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Abstract. In this paper, by using comparison principle of differential equations, continuation theorem of
coincidence degree theory and Lyapunov function, a delayed predator-prey model with mutual interference
and functional response is studied. Some sufficient conditions which guarantee the permanence of positive
solutions of the model and the existence and global attractivity of a positive periodic solution of the model
are obtained. Some results in the related literature are extended. Furthermore, some numerical simulations
have been performed to substantiate our analytical findings.

1. Introduction

Predator-prey model is one of the dominant theme in both ecology and mathematical ecology due to
its universal existence and importance with many concerned biological systems [1]. In 1971, During his
research of the capturing behavior between two populations, Hassell [2] established a general predator-prey
model by considering the factors of density dependence, functional response and mutual interference as
followsẋ = x1(x) − p(x)ym,

ẏ = y(−s + cp(x)ym−1
− q(y))

(1)

where x(t) and y(t) stand for the population densities of the prey and the predator at time t, respectively, m
(0 < m ≤ 1) is mutual interference constant, p(x) is the predator functional response to prey. In recent years,
the dynamic of special types of (1) have been discussed by many researchers [3-10]. In 2008, Wang and Zhu
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[3] discussed the global attractivity of positive periodic solution of the following model
ẋ(t) = x(t)

(
r1(t) − b1(t)x(t)

)
−

c1(t)x(t)
k + x(t)

ym(t),

ẏ(t) = y(t)
(
− r2(t) − b2(t)y(t)

)
+

c2(t)x(t)
k + x(t)

ym(t),
(0 < m < 1). (2)

Then, in [5], they investigated a predator-prey model with modified Leslie-Gower Holling-type II schemes
ẋ(t) = x(t)

(
r1(t) − b(t)x(t) −

a1(t)y(t)
k1 + x(t)

)
,

ẏ(t) = y(t)
(
r2(t) −

a2(t)y(t)
k2 + x(t)

)
.

(3)

In 2010, Wang et al. [8] investigated predator-prey model with mutual interference and Holling III type
functional response

ẋ(t) = x(t)
(
r1(t) − b1(t)x(t)

)
−

c1(t)x2(t)
k2 + x2(t)

ym(t),

ẏ(t) = y(t)
(
− r2(t) − b2(t)y(t)

)
+

c2(t)x2(t)
k2 + x2(t)

ym(t),
(0 < m < 1). (4)

In 2011, Lv and Du [9] also discussed the model (4) and improved the main conditions in [8]. Later, the
permanence and existence of a unique globally attractive positive almost periodic solution of the model (4)
were considered by Zhang et al. [10].

As a matter of fact, the predation efficiency of predator was effected not only by the density of prey but
also by itself. Therefore Rosenzweig and MacArthur [11] expressed the predator functional response by
Φ(x, y) and obtained a more realistic predator-prey model{

ẋ = x1(x) − ymΦ(x, y),
ẏ = y

(
− s + cym−1Φ(x, y) − q(y)

)
,

(0 < m ≤ 1). (5)

The predator-prey model with mutual interference and Beddington-DeAngelis functional response of
the following form

ẋ(t) = x(t)
(
r1(t) − b1(t)x(t)

)
−

k1(t)x(t)
a(t) + b(t)x(t) + c(t)y(t)

ym(t),

ẏ(t) = y(t)
(
− r2(t) − b2(t)y(t)

)
+

k2(t)x(t)
a(t) + b(t)x(t) + c(t)y(t)

ym(t),
(6)

was studied by Lin and Chen [12] for the permanence and existence of a positive almost periodic solution
and by Guo and Chen [13] for the existence and global attractivity of positive periodic solution respectively.
The other researches on system (6) have been given by Cantrell and Cosner [14], Hwang [15, 16] and Fan
and Kuang [17].

In fact, more general predator-prey model is the following Kolmogorov-type (see [18, 19]){
ẋ(t) = x(t)F1(x(t), y(t)),
ẏ(t) = y(t)F2(x(t), y(t)).

(7)

For system (7), there are also many authors who considered its dynamic behavior, for instance, we can see
the references [20-24] and that cited therein.
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On the other hand, any model of species dynamics without delays, as was pointed by Kuang [25], is an
approximation at best. The importance and usefulness of time-delays in realistic models were also pointed
out in the classical monographs of Macdonald [26] and Gopalsamy [27]. Many scholars, such as Fan [28],
Xu, et al. [29], Egami and Hirano [30], Lu [31], Wang [32], Zhu [33], Tripathi, et al. [34], Teng [35] and Wang
et al. [36-38], have studied the delay predator-prey model in recent years.

Motivated by the above researches, in this paper, we consider a general class of delayed predator-prey
model as the following form


ẋ(t) = x(t)

(
r1(t) − a1(t)x(t) − a2(t)x(t − τ)

)
−

a3(t)xn(t)ym(t)
c1(t) + c2(t)xn(t) + c3(t)yn(t)

,

ẏ(t) = y(t)
(
− r2(t) − b1(t)y(t) − b2(t)y(t − τ)

)
+

b3(t)xn(t)ym(t)
d1(t) + d2(t)xn(t) + d3(t)yn(t)

,

(8)

where r1 is intrinsic growth rate of the prey in the absence of the predator and r2 is death rate of the predator,
a1 and b1 are decay rates of the prey and the predator in competition among their own populations, a2 and
b2 are decay rates of the prey and the predator effected by harmful environmental for a period of past time,
a3 is consumption coefficient for the predator consuming the prey, b3 is coefficient of transformation from
the prey to the predator. ri(t) (i = 1, 2), ai(t), bi(t) (i = 1, 3) and ci(t), di(t) (i = 1, 2) are positive ω-periodic
functions, a2(t), b2(t), c3(t) and d3(t) are nonnegative ω-periodic functions, t ∈ R+ = [0,+∞), delay τ > 0 and
integer n ≥ 2.

System (8) may be regarded as a delayed Kolmogorov-type system or, more specifically, a delayed
Rosenzweig-MacArthur type system. From the viewpoint of Rosenzweig and MacArthur, the functional
response Φ(x, y) should reflect the reality that the predation ability depends not only on the prey numbers
but also on the predator density. This predator dependence is demonstrated in Beddington-DeAngelis
functional response in system (6), but, is not reflected in systems (2)-(4). In order to describe the complexity
of the real predator-prey ecological system, we choose the functional response as the following form

Φ(x, y) =
α(t)xn(t)

β1(t) + β2(t)xn(t) + β3(t)yn(t)
.

The term β3(t)yn(t) added in the denominator of Φ(x, y) can reflect the predator dependence. When n = 1
there are a lot of valuable literatures, such as [3–5, 12–17, 39–45], in which the behavior of the system
has been intensively studied in recent years. When n = 2, the functional response is Holling III type and
when β3(t) = 0, i.e., there is no predator dependence in functional response, its dynamic behavior has been
investigated in many articles, however, for the case of β3(t) , 0, little literature has been found on the
research. When n is a general positive integer, the functional response is regarded as Holling (n + 1) type,
Wang and Sun [46] studied the following system


ẋ = γx(1 − h(x)) −

yxn

a + xn ,

ẏ = y
(
− e + µ

xn

a + xn

) (9)

and gave a necessary and sufficient condition on the uniqueness of limit cycles, which extends the previous
relevant results of Sugie et al. [47]. In fact, since m = 1, there is no mutual interference in system (9). As
far as we know, the research on the Holling (n + 1) type system with predator dependence in functional
response is less.

