Simultaneous Approximation of Conformal Mappings on Smooth Domains

Cem Koşar ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Science Education, Gaziantep University, Gaziantep, TURKEY

Abstract

Some estimates for the simultaneous polynomial approximation of the conformal mapping of the finite simple connected domain onto the disc in the complex plane \mathbb{C} and its derivatives are obtained. The approximation rate in dependence of the differential parameters of the considered smooth domain is estimated.

1. Introduction and Background

Let G be a finite region in the complex plane, bounded by rectifiable Jordan curve $\Gamma:=\partial G$ and $\Omega:=\operatorname{ext} \bar{G}$ and $\Delta:=\operatorname{ext} \mathbb{T}$. Let also $\mathbb{T}:=\{w \in \mathbb{C}:|w|=1\}, \mathbb{D}:=\operatorname{int} \mathbb{T}$. By the Riemann mapping theorem, there exists a unique conformal mapping $w=\varphi_{0}(z)$ of G onto the disk $D_{r_{0}}:=\left\{w \in \mathbb{C}:|w|<r_{0}\right\}$, normalized by $\varphi_{0}\left(z_{0}\right)=0$, $\varphi_{0}^{\prime}\left(z_{0}\right)=1$, where $r_{0}:=r_{0}\left(z_{0} ; G\right)$ is called the conformal radius of G with respect to z_{0} and having the inverse mapping ψ_{0}.

Similarly $w=\varphi(z)$ is conformal mapping of Ω onto Δ with normalizations $\varphi(\infty)=\infty$ and $\lim _{z \rightarrow \infty} \frac{\varphi(z)}{z}>0$. We denote by ψ the inverse mapping of φ.

For an arbitrary analytic function f given on G we set

$$
\|f\|_{L^{2}(G)}:=\left(\iint_{G}|f(z)|^{2} d \sigma_{z}\right)^{\frac{1}{2}}
$$

where $d \sigma_{z}$ stands for area measure on G.
If the function f has a continuous extension to \bar{G}, we use also the uniform norm

$$
\|f\|_{C(\bar{G})}:=\sup \{|f(z)|: z \in \bar{G}\}
$$

It is well known that the function $w=\varphi_{0}(z)$ minimizes the integral $\left\|f^{\prime}\right\|_{L^{2}(G)}$ in the class of all analytic functions in G, normalized by $f\left(z_{0}\right)=0, f^{\prime}\left(z_{0}\right)=1$. Definition of the Bieberbach polynomials clearly, let \wp_{n} be the class of polynomials $p_{n}(z)$ of degree at most n and satisfying the conditions $p_{n}\left(z_{0}\right)=0, p_{n}^{\prime}\left(z_{0}\right)=1$. A polynomial $\pi_{n} \in \wp_{n}$ is called n - th Bieberbach polynomial for pair (G, z_{0}) if it minimizes the norm $\left\|p^{\prime}\right\|_{L^{2}(G)}$ in the class \wp_{n}. It is easy to check that π_{n} also minimizes the norm $\left\|\varphi_{0}^{\prime}-p_{n}^{\prime}\right\|_{L^{2}(G)}$ in the class \wp_{n}.

[^0]As follows from the results due to Farrel [11] and Markushevich [22], if G is a Caratheodory region, then $\left\|\varphi_{0}^{\prime}-p_{n}^{\prime}\right\|_{L^{2}(G)}$ tends to zero as n approaches infinity and so of the sequence $\left\{\pi_{n}\right\}$ converges uniformly to φ_{0} on compact subsets of G.

The first study was done by Keldych [21] on the uniform convergence $\left\{\pi_{n}(z)\right\}$ polynomials to the function $\varphi_{0}(z)$ in the closure of G. He showed that if the boundary L of G is a smooth Jordan curve with bounded curvature, then for every small $\varepsilon>0$ and $\gamma=1-\varepsilon$ there exists a constant $c(\varepsilon)$ independent of n such that

$$
\begin{equation*}
\left\|\varphi_{0}-\pi_{n}\right\|_{C(\bar{G})}:=\max _{z \in \bar{G}}\left|\varphi_{0}(z)-\pi_{n}(z)\right| \leqslant \frac{c(\varepsilon)}{n^{\gamma}} \tag{1}
\end{equation*}
$$

where γ depends on the geometric properties of the boundary $\Gamma:=\partial G$, holds for every natural number n.
In [21] the author also constructed an example of a starlike region, bounded by piecewise analytic curve with one singular point, where Bieberbach polynomials diverge. Therefore, the uniform convergence of the sequence $\left\{\pi_{n}(z)\right\}$ in \bar{G} depends on the properties of $\Gamma:=\partial G$. Later, Keldych's counterexample was given by Andrievkii and Pritsker [9], for more generalized region. Bisedes, its geometry is made more clearly than Keldych's counterexample.

