
Filomat 33:1 (2019), 81–92
https://doi.org/10.2298/FIL1901081H

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this article, the authors investigate the complete convergence and complete moment con-
vergence of the maximum partial sums for arrays of rowwise asymptotically almost negatively associated
random variables without assumptions of identical distribution and stochastic domination, and obtain
some new results, which not only generalize the corresponding theorems of Hu and Taylor (1997), Gan and
Chen (2007), Wu (2012), but also improve them, respectively.

1. Introduction

Firstly, we shall restate the definitions of negatively associated random variables and asymptotically
almost negatively associated random variables.

Definition 1.1. A finite family of random variables {Xi; 1 ≤ i ≤ n} is said to be negatively associated (NA, in short)
if for any disjoint subsets A and B of {1, 2, · · · ,n},

Cov
(

f1 (Xi, i ∈ A) , f2
(
X j, j ∈ B

))
≤ 0, (1.1)

whenever f1 and f2 are any real coordinatewise nondecreasing functions such that this covariance exists. An infinite
family of random variables {Xi; i ≥ 1} is NA if every finite sub-family is NA.

2010 Mathematics Subject Classification. Primary 60F15; Secondary 60F25
Keywords. arrays of rowwise asymptotically almost negatively associated random variables; complete convergence; complete

moment convergence
Received: 22 February 2017; Accepted: 13 October 2017
Communicated by Miljana Jovanović
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The concept of NA random variables was introduced by Block et al. [1] and carefully studied by
Joag-Dev and Proschan [2]. Obviously, (1.1) holds if f1 and f2 are both real coordinatewise nonincreasing
functions. By inspecting the proof of maximal inequality for the NA random variables in Matula [3], one
also can allow negative correlations provided they are small. Primarily motivated by this, Chandra and
Ghosal [4, 5] introduced the following dependence.

Definition 1.2. A sequence of random variables {Xn; n ≥ 1} is said to be asymptotically almost negatively associated
(AANA, in short) if there exists a nonnegative sequence µ(n)→ 0 as n→∞ such that

Cov
(

f1 (Xn) , f2 (Xn+1,Xn+2, · · · ,Xn+k)
)
≤ µ(n)

(
Var

(
f1(Xn)

)
Var

(
f2 (Xn+1,Xn+2, · · · ,Xn+k)

))1/2 (1.2)

for all n, k ≥ 1 and for all coordinatewise nondecreasing continuous functions f1 and f2 whenever the variances exist.

An array of random variables {Xni; 1 ≤ i ≤ n,n ≥ 1} is called rowwise AANA random variables if for
every n ≥ 1, {Xni; i ≥ 1} is a sequence of AANA random variables.

Obviously, AANA random variables contain independent random variables (with µ(n) = 0 for n ≥ 1)
and NA random variables. Chandra and Ghosal [4] once pointed out that NA implies AANA, but AANA
does not imply NA. Namely, AANA is much weaker than NA. NA has been applied to the reliability
theory, multivariate statistical analysis and percolation theory, and attracted extensive attentions. Hence,
extending the limit properties of NA random variables to the wider case of AANA random variables is
very meaningful in the theory and applications.

Since the concept of AANA was introduced by Chandra and Ghosal [4], many applications have been
established in various aspects. For more details, we can refer to Chandra and Ghosal [4, 5], Ko et al. [6],
Yuan and An [7, 8] , Yuan and Wu [9], Wang et al [10–12], Yang et al. [13], Hu et al.[14], Tang [15], Shen and
Wu [16], Huang et al. [17], Shen et al.[18], and so forth.

