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Available at: http://www.pmf.ni.ac.rs/filomat

Topologies on Normed Spaces Generated by Porosity
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Abstract. In the present paper we study properties of porouscontinuous functions defined by J. Borsı́k and
J. Holos in 2014. We find maximal additive classes for different families of these functions. Furthermore,
we define new families of topologies generated by the notion of porosity, which are used to study maximal
multiplicative classes for porouscontinuous functions. Some relevant properties of defined topologies are
considered.

1. Introduction

Let N and R denote the set of all positive integers and the set of all real numbers, respectively. For
f : Y → Z and A ⊂ Y, by f�A we mean the restriction of f to A. The symbol (X, ‖ ‖) always stands for a
normed space, cl A and int A denote a closure and an interior of A ⊂ X with respect to a topology generated
by the norm. The aim of our paper is to describe topologies on a normed space generated by the notion of
porosity and to study their connections with families of porouscontinuous functions.

The open ball in (X, ‖ ‖) with the center x ∈ X and the radius R will be denoted by B(x,R). Similarly, by
S(x,R) and B(x,R) we will denote a sphere and a closed ball with the center x and the radius R.

First, we recall the definition of porosity. Let M ⊂ X, x ∈ X and R > 0. Then, according to [3, 9], we denote
the supremum of the set of all r > 0 for which there exists z ∈ X such that B(z, r) ⊂ B(x,R) \M by γ(x,R,M).
The number p(M, x) = 2 lim supR→0+

γ(x,R,M)
R is called the porosity of M at x. Obviously, p(M, x) = p(cl M, x)

for M ⊂ X and x ∈ X. In a normed space one have p(M, x) ≤ 2 and if x ∈M, then p(M, x) ≤ 1.
We say that the set M is porous at x ∈ X if p(M, x) > 0. The set M is called porous if M is porous at

each point x ∈ M. We say that M is strongly porous at x if p(M, x) ≥ 1 and M is called strongly porous if M
is strongly porous at each x ∈ M. Obviously every strongly porous set is porous and every porous set is
nowhere dense. Moreover, none of reverse inclusions is true.

Remark 1.1. Let (X, ‖ ‖) be a normed space, A ⊂ M ⊂ X and x ∈ X. Then p(M, x) ≤ p(A, x). In particular, if
p(A, x) = 0, then p(M, x) = 0.

In some applications we will use notions of porosities for subsets of R. Due to L. Zajı́ček, J. Borsı́k and
J. Holos [1, 9] we give another definitions of porosities of subsets of the real line. For a set A ⊂ R and an
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interval I ⊂ R let Λ(A, I) denote the length of the largest open subinterval of I having an empty intersection
with A. Let x ∈ R. Then, according to [1, 9], the right-porosity of the set A at x is defined as

p+(A, x) = lim sup
h→0+

Λ(A, (x, x + h))
h

,

the left-porosity of the set A at x is defined as

p−(A, x) = lim sup
h→0+

Λ(A, (x − h, x))
h

,

and the porosity of A at x is defined as

p(A, x) = max
{
p−(A, x), p+(A, x)

}
.

It is easy to see that for any A ⊂ R if x ∈ A, then the both definitions of p(A, x) are equivalent.

Theorem 1.2. Let (X, ‖ ‖) be a normed space, x0 ∈ X and A ⊂ X be such that x0 ∈ cl(int A) \ int A. Then there exists
a sequence (B(xn, rn))n∈N of pairwise disjoint closed balls such that

⋃
∞

n=1 B(xn, rn) ⊂ A \ {x0}, limn→∞ xn = x0 and

p(X \ A, x0) = p
(
X \

∞⋃
n=1

B(xn, rn), x0

)
= lim

n→∞

2rn

rn + ‖x0 − xn‖
.

Proof. Fix R > 0. Since x0 ∈ cl(int A), we obtain γ(x0,R,X \ A) > 0. For every ε ∈ (0, γ(x0,R,X \ A)) we can
find a closed ball B(y, η) such that η > γ(x0,R,X \ A) − ε and B(y, η) ∩ (X \ A) = ∅ i.e. B(y, η) ⊂ A. Since
x0 < int A, we have ‖y−x0‖ ≥ η. Take any η1 ∈ (γ(x0,R,X\A)−ε, η). Then η1 > γ(x0,R,X\A)−ε, B(y, η1) ⊂ A
and x0 < B(y, η1). Therefore we can find by induction a sequence of closed balls

(
B(xn, rn)

)
n∈N

such that⋃
∞

n=1 B(xn, rn) ⊂ A \ {x0}, limn→∞ xn = x0 and p(X \ A, x0) = p(X \
⋃
∞

n=1 B(xn, rn), x0).
Since inf{R > 0: B(xn, rn) ⊂ B(x0,R)} = rn + ‖xn − x0‖, we obtain the equality p(X \

⋃
∞

n=1 B(xn, rn), x0) =

limn→∞
2rn

rn+‖x0−xn‖
.

In [1] J. Borsı́k and J. Holos defined families of porouscontinuous functions f : R → R. Applying their
ideas we transfer this concept for real functions defined on a normed space.

Definition 1.3. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1), f : X→ R and x ∈ X. The function f will be called:

• Pr-continuous at x if there exists a set A ⊂ X such that x ∈ A, p(X \A, x) > r and f�A is continuous at x;

• Sr-continuous at x if for each ε > 0 there exists a set A ⊂ X such that x ∈ A, p(X \ A, x) > r and
f (A) ⊂ ( f (x) − ε, f (x) + ε);

• Mr-continuous at x if there exists a set A ⊂ X such that x ∈ A, p(X \A, x) ≥ r and f�A is continuous at x;

• Nr-continuous at x if for each ε > 0 there exists a set A ⊂ X such that x ∈ A, p(X \ A, x) ≥ r and
f (A) ⊂ ( f (x) − ε, f (x) + ε).

By Pr( f ), Sr( f ),Mr( f ) and Nr( f ) we denote the sets of points at which f is Pr-continuous, Sr-continuous,
Mr-continuous andNr-continuous, respectively.

Proposition 1.4. Let (X, ‖ ‖) be a normed space, f : X→ R, x0 ∈ X and r ∈ (0, 1). Then

1. x0 ∈ Sr( f ) if and only if p(X \ {x : | f (x) − f (x0)| < ε}, x0) > r for every ε > 0;

2. x0 ∈ Nr( f ) if and only if p(X \ {x : | f (x) − f (x0)| < ε}, x0) ≥ r for every ε > 0.

Proposition 1.5. Let (X, ‖ ‖) be a normed space, f : X→ R, x0 ∈ X and r, r1, r2 ∈ (0, 1), r1 < r2. Then
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1. if x0 ∈ Pr( f ), then x0 ∈ Sr( f );

2. if x0 ∈ Sr( f ), then x0 ∈ Nr( f );

3. if x0 ∈ Mr2 ( f ), then x0 ∈ Pr1 ( f ).

In [1] is proved that f isMr-continuous at x if and only if it isNr-continuous at x for functions defined
onR. It is easily seen that this remains true for functions defined on a normed space. Some other properties
of porouscontinuous functions can be found in [5, 7].

If f is Pr-continuous, Sr-continuous,Mr-continuous at every point of X for some r ∈ (0, 1), then we say
that f is Pr-continuous, Sr-continuous,Mr-continuous, respectively.

All of these functions are called porouscontinuous functions.
Obviously, if f is continuous in the norm ‖ ‖ at some x, then f is porouscontinuous (in each sense) at x.

Moreover, by C( f ) we denote the sets of points at which f is continuous.
Following [1], we introduce for r ∈ (0, 1) the following notations:

• Mr = Nr = { f : Mr( f ) = X};

• Pr = { f : Pr( f ) = X};

• Sr = { f : Sr( f ) = X}.

Proposition 1.6. Let (X, ‖ ‖) be a normed space, x ∈ X, R > 0 and f : X → R. If f�B(x,R) is continuous, then f is
porouscontinuous (in each considered sense) at every y ∈ S(x,R).

Proof. Fix y ∈ S(x,R). Take any δ ∈ (0,R) and h ∈ (0, δ2 ). Then

B
(
y + h

R (x − y), h
)
⊂ B(x,R) ∩ B(y, δ).

