
Filomat 33:1 (2019), 281–287
https://doi.org/10.2298/FIL1901281K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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on Smooth Domains
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Abstract. Some estimates for the simultaneous polynomial approximation of the conformal mapping of
the finite simple connected domain onto the disc in the complex plane C and its derivatives are obtained.
The approximation rate in dependence of the differential parameters of the considered smooth domain is
estimated.

1. Introduction and Background

Let G be a finite region in the complex plane, bounded by rectifiable Jordan curve Γ := ∂G and Ω := extG
and ∆ := extT. Let also T := {w ∈ C : |w| = 1}, D := intT. By the Riemann mapping theorem, there exists a
unique conformal mapping w = ϕ0(z) of G onto the disk Dro := {w ∈ C : |w| < r0}, normalized by ϕ0(z0) = 0,
ϕ′0(z0) = 1, where r0 := r0(z0; G) is called the conformal radius of G with respect to z0 and having the inverse
mapping ψ0.

Similarly w = ϕ(z) is conformal mapping of Ω onto ∆ with normalizationsϕ(∞) = ∞ and limz→∞
ϕ(z)

z > 0.
We denote by ψ the inverse mapping of ϕ.

For an arbitrary analytic function f given on G we set∥∥∥ f
∥∥∥

L2(G)
:=

(∫ ∫
G

∣∣∣ f (z)
∣∣∣2 dσz

) 1
2

where dσz stands for area measure on G.
If the function f has a continuous extension to G, we use also the uniform norm∥∥∥ f

∥∥∥
C(G)

:= sup
{∣∣∣ f (z)

∣∣∣ : z ∈ G
}
.

It is well known that the function w = ϕ0(z) minimizes the integral
∥∥∥ f ′

∥∥∥
L2(G)

in the class of all analytic
functions in G, normalized by f (z0) = 0, f ′(z0) = 1. Definition of the Bieberbach polynomials clearly, let ℘n
be the class of polynomials pn(z) of degree at most n and satisfying the conditions pn(z0) = 0, p′n(z0) = 1. A
polynomial πn ∈ ℘n is called n− th Bieberbach polynomial for pair (G, z0) if it minimizes the norm

∥∥∥p′
∥∥∥

L2(G)

in the class ℘n. It is easy to check that πn also minimizes the norm
∥∥∥ϕ′0 − p′n

∥∥∥
L2(G)

in the class ℘n.
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As follows from the results due to Farrel [11] and Markushevich [22], if G is a Caratheodory region, then∥∥∥ϕ′0 − p′n
∥∥∥

L2(G) tends to zero as n approaches infinity and so of the sequence {πn} converges uniformly to ϕ0

on compact subsets of G.
The first study was done by Keldych [21] on the uniform convergence {πn (z)}polynomials to the function

ϕ0 (z) in the closure of G. He showed that if the boundary L of G is a smooth Jordan curve with bounded
curvature, then for every small ε > 0 and γ = 1 − ε there exists a constant c (ε) independent of n such that∥∥∥ϕ0 − πn

∥∥∥
C(G) := maxz∈G

∣∣∣ϕ0 (z) − πn (z)
∣∣∣ 6 c (ε)

nγ
, (1)

where γ depends on the geometric properties of the boundary Γ := ∂G, holds for every natural number n.
In [21] the author also constructed an example of a starlike region, bounded by piecewise analytic curve

with one singular point, where Bieberbach polynomials diverge. Therefore, the uniform convergence of the
sequence {πn (z)} in G depends on the properties of Γ := ∂G. Later, Keldych’s counterexample was given by
Andrievkii and Pritsker [9], for more generalized region. Bisedes, its geometry is made more clearly than
Keldych’s counterexample.

Furthermore, Mergelyan [23] showed that γ = 1
2 − ε for arbitrary small ε > 0, whenever Γ := ∂G is

a smooth Jordan curve. Additionally, Mergelyan stated it as a conjecture that the exponent γ = 1
2 − ε in

(1) could be replaced by γ = 1 − ε. Mergelyan’s conjecture was proved for a smooth domain of bounded
boundary rotation by Israfilov in [17].