For a triangular array of rowwise random variables {Xni; 1 ≤ i ≤ n,n ≥ 1}, let {an; n ≥ 1} be a sequence of
positive real numbers such that 0 < an ↑ ∞, and let ψ (t) be a positive, even function such that for some
nonnegative integer p,

ψ (|t|)
|t|p

↑ and
ψ (|t|)

|t|p+1 ↓ as |t| ↑ . (1.3)

Conditions are given as follows

EXni = 0, 1 ≤ i ≤ n,n ≥ 1. (1.4)

∞∑
n=1

n∑
i=1

Eψ (|Xni|)
ψ (an)

< ∞, (1.5)

∞∑
n=1

 n∑
i=1

E
(Xni

an

)2


2k

< ∞, (1.6)

where k is a positive integer.
In the case of independence, Hu and Taylor [19] obtained the following theorems.

Theorem 1.3. Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be a triangular array of rowwise independent random variables and
{an; n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞, let ψ (t) be a positive, even function
satisfying (1.3) for some integer p > 2. Then conditions (1.4), (1.5) and (1.6) imply

1
an

n∑
i=1

Xni → 0 a.s. (1.7)

Theorem 1.4. Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be a triangular array of rowwise independent random variables and
{an; n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞, let ψ (t) be a positive, even function
satisfying (1.3) for p = 1. Then conditions (1.4) and (1.5) imply (1.7).
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Gan and Chen [20] extended and improved Theorem 1.3 and Theorem 1.4 to the case of NA random
variables. Wu [21] investigated the complete moment convergence and the Lp convergence for arrays
of rowwise NA random variables by using the different methods from Gan and Chen [20]. The results
obtained by Wu [21] generalized the corresponding theorems by Gan and Chen [20]. However, according
to our knowledge, the above subject for the complete convergence and the complete moment convergence
for arrays of rowwise AANA random variables has not been studied. The main goal of this paper is to study
the complete convergence and the complete moment convergence for arrays of rowwise AANA random
variables. The main idea is inspired by Gan and Chen [20], Wu [21]. It is worth pointing out that the
methods used in this article are different from those of Wu [21].

Definition 1.5. A sequence of random variables {Xn; n ≥ 1} is said to converge completely to a constant λ if for
∀ε > 0,

∞∑
n=1

P (|Xn − λ| > ε) < ∞. (1.8)

for all x ≥ 0 and n ≥ 1. This notion was firstly given by Hsu and Robbins [22].

Definition 1.6. Let {Xn; n ≥ 1} be a sequence of random variables, and let an > 0, bn > 0, q > 0. If for some or all
ε ≥ 0,

∞∑
n=1

anE
(
b−1

n |Xn| − ε
)q

+
< ∞. (1.9)

Then (1.9) is called the complete moment convergence by Chow [23].

To prove the main results of this paper, the following two lemmas are needed.

Lemma 1.7. (cf. Yuan and An [7]) Let {Xn; n ≥ 1} be a sequence of AANA random variables with the mixing
coefficients

{
µ (n) ; n ≥ 1

}
, let

{
fn; n ≥ 1

}
be a sequence of all nondecreasing (or all nonincreasing) continuous functions,

then
{
fn (Xn) ; n ≥ 1

}
is still a sequence of AANA random variables with the mixing coefficients

{
µ (n) ; n ≥ 1

}
.

Lemma 1.8. (cf. Yuan and An [7])) Let p > 1 and {Xn; n ≥ 1} be a sequence of AANA random variables with the
mixing coefficients

{
µ (n) ; n ≥ 1

}
, EXn = 0.

If
∞∑

n=1
µ2 (n) < ∞, then there exists a positive constant C = C

(
p
)

depending only on p such that for all n ≥ 1 and

1 < p ≤ 2,

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ C

 n∑
i=1

E|Xi|
p

 . (1.10)

If
∞∑

n=1
µ1/(p−1) (n) < ∞ for some p ∈

(
3 · 2k−1, 4 · 2k−1

]
, where integer number k ≥ 1, then there exists a positive

constant C = C
(
p
)

depending only on p such that for all n ≥ 1,

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ C

 n∑
i=1

E|Xi|
p +

 n∑
i=1

EX2
i


p/2 . (1.11)

Throughout the paper, let I (A) be the indicator function of the set A. The symbol C denotes a positive
constant, which may be different in various places, and an = O (bn) stands for an ≤ Cbn.
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2. Main results

Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise AANA random variables with the mixing coefficients{
µ (i) ; i ≥ 1

}
in each row and {an; n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞. Let{

ψn (t) ; n ≥ 1
}

be a sequence of positive, even functions such that for 1 ≤ q < p

ψn (|t|)
|t|q

↑ and
ψn (|t|)
|t|p

↓ as |t| ↑ . (2.1)

Introduce the following conditions

EXni = 0, 1 ≤ i ≤ n,n ≥ 1, (2.2)
∞∑

n=1

n∑
i=1

Eψi (|Xni|)
ψi (an)

< ∞, (2.3)

∞∑
n=1

 n∑
i=1

E
(Xni

an

)r


s

< ∞, (2.4)

where 0 < r ≤ 2, s > 0.

Theorem 2.1. Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise AANA random variables with the mixing coefficients{
µ (i) ; i ≥ 1

}
in each row satisfying

∞∑
i=1
µ2 (i) < ∞, and let {an; n ≥ 1} be a sequence of positive real numbers such that

0 < an ↑ ∞. Let
{
ψn (t) ; n ≥ 1

}
be a sequence of positive, even functions satisfying (2.1) for 1 ≤ q < p ≤ 2. Then

conditions (2.2) and (2.3) imply

∞∑
n=1

P

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > ε
 < ∞ for ∀ε > 0. (2.5)

Theorem 2.2. Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise AANA random variables with the mixing coefficients{
µ (i) ; i ≥ 1

}
in each row satisfying

∞∑
i=1
µ1/(p−1) (i) < ∞ for some p ∈

(
3 · 2k−1, 4 · 2k−1

]
, where integer number k ≥ 1,

and let {an; n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞. Let
{
ψn (t) ; n ≥ 1

}
be a sequence of

positive, even functions satisfying (2.1) for 1 ≤ q < p and p > 2. Then conditions (2.2), (2.3) and (2.4) imply (2.5).

Remark 2.3. Take q = 1 in (2.1), then the conditions of the above theorems are the same with those of Theorems
1 and 2 in Gan and Chen [20]. The family of AANA sequence contains sequences of independent and NA random
variables. So, Theorems 2.1 and 2.2 are extensions and improvements of the corresponding results of Hu and Taylor
[19], Gan and Chen [20].

Theorem 2.4. Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise AANA random variables with the mixing coefficients{
µ (i) ; i ≥ 1

}
in each row satisfying

∞∑
i=1
µ2 (i) < ∞, and let {an; n ≥ 1} be a sequence of positive real numbers such that

0 < an ↑ ∞. Let
{
ψn (t) ; n ≥ 1

}
be a sequence of positive, even functions satisfying (2.1) for 1 ≤ q < p ≤ 2. Then

conditions (2.2) and (2.3) imply

∞∑
n=1

a−q
n E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ − εan


q

+

< ∞ for ∀ε > 0. (2.6)

Theorem 2.5. Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise AANA random variables with the mixing coefficients{
µ (i) ; i ≥ 1

}
in each row satisfying

∞∑
i=1
µ1/(p−1) (i) < ∞ for some p ∈

(
3 · 2k−1, 4 · 2k−1

]
, where integer number k ≥ 1,

and let {an; n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞. Let
{
ψn (t) ; n ≥ 1

}
be a sequence of

positive, even functions satisfying (2.1) for 1 ≤ q < p and p > 2. Then conditions (2.2), (2.3) and (2.4) imply (2.6).
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Remark 2.6. Compared with Wu [21], we study the complete moment convergence for arrays of rowwise AANA
random variables under the same conditions. It is worth pointing out that the methods applied in this paper are
different from those of Wu [21].

Proof of Theorem 2.1 For fixed n ≥ 1, define

Yni = −anI (Xni < −an) + XniI (|Xni| ≤ an) + anI (Xni > an) ,

Zni = Xni − Yni = (Xni + an) I (Xni < −an) + (Xni − an) I (Xni > an) .