Therefore p(X \ B(x,R), y) ≥ 1. Since f�B(x,R) is continuous, f is porouscontinuous (in each considered sense)
at y.

In the sequel we will consider X with several different topologies and f : X → R. Let τ be a topology
on X (in particular T‖ ‖ is a topology generated by the norm ‖ ‖). Then we will say that f is τ-continuous at
x ∈ X if it is continuous at x as f : (X, τ)→ (R, τN), where τN is the natural topology onR. Thus τ-continuity
of f at x means that for each ε > 0 there exists τ-open set U such that x ∈ U and f (U) ⊂

(
f (x) − ε, f (x) + ε

)
.

We will say that f is τ-continuous if it is τ-continuous at each point.
Denote Cτ =

{
f : X→ R : f is τ-continuous

}
, C =

{
f : X→ R : f is T‖ ‖ − continuous

}
. Finally, for any

f : X→ R let N f = {x ∈ X : f (x) = 0}.

2. Maximal Additive Families for Porouscontinuous Functions

It is easily seen that result of addition and multiplication of functions from discussed classes of functions,
in general, need not belong to these classes. Therefore we studied the following notion.

Definition 2.1. ([2]) Let F be a family of real functions defined on a normed space (X, ‖ ‖). A setMa(F ) =
{1 : X→ R : ∀ f∈F

(
f + 1 ∈ F

)
} is called the maximal additive class for F .

Remark 2.2. Let f : X→ R, f (x) = 0 for x ∈ X, be a constant function. Clearly, if f ∈ F , thenMa(F ) ⊂ F .

Lemma 2.3. Let (X, ‖ ‖) be a normed space, x, x0 ∈ X, x , x0 and r ∈ (0, ‖x − x0‖). Denote

A =
{(

B(y, c),R
)

: B(y, c) ⊂ (B(x, r) \ {x}) ∩ B(x0,R)
}
.

Then
sup

{2c
R

:
(
B(y, c),R

)
∈ A

}
=

r
‖x − x0‖

.
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Proof. Denote K = sup
{

2c
R :

(
B(y, c),R

)
∈ A

}
. For each ball B(y, c), with c < ‖x0 − y‖, we obtain

inf
{
R > 0: B(y, c) ⊂ B(x0,R)

}
= ‖x0 − y‖ + c.

Moreover, for each
(
B(y, c),R

)
∈ A let y1 ∈

{
x + t x0−x

‖x0−x‖ : t ∈ (0, r)
}

be such that ‖y − x‖ = ‖y1 − x‖. Then(
B(y1, c), ‖y1 − x0‖ + c

)
∈ A and ‖y1 − x0‖ ≤ ‖y − x0‖. Therefore

K = sup
{

2c
‖y − x0‖ + c

: y ∈
{
x + t

x0 − x
‖x0 − x‖

: t ∈ (0, r)
}
,B(y, c) ⊂ B(x, r) \ {x}

}
.

Let us consider two cases.

1. If t0 ∈
(
0, r

2

)
and y0 = x + t0

x0−x
‖x0−x‖ , then

sup
{
c > 0: B(y0, c) ⊂ B(x, r) \ {x}

}
= t0.

Hence,

sup
{

2c
‖y0 − x0‖ + c

: B(y0, c) ⊂ B(x, r) \ {x}
}

=
2t0

‖y0 − x0‖ + t0
=

=
2t0

‖x0 − x‖ − t0 + t0
=

2t0

‖x0 − x‖
≤

r
‖x − x0‖

.

2. If t0 ∈
[

r
2 , r

)
and y0 = x + t0

x0−x
‖x0−x‖ , then

sup
{
c > 0: B(y0, c) ⊂ B(x, r) \ {x}

}
= r − t0

and

sup
{

2c
‖y0 − x0‖ + c

: B(y0, c) ⊂ B(x, r) \ {x}
}

=
2(r − t0)

(‖x − x0‖ − t0) + r − t0
=

=
2 (r − t0)

‖x0 − x‖ − r + 2(r − t0)
≤

2 r
2

‖x0 − x‖ − r + 2 r
2

=
r

‖x − x0‖
,

because the function f (x) = x
a+x , where a > 0 is increasing on [0,∞).

On the other hand, if t0 = r
2 and y0 = x + r

2
x0−x
‖x0−x‖ , then 2 r

2
‖y0−x0‖+

r
2

= r
‖x0−x‖ . Finally, K = r

‖x−x0‖
.

Theorem 2.4. Let (X, ‖ ‖) be a normed space, f : X→ R and x0 ∈ X. The following conditions are equivalent:

(1) f is continuous at x0;

(2) ∀r∈(0,1)∀1∈Mr

(
x0 ∈ Mr( f + 1)

)
;

(3) ∃ r∈(0,1)∀1∈Mr

(
x0 ∈ Mr( f + 1)

)
;

(4) ∀r∈(0,1)∀1∈Sr

(
x0 ∈ Sr( f + 1)

)
;

(5) ∃ r∈(0,1)∀1∈Sr

(
x0 ∈ Sr( f + 1)

)
;

(6) ∀r∈(0,1)∀1∈Pr

(
x0 ∈ Pr( f + 1)

)
;

(7) ∃ r∈(0,1)∀1∈Pr

(
x0 ∈ Pr( f + 1)

)
.
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Proof. Implications (2)⇒ (3), (4)⇒ (5) and (6)⇒ (7) are obvious.
(1) ⇒ (2). Assume that f is continuous at x0. Let r ∈ (0, 1), 1 ∈ Mr and ε > 0. Then there exists

E ⊂ X such that x0 ∈ E, 1(E) ⊂
(
1(x0) − ε

2 , 1(x0) + ε
2

)
and p(X \ E, x0) ≥ r. On the other hand, we can find

δ > 0 such that | f (x) − f (x0)| < ε
2 for each x ∈ B(x0, δ). Let F = E ∩ B(x0, δ). Then

∣∣∣( f + 1)(x) − ( f + 1)(x0)
∣∣∣ ≤∣∣∣ f (x) − f (x0)

∣∣∣ + ∣∣∣1(x) − 1(x0)
∣∣∣ < ε

2 + ε
2 = ε for x ∈ F. Moreover, p(X \ F, x0) ≥ r. This means that x0 ∈ Mr( f + 1).

Proofs of implications (1) ⇒ (4) and (1) ⇒ (6) are very similar to the proof of (1) ⇒ (2) and we omit
them.

(3)⇒ (1). Assume that there exists r ∈ (0, 1) such that for each 1 ∈ Mr we have x0 ∈ Mr( f + 1). Suppose
that f is not continuous at x0. Then there exist ε > 0 and a sequence (xn)n≥1 convergent to x0 such that
| f (xn) − f (x0)| ≥ ε for each n ≥ 1. Denote Rn = r‖x0−xn‖

2−r for each n ≥ 1. Clearly, for each n ≥ 1 we have
Rn < ‖x0 − xn‖ and B(xn,Rn) ⊂ B(x0, ‖x0 − xn‖ + Rn), because if y ∈ B(xn,Rn), then

‖x0 − y‖ ≤ ‖x0 − xn‖ + ‖xn − y‖ < ‖x0 − xn‖ + Rn.

Without loss of generality we may assume that balls B(xn,Rn) are pairwise disjoint. Moreover,

2Rn

‖x0 − xn‖ + Rn
=

2r‖x0−xn‖

2−r

‖x0 − xn‖ + r‖x0−xn‖

2−r

=
2r

2−r

1 + r
2−r

=
2r

2 − r + r
= r.

Therefore

p

X \
⋃
n≥1

B(xn,Rn), x0

 ≥ r. (1)

Define 1 : X→ R letting

1(x) =

− f (x0), x ∈ {x0} ∪
⋃

n≥1 B(xn,Rn),
− f (x) + ε, x ∈ X \

(
{x0} ∪

⋃
n≥1 B(xn,Rn)

)
.