We claim that system (8) is essentially different from systems (6) and (9) because of the influence of the
constant n and the mutual interference. In order to show this influence we give the following example.
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Example 1.1. In system (6), by selecting

r1(t) = 3.99 + 0.01 sin t, b1(t) = 2.00 − 0.1 sin t, k1(t) = 0.011 + 0.001 sin t,
r2(t) = 0.41 + 0.01 sin t, b2(t) = 0.08 − 0.01 sin t, k2(t) = 0.099 + 0.001 sin t,
a(t) = 1, b(t) = 2 + sin t, c(t) = 3 − sin t, m = 1/2

and initial values (x(0), y(0)) = (1.8, 0.1) and (x(0), y(0)) = (2.3, 1.5), we obtain orbits of system (6) as in Fig.1.

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3
0

0.5

1

1.5

y(
t)

x(t)

Fig.1. The orbits of system (6).

In system (9), by selecting h(x) = x, γ = 3.99 + 0.01 sin t, e = 0.41 + 0.01 sin t, a = 1, µ = 0.099 +
0.001 sin t, n = 4 and initial values (x(0), y(0)) = (1.8, 0.1) and (x(0), y(0)) = (2.3, 1.5), we obtain orbits of
system (9) as in Fig.2.
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Fig.2. The orbits of system (9).

In system (8), by selecting

r1(t) = 3.99 + 0.01 sin t, a1(t) = 2.00 − 0.1 sin t, a2(t) = 0,
r2(t) = 0.41 + 0.01 sin t, b1(t) = 0.08 − 0.01 sin t, b2(t) = 0,
a3(t) = 0.011 + 0.001 sin t, c1(t) = 1, c2(t) = 2 + sin t, c3(t) = 3 − sin t,
b3(t) = 0.099 + 0.001 sin t, d1(t) = 1, d2(t) = 0.26 + 0.01 sin t, d3(t) = 0.02 − 0.01 sin t,
n = 4, m = 1/2

and initial values (x(0), y(0)) = (1.8, 0.1) and (x(0), y(0)) = (2.3, 1.5), we obtain orbits of system (8) as in Fig.3.
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Fig.3. The orbits of system (8).

From Figs. 1-3, we see that, with same assumptions of initial values, systems (6) and (9) are not uniformly
persistent because their predators are extinct finally, but systems (8)(with no delay) has positive periodic
orbits. This shows that the dynamics behavior of system (8)(with no delay) is different from that of systems
(6) and (9). Thus, it is meaningful to study the dynamics behavior of system (8).

Let C+ = C((−∞, 0),R2
+) where R2

+ = {(x, y)T : x, y ∈ R+} and define initial value conditions in view of
the biological reasons as follows{

(x(s), y(s))T = (φ1(s), φ2(s))T
∈ C+, s ∈ [−τ, 0],

x(0) = φ1(0) > 0, y(0) = φ2(0) > 0.
(10)

The rest of this paper is organized as follows. In the next section, by using the Comparison Principle
in ordinary differential equation and some analytical techniques, we study the permanence of positive
solutions of delayed predator-prey model (8) with initial value conditions (10). In Section 3, by applying
continuation theorem of coincidence degree theory, we prove the existence of positive periodic solution of
system (8). Section 4 is devote to the global attractivity. By constructing a suitable Lyapunov functional,
we present some sufficient conditions to guarantee the existence, uniqueness and global attractivity of a
positive periodic solution for system (8). In the last section, we perform some carefully designed numerical
simulations to validate our analytical findings.

2. Permanence of positive solutions

Throughout this paper, for continuous ω-periodic function f (t), we denote

f = inf
t∈[0,ω]

{ f (t)}, F = sup
t∈[0,ω]

{ f (t)}, f̄ =
1
ω

∫ ω

0
f (t)dt. (11)

Using similar method as of the proof of Lemma 2.1 in [10], we state the following lemma of which the proof
will be omitted.

Lemma 2.1. All of solutions of initial value problem (8) with (10) are positive.

In order to obtain the permanence of positive solutions of (8) with (10), we first give the following
lemmas.

Lemma 2.2. If x(t) is a solution of initial value problem{
ẋ(t) ≤ (≥)x(t)(p − qx(t)),
x(0) = x0 > 0 (12)

where p and q are positive constants, then lim sup x(t) ≤ p/q (lim inf x(t) ≥ p/q).



C. Liu, X. Zhou / Filomat 33:1 (2019), 43–64 48

Proof. It is easy to see that the solution of the following initial value problem{
u̇(t) = u(t)(p − qu(t)),
u(0) = x0

is u(t) =
p

q+(px−1
0 −q) exp(−pt) . Applying the Comparison Principle in ordinary differential equation, we have

x(t) ≤ (≥)
p

q + (px−1
0 − q) exp(−pt)

.

Then lim sup x(t) ≤ p/q (lim inf x(t) ≥ p/q).

Using similar proof as of Lemma 2.2 we easy get the following lemma.

Lemma 2.3. If x(t) is a solution of initial value problem{
ẋ(t) ≤ (≥)x(t)(−p + qxm−1(t)), (0 < m < 1),
x(0) = x0 > 0 (13)

where p and q are positive constants, then lim sup x(t) ≤
(
p/q

) 1
1−m

(
lim inf x(t) ≥

(
p/q

) 1
1−m

)
.

For the convenience in next expression we make the following denotations

L1 :=
R1

a1
, L2 :=

( B3

r2d2

) 1
1−m
,

l1 :=
r1c1

c1(A1 + e−δτA2) + A3Ln−2
1 Lm

2

, l2 :=
( b3ln1
(R2 + (B1 + B2)L2)(D1 + D2Ln

1 + D3Ln
2)

) 1
1−m

where δ := r1 − (A1 + A2)L1 −
A3
c1

Ln−1
1 Lm

2 .
After a simple calculation, we see that 0 < l1 < L1 and 0 < l2 < L2.

Theorem 2.4. System (8) with initial value (10) is permanent, that is, all solutions (x(t), y(t)) of system (8) satisfy

l1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ L1,

l2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ L2.
(14)

Proof. From Theorem 2.4, all solutions of system (8) with initial value (10) are positive. Then from (8) and
(10), we get

ẋ(t) ≤ x(t)(R1 − a1x(t)), x(0) = φ1(0) > 0.