To prove (2.5), we need only to show that

∞∑
n=1

P

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Zni

∣∣∣∣∣∣∣ > ε
 < ∞; (2.7)

∞∑
n=1

P

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε
 < ∞; (2.8)

1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣∣∣→ 0 as n→∞. (2.9)

Firstly, we prove (2.7). When Xni > an, 0 < Zni = Xni − an < Xni. When Xni < −an, Xni < Zni = Xni + an < 0.
Hence, |Zni| ≤ |Xni| I (|Xni| > an). It follows from (2.1) and (2.3) that

∞∑
n=1

P

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Zni

∣∣∣∣∣∣∣ > ε
 ≤ C

∞∑
n=1

n∑
i=1

P (|Zni| > εan)

≤ C
∞∑

n=1

n∑
i=1

E |Zni|

εan

≤ C
∞∑

n=1

n∑
i=1

E |Xni| I (|Xni| > an)
εan

≤ C
∞∑

n=1

n∑
i=1

Eψi (|Xni|)
ψi (an)

< ∞.

Secondly, we prove (2.8). By Lemma 1.7, {Yni − EYni; 1 ≤ i ≤ n,n ≥ 1} is an array of rowwise AANA
random variables with mean zero. Note that |Yni| ≤ |Xni| a.s. It follows from Markov inequality, (2.1), (2.3)
and (1.10) of Lemma 1.8 for 1 < p ≤ 2 that

∞∑
n=1

P

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε
 ≤ C

1
εp

∞∑
n=1

E

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣


p

≤ C
1

(anε)p

∞∑
n=1

n∑
i=1

E |Yni − EYni|
p

≤ C
∞∑

n=1

n∑
i=1

E |Yni|
p

ap
n

≤ C
∞∑

n=1

n∑
i=1

Eψi (|Yni|)
ψi (an)

≤ C
∞∑

n=1

n∑
i=1

Eψi (|Xni|)
ψi (an)

< ∞.
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Finally, we prove (2.9). For 1 ≤ i ≤ n, n ≥ 1, since EXni = 0, we can see that EYni = −EZni. By a similar
argument as the proof of (2.7), we can obtain that

1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣∣∣ =
1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EZni

∣∣∣∣∣∣∣
≤ C

n∑
i=1

E |Xni| I (|Xni| > an)
an

≤ C
n∑

i=1

Eψi (|Xni| I (|Xni| > an))
ψi (an)

≤ C
n∑

i=1

Eψi (|Xni|)
ψi (an)

→ 0.

The proof of Theorem 2.1 is completed.

Proof of Theorem 2.2 By using the same notations and the methods of proof of Theorem 2.1, we can
see that (2.7) and (2.9) hold. It suffices to show that (2.8) holds.

Take v = max
(
p, 2s

)
, it follows from Markov inequality and (1.11) of Lemma 1.8 that

∞∑
n=1

P

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε


≤ C
1
εv

∞∑
n=1

E

 1
an

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣


v

≤ C
1
av

n

∞∑
n=1

 n∑
i=1

E |Yni − EYni|
v +

 n∑
i=1

E (Yni − EYni)
2


v/2

≤ C
1
av

n

∞∑
n=1

 n∑
i=1

E |Yni|
v +

 n∑
i=1

EY2
ni


v/2 .

For v ≥ p, it follows from (2.1) and (2.3) that

C
∞∑

n=1

1
av

n

n∑
i=1

E |Yni|
v
≤ C

∞∑
n=1

n∑
i=1

Eψi (|Yni|)
ψi (an)

≤ C
∞∑

n=1

n∑
i=1

Eψi (|Xni|)
ψi (an)

< ∞.

For 0 < r ≤ 2, s > 0, v ≥ 2s, it follows from (2.4) that

1
av

n

∞∑
n=1

 n∑
i=1

EY2
ni


v/2

=

∞∑
n=1


 n∑

i=1

EY2
ni

a2
n


s

v/2s

≤

 ∞∑
n=1

 n∑
i=1

EY2
ni

a2
n


s

v/2s

≤

 ∞∑
n=1

 n∑
i=1

E|Yni|
r

ar
n


s

v/2s

≤

 ∞∑
n=1

 n∑
i=1

E|Xni|
r

ar
n


s

v/2s

< ∞.
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The proof of Theorem 2.2 is completed.