Observe that 1 is continuous at x ∈
⋃

n≥1 B(xn,Rn) and 1 isMr-continuous at x ∈ X \
(
{x0} ∪

⋃
n≥1 B(xn,Rn)

)
,

because X \
(
{x0} ∪

⋃
n≥1 B(xn,Rn)

)
is open. By (1) we conclude that 1 is Mr-continuous at x0. Applying

Proposition 1.6, we obtain that 1 is Mr-continuous at x ∈
⋃

n≥1 S(xn,Rn). It follows that 1 ∈ Mr. On the
other hand,

( f + 1)(x0) = 0,

( f + 1)(x) = ε for x ∈ X \

{x0} ∪

⋃
n≥1

B(xn,Rn)

 ,∣∣∣( f + 1)(xn)
∣∣∣ =

∣∣∣ f (xn) − f (x0)
∣∣∣ ≥ ε for n ≥ 1.

(2)

Take any R0 > 0. Let B(y,R) ⊂ B(x0,R0) be any open ball disjoint from X \
{
x :

∣∣∣( f + 1)(x) − ( f + 1)(x0)
∣∣∣ < ε}.

By (2), we obtain
B(y,R) ⊂

⋃
n≥1

(B(xn,Rn) \ {xn}) .

Therefore there exists n0 such that B(y,R) ⊂ B(xn0 ,Rn0 ) \ {xn0 }. By Lemma 2.3, we get

2R
R0
≤

Rn0

‖x0 − xn0‖
=

r‖x0 − xn0‖

(2 − r)‖x0 − xn0‖
=

r
2 − r

.

Therefore,
p
(
X \

{
x :

∣∣∣( f + 1)(x) − ( f + 1)(x0)
∣∣∣ < ε} , x0

)
≤

r
2 − r

< r.
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This means that x0 <Mr( f + 1), a contradiction.
(5)⇒ (1) and (7)⇒ (1). Assume that there exists r ∈ (0, 1) such that for each 1 ∈ Sr (1 ∈ Pr, respectively)

we have x0 ∈ Sr( f +1) (x0 ∈ Pr( f +1), respectively). Choose r1 ∈ (r, 1) such that r1
2−r1

< r. Suppose that f is not
continuous at x0. Then there exist ε > 0 and a sequence (xn)n≥1 convergent to x0 such that | f (xn) − f (x0)| ≥ ε
for each n ≥ 1. Denote Rn = r1‖x0−xn‖

2−r1
for each n ≥ 1. Clearly, Rn < ‖x0 − xn‖ for each n ≥ 1. We may assume

that balls B(xn,Rn) are pairwise disjoint. Moreover, B(xn,Rn) ⊂ B(x0, ‖x0 − xn‖ + Rn) and

2Rn

‖x0 − xn‖ + Rn
=

2r1‖x0−xn‖

2−r1

‖x0 − xn‖ + r1‖x0−xn‖

2−r1

=

2r1
2−r1

1 + r1
2−r1

=
2r1

2 − r1 + r1
= r1 > r

for every n ≥ 1. Therefore

p

X \
⋃
n≥1

B(xn,Rn), x0

 > r.

Define 1 : X→ R letting

1(x) =

− f (x0), x ∈ {x0} ∪
⋃

n≥1 B(xn,Rn),
− f (x) + ε, x ∈ X \

(
{x0} ∪

⋃
n≥1 B(xn,Rn)

)
.

Repeating arguments from the previous part of the proof we can show that 1 ∈ Pr and x0 < Sr( f + 1), which
is a contradiction.

Corollary 2.5. For every r ∈ (0, 1) we have

Ma(Mr) = C,

Ma(Sr) = C,

Ma(Pr) = C.

Remark 2.6. One can define in a natural wayM1, P0 and S0-continuity. In [6] maximal additive class for
these families are described in terms of so called s and p topology defined by Kelar and Zajı́ček in [4, 8].

3. Maximal Multiplicative Families for Porouscontinuous Functions

In this section we will describe maximal multiplicative classes for Sr andMr. It turns out that for this
purpose we must define new topologies on a normed space X generated by porosity.

First, recall the definition of maximal multiplicative class for a family of functions.

Definition 3.1. ([2]) Let F be a family of real functions defined on a normed space (X, ‖ ‖). A setMm(F ) =
{1 : X→ R : ∀ f∈F

(
f · 1 ∈ F

)
} is called the maximal multiplicative class for F .

Remark 3.2. Let f : X→ R, f (x) = 1 for x ∈ X, be a constant function. If f ∈ F , thenMm(F ) ⊂ F .

Remark 3.3. Let (X, ‖ ‖) be a normed space and r ∈ (0, 1). If f : X→ R is continuous at x0 ∈ X and 1 : X→ R
isMr-continuous (Sr-continuous) at x0, then f · 1 isMr-continuous (Sr-continuous) at x0.

Example 3.4. Let (X, ‖ ‖) be a normed space. We construct f : X → R such that f is not continuous and
f ∈Mm(Mr) ∩Mm(Sr) ∩Mm(Pr) for each r ∈ (0, 1).

Fix y ∈ X, ‖y‖ = 1 and let 0X denote the zero of X. Then closed balls B
(

1
(3n)! y, 3n

(3n+1)!

)
, n ≥ 1, are pairwise

disjoint, limn→∞
1

(3n)! y = 0X and

p

X \
∞⋃

n=1

B
(

1
(3n)!

y,
3n

(3n + 1)!

)
, 0X

 = lim sup
n→∞

2 3n
(3n+1)!

1
(3n)! + 3n

(3n+1)!

= lim sup
n→∞

6n
6n + 1

= 1. (3)
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Define f : X→ R by

f (x) =

0, x ∈ {0X} ∪
⋃

n≥1 B
(

1
(3n)! y, 3n

(3n+1)!

)
,

1, x ∈ X \
(
{0X} ∪

⋃
n≥1 B

(
1

(3n)! y, 3n
(3n+1)!

))
.

Fix r ∈ (0, 1) and 1 ∈ Mr (or 1 ∈ Sr, 1 ∈ Pr, respectively). If x < {0X} ∪
⋃

n≥1 S
(

1
(3n)! y, 3n

(3n+1)!

)
, then f is

continuous at x and f · 1 is Mr-continuous (or Sr-continuous, Pr-continuous, respectively) at x, because
X \

(
{0X} ∪

⋃
n≥1 S

(
1

(3n)! y, 3n
(3n+1)!

))
is open. Take any x0 ∈

⋃
n≥1 S

(
1

(3n)! y, 3n
(3n+1)!

)
. Then ( f · 1)(x) = 0 for

x ∈ {0X} ∪
⋃

n≥1 B
(

1
(3n)! y, 3n

(3n+1)!

)
and f · 1 isMr-continuous (or Sr-continuous, Pr-continuous, respectively)

at x0 ∈
⋃

n≥1 S
(

1
(3n)! y, 3n

(3n+1)!

)
by Proposition 1.6. Finally, by (3), f · 1 is Mr-continuous (or Sr-continuous,

Pr-continuous, respectively) at 0X. Therefore f ∈Mm(Mr) ∩Mm(Sr) ∩Mm(Pr).

Theorem 3.5. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1) and A ⊂ X. The family of sets U ⊂ X satisfying condition:

∀x∈U∀E⊂X, p(X\E,x)≥r
(
p (X \ [(E ∩U) ∪ A] , x) ≥ r

)
forms a topology. We will denote it by Tr(A). Topology Tr(A) is stronger than the initial topology generated by the
norm.

Proof. Obviously, ∅ ∈ Tr(A). For each x ∈ X and for each E ⊂ X satisfying p(X \ E, x) ≥ r we obtain

p(X \ [(E ∩ X) ∪ A] , x) = p(X \ (E ∪ A) , x) ≥ p(X \ E, x) ≥ r.

Thus X ∈ Tr(A).
Let U ∈ Tr(A) and V ∈ Tr(A). Fix x ∈ U ∩ V. Take E ⊂ X such that p(X \ E, x) ≥ r. Then

p (X \ [(E ∩U) ∪ A] , x) ≥ r. Hence, p (X \ [(E ∩U ∩ V) ∪ A] , x) = p
(
X \

[[(
(E ∩U) ∪ A

)
∩ V

]
∪ A

]
, x

)
≥ r,

because V ∈ Tr(A). Thus U ∩ V ∈ Tr(A).
Let Ut ∈ Tr(A) for each t ∈ T. Fix x ∈

⋃
t∈T Ut. There exists t0 ∈ T such that x ∈ Ut0 . Take

E ⊂ X such that p(X \ E, x) ≥ r. Then p
(
X \

[(
E ∩Ut0

)
∪ A

]
, x

)
≥ r and p (X \

[
(E ∩

⋃
t∈T Ut) ∪ A

]
, x) ≥

p
(
X \

[(
E ∩Ut0

)
∪ A

]
, x

)
≥ r. Thus

⋃
t∈T Ut ∈ Tr(A).