By using Lemma 2.2, we have

lim sup
t→+∞

x(t) ≤
R1

a1
= L1. (15)

Similarly, from (8) and (10), we also get

ẏ(t) ≤ y(t)
(
− r2 +

B3

d2
ym−1(t)

)
, y(0) = φ2(0) > 0.
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By using Lemma 2.3, we obtain

lim sup
t→+∞

y(t) ≤
( B3

d2r2

) 1
1−m

= L2. (16)

From (15) and (16), for any small enough positive constant ε, there exists a positive number T1 such that
x(t) ≤ L1 + ε and y(t) ≤ L2 + ε for all t ≥ T1. Then we get, from first equation of (8), that

ẋ(t)
x(t)
≥ r1 − (L1 + ε)(A1 + A2) −

A3

c1
(L1 + ε)n−1(L2 + ε)m, t ≥ T1 + τ.

Denoting δ(ε) = r1 − (L1 + ε)(A1 + A2)− A3
c1

(L1 + ε)n−1(L2 + ε)m and integrating above inequality from t− τ to
t, we get x(t − τ) ≤ e−δ(ε)τx(t). Then, from first equation of (8), we obtain that

ẋ(t) ≥ x(t)
(
r1 −

(
A1 + e−δ(ε)τA2 +

A3

c1
(L1 + ε)n−2(L2 + ε)m

)
x(t)

)
.

By using Lemma 2.2, we see that

lim inf
t→+∞

x(t) ≥
c1r1

c1(A1 + e−δ(ε)τA2) + A3(L1 + ε)n−2(L2 + ε)m
. (17)

When ε→ 0, inequality (17) leads to

lim inf
t→+∞

x(t) ≥
c1r1

c1(A1 + e−δτA2) + A3Ln−2
1 Lm

2

= l1. (18)

From second equation of (8) with (15), (16) and (18), there exists a T2 > T1 such that, for all t ≥ T2,

ẏ(t) ≥ y(t)
(
−(R2 + (B1 + B2)(L2 + ε)) +

b3(l1 + ε)n

D1 + D2(L1 + ε)n + D3(L2 + ε)n ym−1(t)
)
.

Therefore, from Lemma 2.3 and letting ε→ 0, we get

lim inf
t→+∞

y(t) ≥
(

b3ln1
(R2 + (B1 + B2)L2)(D1 + D2Ln

1 + D3Ln
2)

) 1
m−1

= l2

The proof is completed.

By method of the proof of Theorem 2.4, we easy to obtain the following permanence result for system
(4).

Corollary 2.5. System (4) with initial value

x(0) = φ1(0) > 0, y(0) = φ2(0) > 0 (19)

is permanent, that is, all solutions (x(t), y(t)) of system (4) with initial value (19) satisfy

l∗1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ L∗1,

l∗2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ L∗2
(20)

where

L∗1 :=
R1

b1
, L∗2 :=

(C2

r2

) 1
1−m
,

l∗1 :=
k2r1

k2B1 + C1L∗2
m , l∗2 :=

( c2l∗1
2

(R2 + B2L∗2)(k2 + L∗1
2)

) 1
1−m
.



C. Liu, X. Zhou / Filomat 33:1 (2019), 43–64 50

Remark 2.6. It is easy to see that 0 < l∗1 ≤ L∗1 and 0 < l∗2 ≤ L∗2 hold without any other extra conditions except for the
basic assumptions for coefficients of system (4). Therefore, Corollary 2.5 improves Theorem 3.1 in [10].

3. Existences of periodic solutions

Suppose (x(t), y(t))T is an arbitrary positive solution of system (8) and let u(t) = ln x(t) and v(t) = ln y(t),
then system (8) can be changed into

u̇(t) = r1(t) − a1(t)eu(t)
− a2(t)eu(t−τ)

−
a3(t)e(n−1)u(t)emv(t)

c1(t) + c2(t)enu(t) + c3(t)env(t)
,

v̇(t) = −r2(t) − b1(t)ev(t)
− b2(t)ev(t−τ) +

b3(t)enu(t)e(m−1)v(t)

d1(t) + d2(t)enu(t) + d3(t)env(t)
.

(21)

Denoting the right terms of first equation and second equation in (21) by F1(t,u(t), v(t)) and F2(t,u(t), v(t))
respectively and considering system{

u̇(t) = λF1(t,u(t), v(t)),
v̇(t) = λF2(t,u(t), v(t)) (22)

where λ ∈ (0, 1], we have the following lemma.

Lemma 3.1. Suppose (u(t), v(t))T is a ω-periodic solution of (22), then there exists a positive number S1 such that
|u(t)| + |v(t)| ≤ S1 where S1 will be calculated as in the following proof.

Proof. Since (u(t), v(t))T is periodic, the following discussion will be restricted to t ∈ [0, ω]. Integrating the
first equation of (22) from 0 to ω and in view of

∫ ω
0 u̇(t)dt = 0, we get∫ ω

0
r1(t)dt =

∫ ω

0

(
a1(t)eu(t) + a2(t)eu(t−τ) +

a3(t)e(n−1)u(t)emv(t)

c1(t) + c2(t)enu(t) + c3(t)env(t)

)
dt. (23)

Therefore,∫ ω

0
|u̇(t)|dt = λ

∫ ω

0
|F1(t,u(t), v(t))|dt ≤

∫ ω

0
2r1(t)dt = 2r̄1ω. (24)

Suppose η1, ξ1, η2, ξ2 ∈ [0, ω] such that

u(η1) = min
t∈[0,ω]

u(t), u(ξ1) = max
t∈[0,ω]

u(t), v(η2) = min
t∈[0,ω]

v(t), v(ξ2) = max
t∈[0,ω]

v(t). (25)

Then we see that u̇(η1) = u̇(ξ1) = v̇(η2) = v̇(ξ2) = 0.
From (23) and (25), we have∫ ω

0
r1(t)dt ≥

∫ ω

0

(
a1(t)eu(t) + a2(t)eu(t−τ)

)
dt ≥

∫ ω

0
(a1(t) + a2(t)) eu(η1)dt = ω(ā1 + ā2)eu(η1).

Therefore

eu(η1)
≤

1
ω(ā1 + ā2)

∫ ω

0
r1(t)dt =

r̄1

(ā1 + ā2)
. (26)

From (24), we have

u(t) − u(η1) =

∫ t

η1

u̇(t)dt ≤

∣∣∣∣∣∣
∫ t

η1

u̇(t)dt

∣∣∣∣∣∣ ≤
∫ ω

0
|u̇(t)|dt ≤ 2r̄1ω.
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Therefore, for all t ∈ [0, ω],

u(t) ≤ u(η1) + 2r̄1ω ≤ ln
r̄1

(ā1 + ā2)
+ 2r̄1ω := U1. (27)

Let t = ξ2 in the second equation of (22) and in view of v̇(ξ2) = 0, we obtain

r2(ξ2) = −b1(ξ2)ev(ξ2)
− b2(ξ2)ev(ξ2−τ)

−
b3(ξ2)enu(ξ2)e(m−1)v(ξ2)

d1(ξ2) + d2(ξ2)enu(ξ2) + d3(ξ2)env(ξ2)
. (28)

Then

b1(ξ2)ev(ξ2) = −r2(ξ2) − b2(ξ2)ev(ξ2−τ) +
b3(ξ2)enu(ξ2)e(m−1)v(ξ2)

d1(ξ2) + d2(ξ2)enu(ξ2) + d3(ξ2)env(ξ2)

≤
b3(ξ2)
d2(ξ2)

e(m−1)v(ξ2).

