω) be a Hausdorff uniform space and $\{s_{\alpha} : \alpha \in D\}$ be a net in X which is \mathcal{F} -convergent. Then $\{s_{\alpha} : \alpha \in D\}$ is \mathcal{F}_{st} -fundamental.

Proof. Let (X, Ω) be a uniform space, $\{s_{\alpha} : \alpha \in D\}$ be a net in X and \mathcal{F} -lim $s_{\alpha} = s$. Now we prove that $\{s_{\alpha} : \alpha \in D\}$ is \mathcal{F}_{st} -fundamental. Let $U \in \Omega$. Then there exists a $V \in \Omega$ such that $V \circ V \subset U$ and $V = V^{-1}$. Take $\alpha_0 \in \{\alpha \in D : s_{\alpha} \in V[s]\}$. It is obvious that

$$\{\alpha \in D : s_{\alpha} \in V[s]\} \in \mathcal{F}.$$

If $s_{\alpha} \in V[s]$, then $(s_{\alpha}, s_{\alpha_0}) \in V \circ V \subset U$. As a result,

 $\{\alpha \in D : s_{\alpha} \in V[s]\} \subset \{\alpha \in D : s_{\alpha} \in U[s_{\alpha_0}]\}$

and so

$$\{\alpha \in D : s_{\alpha} \in U[s_{\alpha_0}]\} \in \mathcal{F}.$$

Hence, the theorem is proved. \Box

Theorem 2.5. Let (X, Ω) be a Hausdorff, complete uniform space with a countable base and $\{s_{\alpha} : \alpha \in D\}$ be a net in *X*. If the net $\{s_{\alpha} : \alpha \in D\}$ is \mathcal{F}_{st} -fundamental, then there exists $s \in X$ such that \mathcal{F} -lim $s_{\alpha} = s$.

Proof. Let (X, Ω) be a complete uniform space. We suppose that (X, Ω) has a countable base and it is Hausdorff. Then, there exists $U_{\alpha} \in \Omega$ such that $\bigcap_{\alpha \in D} U_{\alpha} = \Lambda$ and $U_{\alpha} \subset U$ for all $\alpha \in D$. Without loss of generality, we suppose that $U^{(\alpha+1)} \circ U^{(\alpha+1)} \subset U^{(\alpha)}$ and $U^{(\alpha)} = (U^{(\alpha)})^{-1}$. Let $\{s_{\alpha} : \alpha \in D\}$ be \mathcal{F}_{st} -fundamental in X. Hence, by definition there exists $\alpha_i \in D$ such that $A_i \in \mathcal{F}$, where $A_i = \{\alpha \in D : s_\alpha \in U^{(i)} [s_{\alpha_i}]\}$ for i = 1, 2. It is obvious that $A_{(1)} = A_1 \cap A_2 \in \mathcal{F}$. Let $B_1 = U^{(1)} [s_{\alpha_1}] \cap U^{(2)} [s_{\alpha_2}]$. Clearly, $s_\alpha \in B_1$ for all $\alpha \in A_{(1)}$. Likewise, there exists $\alpha_3 \in D$ such that $A_3 = \{\alpha \in D : s_\alpha \in U^{(3)} [s_{\alpha_3}]\} \in \mathcal{F}$. Suppose that $A_{(2)} = A_{(1)} \cap A_3$. It is obvious that $A_{(2)} \in \mathcal{F}$. Put $B_2 = B_1 \cap U^{(3)} [s_{\alpha_3}]$. As a result, $B_2 \neq \emptyset$ and so $s_\alpha \in B_2$ for all $\alpha \in A_{(2)}$. Continuing in the same way, we get the net of open non-empty sets $\{B_{\alpha}\}_{\alpha \in D} \subset X$ such that