Hence Tr(A) is a topology in X. The remaining part of the proof is obvious.

Theorem 3.6. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1) and A ⊂ X. The family of sets U ⊂ X satisfying condition:

∀x∈U∀E⊂X, p(X\E,x)>r
(
p (X \ [(E ∩U) ∪ A] , x) > r

)
forms a topology. We will denote it by τr(A). Topology τr(A) is stronger than the initial topology generated by the
norm.

Proof. The proof is very similar to the proof of the previous theorem and we omit it.

Lemma 3.7. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1), x0 ∈ X and f : X → R. If f is not continuous at x0 and
f (x0) , 0, then there exists 1 ∈ Pr such that x0 <Mr( f · 1).

Proof. Fix r1 ∈ (r, 1) such that r1
2−r1

< r. Assume that f (x0) , 0 and f is not continuous at x0. Then there

exist ε ∈
(
0, | f (x0)|

2

)
and a sequence (xn)n≥1 convergent to x0 such that | f (xn) − f (x0)| ≥ ε for each n ≥ 1. Let

Rn = r1‖x0−xn‖

2−r1
for each n ≥ 1. Without loss of generality we may assume that balls B(xn,Rn) are pairwise

disjoint. Clearly, for every n ≥ 1 we have Rn < ‖x0 − xn‖ and B(xn,Rn) ⊂ B(x0, ‖x0 − xn‖ + Rn), because if
y ∈ B(xn,Rn), then

‖x0 − y‖ ≤ ‖x0 − xn‖ + ‖xn − y‖ < ‖x0 − xn‖ + Rn.
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Moreover,
2Rn

‖x0 − xn‖ + Rn
=

2r1‖x0−xn‖

2−r1

‖x0 − xn‖ + r1‖x0−xn‖

2−r1

=

2r1
2−r1

1 + r1
2−r1

=
2r1

2 − r1 + r1
= r1 > r.

Therefore

p

X \
⋃
n≥1

B(xn,Rn), x0

 > r. (4)

Define 1 : X→ R letting

1(x) =

1, x ∈ {x0} ∪
⋃

n≥1 B(xn,Rn),
0, x ∈ X \

(
{x0} ∪

⋃
n≥1 B(xn,Rn)

)
.

Observe that 1 is continuous at x ∈ X \
(
{x0} ∪

⋃
n≥1 S(xn,Rn)

)
and 1 is Pr-continuous at x ∈

⋃
n≥1 S(xn,Rn),

by Proposition 1.6. By (4) we conclude that 1 is Pr-continuous at x0. It follows that 1 ∈ Pr.
On the other hand,

( f · 1)(x0) = f (x0),

( f · 1)(x) = 0 for x ∈ X \

{x0} ∪

⋃
n≥1

B(xn,Rn)

 ,∣∣∣( f · 1)(xn) − ( f · 1)(x0)
∣∣∣ =

∣∣∣ f (xn) − f (x0)
∣∣∣ ≥ ε for n ≥ 1.

(5)

Take any R0 > 0. Let B(y,R) ⊂ B(x0,R0) be any open ball disjoint from X \
{
x :

∣∣∣( f · 1)(x) − ( f · 1)(x0)
∣∣∣ < ε}.

By (5), we obtain
B(y,R) ⊂

⋃
n≥1

(
B(xn,Rn) \ {xn}

)
.

Therefore there exists n0 such that B(y,R) ⊂ B(xn0 ,Rn0 ) \ {xn0 }. By Lemma 2.3, we get

2R
R0
≤

Rn0

‖x0 − xn0‖
=

r1‖x0 − xn0‖

(2 − r1)‖x0 − xn0‖
=

r1

2 − r1
.

Therefore,
p
(
X \

{
x :

∣∣∣( f · 1)(x) − ( f · 1)(x0)
∣∣∣ < ε} , x0

)
≤

r1

2 − r1
< r.

This means x0 <Mr( f · 1).

Theorem 3.8. Let (X, ‖ ‖) be a normed space, f : X→ R and r ∈ (0, 1). The following conditions are equivalent:

(1) f ∈Mm(Mr);

(2) for every x ∈ X, if f is not continuous at x, then f (x) = 0 and f is Tr(N f )-continuous at x.

Proof. Assume that condition (2) is fulfilled. Take 1 ∈ Mr and x0 ∈ X. If f is continuous at x0, then obviously
f · 1 isMr-continuous at x0. Assume that f is not continuous at x0. Then, by assumptions, f (x0) = 0 and
f is Tr(N f )-continuous at x0. Fix ε > 0. Since x0 ∈ Mr(1), there exists E ⊂

{
x ∈ X : |1(x) − 1(x0)| < 1

}
such

that x0 ∈ E, p(X \ E, x0) ≥ r. By Tr(N f )-continuity of f at x0, there is F ∈ Tr(N f ) such that x0 ∈ F and

| f (x) − f (x0)| < ε
|1(x0)|+1 for each x ∈ F. Therefore ( f · 1)(x0) = 0 and |( f · 1)(x)| < (|1(x0)|+1)ε

|1(x0)|+1 = ε for each

x ∈ (E ∩ F) ∪N f . Moreover, p
(
X \

[
(E ∩ F) ∪N f

]
, x0

)
≥ r. Thus f · 1 isMr-continuous at x0. Since x0 and 1

were arbitrary, f ∈Mm(Mr).
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Now assume that f ∈ Mm(Mr). Take any x0 and assume that f is not continuous at x0. By Lemma 3.7,
f (x0) = 0. Aiming at a contradiction, suppose that f is not Tr(N f )-continuous at x0. Then there exists
ε > 0 such that F =

{
x ∈ X : | f (x) − f (x0)| < ε

}
does not contain any Tr(N f )-neighborhood of x0. Hence

x0 < intTr(N f ) F. In particulary, {x0} ∪ int F < Tr(N f ). Therefore we can find E ⊂ X such that p(X \ E, x0) ≥ r
and p

(
X \

[
(E ∩ int F) ∪N f

]
, x0

)
< r. Observe that if B(y,R) ⊂ (E ∩ F) ∪ N f , then B(y,R) ⊂ F and B(y,R) ⊂

(E ∩ int F) ∪N f , because N f ⊂ F. Thus

p
(
X \

[
(E ∩ F) ∪N f

]
, x0

)
< r.

Since f ∈Mm(Mr), we have f ∈ Mr, x0 ∈ Mr( f ) and p(X \ F, x0) ≥ r. Suppose that x0 ∈ int E. Then

p
(
X \

[
(E ∩ F) ∪N f

]
, x0

)
= p

(
X \ (F ∪N f ), x0

)
= p (X \ F, x0) ≥ r,

a contradiction. Thus x0 < int E. Since p(X \ E, x0) ≥ r, we have x0 ∈ cl(int E). By Theorem 1.2, there exists
a sequence of pairwise disjoint closed balls

(
B(xn,Rn)

)
n≥1

such that limn→∞ xn = x0,
⋃

n≥1 B(xn,Rn) ⊂ E \ {x0}

and

p(X \ E, x0) = p

X \
⋃
n≥1

B(xn,Rn), x0

 ≥ r. (6)

Put B =
⋃
∞

n=1 B(xn,Rn). Then cl B = B ∪ {x0} and

p
(
X \

[
(B ∩ F) ∪N f

]
, x0

)
< r.

Let Xn = B(x0, 1
n ) \ B(x0, 1

n+1 ) for n ≥ 1. For every n choose a discrete set An ⊂ Xn \ (N f ∪ B) such that
Xn \ (N f ∪ B) ⊂

⋃
a∈An

B(a, 1
(n+1)2 ) and ‖a1 − a2‖ ≥

1
(n+1)2 for a1, a2 ∈ An, a1 , a2 (such a set exists by the Zorn

Lemma). Let A =
⋃
∞

n=1 An. Then A is discrete, A ∩ (N f ∪ B) = ∅ and cl A ⊂ A ∪ {x0}. Define 1̃ : A → [0,∞)
by 1̃(a) = 2ε

| f (a)| for a ∈ A. Clearly, |( f · 1̃)(x)| = 2ε for x ∈ A and 1̃ is continuous, because A is discrete.
Since A is a closed subset of X \ ({x0} ∪ B), by the Tietze Theorem, we can find continuous extension,
1 : X \ ({x0} ∪ B)→ [0,∞), of 1̃. Finally, define 1 : X→ R letting

1(x) =

1, x ∈ {x0} ∪ B,
1(x), x ∈ X \ ({x0} ∪ B).