Further

v(ξ2) ≤
1

2 −m
ln

b3(ξ2)
b1(ξ2)d2(ξ2)

≤
1

2 −m
ln

B3

b1d2
.

Therefore, for all t ∈ [0, ω], we have

v(t) ≤
1

2 −m
ln

B3

b1d2
:= V1. (29)

Letting t = η1 in first equation and t = η2 in second equation of (22) and noticing u̇(η1) = v̇(η2) = 0, we
have 

r1(η1) = a1(η1)eu(η1) + a2(η1)eu(η1−τ) +
a3(η1)e(n−1)u(η1)emv(η1)

c1(η1) + c2(η1)enu(η1) + c3(η1)env(η1)
,

r2(η2) = −b1(η2)ev(η2)
− b2(η2)ev(η2−τ) +

b3(η2)enu(η2)e(m−1)v(η2)

d1(η2) + d2(η2)enu(η2) + d3(η2)env(η2)
.

(30)

Now we estimate lower bound of u(t).
If u(η1) ≥ 0, then u(t) ≥ 0 for all t and the lower bound of u(t) is 0.
If u(η1) < 0, then e(n−1)u(η1)

≤ eu(η1) for n ≥ 2. It is easy to obtain from (30) that

r1(η1) ≤ a1(η1)eu(η1) + a2(η1)eu(η1−τ) +
a3(η1)eu(η1)emv(η1)

c1(η1)
≤

(
a1(η1) + a2(η1) +

a3(η1)
c1(η1)

emv(η1)

)
eu(ξ1).

Therefore,

eu(ξ1)
≥ r1(η1)

(
a1(η1) + a2(η1) +

a3(η1)
c1(η1)

emv(η1)

)−1

≥
c1r1

c1A1 + c1A2 + A3emV1
,

i.e.

u(ξ1) ≥ ln
c1r1

c1A1 + c1A2 + A3emV1
.

On the other hand

u(ξ1) − u(t) =

∫ ξ1

t
u̇(s)ds ≤

∣∣∣∣∣∣
∫ ξ1

t
u̇(s)ds

∣∣∣∣∣∣ ≤
∫ ω

0
|u̇(s)|ds ≤ 2r̄1ω,
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then

u(t) ≥ u(ξ1) − 2r̄1ω ≥ ln
c1r1

c1A1 + c1A2 + A3emV1
− 2r̄1ω := E1.

Let U0 = min{0,E1}, then, for all t ∈ [0, ω],

u(t) ≥ U0. (31)

Next we estimate lower bound of v(t).
If v(η2) ≥ 0, then 0 is lower bound of v(t).
If v(η2) < 0, then e(1−m)v(η2)

≥ e(2−m)v(η2) and env(η2) < 1. Therefore, from the second equation of (30), we
have

(
r2(η2) + b1(η2) + b2(η2)ev(η2−τ)

)
e(1−m)v(η2)

≥
b3(η2)enu(η2)

d1(η2) + d2(η2)enu(η2) + d3(η2)
.

Hence,

v(η2) ≥
1

1 −m
ln

b3(η2)enu(η2)(
r2(η2) + b1(η2) + b2(η2)ev(η2−τ)

)(
d1(η2) + d2(η2)enu(η2) + d3(η2)

)
≥

1
1 −m

ln
b3enU0

(R2 + B1 + B2eV1 )(D1 + D2enU1 + D3)
:= E2.

Therefore, for t ∈ [0, ω], v(t) ≥ E2. Letting V0 = min{0,E2}, we have,

v(t) ≥ V0, for t ∈ [0, ω]. (32)

From (27), (29), (31) and (32), we know, for t ∈ [0, ω], that

U0 ≤ u(t) ≤ U1, V0 ≤ v(t) ≤ V1. (33)

Denoting E3 = max{|U0|, |U1|}, E4 = max{|V0|, |V1|} and S1 = E3 + E4, we have

|u(t)| + |v(t)| ≤ S1. (34)

Suppose (u, v)T is a constant solution of system (21), then
r1(t) − a1(t)eu

− a2(t)eu
−

a3(t)e(n−1)uemv

c1(t) + c2(t)enu + c3(t)env = 0,

− r2(t) − b1(t)ev
− b2(t)ev +

b3(t)enue(m−1)v

d1(t) + d2(t)enu + d3(t)env = 0.

Integrating two sides of above equations on [0, ω] and applying integral mean theorem, we get
r̄1 − (ā1 + ā2)eu

−
ā3e(n−1)uemv

c1(t1) + c2(t1)enu + c3(t1)env = 0,

− r̄2 − (b̄1 + b̄2)ev +
b̄3enue(m−1)v

d1(t2) + d2(t2)enu + d3(t2)env = 0
(35)

where t1, t2 ∈ [0, ω].
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Consider the following equations
r̄1 − (ā1 + ā2)eu

− µ
ā3e(n−1)uemv

c1(t1) + c2(t1)enu + c3(t1)env = 0,

− µr̄2 − (b̄1 + b̄2)ev +
b̄3enue(m−1)v

d1(t2) + d2(t2)enu + d3(t2)env = 0
(36)

where µ ∈ [0, 1] is a parameter.

Lemma 3.2. Suppose (u, v)T is a solution of (36), then there exists a positive number S2 such that |u|+ |v| ≤ S2 where
S2 will be defined in the following proof.

Proof. From the first equation of (36) we get r̄1 ≥ (ā1 + ā2)eu, then

u ≤
r̄1

ā1 + ā2
:= U3. (37)

From the second equation of (36), we get

(b̄1 + b̄2)ev
≤

b̄3enue(m−1)v

d1(t2) + d2(t2)enu + d3(t2)env ≤
b̄3e(m−1)v

d2(t2)
.

Then

v ≤
1

2 −m
ln

b̄3

(b̄1 + b̄2)d2
:= V3. (38)

If u ≥ 0, then 0 is the low bound of u. If u < 0, from the first equation of (36), we get

r̄1 ≤ (ā1 + ā2)eu +
ā3euemv

c1(t1)
≤

(
ā1 + ā2 +

ā3emV3

c1

)
eu.

Therefore

u ≥ ln
c1r̄1

c1(ā1 + ā2) + ā3emV3
:= H1.

Let U2 = min{0,H1}, we have,

u ≥ U2. (39)

If v ≥ 0, then 0 is the low bound of v. If u < 0, from the second equation of (36), we get

r̄2e(1−m)v + (b̄1 + b̄2)e(2−m)v
≥

b̄3enu

d1(t2) + d2(t2)enu + d3(t2)env .

Then, in view of (1 −m)v ≥ (2 −m)v and env < 1, we obtain

(
r̄2 + b̄1 + b̄2

)
e(1−m)v

≥
b̄3enu

d1(t2) + d2(t2)enu + d3(t2)env ≥
b̄3enU2

D1 + D2enU3 + D3
.