Furthermore, Mergelyan [23] showed that $\gamma=\frac{1}{2}-\varepsilon$ for arbitrary small $\varepsilon>0$, whenever $\Gamma:=\partial G$ is a smooth Jordan curve. Additionally, Mergelyan stated it as a conjecture that the exponent $\gamma=\frac{1}{2}-\varepsilon$ in (1) could be replaced by $\gamma=1-\varepsilon$. Mergelyan's conjecture was proved for a smooth domain of bounded boundary rotation by Israfilov in [17].

A considerable progress in this area has been achieved by Mergelyan [23], Suetin [26], Simonenko [25], Wu [29], Andrievskii [7, 8], Gaier [12, 13], Abdullayev [1, 2, 4, 5], Israfilov [16, 17] and the others.

In the paper [23] S.N. Mergelyan also noted without an estimate the convergence of any derivatives of the Bieberbach polynomials π_{n} to the phenoma is also true for derivatives of conformal mapping function φ_{0}, so called the simultaneous approximation.

In our opinion, first results related on the simultaneous approximation of Bieberbach polynomials were obtained by Suetin [26] and Israfilov [20].

A smooth Jordan curve Γ is called Dini-smooth if $\vartheta(s)$ be its tangent direction angle expressed via arclenght of Γ, satisfying the condition

$$
\begin{equation*}
\int_{0}^{c} \frac{\omega(\vartheta, u)}{u} d u<\infty \tag{2}
\end{equation*}
$$

where $\omega(\vartheta, u)$ is the modulus of continuity of $\vartheta(s)$, for some $c>0$.
Definition 1.1. [18] Let $r=0,1,2, \ldots, \alpha \in(0,1]$ and $\beta \in[0, \infty)$. If the tangent direction angle ϑ of Γ fulfills

$$
\omega\left(\vartheta^{(r)}, \delta\right) \leqslant c \delta^{\alpha} \ln ^{\beta}\left(\frac{4}{\delta}\right), \quad \delta \in(0, \pi]
$$

with a positive constant c independent of δ, then we say that the Jordan curve Γ belongs to the class $C^{r, \alpha, \beta}$.
We also say that $f \in C^{\alpha, \beta}$ if $\omega(f, \delta) \leqslant c \delta^{\alpha} \ln ^{\beta}\left(\frac{4}{\delta}\right), \alpha \in(0,1], \beta \in[0, \infty)$ for some constant c.
The class $C^{r, \alpha, \beta}$ is generalization of the class $B(\alpha, \beta)$, defined in [19]. In particular, the class $C^{0, \alpha, \beta}$ coincides with $B(\alpha, \beta)$ and the class $C^{0, \alpha, 0}, \alpha \in(0,1)$, coincides with the class of Lyapunov curves.

The aim of this article, we study the estimation (1) for simultaneous approximation in domains with a subclass of smooth Jordan curves.

2. Main Results

We consider domains $C^{r, \alpha, \beta}$ with $r=0,1,2, \ldots, 0<\alpha \leq 1$ and $\beta \geq 0$ in this section. The following main results contain estimates for the rates of uniform convergence of the derivatives of Bieberbach polynomials.

Theorem 2.1. Let $\Gamma \in C^{r, \alpha, \beta}$ with $r=2,3, \ldots, 0<\alpha<1$ and $0 \leqslant \beta<r+\alpha-\frac{3}{2}$. If $1 \leqslant k \leqslant r-1$, then

$$
\begin{equation*}
\left\|\varphi_{0}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})} \leqslant \frac{c \ln \beta(n)}{n^{r+\alpha-k-\frac{1}{2}}}, \quad n \geqslant k \tag{3}
\end{equation*}
$$

with some positive constant $c=c(r)$.
Corollary 2.2. Let $\Gamma \in C^{r, \alpha, 0}$ with $r=2,3, \ldots$ and $0<\alpha<1$. If $1 \leqslant k \leqslant r-1$ then