By construction, 1 is continuous on an open set X \ ({x0} ∪
⋃

n≥1 S(xn,Rn)). By Proposition 1.6, 1 is Mr-
continuous on

⋃
n≥1 S(xn,Rn). By (6), we conclude that 1 isMr-continuous at x0. Hence 1 ∈ Mr.

Moreover, ( f · 1)(x0) = 0 and |( f · 1)(x)| > ε for each x ∈ A. We claim x0 < Mr( f · 1), which will be a
contradiction. We may assume that x0 ∈ cl(int

{
x : |( f · 1)(x)| < ε

}
). By Theorem 1.2, we can take a sequence

of pairwise disjoint open balls (B(yn, sn))n≥1 ⊂ B(x0, 1
4 ) \ {x0} disjoint from X \

{
x : |( f · 1)(x)| < ε

}
such that

limn→∞ yn = x0 and p(X \ {x ∈ X : |( f · 1)(x)| < ε}, x0) = limn→∞
2sn

‖x0−yn‖+sn
> 0. Hence, limn→∞

sn
32‖x0−yn‖2

= ∞.
Therefore, without loss of generality, we may assume that sn > 32‖x0 − yn‖

2 for every n ≥ 1. Observe that
B(yn, sn) ⊂

{
x : |( f · 1)(x)| < ε

}
. For every n ≥ 1 we can find kn ≥ 4 such that ‖yn − x0‖ ∈ ( 1

kn+1 ,
1
kn

]. Assume
that B(yn, sn) 1 B ∪ N f and take any z ∈ B(yn, sn) \ (B ∪ N f ). Then sn < ‖yn − x0‖ ≤

1
kn

and ‖z − x0‖ < 2
kn

.

By construction, there exists a ∈ A j for some j ≥ kn
2 − 1 ≥ kn

2 −
kn
4 = kn

4 such that ‖z − a‖ < 1
j2 ≤

16
(kn)2 . Since

|( f · 1)(a)| > ε, a < B(yn, sn). Thus

‖z − yn‖ ≥ ‖yn − a‖ − ‖a − z‖ > sn −
16

kn
2 > sn −

32
(kn + 1)2 > sn − 32‖yn − x0‖

2,
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because (k + 1)2 < 2k2 for k ≥ 4. Hence B(yn, sn − 32‖yn − x0‖
2) ⊂ B∪N f ⊂ E∪N f . Moreover, ( f · 1)(x) = f (x)

for x ∈ B(yn, sn − 32‖yn − x0‖
2) and

B(yn, sn − 32‖yn − x0‖
2) ⊂

{
x : | f (x)| < ε

}
= F.

Therefore B(yn, sn − 32‖yn − x0‖
2) ⊂ (E∩F)∪N f . Since n was chosen arbitrary,

⋃
∞

n=1 B(yn, sn − 32‖yn − x0‖
2) ⊂

(E ∩ F) ∪N f . Therefore,

p(X \ {x ∈ X : |( f · 1)(x)| < ε}, x0) = lim
n→∞

2sn

‖x0 − yn‖ + sn
≤

≤ lim
n→∞

(
2(sn − 32‖yn − x0‖

2)
‖x0 − yn‖ + sn − 32‖yn − x0‖

2 +
64‖yn − x0‖

2

‖x0 − yn‖ + sn

)
≤

≤ p(X \ [(E ∩ F) ∪N f ], x0) + lim
n→∞

64‖x0 − yn‖
‖x0 − yn‖

‖x0 − yn‖ + sn
=

= p(X \ [(E ∩ F) ∪N f ], x0) < r,

a contradiction. This proves that f is Tr(N f )-continuous at x0, which completes the proof.

Theorem 3.9. Let (X, ‖ ‖) be a normed space, f : X→ R and r ∈ (0, 1). The following conditions are equivalent:

(1) f ∈Mm(Sr);

(2) for every x ∈ X, if f is not continuous at x, then f (x) = 0 and f is τr(N f )-continuous at x.

Moreover, if f ∈Mm(Pr), then for every x ∈ X, if f is not continuous at x, then f (x) = 0 and f is τr(N f )-continuous
at x.

Proof. Proof of the implication (2)⇒ (1) is very similar to the analogous proof of the previous theorem and
we omit it.

Now assume that f ∈ Mm(Sr) (or f ∈ Mm(Pr), respectively). Take any x0 and assume that f is not
continuous at x0. By Lemma 3.7, f (x0) = 0. Suppose that f is not τr(N f )-continuous at x0. Then there
exists ε > 0 such that the set F =

{
x ∈ X : | f (x) − f (x0)| < ε

}
does not contain any τr(N f )-neighborhood of

x0. Therefore x0 < intτr(N f ) F. In particulary, {x0} ∪ int F < τr(N f ). Hence we can find E ⊂ X for which

p(X \ E, x0) > r and p
(
X \

[
(E ∩ int F) ∪N f

]
, x0

)
≤ r. Observe that if B(y,R) ⊂ (E ∩ F) ∪N f , then B(y,R) ⊂ F

and B(y,R) ⊂ (E ∩ int F) ∪N f . Thus

p
(
X \

[
(E ∩ F) ∪N f

]
, x0

)
≤ r.

Since f ∈Mm(Sr), we have f ∈ Sr, x0 ∈ Sr( f ) and p(X \ F, x0) > r. Assume that x0 ∈ int E. Then

p
(
X \

[
(E ∩ F) ∪N f

]
, x0

)
= p

(
X \ (F ∪N f ), x0

)
= p (X \ F, x0) > r,

a contradiction. Thus x0 < int E. Since p(X \ E, x0) > r, we obtain x0 ∈ cl(int E). By Theorem 1.2, we can find
a sequence of pairwise disjoint closed balls

(
B(xn,Rn)

)
n≥1

such that limn→∞ xn = x0, B(xn,Rn) ⊂ E \ {x0} for
all n and

p(X \ E, x0) = p

X \
⋃
n≥1

B(xn,Rn), x0

 > r. (7)

Put B =
⋃
∞

n=1 B(xn,Rn). Then cl B = B ∪ {x0} and

p
(
X \

[
(B ∩ F) ∪N f

]
, x0

)
≤ r.
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Let Xn = B(x0, 1
n ) \ B(x0, 1

n+1 ) for n ≥ 1. For every n choose a discrete set An ⊂ Xn \ (N f ∪ B) such that
Xn \ (N f ∪ B) ⊂

⋃
a∈An

B(a, 1
(n+1)2 ) and ‖a1 − a2‖ ≥

1
(n+1)2 for a1, a2 ∈ An, a1 , a2. Let A =

⋃
∞

n=1 An. Then A
is discrete, A ∩ (N f ∪ B) = ∅ and cl A ⊂ A ∪ {x0}. Define 1̃ : A → [0,∞) by 1̃(a) = 2ε

| f (a)| for a ∈ A. Clearly,
|( f · 1̃)(x)| = 2ε for x ∈ A and 1̃ is continuous, because A is discrete. Since A is a closed subset of X \ ({x0}∪B),
by the Tietze Theorem, we can find continuous extension, 1 : X \ ({x0} ∪ B) → [0,∞), of 1̃. Finally, define
1 : X→ R by

1(x) =

1, x ∈ {x0} ∪ B,
1(x), x ∈ X \ ({x0} ∪ B).

Applying similar arguments as in the proof of the previous theorem we can show that 1 ∈ Pr and p(X \{
x : |( f · 1)(x)| < ε

}
, x0) = p(X \ [(E∩ F)∪N f ], x0) ≤ r, a contradiction. This proves that f is τr(N f )-continuous

at x0, which completes the proof.

Problem 3.10. DoesMm(Pr) consist of functions f satisfying condition: for every x ∈ X, if f is not continuous at
x, then f (x) = 0 and f is τr(N f )-continuous at x?