Proof of Theorem 2.4 Without loss of generality, assume that t > 0. For fixed n ≥ 1, define

Yni = −t1/qI
(
Xni < −t1/q

)
+ XniI

(
|Xni| ≤ t1/q

)
+ t1/qI

(
Xni > t1/q

)
,

Zni = Xni − Yni =
(
Xni + t1/q

)
I
(
Xni < −t1/q

)
+

(
Xni − t1/q

)
I
(
Xni > t1/q

)
.

Obviously, Xni = Zni + Yni. When |Xni| ≤ t1/q, Xni = Yni. By Lemma ??, {Yni; 1 ≤ i ≤ n,n ≥ 1} is an array of
rowwise AANA random variables. It is easy to check that for ∀ε > 0,

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > t1/q

 ≤ P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > t1/q,
n⋃

i=1

(
|Xni| > t1/q

)
+P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > t1/q,
n⋂

i=1

(
|Xni| ≤ t1/q

)
≤

n∑
i=1

P
(
|Xni| > t1/q

)
+ P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Yni

∣∣∣∣∣∣∣ > t1/q

 .
(2.10)

Since,

∞∑
n=1

a−q
n E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ − εan


q

+

=

∞∑
n=1

a−q
n

∫
∞

0
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ − εan > t1/q

 dt

=

∞∑
n=1

a−q
n

∫ aq
n

0
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > εan + t1/q

 dt

+

∞∑
n=1

a−q
n

∫
∞

aq
n

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > εan + t1/q

 dt

≤

∞∑
n=1

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > εan


+

∞∑
n=1

a−q
n

∫
∞

aq
n

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣∣∣ > t1/q

 dt

� K1 + K2.

(2.11)

By Theorem 2.1, we can easily obtain K1 < ∞.
For K2, it follows from (2.10) that

K2 ≤ C
∞∑

n=1

n∑
i=1

a−q
n

∫
∞

aq
n

P
(
|Xni| > t1/q

)
dt + C

∞∑
n=1

a−q
n

∫
∞

aq
n

P
(
max
1≤ j≤n

∣∣∣∣∣∣ j∑
i=1

Yni

∣∣∣∣∣∣ > t1/q

)
dt

� K3 + K4.

For t ≥ aq
n,

K3 = C
∞∑

n=1

n∑
i=1

a−q
n

∫
∞

aq
n

P
(
|Xni| I (|Xni| > an) > t1/q

)
dt

≤ C
∞∑

n=1

n∑
i=1

a−q
n

∫
∞

0
P
(
|Xni| I (|Xni| > an) > t1/q

)
dt

= C
∞∑

n=1

n∑
i=1

E |Xni|
q I (|Xni| > an)

aq
n

≤ C
∞∑

n=1

n∑
i=1

Eψi (|Xni|)
ψi (an)

< ∞.

(2.12)
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It follows from (2.1), (2.2) and (2.3) that

max
t≥aq

n

max
1≤ j≤n

∣∣∣∣∣∣∣t−1/q
j∑

i=1

EYni

∣∣∣∣∣∣∣ = max
t≥aq

n

max
1≤ j≤n

∣∣∣∣∣∣∣t−1/q
j∑

i=1

EZni

∣∣∣∣∣∣∣
≤ C max

t≥aq
n

t−1/q
n∑

i=1

E |Xni| I
(
|Xni| > t1/q

)
≤ C

n∑
i=1

E |Xni| I (|Xni| > an)
an

≤ C
n∑

i=1

Eψi (|Xni|)
ψi (an)

→ 0.