Therefore

v ≥
1

1 −m
ln

b̄3enU2(
r̄2 + b̄1 + b̄2

)(
D1 + D2enU3 + D3

) := H2.
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Letting V2 = min{0,H2}, we have,

v ≥ V2. (40)

From (37), (38), (39) and (40), we know that

U2 ≤ u(t) ≤ U3, V2 ≤ v(t) ≤ V3. (41)

Denoting E5 = max{|U2|, |U3|}, E6 = max{|V2|, |V3|} and S2 = E5 + E6, we have

|u(t)| + |v(t)| ≤ S2. (42)

In order to discuss the existence of periodic solutions of system (8), we introduce some definitions and
Mawhin’s coincidence theorem.

Definition 3.3. (see [48]) Let X and Y be both Banach spaces and L : DomL(⊂ X) → Y be a linear map. If the
following conditions are satisfied

(a) ImL is a closed subspace of Y;

(b) dim KerL = codimImL < +∞,

then L is called a Fredholm operator.

If L is a Fredholm operator with index zero and there exist continuous projects

P : X→ DomL and Q : Y→ Y

such that ImP = KerL, KerQ = ImL = Im(I −Q) and

X = KerL ⊕ KerP, Y = ImL ⊕ ImQ.

Then map LP = L|DomL∩KerP : DomL ∩ KerP → ImL is invertible. Denote inverse of LP by KP, then
KP : ImL→ DomL ∩ KerP.

Definition 3.4. (see [48]) Let N : X → Y be a continuous map and Ω ⊂ X be any open set. If QN(Ω) is bounded
and KP(I −Q)N(Ω) is relative compact in X, then we say N is L-compact on Ω.

Lemma 3.5. (Mawhin’s coincidence theorem, [48]) Let X and Y be both Banach spaces and L : DomL(⊂ X) → Y
be a Fredholm operator with index zero, Ω ⊂ X be an open bounded set and N : Ω → Y be L-compact on Ω. If the
following conditions hold:

(i) Lx , λNx, x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);

(ii) Nx < ImL, x ∈ ∂Ω ∩ KerL;

(iii) deg{JQN,Ω ∩ KerL, 0} , 0, where J : ImQ→ KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution on Ω ∩DomL.

Theorem 3.6. System (8) with initial value (10) has at least one positive ω-periodic solution.
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Proof. Suppose that (x(t), y(t))T is an arbitrary positive solution of system (8) and let u(t) = ln x(t) and
v(t) = ln y(t), then system (8) is changed into system (21).

Let X = Y = {z(t)| z(t) = (u(t), v(t))T
∈ C(R,R2), z(t + ω) = z(t)} equipped with the norm

‖z(t)‖ = ‖(u(t), v(t))T
‖ = max

t∈[0,ω]
|u(t)| + max

t∈[0,ω]
|v(t)|,

then X and Y are both Banach spaces.
We define operators L, P and Q on X as follows

L : L(z) =
dz
dt

;

P : P(z) = z(0);

Q : Q(z) =
1
ω

∫ ω

0
z(t)dt,

and define operator N : X→ Y as the following form

N(z) =


r1(t) − a1(t)eu(t)

− a2(t)eu(t−τ)
−

a3(t)e(n−1)u(t)emv(t)

c1(t) + c2(t)enu(t) + c3(t)env(t)

− r2(t) − b1(t)ev(t)
− b2(t)ev(t−τ) +

b3(t)enu(t)e(m−1)v(t)

d1(t) + d2(t)enu(t) + d3(t)env(t)

 .
Then DomL = {z(t) ∈ X : z(t) ∈ C1(R,R2)}, KerL = R2, ImQ = R2, dim KerL = codim ImL = 2 and
ImL = {z| z ∈ Y,

∫ ω
0 z(t)dt = 0}. By Lebesgue dominated convergence theorem, we know ImL is closed in Y

and L is a Fredholm operator with index zero.
Obviously, P and Q are both continuous projections satisfying ImP = KerL, ImL = KerQ = Im(I − Q).

Thus operator L on DomL∩KerP has a inverse defined by KP : ImL→ DomL∩KerP. By simple calculation
we see

KP(z) =

∫ t

0
z(s)ds −

1
ω

∫ ω

0
dt

∫ t

0
z(s)ds.

For any z(t) ∈ X, we obtain

QN(z) = Q
(
F1(t,u(t), v(t)),F2(t,u(t), v(t))

)T

=

(
1
ω

∫ ω

0
F1(t,u(t), v(t))dt,

1
ω

∫ ω

0
F2(t,u(t), v(t))dt

)T

= (F̄1, F̄2)T

and

KP(I −Q)N(z) = (W1,W2)T

where Wi(t) =
∫ t

0 Fi(s,u(s), v(s))ds − F̄it − 1
ω

∫ ω
0

∫ t

0 Fi(s,u(s), v(s))dsdt + ω
2 , i = 1, 2. Therefore, by Lebesgue

dominated convergence theorem, we know that QN and KP(I−Q)N are both continuous. For any bounded
open set Ω ⊂ X, Fi(s,u(s), v(s)) (i = 1, 2) are bounded on Ω, then QN(Ω) and KP(I−Q)N(Ω) are both uniformly
bounded and equicontinuous. By using Arzela-Ascoli theorem, we know that QN(Ω) and KP(I − Q)N(Ω)
are both compact. Therefore N is L-compact on Ω. Particularly, we take Ω = {z(t)| z(t) = (u(t), v(t))T

∈

X, ‖z(t)‖ ≤ S}where S = S1 + S2 + ε (ε > 0) and S1,S2 are defined as in Lemmas 3.1 and 3.2.



C. Liu, X. Zhou / Filomat 33:1 (2019), 43–64 56

Next, we check the three conditions in Lemma 3.5.
(i) For each λ ∈ (0, 1), z(t) ∈ ∂Ω ∩ DomL, we have Lz , λNz. Otherwise, z(t) is a ω-periodic solution

of (22) and then ‖z(t)‖ ≤ S1 will be derived by Lemma 3.1. It is impossible because ‖z(t)‖ = S > S1 for
z(t) ∈ ∂Ω ∩DomL.