Remark 3.11. In [6] maximal multiplicative class forM1 and S0 are described.

4. Properties of Topologies

We describe some properties of topologies τr(A) and Tr(A) for different r ∈ (0, 1) and for different sets
A. By Ad we denote the set of accumulation points of A in the topology generated by ‖ ‖.

The following two propositions follow directly from definitions of Tr(A) and τr(A).

Proposition 4.1. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1), x0 ∈ X, A ⊂ X. If x0 < Ad, then for each U ⊂ X we
obtain:

• x0 ∈ intTr(A) U if and only if x0 ∈ int U;

• x0 ∈ intτr(A) U if and only if x0 ∈ int U.

Proof. Since T‖ ‖ ⊂ Tr(A), we obtain int U ⊂ intTr(A) U for every U ⊂ X. Hence, if x0 ∈ int U, then x0 ∈

intTr(A) U.
Let x0 < int U for some U ⊂ X. Then we can find a sequence (xn)n≥1 convergent to x0 such that xn < U for

each n ≥ 1. Since x0 < Ad, we may assume that xn < A for n ≥ 1. Denote Rn = r‖x0−xn‖

2−r for each n ≥ 1. Clearly,
for each n ≥ 1 we have Rn < ‖x0 − xn‖ and B(xn,Rn) ⊂ B(x0, ‖x0 − xn‖ + Rn), because if y ∈ B(xn,Rn), then

‖x0 − y‖ ≤ ‖x0 − xn‖ + ‖xn − y‖ < ‖x0 − xn‖ + Rn.

Without loss of generality we may assume that balls B(xn,Rn) are pairwise disjoint. Moreover,

2Rn

‖x0 − xn‖ + Rn
=

2r‖x0−xn‖

2−r

‖x0 − xn‖ + r‖x0−xn‖

2−r

=
2r

2−r

1 + r
2−r

=
2r

2 − r + r
= r.

Hence

p

X \
⋃
n≥1

B(xn,Rn), x0

 ≥ r.

Let F =
⋃

n≥1 B(xn,Rn).
Assume that x0 ∈ intTr(A) U and let E = intTr(A) U. Then x0 ∈ E and E ∈ Tr(A). Since p(X \ F, x0) ≥ r, we

obtain p(X \ [(F ∩ E) ∪ A], x0) ≥ r. But

p(X \ [(F ∩ E) ∪ A], x0) = p(X \ (F ∩ E), x0) ≤ p(X \ (F \ {xn : n ≥ 1}), x0),
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because x0 < Ad.
Take any R0 > 0. Let B(y,R) ⊂ B(x0,R0) be any open ball disjoint from X \ (F \ {xn : n ≥ 1}). Then there

exists n0 such that B(y,R) ⊂ B(xn0 ,Rn0 ) \ {xn0 }. By Lemma 2.3, we get

2R
R0
≤

Rn0

‖x0 − xn0‖
=

r‖x0 − xn0‖

(2 − r)‖x0 − xn0‖
=

r
2 − r

.

Therefore, p(X \ [(F ∩ E) ∪ A], x0) ≤ r
2−r < r, a contradiction, because E ∈ Tr(A). This completes the proof of

the first property. The proof of the second one is analogous and we omit it.

Proposition 4.2. Let (X, ‖ ‖) be a normed space and r ∈ (0, 1). If A1 ⊂ A2 ⊂ X, then

• Tr(A1) ⊂ Tr(A2);

• τr(A1) ⊂ τr(A2).

Theorem 4.3. Let (X, ‖ ‖) be a normed space, A,B ⊂ X and r ∈ (0, 1). If Bd = ∅, then

• Tr(A) = Tr(A ∪ B) = Tr(A \ B);

• τr(A) = τr(A ∪ B) = τr(A \ B);

• Tr(B) and τr(B) are the initial topology generated by the norm ‖ ‖.

Proof. It follows immediately from the fact that B is closed and discrete set.

Theorem 4.4. Let (X, ‖ ‖) be a normed space, A1,A2 ⊂ X and r ∈ (0, 1). If Ad
1 \ Ad

2 , ∅, then Tr(A1) 1 Tr(A2) and
τr(A1) 1 τr(A2).

Proof. Let x0 ∈ Ad
1 \ Ad

2. Then there exist a sequence (xn)n≥1 of elements of A1 \ {x0} convergent to x0 and
δ > 0 such that B(x0, δ) ∩ A2 ⊂ {x0} and xn ∈ B(x0, δ) for each n ≥ 1. Put U = X \

⋃
∞

n=1{xn}. Obviously,
U ∈ Tr(A1). We shall show that U < Tr(A2). Let Rn = 1

2

(
r‖x0−xn‖

2−r + r‖x0 − xn‖
)

for n ≥ 1. Observe that
r‖x0−xn‖

2−r < Rn < r‖x0 − xn‖ for each n ≥ 1. Taking, if it is necessary, a subsequence of (xn)n≥1 we may assume
that balls B(xn,Rn) are pairwise disjoint. Denote E =

⋃
∞

n=1 B(xn,Rn). Then

p(X \ E, x0) = lim sup
n→∞

2Rn

‖x0 − xn‖ + Rn
≥ lim sup

n→∞

2 r‖x0−xn‖

2−r

‖x0 − xn‖ + r‖x0−xn‖

2−r

= r,

because for every a > 0 the function f (x) = 2x
a+x is increasing on [0,∞). Moreover,

B(x0, δ) ∩ [(E ∩U) ∪ A2] ⊂ {x0} ∪ (E \ {xn : n ≥ 1}) = {x0} ∪

∞⋃
n=1

(B(xn,Rn) \ {xn}) .

Let R ∈ (0, δ). Take any ball B(y, γ) included in B(x0,R) and disjoint with X \ [(E ∩ U) ∪ A2]. Then
B(y, γ) ⊂

⋃
∞

n=1 (B(xn,Rn) \ {xn}). By Lemma 2.3, 2γ
R ≤

Rn
‖x0−xn‖

for each n ≥ 1. Therefore

p (X \ [(E ∩U) ∪ A2], x0) ≤ lim sup
n→∞

Rn

‖x0 − xn‖
=

1
2

( r
2 − r

+ r
)
< r.

It follows x0 < intTr(A2) U and U < Tr(A2).
In a similar way we can can proof the second statement.

Corollary 4.5. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1), A1 ⊂ A2 ⊂ X and Ad
2 \Ad

1 , ∅. Then Tr(A1) ( Tr(A2) and
τr(A1) ( τr(A2).
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Example 4.6. Let X = R with the standard norm ‖x‖ = |x|, A1 =
{

1
n : n ≥ 1

}
, A2 =

{
−

1
n : n ≥ 1

}
and r ∈ (0, 1).

Then Ad
1 = Ad

2 = {0},R\A2 ∈
(
Tr(A2)∩τr(A2)

)
\

(
Tr(A1)∪τr(A1)

)
andR\A1 ∈

(
Tr(A1)∩τr(A1)

)
\

(
Tr(A2)∪τr(A2)

)
.

Theorem 4.7. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1), A ⊂ X, x0 ∈ X. The following conditions are equivalent:

(1) {x0} ∈ Tr(A);

(2) p(X \ A, x0) ≥ r.

Proof. Assume that p(X \ A, x0) ≥ r. Take any E ⊂ X such that p(X \ E, x0) ≥ r. Then

p (X \ [(E ∩ {x0}) ∪ A] , x0) ≥ p(X \ A, x0) ≥ r.

Thus {x0} ∈ Tr(A).
Now assume that {x0} ∈ Tr(A). By Proposition 4.1, we conclude that x0 ∈ Ad. If x0 ∈ int(A ∪ {x0}),

then the inequality p(X \ A, x0) ≥ 1 > r is obvious. Suppose x0 < int(A ∪ {x0}). Put E = B(x0, 1). Then
p(X \ E, x0) = 2 > r and

r ≤ p (X \ [(E ∩ {x0}) ∪ A] , x0) = p(X \ ({x0} ∪ A), x0) = p(X \ A, x0),

which completes the proof. (The last equality follows from the fact that int A = int({x0}∪A) and p(X \ ({x0}∪

A), x0) = p(cl(X \ ({x0} ∪ A)), x0) = p(X \ int({x0} ∪ A), x0) = p(X \ int A, x0) = p(X \ A, x0).)