(2.13)

Hence, for n large enough and t ≥ aq
n, we can obtain that

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣∣∣ ≤ t1/q

2
. (2.14)

Take dn = [an] + 1. It follows from Markov inequality, (2.14) and (1.10) of Lemma 1.8 that

K4 ≤ C
∞∑

n=1
a−q

n

∫
∞

aq
n

E

max
1≤ j≤n

∣∣∣∣∣∣ j∑
i=1

Yni

∣∣∣∣∣∣
2 t−2/qdt

≤ C
∞∑

n=1
a−q

n

n∑
i=1

∫
∞

aq
n

EX2
niI (|Xni| ≤ dn) t−2/qdt

+C
∞∑

n=1

a−q
n

n∑
i=1

∫
∞

aq
n

t−2/qEX2
niI

(
dn < |Xni| ≤ t1/q

)
dt

+C
∞∑

n=1

a−q
n

n∑
i=1

∫
∞

aq
n

P
(
|Xni| > t1/q

)
dt

� K5 + K6 + K7.

(2.15)

By the same argument to the proof of K3, we can see that K7 < ∞. For 1 ≤ q < p ≤ 2 and an+1
an
→ 1 as

n→∞, we can obtain that

K5 ≤ C
∞∑

n=1

n∑
i=1

EX2
niI (|Xni| ≤ dn)

a2
n

≤ C
∞∑

n=1

n∑
i=1

(an + 1
an

)2 EX2
niI (|Xni| ≤ dn)

d2
n

≤ C
∞∑

n=1

n∑
i=1

E |Xni|
p I (|Xni| ≤ dn)

dp
n

≤ C
∞∑

n=1

n∑
i=1

Eψi(|Xni |)
ψi(dn)

≤ C
∞∑

n=1

n∑
i=1

Eψi(|Xni |)
ψi(an) < ∞.

(2.16)



H. Huang et al. / Filomat 33:1 (2019), 81–92 89

Take t = uq, it follows from 1 ≤ q < p ≤ 2, (2.1) and (2.3) that

K6 � C
∞∑

n=1

a−q
n

n∑
i=1

∫ dq
n

aq
n

+

∫
∞

dq
n

 t−2/qEX2
niI

(
dn < |Xni| ≤ t1/q

)
dt

≤ C
∞∑

n=1

a−q
n

n∑
i=1

∫
∞

dn

uq−3EX2
niI (dn < |Xni| ≤ u) du

= C
∞∑

n=1

a−q
n

n∑
i=1

∞∑
s=dn

∫ s+1

s
uq−3EX2

niI (dn < |Xni| ≤ u) du

≤ C
∞∑

n=1

a−q
n

n∑
i=1

∞∑
s=dn

sq−3EX2
niI (dn < |Xni| ≤ s + 1)

= C
∞∑

n=1

a−q
n

n∑
i=1

∞∑
s=dn

sq−3
s∑

m=dn

EX2
niI (m < |Xni| ≤ m + 1)

≤ C
∞∑

n=1

a−q
n

n∑
i=1

∞∑
m=dn

mq−2EX2
niI (m < |Xni| ≤ m + 1)

≤ C
∞∑

n=1

a−q
n

n∑
i=1

E |Xni|
q I (|Xni| > dn)

≤ C
∞∑

n=1

n∑
i=1

E |Xni|
q I (|Xni| > an)

aq
n

≤ C
∞∑

n=1

n∑
i=1

Eψi(|Xni |)
ψi(an) < ∞.

(2.17)

The proof of Theorem 2.4 is completed.

Proof of Theorem 2.5 Following the same notations and the argument proofs of Theorem 2.4, we can
easily obtain that K1 < ∞ and K3 < ∞. So, we need only to prove that K4 < ∞. It follows from (2.14),
Markov inequality and (1.11) of Lemma 1.8 that

K4 ≤ C
∞∑

n=1
a−q

n

∫
∞

aq
n

E

max
1≤ j≤n

∣∣∣∣∣∣ j∑
i=1

(Yni − EYni)

∣∣∣∣∣∣
p t−p/qdt

≤ C
∞∑

n=1
a−q

n

∫
∞

aq
n

 n∑
i=1

E|Yni|
p +

(
n∑

i=1
E
(
Y2

ni

))p/2 t−p/qdt

≤ C
∞∑

n=1

n∑
i=1

a−q
n

∫
∞

aq
n

E |Yni|
p t−p/qdt + C

∞∑
n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

EY2
ni


p/2

t−p/qdt

� K8 + K9.