(ii) When z(t) ∈ ∂Ω ∩ KerL, dz(t)
dt = 0, i.e., z(t) is a constant vector (u, v)T with ‖(u, v)T

‖ = S1 + S2 + ε.
If QN(u, v)T = 0, then (u, v)T is a solution of (36) for µ = 1. By Lemma 3.2, we have ‖(u, v)T

‖ ≤ S2 which
contradicts to ‖(u, v)T

‖ = S1 + S2 + ε. Thus, for each z ∈ ∂Ω ∩ KerL, QNz , 0
(iii) Choose J : ImQ → KerL such that J(z) = z for each z ∈ ImQ. When z ∈ Ω ∩ KerL, z(t) = (u, v)T is a

constant vector and satisfies

JQN(u, v)T = JQ
(
F1(t,u, v),F2(t,u, v)

)T

=

(
1
ω

∫ ω

0
F1(t,u, v)dt,

1
ω

∫ ω

0
F2(t,u, v)dt

)T

=


r̄1 − (ā1 + ā2)eu

−
ā3e(n−1)uemv

c1(t1) + c2(t1)enu + c3(t1)env

− r̄2 − (b̄1 + b̄2)ev +
b̄3enue(m−1)v

d1(t2) + d2(t2)enu + d3(t2)env


where t1, t2 were defined as in (35). We define ϕ : Ω ∩ KerL × [0, 1]→ X as follows

ϕ(u, v, µ) =


r̄1 − (ā1 + ā2)eu

b̄3enue(m−1)v

d1(t2) + d2(t2)enu + d3(t2)env − (b̄1 + b̄2)ev

 + µ

 −
ā3e(n−1)uemv

c1(t1) + c2(t1)enu + c3(t1)env

− r̄2

 .
Then JQN(u, v)T = ϕ(u, v, 1). By Lemma 3.2, we see ϕ(u, v, 1) , (0, 0)T. Therefore, using the homotopy
invariance theorem of topological degree, we obtain

deg{JQN(u, v)T,Ω ∩ KerL, (0, 0)T
}

=deg{ϕ(u, v, 1),Ω ∩ KerL, (0, 0)T
}

=deg{ϕ(u, v, 0),Ω ∩ KerL, (0, 0)T
}

=deg
{(

r̄1 − (ā1 + ā2)eu,
b̄3enue(m−1)v

d1(t2) + d2(t2)enu + d3(t2)env − (b̄1 + b̄2)ev
)T
, Ω ∩ KerL, (0, 0)T

}
.

Denote

ψ1(u, v) := r̄1 − (ā1 + ā2)eu,

ψ2(u, v) :=
b̄3enue(m−1)v

d1(t2) + d2(t2)enu + d3(t2)env − (b̄1 + b̄2)ev,

and consider the following algebraic equations{
ψ1(u, v) = 0,
ψ2(u, v) = 0.

(43)

From first equation of (43) we get its unique u∗ = ln r̄1
ā1+ā2

. Substituting it into second equation of (43), we
get

b̄3enu∗

d1(t2) + d2(t2)enu∗ + d3(t2)env − (b̄1 + b̄2)e(2−m)v = 0
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which is easily checked to have a unique solution v∗ on R. So, equations (43) has unique solution (u∗, v∗)T

on Ω ∩ KerL.
For convenience, we denote p(u, v) = d1(t2) + d2(t2)enu + d3(t2)env. Then

∂ψ1

∂u
= −(ā1 + ā2)eu,

∂ψ1

∂v
= 0,

∂ψ2

∂u
=

nb̄3enue(1−m)v
(
p(u, v) − nb̄3d2(t2)enu

)
p2(u, v)

,

∂ψ2

∂v
=
−b̄3enue(m−1)v

(
(1 −m)p(u, v) + nd3(t2)env

)
p2(u, v)

− (b̄1 + b̄2)ev.

Therefore, we have

deg{JQN(u, v)T,Ω ∩ KerL, (0, 0)T
} = sgn

∣∣∣∣∣∣∣∣∣∣
∂ψ1

∂u
∂ψ1

∂v
∂ψ2

∂u
∂ψ2

∂v

∣∣∣∣∣∣∣∣∣∣
(u∗,v∗)T

= sgn

∣∣∣∣∣∣∣∣∣∣
∂ψ1

∂u
0

∂ψ2

∂u
∂ψ2

∂v

∣∣∣∣∣∣∣∣∣∣
(u∗,v∗)T

=sgn

(ā1 + ā2)eu∗
( b̄3enu∗e(m−1)v∗

(
(1 −m)p(u∗, v∗) + nd3(t2)env∗

)
p2(u∗, v∗)

+ (b̄1 + b̄2)ev∗
)

=1 , 0.

So far, all of the conditions in Lemma 3.5 have been checked. This implies that system (21) has at least
one ω-periodic solution. Further system (8) has at least one positive ω-periodic solution. The proof is
completed.

Remark 3.7. When a2(t) = b2(t) = c3(t) = d3(t) = 0, c1(t) = d1(t) = k2, c2(t) = d2(t) = 1 and n = 2, system (8) is
degenerated into system (4). Therefore Theorem 3.6 extends Theorem 3.1 in [8] and Theorem 3.1 in [9].

4. Global attractivity

Definition 4.1. Suppose (x̃(t), ỹ(t))T is a positive ω-periodic solution of system (8), (x(t), y(t))T is arbitrary positive
solution of system (8) and

lim
t→+∞

|x(t) − x̃(t)| = 0, lim
t→+∞

|y(t) − ỹ(t)| = 0.

Then (x̃(t), ỹ(t))T is called globally attractive.

Lemma 4.2. (see [49]) If function f is nonnegative, integrable and uniformly continuous on [0,+∞), then limt→+∞ f (t) =
0.

From Theorem 2.4, we know that for any enough small positive ε (< min{l1, l2}) there exists T(> 0) such
that, when t ≥ T, arbitrary positive solution (x(t), y(t))T of system (8) satisfies that

l1 − ε ≤ x(t) ≤ L1 + ε, l2 − ε ≤ y(t) ≤ L2 + ε. (44)

For arbitrary positive ω-periodic solution (x̃(t), ỹ(t))T of system (8), if let u(t) = ln x̃(t) and v(t) = ln ỹ(t), then
(u(t), v(t))T satisfies (21). From (33) in proof of Lemma 3.1, we have

eU0 ≤ x̃(t) ≤ eU1 , eV0 ≤ ỹ(t) ≤ eV1 . (45)
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For convenience, we denote

γ = min{l1, l2, eU0 , eV0 }, Γ = max{L1,L2, eU1 , eV1 }

and

11(t) = 11(t, γ, γ), 12(t) = 12(t, γ, γ), G1(t) = 11(t,Γ,Γ), G2(t) = 12(t,Γ,Γ), (46)

where

11(t, x, y) = c1(t) + c2(t)xn + c3(t)yn, 12(t, x, y) = d1(t) + d2(t)xn + d3(t)yn.

Theorem 4.3. Suppose system (8) with initial condition (10) satisfy

(A) σ1 = min
t∈[0,ω]

{
a1(t) + (n − 1)γn+m−2 a3(t)(c1(t) + γnc3(t))

G2
1(t)

− Γ2n+m−2 a3(t)c2(t)
12

1(t)

− nγm−1Γn−1 b3(t)(d1(t) + Γnd3(t))
12

2(t)
− A2

}
> 0;

(B) σ2 = min
t∈[0,ω]

{
b1(t) + (1 −m)γnΓn−2 b3(t)

G2(t)
+ nγ2n−1Γm−1 b3(t)d3(t)

G2
2(t)

− nΓ2n+m−1 a3(t)c3(t)
12

1(t)
−mγm−1Γn−1 a3(t)

11(t)
− B2

}
> 0.

Then system (8) has only one positive ω-periodic solution which is globally attractive.