$$
\begin{equation*}
\left\|\varphi_{0}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})} \leqslant \frac{c}{n^{r+\alpha-k-\frac{1}{2}}}, \quad n \geqslant k \tag{4}
\end{equation*}
$$

with some positive constant $c=c(r)$.
Theorem 2.3. Let $\Gamma \in C^{r, 1, \beta}$ with $r=3,4, \ldots$, and $0 \leqslant \beta<r-\frac{5}{2}$. If $1 \leqslant k \leqslant r-1$ then

$$
\begin{equation*}
\left\|\varphi_{0}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})} \leqslant \frac{c \ln ^{\beta+1}(n)}{n^{r-k-\frac{1}{2}}}, \quad n \geqslant k \tag{5}
\end{equation*}
$$

with some positive constant $c=c(r)$.
Theorem 2.4. Let $\Gamma \in C^{r, \alpha, \beta}$ with $r=1,2,3 \ldots, \frac{1}{2}<\alpha<1$ and $0 \leqslant \beta<\alpha-\frac{1}{2}$. Then

$$
\begin{equation*}
\left\|\varphi_{0}^{(r)}-\pi_{n}^{(r)}\right\|_{C(\bar{G})} \leqslant \frac{c \ln ^{\beta}(n)}{n^{\alpha-\frac{1}{2}}}, \quad n \geqslant r \tag{6}
\end{equation*}
$$

with some positive constant $c=c(r)$.

3. Some Auxiliary Facts

The following some auxiliary results are given spaces $L^{p}(G)$ and $E^{p}(G)$ with $p>1$, but in this work, our interest is focused on the Hilbert spaces $L^{2}(G)$ and $E^{2}(G)$. Throughout this paper c, c_{1}, c_{2}, \ldots are positive constants which in general depend on G. By $L^{p}(G)$ and $E^{p}(G)$ we denote the set of all measurable complex valued functions such that $|f|^{\mid}$is lebesque integrable with respect to arclenght, and Simirnov class of analytic functions in G, respectively.

Each function $f \in E^{p}(G)$ has a non-tangential limit almost everywhere on Γ and if we use the same notation for the non-tangential limit of f, then $f \in L^{p}(\Gamma)$.

For $p \geqslant 1, L^{p}(G)$ and $E^{p}(G)$ are Banach spaces with respect to the norm

$$
\|f\|_{\mathbb{E}^{p}(G)}=\|f\|_{L^{p}(\mathrm{I})}:=\left(\int_{\Gamma}|f(z)|^{p}|d z|\right)^{\frac{1}{p}} .
$$

For the further fundamental properties see [15, p.438-453]. For the mapping φ_{0} and a weight function ω defined on Γ we set

$$
\varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{p}:=\inf _{p_{n}}\left\|\varphi_{0}^{\prime}-p_{n}\right\|_{L^{p}(G)} \text { and } E_{n}^{0}\left(\varphi_{0}^{\prime}, \omega\right)_{p}:=\inf _{p_{n}}\left\|\varphi_{0}^{\prime}-p_{n}\right\|_{L^{p}(\Gamma, \omega)},
$$

where infimum is taken over all algebraic polynomials p_{n} of degree at most n and

$$
L^{p}(\Gamma, \omega):=\left\{f \in L^{1}(\Gamma):|f|^{p} \omega \in L^{1}(\Gamma)\right\}, \quad E^{p}(G, \omega):=\left\{f \in E^{1}(G): f \in L^{p}(\Gamma, \omega)\right\} .
$$

According to Dynkn's result [10], in case of $\omega:=\left|\varphi^{\prime}\right|^{-1}$ between the best approximation numbers $\varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{p}$ and $E_{n}^{0}\left(\varphi_{0^{\prime}}^{\prime}\left|\varphi^{\prime}\right|^{-1}\right)_{p}$ the following relation holds

$$
\begin{equation*}
\varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{p} \leqslant c n^{-\frac{1}{p}} E_{n}^{0}\left(\varphi_{0}^{\prime}, \frac{1}{\left|\varphi^{\prime}\right|}\right)_{p} \tag{7}
\end{equation*}
$$