In a similar way we can proof the following theorem.

Theorem 4.8. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1), A ⊂ X, x0 ∈ X. The following conditions are equivalent:

(1) {x0} ∈ τr(A);

(2) p(X \ A, x0) > r.

Corollary 4.9. Let (X, ‖ ‖) be a normed space, r ∈ (0, 1), A ⊂ X, U ⊂ X. Then

• intTr(A) U ⊃ int U ∪ {x ∈ X : p(X \ A, x) ≥ r};

• intτr(A) U ⊃ int U ∪ {x ∈ X : p(X \ A, x) > r}.

Theorem 4.10. Let (X, ‖ ‖) be a normed space, 0 < r1 < r2 < 1. There exists A ⊂ X such that Tr1 (A) 1 Tr2 (A) and
τr1 (A) 1 τr2 (A).

Proof. Put r = r1+r2
2 and x0 ∈ X. Let (B(xn,Rn))n≥1 be a sequence of pairwise disjoint open balls such that

x0 <
⋃
∞

n=1 B(xn,Rn), p
(
X \

⋃
∞

n=1 B(xn,Rn), x0
)

= r, limn→∞ xn = x0 and

lim
n→∞

n‖xn+1 − x0‖

‖xn − x0‖
= 0. (8)

Denote A =
⋃
∞

n=1 B(xn,Rn) and U = {x0} ∪ A. By Theorem 4.7 and Theorem 4.8, U ∈ Tr1 (A) ∩ τr1 (A).
From (8) it follows that there exists sequence

(
B(yn, αn)

)
n≥1 of pairwise disjoint open balls with properties:

limn→∞ yn = x0,
∞⋃

n=1

B(yn, αn) ∩ A = ∅,

p

X \
∞⋃

n=1

B(yn, αn), x0

 = 1.

Denote E =
⋃
∞

n=1 B(yn, αn). Then

p (X \ [(E ∩U) ∪ A] , x0) = p (X \ A, x0) = r < r2.

This means that U < Tr2 (A) ∪ τr2 (A).



S. Kowalczyk, M. Turowska / Filomat 33:1 (2019), 335–352 348

Theorem 4.11. Let (X, ‖ ‖) be a normed space, 0 < r1 < r2 < 1. There exists A ⊂ X such thatT‖ ‖  Tr1 (A) = Tr2 (A)
and T‖ ‖  τr1 (A) = τr2 (A).

Proof. Fix x0 ∈ X and let (B(xn,Rn))n≥1 be a sequence of pairwise disjoint open balls such that limn→∞ xn = x0,
x0 <

⋃
∞

n=1 B(xn,Rn) and p
(
X \

⋃
∞

n=1 B(xn,Rn), x0
)

= 1. Denote A =
⋃
∞

n=1 B(xn,Rn). Then, from Corollary 4.9,
we obtain that

{x0} ∪ A ∈
(
Tr1 (A) ∩ Tr2 (A)

)
\ T‖ ‖

and
{x0} ∪ A ∈

(
τr1 (A) ∩ τr2 (A)

)
\ T‖ ‖.

Now, it is sufficient to show that for each U ⊂ X and for each x ∈ U we have

x ∈ intTr1 (A) U⇔ x ∈ intTr2 (A) U

and
x ∈ intτr1 (A) U⇔ x ∈ intτr2 (A) U.

Take U ⊂ X and x ∈ U. We will consider the following two cases.

• x < {x0} ∪
⋃
∞

n=1 B(xn,Rn). By Proposition 4.1 we get

x ∈ intTr1 (A) U⇔ x ∈ int U⇔ x ∈ intTr2 (A) U.

• x ∈ {x0} ∪
⋃
∞

n=1 B(xn,Rn). Then p(X \A, x) = 1. Applying Theorem 4.7 and Theorem 4.8, we obtain that
{x} ∈ Tr1 (A) ∩ Tr2 (A) ∩ τr1 (A) ∩ τr2 (A).

Finally, Tr1 (A) = Tr2 (A) and τr1 (A) = τr2 (A).

Hereafter we will consider the case of X = R. We will need simple technical lemma from [7].

Lemma 4.12. ([7]) Let x0 < a < b < c, α = b−a
b−x0

, β = c−b
c−x0

and γ = c−a
c−x0

. Then γ = α + β − αβ = 1 − (1 − α)(1 − β).
In particular, γ < α + β.

Example 4.13. For each r ∈ (0, 1) there exist A,U ⊂ R such that U ∈ Tr(A) ∩ τr(A) and U 1 int U ∪{
x ∈ U : p(R \ A, x) ≥ r

}
.

Fix r ∈ (0, 1). Choose c ∈ (0, 1) satisfying condition (1− cr)
√

1 − cr < 1− r. By induction, we can construct
two sequences (an)n≥1, (bn)n≥1 of positive numbers, both tending to 0, such that

0 < . . . < bn+1 < an < bn < . . . ,

bn − an

bn
=

an − bn+1

an
= cr for each n ≥ 1.

Denote A =
⋃
∞

n=1(bn+1, an). Then

p(R \ A, 0) = p+(R \ A, 0) = lim
n→∞

an − bn+1

an
= cr < r.

For each n ≥ 1 we can choose cn ∈ (an, bn) such that bn−cn
bn

= cn−an
cn

. Let rn = bn−cn
bn

= cn−an
cn

. Then, by Lemma 4.12,

(1 − rn)2 = 1 − rc, so rn = 1 −
√

1 − rc for each n ≥ 1. In particular, rn = rn+1 for each n ≥ 1. Let un = an−1−cn
an−1

,

vn = cn−bn+1
cn

for each n ≥ 2. By Lemma 4.12, we obtain equality

1 − un = (1 − cr)(1 − rn) = 1 − vn



S. Kowalczyk, M. Turowska / Filomat 33:1 (2019), 335–352 349

for each n ≥ 2. Thus un = vn and un = un+1 for each n ≥ 2. Moreover,

1 −
an−1 − bn+1

an−1
= (1 − cr)3 = [(1 − cr)(1 − rn)]2

for each n ≥ 2. Hence
1 − un = (1 − cr)(1 − rn) = (1 − cr)

3
2 < 1 − r,

so un > r. Denote U = R \
⋃
∞

n=1{cn}. Obviously,

U 1 int U ∪ {x ∈ U : p(R \ A, x) ≥ r},

because 0 < int U and 0 < {x ∈ U : p(R \ A, x) ≥ r}.
We shall show U ∈ Tr(A) ∩ τr(A). From Corollary 4.9, we obtain U \ {0} ⊂ intTr(A) U ∩ intτr(A) U. Take

E ⊂ R with property p(R \ E, 0) > r (or p(R \ E, 0) ≥ r, respectively). We will consider the following two
cases.

I) p−(R \ E, 0) = p(R \ E, 0). Then E ∩ (−∞, 0) ⊃ [(E ∩U) ∪ A] ∩ (−∞, 0). Hence

p (R \ [(E ∩U) ∪ A] , 0) ≥ p(R \ E, 0). (9)

II) p+(R \ E, 0) = p(R \ E, 0). Then we can find a sequence of pairwise disjoint intervals ([αm, βm])m≥1
such that limm→∞ αm = 0, 0 < . . . < βm+1 < αm < βm < . . ., [αm, βm] ∩ (R \ E) = ∅ for each m ≥ 1 and
limm→∞

βm−αm

βm
= p(R \ E, 0) ≥ r > cr. Without loss of generality we may assume that βm−αm

βm
> cr for each

m ≥ 1 and α1 < a1. Fix m ∈N. If (αm, βm) ∩
⋃
∞

n=1{cn} = ∅, then

(αm, βm) ∩ (R \ [(E ∩U) ∪ A]) = ∅.

So, assume that there exists n0 such that cn0 ∈ (αm, βm). Since βm−αm

βm
> cr =

bn0−an0
bn0

, we obtain (αm, βm) 1
(an0 , bn0 ). Thus an0 ∈ (αm, βm) or bn0 ∈ (αm, βm).

Again, we have two possibilities. If an0 ∈ (αm, βm), then (bn0+1, cn0 ) ∩ (R \ [(E ∩U) ∪ A]) = ∅ and

cn0 − bn0+1

cn0

= vn = un > r.