Proof. Proof. Suppose (x(t), y(t))T is arbitrary positive solution of system (8), then we know it satisfies (44).
Moreover, Theorem 3.6 indicates that system (8) has at least one positive ω-periodic solution (x̃(t), ỹ(t))T

satisfying condition (45). We choose Lyapunov function as follows

V(t) = V1(t) + V2(t)

where

V1(t) =
∣∣∣ ln x(t) − ln x̃(t)

∣∣∣ + A2

∫ t

t−τ

∣∣∣ ln x(s) − ln x̃(s)
∣∣∣ds,

V2(t) =
∣∣∣ ln y(t) − ln ỹ(t)

∣∣∣ + B2

∫ t

t−τ

∣∣∣ ln y(s) − ln ỹ(s)
∣∣∣ds.

Then

D+V1(t)|(1.7) =sgn
(
x(t) − x̃(t)

) ( ẋ(t)
x(t)
−

˙̃x(t)
x̃(t)

)
+ A2

∣∣∣ ln x(s) − ln x̃(s)
∣∣∣ − A2

∣∣∣ ln x(t − τ) − ln x̃(t − τ)
∣∣∣

=sgn
(
x(t) − x̃(t)

) [
−a1(t)

(
x(t) − x̃(t)

)
− a2(t)

(
x(t − τ) − x̃(t − τ)

)
−

(
a3(t)xn−1(t)ym(t)
11(t, x, y)

−
a3(t)x̃n−1(t)ỹm(t)
11(t, x̃, ỹ)

)]
+ A2

∣∣∣x(t) − x̃(t)
∣∣∣ − A2

∣∣∣x(t − τ) − x̃(t − τ)
∣∣∣.

(47)
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Since

a3(t)xn−1(t)ym(t)
11(t, x, y)

−
a3(t)x̃n−1(t)ỹm(t)
11(t, x̃, ỹ)

=
a3(t)xn−1(t)ym(t)
11(t, x, y)

−
a3(t)x̃n−1(t)ym(t)
11(t, x̃, ỹ)

+
a3(t)x̃n−1(t)ym(t)
11(t, x̃, ỹ)

−
a3(t)x̃n−1(t)ỹm(t)
11(t, x̃, ỹ)

=
a3(t)ym(t)

11(t, x, y)11(t, x̃, ỹ)

[(
c1(t) + c3(t)ỹn(t)

)(
xn−1(t) − x̃n−1(t)

)
− c2(t)xn−1(t)x̃n−1(t)

(
x(t) − x̃(t)

)
+ c3(t)x̃n−1(t)

(
ỹn(t) − yn(t)

)]
+

a3(t)x̃n−1(t)
11(t, x̃, ỹ)

(
ym(t) − ỹm(t)

)
.

(48)

Substituting (48) in to (47) and in view of A2 ≥ a2(t), we get

D+V1(t)|(1.7) ≤ − a1(t)
∣∣∣x(t) − x̃(t)

∣∣∣ +
a3(t)ym(t)

11(t, x, y)11(t, x̃, ỹ)

[
−

(
c1(t) + c3(t)ỹn(t)

)∣∣∣xn−1(t) − x̃n−1(t)
∣∣∣

+ c2(t)xn−1(t)x̃n−1(t)
∣∣∣x(t) − x̃(t)

∣∣∣ + c3(t)x̃n−1(t)
∣∣∣ỹn(t) − yn(t)

∣∣∣] + A2

∣∣∣x(t) − x̃(t)
∣∣∣

+
a3(t)x̃n−1(t)
11(t, x̃, ỹ)

∣∣∣ym(t) − ỹm(t)
∣∣∣.

(49)

Meanwhile,

D+V2(t)|(1.7) =sgn
(
y(t) − ỹ(t)

) ( ẏ(t)
y(t)
−

˙̃y(t)
ỹ(t)

)
+ B2

∣∣∣y(s) − ỹ(s)
∣∣∣ − B2

∣∣∣y(t − τ) − ỹ(t − τ)
∣∣∣

=sgn
(
y(t) − ỹ(t)

) [
−b1(t)

(
y(t) − ỹ(t)

)
− b2(t)

(
y(t − τ) − ỹ(t − τ)

)
+

(
b3(t)xn(t)ym−1(t)
12(t, x, y)

−
b3(t)x̃n(t)ỹm−1(t)
12(t, x̃, ỹ)

)]
+ B2

∣∣∣y(t) − ỹ(t)
∣∣∣ − B2

∣∣∣y(t − τ) − ỹ(t − τ)
∣∣∣.

(50)

Since

b3(t)xn(t)ym−1(t)
12(t, x, y)

−
b3(t)x̃n(t)ỹm−1(t)
12(t, x̃, ỹ)

=
b3(t)xn(t)ym−1(t)
12(t, x, y)

−
b3(t)x̃n(t)ym−1(t)
12(t, x̃, ỹ)

+
b3(t)x̃n(t)ym−1(t)
12(t, x̃, ỹ)

−
b3(t)x̃n(t)ỹm−1(t)
12(t, x̃, ỹ)

=
b3(t)ym−1(t)

12(t, x, y)12(t, x̃, ỹ)

[(
d1(t) + d3(t)ỹn(t)

)(
xn(t) − x̃n(t)

)
− d3(t)x̃n(t)

(
yn(t) − ỹn(t)

)]
+

b3(t)x̃n(t)
12(t, x̃, ỹ)

(
ym−1(t) − ỹm−1(t)

)
.

(51)

Substituting (51) in to (50) and in view of B2 ≥ b2(t), we get

D+V2(t)|(1.7) =sgn
(
y(t) − ỹ(t)

)[
− b1(t)

(
y(t) − ỹ(t)

)
− b2(t)

(
y(t − τ) − ỹ(t − τ)

)
b3(t)ym−1(t)

12(t, x, y)12(t, x̃, ỹ)

((
d1(t) + d3(t)ỹn(t)

)(
xn(t) − x̃n(t)

)
− d3(t)x̃n(t)

(
yn(t) − ỹn(t)

))
+

b3(t)x̃n(t)
12(t, x̃, ỹ)

(
ym−1(t) − ỹm−1(t)

)]
+ B2

∣∣∣y(t) − ỹ(t)
∣∣∣ − B2

∣∣∣y(t − τ) − ỹ(t − τ)
∣∣∣

(52)
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≤ − b1(t)
∣∣∣y(t) − ỹ(t)

∣∣∣ +
b3(t)ym−1(t)

12(t, x, y)12(t, x̃, ỹ)

((
d1(t) + d3(t)ỹn(t)

)∣∣∣xn(t) − x̃n(t)
∣∣∣

− d3(t)x̃n(t)
∣∣∣yn(t) − ỹn(t)

∣∣∣) − b3(t)x̃n(t)
12(t, x̃, ỹ)

∣∣∣ym−1(t) − ỹm−1(t)
∣∣∣ + B2

∣∣∣y(t) − ỹ(t)
∣∣∣.