A considerable progress in this area has been achieved by Mergelyan [23], Suetin [26], Simonenko [25],
Wu [29], Andrievskii [7, 8], Gaier [12, 13], Abdullayev [1, 2, 4, 5], Israfilov [16, 17] and the others.

In the paper [23] S.N. Mergelyan also noted without an estimate the convergence of any derivatives of
the Bieberbach polynomials πn to the phenoma is also true for derivatives of conformal mapping function
ϕ0, so called the simultaneous approximation.

In our opinion, first results related on the simultaneous approximation of Bieberbach polynomials were
obtained by Suetin [26] and Israfilov [20].

A smooth Jordan curve Γ is called Dini-smooth if ϑ (s) be its tangent direction angle expressed via
arclenght of Γ, satisfying the condition

c∫
0

ω (ϑ,u)
u

du < ∞ (2)

where ω (ϑ,u) is the modulus of continuity of ϑ (s) , for some c > 0.

Definition 1.1. [18] Let r = 0, 1, 2, ..., α ∈ (0, 1] and β ∈ [0,∞). If the tangent direction angle ϑ of Γ fulfills

ω
(
ϑ(r), δ

)
6 cδα lnβ

(4
δ

)
, δ ∈ (0, π]

with a positive constant c independent of δ, then we say that the Jordan curve Γ belongs to the class Cr, α, β.

We also say that f ∈ Cα,β if ω
(

f , δ
)
6 cδα lnβ

(
4
δ

)
, α ∈ (0, 1] , β ∈ [0,∞) for some constant c.

The class Cr,α,β is generalization of the class B
(
α, β

)
, defined in [19]. In particular, the class C0,α,β coincides

with B
(
α, β

)
and the class C0,α,0, α ∈ (0, 1), coincides with the class of Lyapunov curves.

The aim of this article, we study the estimation (1) for simultaneous approximation in domains with a
subclass of smooth Jordan curves.

2. Main Results

We consider domains Cr, α, β with r = 0, 1, 2, ..., 0 < α ≤ 1 and β ≥ 0 in this section. The following main
results contain estimates for the rates of uniform convergence of the derivatives of Bieberbach polynomials.
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Theorem 2.1. Let Γ ∈ Cr, α, β with r = 2, 3, ..., 0 < α < 1 and 0 6 β < r + α − 3
2 . If 1 6 k 6 r − 1, then

∥∥∥ϕ(k)
0 − π

(k)
n

∥∥∥
C(G) 6

c lnβ(n)

nr+α−k− 1
2

, n > k (3)

with some positive constant c = c (r).

Corollary 2.2. Let Γ ∈ Cr, α, 0 with r = 2, 3, ... and 0 < α < 1. If 1 6 k 6 r − 1 then∥∥∥ϕ(k)
0 − π

(k)
n

∥∥∥
C(G) 6

c

nr+α−k− 1
2

, n > k (4)

with some positive constant c = c (r).

Theorem 2.3. Let Γ ∈ Cr, 1, β with r = 3, 4, ..., and 0 6 β < r − 5
2 . If 1 6 k 6 r − 1 then

∥∥∥ϕ(k)
0 − π

(k)
n

∥∥∥
C(G) 6

c lnβ+1(n)

nr−k− 1
2

, n > k (5)

with some positive constant c = c (r).

Theorem 2.4. Let Γ ∈ Cr, α, β with r = 1, 2, 3..., 1
2 < α < 1 and 0 6 β < α − 1

2 . Then

∥∥∥ϕ(r)
0 − π

(r)
n

∥∥∥
C(G) 6

c lnβ(n)

nα−
1
2

, n > r (6)

with some positive constant c = c (r).