 $B_1 \supset B_2 \supset ..., B_n \subset U^{(\alpha+1)}[s_{k_{\alpha+1}}]$ for all $\alpha \in D$,

such as $A_{(i)} \in \mathcal{F}$ such that $A_{(i)} = \{k \in D : s_k \in B_i\}$ for all $i \in D$. Take $\tilde{s}_{\alpha} \in B_{\alpha}$ for all $\alpha \in D$. Now we prove that $\{\tilde{s}_{\alpha} : \alpha \in D\}$ is a fundamental net. Let $U \in \Omega$ be an arbitrary element. Then, it is clear that there exists $\alpha_0 \in D$ such that $U^{(\alpha_0)} \subset U$ for $\alpha \ge \alpha_0$. Let $\alpha \ge \alpha_0$ be arbitrary. We obtain $\tilde{s}_{\alpha+p} \in B_{\alpha+p} \subset B_{\alpha}$ for all $p \in D$. Since, we have B_{α} such that $B_{\alpha+p} \subset U^{(\alpha+1)}[s_{k_{\alpha+1}}]$, it is obvious that $(\tilde{s}_{\alpha}, s_{k_{\alpha+1}}) \in U^{(\alpha+1)}$ and $\tilde{s}_{\alpha+p} \in U^{(\alpha+1)}[s_{k_{\alpha+1}}]$. Moreover, $(\tilde{s}_{\alpha}, \tilde{s}_{\alpha+p}) \in U^{(\alpha+1)} \circ U^{(\alpha+1)} \subset U^{(\alpha)}$ for all $p \in D$. As a result, $(\tilde{s}_{\alpha}, \tilde{s}_{\alpha+p}) \in U$ for all $\alpha \ge \alpha_0$ and $p \in D$. Since U is arbitrary, the net $\{\tilde{s}_{\alpha} : \alpha \in D\}$ is fundamental in (X, Ω) and let $\lim \tilde{s}_{\alpha} = s$. Now prove that \mathcal{F} -lim $s_{\alpha} = s$. Take $U \in \Omega$. Then, there exists a $\alpha_0 \in D$ such that $U^{(\alpha)} \subset U$ for all $\alpha \ge \alpha_0$. Since $B_{\alpha} \subset U^{(\alpha+1)}[s_{k_{\alpha+1}}]$, we have

$$A_{(\alpha)} \subset \left\{ \alpha \in D : s_{\alpha} \in U^{(\alpha+1)}[s_{k_{\alpha+1}}] \right\} \in \mathcal{F}$$

for all $\alpha \in D$. Let $\alpha_1 \in D$ such that $\widetilde{s}_k \in U^{(\alpha_0+1)}[s]$ for all $k \ge \alpha_1$. Without loss of generality, we suppose that $\alpha_1 \ge \alpha_0 + 1$. As a result, $\widetilde{s}_{\alpha_1} \in B_{\alpha_1} \subset U^{(\alpha_1+1)}[s_{k_{\alpha_1+1}}]$. We put $(s_k, s_{k_{\alpha_1+1}}) \in U^{(\alpha_1+1)}$. Then $(s_k, \widetilde{s}_{\alpha_1}) \in U^{(\alpha_1+1)} \circ U^{(\alpha_1+1)} \subset U^{(\alpha_1)}$. Since, $(\widetilde{s}_{\alpha_1}, s_{k_{\alpha_1+1}}) \in U^{(\alpha_1+1)} \subset U^{(\alpha_1)}$, then it is obvious that

$$\left(s_k, s_{k_{\alpha_1+1}}\right) \in U^{(\alpha_1)} \circ U^{(\alpha_1)} \subset U^{(\alpha_1-1)} \in U^{(\alpha_0)} \subset U.$$

This implies that

 $\{\alpha \in D : s_{\alpha} \in B_{\alpha_0}\} \subset \{\alpha \in D : s_{\alpha} \in U[s]\}.$

Therefore,

 $A_{(\alpha_0)} = \{ \alpha \in D : s_\alpha \in B_{\alpha_0} \} \in \mathcal{F}.$