For any x1, x2 ∈ [a, b] ⊂ (0,+∞), we have

|α|bα−1
|x1 − x2| ≤ |xα1 − xα2 | ≤ |α|a

α−1
|x1 − x2|, for α < 1,

αaα−1
|x1 − x2| ≤ |xα1 − xα2 | ≤ αbα−1

|x1 − x2|, for α > 1.

Then from (49) and (52) and in view of (44), (45) and (46) and letting ε→ 0, we get

D+V1(t)|(1.7) ≤
(
− a1(t) − (n − 1)γn+m−2 a3(t)(c1(t) + γnc3(t))

G2
1(t)

+ Γ2n+m−2 a3(t)c2(t)
12

1(t)
+ A2

)∣∣∣x(t) − x̃(t)
∣∣∣

+
(
nΓ2n+m−1 a3(t)c3(t)

12
1(t)

+ mγm−1Γn−1 a3(t)
11(t)

)∣∣∣y(t) − ỹ(t)
∣∣∣, (53)

and

D+V2(t)|(1.7) ≤
(
− b1(t) − nγ2n−1Γm−1 b3(t)d3(t)

G2
2(t)

− (1 −m)γnΓm−2 b3(t)
G2(t)

+ B2

)∣∣∣y(t) − ỹ(t)
∣∣∣

+ nγm−1Γn−1 b3(t)(d1(t) + Γnd3(t))
12

2(t)

∣∣∣x(t) − x̃(t)
∣∣∣ (54)

Summing (53) and (54), we get, for t > T > 0, that

D+V(t)|(1.7) = D+V1(t)|(1.7) + D+V2(t)|(1.7)

≤ −

(
a1(t) + (n − 1)γn+m−2 a3(t)(c1(t) + γnc3(t))

G2
1(t)

− Γ2n+m−2 a3(t)c2(t)
12

1(t)

− nγm−1Γn−1 b3(t)(d1(t) + Γnd3(t))
12

2(t)
− A2

)∣∣∣x(t) − x̃(t)
∣∣∣

−

(
b1(t) + (1 −m)γnΓn−2 b3(t)

G2(t)
+ nγ2n−1Γm−1 b3(t)d3(t)

G2
2(t)

− nΓ2n+m−1 a3(t)c3(t)
12

1(t)

−mγm−1Γn−1 a3(t)
11(t)

− B2

)∣∣∣y(t) − ỹ(t)
∣∣∣

≤ −σ1

∣∣∣x(t) − x̃(t)
∣∣∣ − σ2

∣∣∣y(t) − ỹ(t)
∣∣∣.

Integrating two sides of above inequality, we have

V(t) + σ1

∫ t

T
|x(s) − x̃(s)|ds + σ2

∫ t

T
|y(s) − ỹ(s)|ds ≤ V(T) < +∞.

This indicates |x(s) − x̃(s)| and |y(t) − ỹ(t)| are integrable on [0,+∞). Moreover, since all of solutions of
system (8) are bounded, their derivatives are also bounded, then |x(t) − x̃(t)| and |y(t) − ỹ(t)| are uniformly
continuous. From Lemma 4.2, we obtain

lim
t→+∞

|x(t) − x̃(t)| = 0, lim
t→+∞

|y(t) − ỹ(t)| = 0. (55)

This proves any positive ω-periodic solution of system (8) is globally attractive.
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Next we apply (55) to prove the uniqueness of the positiveω-periodic solution (x̃(s), ỹ(t)). Suppose there
is another positive ω-periodic solution (x̃∗(s), ỹ∗(t)), we claim that (x̃(s), ỹ(t)) = (x̃∗(s), ỹ∗(t)). Otherwise, there
exists a ξ ∈ [0, ω] such that x̃(ξ) , x̃∗(ξ) or ỹ(ξ) , ỹ∗(ξ). Without lose of generality, we suppose x̃(ξ) , x̃∗(ξ).
Let ε0 = |x̃(ξ) − x̃∗(ξ)|, then ε0 > 0. However

ε0 = lim
n→+∞

|x̃(ξ + nω) − x̃∗(ξ + nω)| = lim
t→+∞

|x̃(t) − x̃∗(t)| = 0.

This is a contradiction. Therefore the positive ω-periodic solution (x̃(s), ỹ(t)) is unique.
The proof of the theorem is completed.

Remark 4.4. Theorem 4.1 extends the results for global attractivity in [8] and [9].

5. Simulation

Now we consider the following two examples. In the first example, under well selected parameters,
conditions (A) and (B) in Theorem 4.1 are satisfied and then the conclusion in Theorem 4.1 holds. But in the
second example, we select other parameters such that the conditions (A) and (B) are not satisfied and then
the conclusion of Theorem 4.1 does not hold.

Example 5.1. In system (8), we select

r1(t) = 3.99 + 0.01 sin t, a1(t) = 2.00 − 0.1 sin t, a2(t) = 0.03 + 0.01 sin t,
a3(t) = 0.011 + 0.001 sin t, c1(t) = 1, c2(t) = 2 + sin t, c3(t) = 3 − sin t,
r2(t) = 0.41 + 0.01 sin t, b1(t) = 0.08 − 0.01 sin t, b2(t) = 0.009 + 0.001 sin t,
b3(t) = 0.099 + 0.001 sin t, d1(t) = 1, d2(t) = 0.26 + 0.01 sin t, d3(t) = 0.02 − 0.01 sin t,
n = 2, ,m = 1/2, τ = 0.1.

By simple calculation, we obtain σ1 ≈ min
t∈[0,2π]

{0.192 − 0.1 sin t} = 0.092 > 0 and σ2 ≈ min
t∈[0,2π]

{0.03 − 0.01 sin t} =

0.02 > 0. So by Theorem 4.3 we claim that system (8) has only one globally attractive positive 2π-periodic solution. In
order to demonstrate the conclusion, we take two sets of initial value as (x(s), y(s)) = (1.2, 5) and (x(s), y(s)) = (3, 27)
for s ∈ [−0.1, 0]. Its integral curves and orbits are shown in Figs. 4-6, respectively.
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Fig.4. The integral curves of prey.
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Fig.5. The integral curves of predator.
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Fig.6. The orbits of predator-prey-time.

From Figs. 1-3, we see that there is only one positive periodic solution of system (8), which is globally attractive.

Example 5.2. In this example, all of the parameters in system (8) is selected similarly as in Example 5.1 with exception
of τ = 10. By simple calculation, we obtain σ1 ≈ −2 × 103 < 0 and σ2 ≈ −102 < 0. So the conditions (A) and (B) do
not hold and the calculation in Theorem 4.3 may not be true. In order to demonstrate this case, we also take the initial
values as (x(s), y(s)) = (1.2, 5), (x(s), y(s)) = (3, 27) for s ∈ [−10, 0]. Its integral curves and orbits are shown in Figs.
7-9, respectively.
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Fig.7. The integral curves of prey.
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Fig.8. The integral curves of predator.
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Fig.9. The orbits of predator-prey-time.

From Fig.8 and Fig.9, we see that the solution of predator is not positive periodic and the system (8) has no globally
attractive positive periodic solution.
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