3. Some Auxiliary Facts

The following some auxiliary results are given spaces Lp (G) and Ep (G) with p > 1, but in this work,
our interest is focused on the Hilbert spaces L2 (G) and E2 (G). Throughout this paper c, c1, c2,... are positive
constants which in general depend on G. By Lp (G) and Ep (G) we denote the set of all measurable complex
valued functions such that

∣∣∣ f ∣∣∣p is lebesque integrable with respect to arclenght, and Simirnov class of
analytic functions in G, respectively.

Each function f ∈ Ep (G) has a non-tangential limit almost everywhere on Γ and if we use the same
notation for the non-tangential limit of f , then f ∈ Lp (Γ).

For p > 1, Lp (G) and Ep (G) are Banach spaces with respect to the norm

∥∥∥ f
∥∥∥

Ep(G) =
∥∥∥ f

∥∥∥
Lp(Γ) :=

(∫
Γ

∣∣∣ f (z)
∣∣∣p |dz|

) 1
p

.

For the further fundamental properties see [15, p.438-453]. For the mapping ϕ0 and a weight function
ω defined on Γ we set

εn

(
ϕ′0

)
p

:= inf
pn

∥∥∥ϕ′0 − pn

∥∥∥
Lp(G) and E0

n

(
ϕ′0, ω

)
p

:= inf
pn

∥∥∥ϕ′0 − pn

∥∥∥
Lp(Γ, ω) ,

where infimum is taken over all algebraic polynomials pn of degree at most n and

Lp (Γ, ω) :=
{

f ∈ L1 (Γ) :
∣∣∣ f ∣∣∣p ω ∈ L1 (Γ)

}
, Ep (G, ω) :=

{
f ∈ E1 (G) : f ∈ Lp (Γ, ω)

}
.
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According to Dynkn’s result [10], in case ofω :=
∣∣∣ϕ′∣∣∣−1

between the best approximation numbers εn

(
ϕ′0

)
p

and E0
n

(
ϕ′0,

∣∣∣ϕ′∣∣∣−1
)

p
the following relation holds

εn

(
ϕ′0

)
p
6 cn−

1
p E0

n

ϕ′0, 1∣∣∣ϕ′∣∣∣


p

. (7)

Let f ∈ Ep (G) and let

ωp
(

f , δ
)

= sup
|h|6δ

∥∥∥∥( f oψ
) (

ei(θ+h)
)
−

(
f oψ

) (
eiθ

)∥∥∥∥
Lp[0,2π]

= sup
|h|6δ

{∫ 2π

0

∣∣∣∣( f oψ
) (

ei(θ+h)
)
−

(
f oψ

) (
eiθ

)∣∣∣∣p dθ
} 1

p

be the generalized modulus of continuity of f . We use the following approximation theorem by polynomials
in the Simirnov class Ep (G) , 1 < p < ∞.

Theorem 3.1. [6] Let k ∈N and f (k)
∈ Ep (G) with 1 < p < ∞. If Γ satisfies the condition (2) , then for an arbitrary

algebraic polynomial pn
(
z, f

)
we have ∥∥∥ f − pn

(
z, f

)∥∥∥
Lp(Γ) 6

c
nk
ωp

(
f (k), δ

)
,

where ωp

(
f (k), δ

)
:= sup

|h|6δ

∥∥∥∥( f (k)oψ
) (

ei(θ+h)
)
−

(
f (k)oψ

) (
eiθ

)∥∥∥∥
Lp[0,2π]

.

Definition 3.2. [24] A bounded Jordan region G is called a k−quasidisk, 0 6 k < 1, if any conformal mapping ψ0

can be extended to a K− quasiconformal, K = 1+k
1−k , homeomorphizm of the plane C on the C. In that case the curve

Γ := ∂G is called a K−quasicircle. The region G (curve Γ) is called a quasidisk
(
quasicircle

)
, if it is k−quasidisk(

k − quasicircle
)

with some 0 6 k < 1.

Theorem 3.3. [3] Let G be a k−quasidisk, 0 ≤ k < 1. Then for arbitrary qn ∈ ℘n and any m = 0, 1, 2, ...we have∥∥∥q(m)
n

∥∥∥
C(G) 6 cn

(
m+ 2

p

)
(1+k)

∥∥∥qn

∥∥∥
Lp(G) , p > 1.