From the previous inclusion it follows that

 $\{\alpha \in D : s_{\alpha} \in U[s]\} \in \mathcal{F}.$

Since *U* was arbitrary, we have \mathcal{F} -lim $s_{\alpha} = s$. \Box

Theorem 2.6. Let (X, Ω) be a uniform space with a countable base and let $\{s_{\alpha} : \alpha \in D\}$ be an \mathcal{F}_{st} -fundamental net in *X*. Then:

i) if \mathcal{F} *is monotone closed filter and* \mathcal{F} -lim $s_{\alpha} = s$ *, then there exists* $\{t_{\alpha}\}_{\alpha \in D} \subset X$ *such that* $\lim t_{\alpha} = s$ *and* $\{\alpha \in D : s_{\alpha} = t_{\alpha}\} \in \mathcal{F};$

ii) if \mathcal{F} *is a right filter and* $\lim t_{\alpha} = s$ *and* $\{\alpha \in D : s_{\alpha} = t_{\alpha}\} \in \mathcal{F}$ *, then* \mathcal{F} *-lim* $s_{\alpha} = s$ *.*

Proof. i) Suppose that the net $\{s_{\alpha} : \alpha \in D\}$ is \mathcal{F}_{st} -fundamental, \mathcal{F} is monotone closed filter and the space (X, Ω) has a countable base. Consider the net $\{A_{(\alpha)}\}_{\alpha \in D}$, constructed in the proof of Theorem 2.5. We get

 $A_{(1)} \supset A_{(2)} \supset \dots$ and $A_{(\alpha)} \in \mathcal{F}$ for $\alpha \in D$.

Then by condition (*iv*) of filter we get { $\alpha_m : \alpha_1 < \alpha_2 < ...$ } such that

$$\bigcup_{m=1}^{\infty} \left((\alpha_m, \alpha_{m+1}] \cap A_{(m)} \right) \in \mathcal{F}.$$

Suppose that

$$D_0 = \left\{ k \in D : k \in (\alpha_m, \alpha_{m+1}] \cap A^c_{(m)}, \ m \in D \right\} \cup [1, \alpha_1]$$

Define

$$t_k = \begin{cases} s, \ k \in D_0 \\ s_k, \ k \notin D_0 \end{cases},$$

where $s = \mathcal{F}$ -lim s_{α} . Now we prove that $\lim t_k = s$. Let $U \in \Omega$ be an arbitrary element. If $k \in D_0$, then it is obvious that $t_k \in U[s]$. If $k \notin D_0$, then there exists a $m \in D$ such that $\alpha_m < k \le \alpha_{m+1}$ and $k \notin A_{(m)}^c$. Moreover, if $k \in A_{(m)}$, then $s_k \in B_m$. Let $\alpha_0 \in D$ be a number such that $U^{(\alpha_0-1)} \subset U$. Let k be sufficiently large $m \ge \alpha_0$. We get $s_k \in U^{(\alpha_0)}[s]$ and so $s_k \in U^{(\alpha_0+1)}[s_{k_{\alpha_0}+1}]$ and $s_{k_{\alpha_0}+1} \in U^{(\alpha_0+1)}[s]$. Hence, $(t_k, s) \in U^{(\alpha_0)} \subset U$, since, in this case $s_k = t_k$. Since U is arbitrary, $\lim t_k = s$. Now we prove that $\widetilde{A} = \{k \in D : s_k = t_k\} \in \mathcal{F}$. It is clear that

$$\cup_{m=1}^{\infty} \left((\alpha_m, \alpha_{m+1}] \cap A_{(m)} \right) \subset \widetilde{A}$$

Hence, $\bigcup_{m=1}^{\infty} ((\alpha_m, \alpha_{m+1}] \cap A_{(m)}) \in \mathcal{F}$ and we obtain $\widetilde{A} \in \mathcal{F}$ from the condition (*iii*) of filter. Therefore, if \mathcal{F} -lim $s_{\alpha} = s$, then there exists an $\widetilde{A} \in \mathcal{F}$ such that $\lim t_{\alpha} = s$ and $s_{\alpha} = t_{\alpha}$ for all $\alpha \in \widetilde{A}$.