In the second case, where bn0 ∈ (αm, βm), we have (cn0 , an0−1) ∩ (R \ [(E ∩U) ∪ A]) = ∅ and

an0−1 − cn0

an0−1
= un > r.

For every m ≥ 1 define an interval (α′m, β′m) by

(α′m, β
′

m) =


(αm, βm) if (αm, βm) ∩

⋃
∞

n=1{cn} = ∅,

(bn0+1, cn0 ) if an0 , cn0 ∈ [αm, βm],
(cn0 , an0−1) if bn0 , cn0 ∈ [αm, βm].

Then (α′m, β′m) ∩ (R \ [(E ∩U) ∪ A]) = ∅ and

β′m − α
′
m

β′m
≥ min

{
βm − αm

βm
,un

}
.

By definition of ((αm, βm))m≥1, we conclude that

p+ (R \ [(E ∩U) ∪ A] , 0) ≥ min
{
p+(R \ E, 0),un

}
. (10)

Combining (9) and (10), we obtain

p (R \ [(E ∩U) ∪ A] , 0) > r, if p(R \ E, 0) > r,
p (R \ [(E ∩U) ∪ A] , 0) ≥ r, if p(R \ E, 0) ≥ r.

Hence 0 ∈ intTr(A) U ∩ intτr(A) U and finally U ∈ Tr(A) ∩ τr(A).
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Theorem 4.14. Let r1 ∈ (0, 1). For each r2 ∈
(
r1, 1 − (1 − r1)

3
2

)
there exists A ⊂ R such that

(
Tr2 (A) ∩ τr2 (A)

)
1(

Tr1 (A) ∪ τr1 (A)
)
.

Proof. Fix r2 ∈
(
r1, 1 − (1 − r1)

3
2

)
. Take any R1 ∈ (r1, r2). Then r1 < R1 < r2 < 1− (1− r1)

3
2 < 1− (1− r1)

√
1 − R1.

Next, choose R2,R3 > 0 such that R2 ∈
(
r2, 1 − (1 − r1)

√
1 − R1

)
and (1 − R3)2(1 − R1) = (1 − R2)2. Obviously,

R3 < R2. By induction, we can construct sequences (an)n≥1, (bn)n≥1, (cn)n≥1 all tending to 0 and satisfying
conditions:

• 0 < . . . < cn+1 < an < bn < cn < . . .,

•
cn−bn

cn
= an−cn+1

an
= R3,

•
bn−an

bn
= R1

for each n ≥ 1. Next, for each n ≥ 1 we choose a point dn ∈ (an, bn) such that cn−dn
cn

= R2. Therefore by
Lemma 4.12, we obtain (

1 −
dn − cn+1

dn

)
(1 − R2) = (1 − R3)2(1 − R1) = (1 − R2)2.

Hence dn−cn+1
dn

= R2 for each n ≥ 1. Put A =
⋃
∞

n=1

(
(cn+1, an) ∪ (bn, cn)

)
, U = R \

⋃
∞

n=1{dn} and E =
⋃
∞

n=1(an, bn).
Then

p(R \ E, 0) = lim sup
n→∞

bn − an

bn
= R1 > r1.

Moreover,

(E ∩U) ∪ A =

∞⋃
n=1

(
(cn+1, an) ∪ (an, dn) ∪ (dn, bn) ∪ (bn, cn)

)
.

Let (α, β) ⊂ (0, a1) be any open interval disjoint from R \ [(E ∩ U) ∪ A]. Therefore we can find n0 such that
(α, β) ⊂ (cn0+1, an0 ) ∪ (an0 , dn0 ) ∪ (dn0 , bn0 ) ∪ (bn0 , cn0 ). Now, we have the following three cases.

1. If (α, β) ⊂ (cn0+1, an0 ) ∪ (bn0 , cn0 ), then

β − α

β
≤ max

{
cn0 − bn0

cn0

,
an0 − cn0+1

an0

}
= R3.

2. If (α, β) ⊂ (an0 , dn0 ), then
β − α

β
≤

dn0 − an0

dn0

.

Moreover, by Lemma 4.12, (
1 −

dn0 − an0

dn0

)
(1 − R3) = 1 − R2.

Hence

1 −
dn0 − an0

dn0

=
1 − R2

1 − R3
=

√
1 − R1.

Finally,
dn0−an0

dn0
= 1 −

√
1 − R1 and β−α

β ≤ 1 −
√

1 − R1.

3. If (α, β) ⊂ (dn0 , bn0 ), then
β − α

β
≤

bn0 − dn0

bn0

and
(
1 −

bn0−dn0
bn0

)
(1 − R3) = 1 − R2. Therefore

bn0−dn0
bn0

= 1 −
√

1 − R1 and β−α
β ≤ 1 −

√
1 − R1.
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Since (α, β) was arbitrary,
p(R \ [(E ∩U) ∪ A], 0) ≤ max

{
R3, 1 −

√
1 − R1

}
.

Obviously, 1 −
√

1 − R1 < 1 − (1 − r1)
3
4 < r1 and R3 = 1 − 1−R2

√
1−R1

< r1. Thus U < Tr1 (A) ∪ τr1 (A).
Now, we shall show that U ∈ Tr2 (A) ∩ τr2 (A). Obviously, U \ {0} ⊂ intTr2 (A) U ∩ intτr2 (A) U. Let F ⊂ R be

such that p(R \ F, 0) ≥ r2 (or p(R \ F, 0) > r2, respectively).
If p−(R \ F, 0) = p(R \ F, 0), then

p(R \ [(F ∩U) ∪ A], 0) ≥ p−(R \ F, 0). (11)

Therefore, assume that p+(R \ F, 0) = p(R \ F, 0). Then we can find a sequence of open intervals
(
(αm, βm)

)
m≥1

such that (αm, βm) ⊂ F, 0 < . . . < βm+1 < αm < βm < . . . for each m ≥ 1, limn→∞ αm = 0 and p(R \ F, 0) =

limm→∞
βm−αm

βm
≥ r2 > R1. Without loss of generality, we may assume that βm−αm

βm
> R1 for each m ≥ 1 and

α1 < a1. Fix m ∈N. If (αm, βm) ∩
⋃
∞

n=1{dn} = ∅, then

(αm, βm) ∩ (R \ [(F ∩U) ∪ A]) = ∅.

So, consider the case, where there exists n0 such that dn0 ∈ (αm, βm). Since βm−αm

βm
> R1 =

bn0−an0
bn0

, we obtain
(αm, βm) 1 (an0 , bn0 ). Thus an0 ∈ (αm, βm) or bn0 ∈ (αm, βm).

• If an0 ∈ (αm, βm), then (cn0+1, dn0 ) ∩ (R \ [(F ∩U) ∪ A]) = ∅ and

dn0 − cn0+1

dn0

= R2 > r2.

• If bn0 ∈ (αm, βm), then (dn0 , cn0 ) ∩ (R \ [(F ∩U) ∪ A]) = ∅ and

cn0 − dn0

cn0

= R2 > r2.

For every m ≥ 1 define (α′m, β′m) by

(α′m, β
′

m) =


(αm, βm) if (αm, βm) ∩

⋃
∞

n=1{dn} = ∅,

(cn0+1, dn0 ) if {an0 , dn0 } ⊂ (αm, βm),
(dn0 , cn0 ) if {bn0 , dn0 } ⊂ (αm, βm).

Therefore (α′m, β′m) ∩ (R \ [(E ∩U) ∪ A]) = ∅ and

β′m − α
′
m

β′m
≥ min

{
βm − αm

βm
,R2

}
.

By definition of ((αm, βm))m≥1, we conclude

p+ (R \ [(E ∩U) ∪ A] , 0) ≥ min
{
p+(R \ E, 0),R2

}
. (12)

Combining (11) and (12), we obtain

p (R \ [(E ∩U) ∪ A] , 0) > r2, if p(R \ E, 0) > r2,

p (R \ [(E ∩U) ∪ A] , 0) ≥ r2, if p(R \ E, 0) ≥ r2.

Hence 0 ∈ intTr2(A) U ∩ intτr2(A) U and finally U ∈ Tr2(A) ∩ τr2(A).
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