(2.18)

It follows that

K8 = C
∞∑

n=1

n∑
i=1

a−q
n

∫
∞

aq
n

E |Xni|
p I (|Xni| ≤ dn) t−p/qdt

+C
∞∑

n=1

n∑
i=1

a−q
n

∫
∞

aq
n

E |Xni|
p I

(
dn < |Xni| ≤ t1/q

)
t−p/qdt

+C
∞∑

n=1

n∑
i=1

a−q
n

∫
∞

aq
n

P
(
|Xni| > t1/q

)
dt

� K81 + K82 + K83.

By the similar argument as in the proofs of K5 < ∞ and K6 < ∞ (replacing 2 with p ), and K7 < ∞, we
can obtain that K81 < ∞, K82 < ∞ and K83 < ∞.
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It follows from the cr inequality that

K9 ≤ C
∞∑

n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

EX2
niI (|Xni| ≤ an)


p/2

t−p/qdt

+C
∞∑

n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

EX2
niI

(
an < |Xni| ≤ t1/q

)
p/2

t−p/qdt

+C
∞∑

n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

P
(
|Xni| > t1/q

)
p/2

dt

� K91 + K92 + K93.

For p > q, p > 2 and (2.4),

K91 ≤ C
∞∑

n=1

 n∑
i=1

EX2
niI (|Xni| ≤ an)

a2
n


p/2

≤ C
∞∑

n=1

 n∑
i=1

EX2
ni

a2
n


p/2

< ∞.

When 1 ≤ q ≤ 2 and p > 2, it follows from (2.1) and (2.4) that

K92 � C
∞∑

n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

t−2/qE
∣∣∣X2

ni

∣∣∣ I (an < |Xni| ≤ t1/q
)

p/2

dt

≤ C
∞∑

n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

t−1E |Xni|
q I

(
an < |Xni| ≤ t1/q

)
p/2

dt

≤ C
∞∑

n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

t−1E |Xni|
q I (|Xni| > an)


p/2

dt

≤ C
∞∑

n=1

 n∑
i=1

E |Xni|
q I (|Xni| > an)

aq
n


p/2

< ∞.

When 2 < q < p, it follows from (2.1), (2.3) and cr inequality again that

K92 � C
∞∑

n=1

a−q
n

∫
∞

aq
n

 n∑
i=1

t−2/qE |Xni|
2 I

(
an < |Xni| ≤ t1/q

)
p/2

dt

≤ C
∞∑

n=1

 n∑
i=1

E |Xni|
2 I (|Xni| > an)

a2
n


p/2

≤ C
∞∑

n=1

 n∑
i=1

E |Xni|
q I (|Xni| > an)

aq
n


p/2

≤ C

 ∞∑
n=1

n∑
i=1

Eψi (|Xni|)
ψi (an)


p/2

< ∞.

It follows from (2.1) that

max
t≥aq

n

n∑
i=1

P
(
|Xni| > t1/q

)
≤

n∑
i=1

P (|Xni| > an)

≤

n∑
i=1

E |Xni| I (|Xni| > an)
an

≤

n∑
i=1

Eψi (|Xni|)
ψi (an)

→ 0.
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Hence, for n large enough and t ≥ aq
n, we can obtain that

n∑
i=1

P
(
|Xni| > t1/q

)
<

1
2
,

which implies

K93 ≤ C
∞∑

n=1

a−q
n

n∑
i=1

∫
∞

aq
n

P
(
|Xni| > t1/q

)
dt.

By a similar argument proof of K3 < ∞, we can obtain that K93 < ∞. The proof of Theorem 2.5 is
completed.
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