Corollary 3.4. Let Γ ∈ Cr, α, β with 0 < α < 1, β ≥ 0 and r = 1, 2, ... . Then for arbitrary pn ∈ ℘n we have∥∥∥p(r)
n

∥∥∥
C(G) 6 cnr

∥∥∥p′n
∥∥∥

L2(G) .

Proof. Since ϕ0 is a conformal mapping we can get k = 0 by taking K = 1 into account in Definition 3.2.
Moreover substituting qn = p′n, p = 2 and m = r− 1 into the Theorem 3.3, we easily obtain Corollary 3.4.

Lemma 3.5. [18] If Γ ∈ Cr, α, β, with r = 0, 1, 2, ..., α ∈ (0, 1] , β ∈ [0,∞), then for Φ(r) (w) := ϕ(r+1)
o

(
ψ (w)

)
, we

have

ω
(
Φ(r), δ

)
6

 cδα lnβ
(

4
δ

)
; i f 0 < α < 1

cδ lnβ+1
(

4
δ

)
; i f α = 1.

Lemma 3.6. [27] Suppose that
∑
∞

k=1 ak converges and s is the value of the series. If rn := an+1
an

is a decreasing sequence
and rn+1 < 1, then

0 6 Rn = s −
n∑

k=1

ak 6
an+1

1 − rn+1
.
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4. Proof of the Main Results

For the proofs of the main results we use a traditional method based on the extremal property of
Bieberbach polynomials and also the inequality (7)

Proof of Theorem 2.1. Let 1 6 k 6 r − 1. Since πn → ϕ0, as n → ∞, uniformly in G, for any z ∈ G, n ∈ N
with n > k and 2 j 6 n 6 2 j+1 we have

ϕ0 (z) − πn (z) = [π2 j+1 (z) − πn (z)] +

∞∑
m= j+1

[π2m+1 (z) − π2m (z)]

and

ϕ(k)
0 (z) − π(k)

n (z) =
[
π(k)

2 j+1 (z) − π(k)
n (z)

]
+

∞∑
m= j+1

[
π(k)

2m+1 (z) − π(k)
2m (z)

]
.

Therefore, the inequality

∥∥∥ϕ(k)
0 − π

(k)
n

∥∥∥
C(G) 6

∥∥∥π(k)
2 j+1 − π

(k)
n

∥∥∥
C(G) +

∞∑
m= j+1

∥∥∥π(k)
2m+1 − π

(k)
2m

∥∥∥
C(G)

holds. If we use Corollary 3.4, also we have

∥∥∥ϕ(k)
0 − π

(k)
n

∥∥∥
C(G) 6 c12( j+1)k

∥∥∥π′2 j+1 − π
′

n

∥∥∥
L2(G) + c2

∞∑
m= j+1

2(m+1)k
∥∥∥π′2m+1 − π

′

2m

∥∥∥
L2(G) . (8)

Setting

Qn (z) :=

z∫
z0

qn (t) dt and tn (z) := Qn (z) +
[
1 − qn (z0)

]
(z − z0)

for the polynomial qn, best approximating ϕ′0 in the norm ‖.‖L2(G). We have tn (z0) = 0 and t′n (z0) = 1. Then,∥∥∥ϕ′0 − t′n
∥∥∥

L2(G) =
∥∥∥ϕ′0 − qn − 1 + qn (z0)

∥∥∥
L2(G) 6

∥∥∥ϕ′0 − qn

∥∥∥
L2(G) +

∥∥∥1 − qn (z0)
∥∥∥

L2(G) (9)

= εn

(
ϕ′0

)
2

+
∥∥∥1 − qn (z0)

∥∥∥
L2(G) .