Let $f \in E^{p}(G)$ and let

$$
\omega_{p}(f, \delta)=\sup _{|h| \leqslant \delta}\left\|(f \circ \psi)\left(e^{i(\theta+h)}\right)-(f \circ \psi)\left(e^{i \theta}\right)\right\|_{L^{p}[0,2 \pi]}=\sup _{|h| \leqslant \delta}\left\{\int_{0}^{2 \pi}\left|(f \circ \psi)\left(e^{i(\theta+h)}\right)-(f o \psi)\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}
$$

be the generalized modulus of continuity of f. We use the following approximation theorem by polynomials in the Simirnov class $E^{p}(G), 1<p<\infty$.
Theorem 3.1. [6] Let $k \in \mathbb{N}$ and $f^{(k)} \in E^{p}(G)$ with $1<p<\infty$. If Γ satisfies the condition (2), then for an arbitrary algebraic polynomial $p_{n}(z, f)$ we have

$$
\left\|f-p_{n}(z, f)\right\|_{L^{p}(\Gamma)} \leqslant \frac{c}{n^{k}} \omega_{p}\left(f^{(k)}, \delta\right),
$$

where $\omega_{p}\left(f^{(k)}, \delta\right):=\sup _{|h| \leqslant \delta}\left\|\left(f^{(k)} o \psi\right)\left(e^{i(\theta+h)}\right)-\left(f^{(k)} o \psi\right)\left(e^{i \theta}\right)\right\|_{L^{p}[0,2 \pi]}$.
Definition 3.2. [24] A bounded Jordan region G is called a k-quasidisk, $0 \leqslant k<1$, if any conformal mapping ψ_{0} can be extended to a K - quasiconformal, $K=\frac{1+k}{1-k}$, homeomorphizm of the plane $\overline{\mathbb{C}}$ on the $\overline{\mathbb{C}}$. In that case the curve $\Gamma:=\partial G$ is called a K-quasicircle. The region $G(c u r v e ~ \Gamma) ~ i s ~ c a l l e d ~ a ~ q u a s i d i s k ~(q u a s i c i r c l e), ~ i f ~ i t ~ i s ~ k-q u a s i d i s k ~$ (k - quasicircle) with some $0 \leqslant k<1$.

Theorem 3.3. [3] Let G be a k-quasidisk, $0 \leq k<1$. Then for arbitrary $q_{n} \in \wp_{n}$ and any $m=0,1,2, \ldots$ we have

$$
\left\|q_{n}^{(m)}\right\|_{C(\bar{G})} \leqslant c n^{\left(m+\frac{2}{p}\right)(1+k)}\left\|q_{n}\right\|_{L^{p}(G)}, p>1
$$

Corollary 3.4. Let $\Gamma \in C^{r, \alpha, \beta}$ with $0<\alpha<1, \beta \geq 0$ and $r=1,2, \ldots$. Then for arbitrary $p_{n} \in \wp_{n}$ we have

$$
\left\|p_{n}^{(r)}\right\|_{C(\bar{G})} \leqslant c n^{r}\left\|p_{n}^{\prime}\right\|_{L^{2}(G)} .
$$

Proof. Since φ_{0} is a conformal mapping we can get $k=0$ by taking $K=1$ into account in Definition 3.2. Moreover substituting $q_{n}=p_{n}^{\prime}, p=2$ and $m=r-1$ into the Theorem 3.3, we easily obtain Corollary 3.4.

Lemma 3.5. [18] If $\Gamma \in C^{r, \alpha, \beta}$, with $r=0,1,2, \ldots, \alpha \in(0,1], \beta \in[0, \infty)$, then for $\Phi^{(r)}(w):=\varphi_{o}^{(r+1)}(\psi(w))$, we have

$$
\omega\left(\Phi^{(r)}, \delta\right) \leqslant\left\{\begin{array}{lc}
c \delta^{\alpha} \ln ^{\beta}\left(\frac{4}{\delta}\right) & \text {;if } 0<\alpha<1 \\
c \delta \ln ^{\beta+1}\left(\frac{4}{\delta}\right) & \text {;if } \alpha=1
\end{array}\right.
$$

Lemma 3.6. [27] Suppose that $\sum_{k=1}^{\infty} a_{k}$ converges and s is the value of the series. If $r_{n}:=\frac{a_{n+1}}{a_{n}}$ is a decreasing sequence and $r_{n+1}<1$, then

$$
0 \leqslant R_{n}=s-\sum_{k=1}^{n} a_{k} \leqslant \frac{a_{n+1}}{1-r_{n+1}}
$$

4. Proof of the Main Results

For the proofs of the main results we use a traditional method based on the extremal property of Bieberbach polynomials and also the inequality (7)