ii) Suppose that $\lim t_{\alpha} = s$, $\overline{A} = \{\alpha \in D : s_{\alpha} = t_{\alpha}\} \in \mathcal{F}$ and \mathcal{F} is a right filter. Let $U \in \Omega$ be arbitrary. Then there exists $\alpha_0 \in D$ such that $t_{\alpha} \in U[s]$ for all $\alpha \ge \alpha_0$. We get

$$\left(\{\alpha \in D : \alpha \ge \alpha_0\} \cap \widetilde{A}\right) \subset \{\alpha \in D : s_\alpha \in U[s]\}.$$

It is obvious that

$$\left(\{\alpha \in D : \alpha \ge \alpha_0\} \cap \widetilde{A}\right) \in \mathcal{F}.$$

Then we have $\{\alpha \in D : s_\alpha \in U[s]\} \in \mathcal{F}$ from the condition (*iii*) of filter. \Box

The following results are immediate consequences of Theorems 2.5 and 2.6.

Corollary 2.7. Let (X, Ω) be a uniform space with a countable base, $\{s_{\alpha} : \alpha \in D\}$ be a net in X and \mathcal{F} be a monotone closed and a right filter. Then the followings are equivalent:

i) \mathcal{F} -lim $s_{\alpha} = s$, *ii*) { $s_{\alpha} : \alpha \in D$ } *is* \mathcal{F}_{st} -fundamental, *iii*) lim $t_{\alpha} = s$ and { $\alpha \in D : s_{\alpha} = t_{\alpha}$ } $\in \mathcal{F}$.

Corollary 2.8. Let (X, Ω) be a uniform space with a countable base, $\{s_{\alpha} : \alpha \in D\}$ be an \mathcal{F}_{st} -fundamental net in X, and \mathcal{F} be a right filter. If \mathcal{F} -lim $s_{\alpha} = s$, then there exists a $\{\alpha_k : \alpha_1 < \alpha_2 < ...\} \in \mathcal{F}$ such that $\lim s_{\alpha_k} = s$.

Acknowledgement

The authors are most grateful to anonymous referees for careful reading of the manuscript and valuable suggestions.

References

- [1] A.I. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970) 185–193.
- [2] B.T. Bilalov, T.Y. Nazarova, Statistical convergence of functional sequences, Rocky Mountain J. Math. 45 (5) (2015) 1413–1423.
- [3] B.T. Bilalov, T.Y. Nazarova, On statistical type convergence in uniform spaces, Bull. Iranian Math. Soc. 42 (2016) 975–986.
- [4] P. Das, S.K. Ghosal, On *I*-Cauchy nets and completeness, Topology Appl. 157 (2010) 1152–1156.
- [5] P. Das, E. Savaş, On *I*-convergence of nets in locally solid Riesz spaces, Filomat 27 (2013) 89–94.
- [6] R. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New-York-Toronto-London, 1965.
- [7] H. Fast, Sur la convergence statistique, Colloq Math. 2 (1951) 241–244.
- [8] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
- [9] S. García-Ferreira, Lj. Kočinac, Convergence with respect to ultrafilters and topological spaces: A survey, Filomat 10 (1996) 1–32.
- [10] J.L. Kelley, General Topology, TLNY, 1957.
- [11] Lj. Kočinac, On P-chain-net spaces, Publ. Inst. Math. (Beograd) 46 (60) (1989) 188-192.
- [12] P. Kostyrko, T. Šalát, W. Wilczynki, J-convergence, Real Anal. Exchange 26(2000-2001), 669-685.
- [13] B.K. Lahiri, P. Das, I and I*-convergence in topological spaces, Math. Bohemica 130 (2005) 153–160.
- [14] B.K. Lahiri, P. Das, I and I*-convergence of nets, Real Anal. Exchange 33 (2007-2008) 431-442.
- [15] I.J. Maddox, Statistical convergence in locally convex spaces, Math. Proc. Camb. Phil. Soc. 104 (1988) 141–145.
- [16] G. D. Maio, Lj.D.R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008) 28–45.
- [17] M. Gürdal, I. Açık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11(2008) 349–354.
- [18] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30(1980) 139–150.
- [19] E. Savaş, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011) 826–830.
- [20] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11(2007) 1477–1484.
- [21] I.J. Schoenberg, The integrability methods, Amer. Math. Monthly, 66 (1959) 361-375.