Considering the inequality (see [14, p.4])

∣∣∣ f (z0)
∣∣∣ 6

∥∥∥ f
∥∥∥

L2(G)
√
πdist (z0,Γ)

which holds for every analytic function f with
∥∥∥ f

∥∥∥
L2(G) < ∞, we can write ϕ′0 − qn instead of f , and we get

∥∥∥1 − qn (z0)
∥∥∥

L2(G) 6

∥∥∥ϕ′0 − qn

∥∥∥
L2(G)

√
πdist (z0,Γ)

= c3εn

(
ϕ′0

)
2
.

Using last inequality, the minimization property of the Bieberbach polynomials and substituting (7) into
(9), we have ∥∥∥ϕ′0 − π′n∥∥∥L2(G) 6

∥∥∥ϕ′0 − t′n
∥∥∥

L2(G) 6 c4εn

(
ϕ′0

)
2
6 c5n−

1
2 E0

n

(
ϕ′0,

∣∣∣ϕ′∣∣∣−1
)

2
.
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Then for a natural number n ∈Nwith n > k and 2 j 6 n 6 2 j+1, by applying Theorem 3.1 for ϕ′0 we have∥∥∥π′2 j+1 − π
′

n

∥∥∥
L2(G) 6

∥∥∥π′2 j+1 − ϕ
′

0

∥∥∥
L2(G) +

∥∥∥ϕ′0 − π′n∥∥∥L2(G)

= c6ε2 j+1

(
ϕ′0

)
2

+ c5εn

(
ϕ′0

)
2

6 c7εn

(
ϕ′0

)
2

6 c8n−
1
2 E0

n

(
ϕ′0,

∣∣∣ϕ′∣∣∣−1
)

2

6 c9n−
1
2

∥∥∥∥pn

(
z, ϕ′0

)
− ϕ′0

∥∥∥∥
L2

(
Γ, |ϕ′|

−1
) .

We know that from [28], for Γ ∈ Cr, α, β

0 < c10 6
∣∣∣ϕ′ (z)

∣∣∣ 6 c11 , z ∈ Γ.

Furthermore, substituting f = ϕ′0, k = r − 1 into Theorem 3.1 and from Lemma 3.5 for 0 < α < 1, β > 0 we
get ∥∥∥π′2 j+1 − π

′

n

∥∥∥
L2(G) 6 c12n−

1
2

∥∥∥∥pn

(
z, ϕ′0

)
− ϕ′0

∥∥∥∥
L2(Γ)

6 c13n−
1
2

1
nr−1ω2

(
ϕ(r)

0 oψ,
1
n

)
6

c14 lnβ(n)

nr+α− 1
2

.

By the similar way we can show that ∥∥∥π′2 j+1 − π
′

2 j

∥∥∥
L2(G) 6

c15 lnβ(2 j)

2 j(r+α− 1
2 )
.

Using these estimations in (8) and lemma 3.6 we obtain the required estimation∥∥∥ϕ(k)
0 − π

(k)
n

∥∥∥
C(G) 6

c162( j+1)k lnβ(n)

nr+α− 1
2

+ c17

∞∑
m= j+1

2(m+1)k lnβ(2m)

2m(r+α− 1
2 )

6
c18 lnβ(n)

nr+α−k− 1
2

+ c19

∞∑
m= j+1

lnβ(2m)

2m(r+α−k− 1
2 )

6
c20 lnβ(n)

nr+α−k− 1
2

.

Thus the proof of Theorem 2.1 is completed.

Proof of Theorem 2.3. As in the case of of Theorem 2.1, we obtain the following estimations∥∥∥π′2 j+1 − π
′

n

∥∥∥
L2(G) 6

c21 lnβ+1(n)

nr− 1
2

,
∥∥∥π′2 j+1 − π

′

2 j

∥∥∥
L2(G) 6

c22 lnβ+1(2 j)

2 j(r− 1
2 )

. (10)

Combining (8), (10) and lemma 3.6 we have∥∥∥ϕ(k)
0 − π

(k)
n

∥∥∥
C(G) 6

c23 lnβ+1(n)

nr−k− 1
2

.

This gives the desired inequality.

Proof of Theorem 2.4. The proof of Theorem 2.4 is similar to that of Theorem 2.1.
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