Proof of Theorem 2.1. Let $1 \leqslant k \leqslant r-1$. Since $\pi_{n} \rightarrow \varphi_{0}$, as $n \rightarrow \infty$, uniformly in G, for any $z \in G, n \in \mathbb{N}$ with $n \geqslant k$ and $2^{j} \leqslant n \leqslant 2^{j+1}$ we have

$$
\varphi_{0}(z)-\pi_{n}(z)=\left[\pi_{2^{j+1}}(z)-\pi_{n}(z)\right]+\sum_{m=j+1}^{\infty}\left[\pi_{2^{m+1}}(z)-\pi_{2^{m}}(z)\right]
$$

and

$$
\varphi_{0}^{(k)}(z)-\pi_{n}^{(k)}(z)=\left[\pi_{2^{j+1}}^{(k)}(z)-\pi_{n}^{(k)}(z)\right]+\sum_{m=j+1}^{\infty}\left[\pi_{2^{m+1}}^{(k)}(z)-\pi_{2^{m}}^{(k)}(z)\right] .
$$

Therefore, the inequality

$$
\left\|\varphi_{0}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})} \leqslant\left\|\pi_{2^{2+1}}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})}+\sum_{m=j+1}^{\infty}\left\|\pi_{2^{m+1}}^{(k)}-\pi_{2^{m}}^{(k)}\right\|_{C(\bar{G})}
$$

holds. If we use Corollary 3.4, also we have

$$
\begin{equation*}
\left\|\varphi_{0}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})} \leqslant c_{1} 2^{(j+1) k}\left\|\pi_{2^{j+1}}^{\prime}-\pi_{n}^{\prime}\right\|_{L^{2}(G)}+c_{2} \sum_{m=j+1}^{\infty} 2^{(m+1) k}\left\|\pi_{2^{m+1}}^{\prime}-\pi_{2^{m}}^{\prime}\right\|_{L^{2}(G)} \tag{8}
\end{equation*}
$$

Setting

$$
Q_{n}(z):=\int_{z_{0}}^{z} q_{n}(t) d t \text { and } t_{n}(z):=Q_{n}(z)+\left[1-q_{n}\left(z_{0}\right)\right]\left(z-z_{0}\right)
$$

for the polynomial q_{n}, best approximating φ_{0}^{\prime} in the norm $\|\cdot\|_{L^{2}(G)}$. We have $t_{n}\left(z_{0}\right)=0$ and $t_{n}^{\prime}\left(z_{0}\right)=1$. Then,

$$
\begin{align*}
\left\|\varphi_{0}^{\prime}-t_{n}^{\prime}\right\|_{L^{2}(G)} & =\left\|\varphi_{0}^{\prime}-q_{n}-1+q_{n}\left(z_{0}\right)\right\|_{L^{2}(G)} \leqslant\left\|\varphi_{0}^{\prime}-q_{n}\right\|_{L^{2}(G)}+\left\|1-q_{n}\left(z_{0}\right)\right\|_{L^{2}(G)} \tag{9}\\
& =\varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{2}+\left\|1-q_{n}\left(z_{0}\right)\right\|_{L^{2}(G)} .
\end{align*}
$$

Considering the inequality (see [14, p.4])

$$
\left|f\left(z_{0}\right)\right| \leqslant \frac{\|f\|_{L^{2}(G)}}{\sqrt{\pi} \operatorname{dist}\left(z_{0}, \Gamma\right)}
$$

which holds for every analytic function f with $\|f\|_{L^{2}(G)}<\infty$, we can write $\varphi_{0}^{\prime}-q_{n}$ instead of f, and we get

$$
\left\|1-q_{n}\left(z_{0}\right)\right\|_{L^{2}(G)} \leqslant \frac{\left\|\varphi_{0}^{\prime}-q_{n}\right\|_{L^{2}(G)}}{\sqrt{\pi} \operatorname{dist}\left(z_{0}, \Gamma\right)}=c_{3} \varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{2} .
$$

Using last inequality, the minimization property of the Bieberbach polynomials and substituting (7) into (9), we have

$$
\left\|\varphi_{0}^{\prime}-\pi_{n}^{\prime}\right\|_{L^{2}(G)} \leqslant\left\|\varphi_{0}^{\prime}-t_{n}^{\prime}\right\|_{L^{2}(G)} \leqslant c_{4} \varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{2} \leqslant c_{5} n^{-\frac{1}{2}} E_{n}^{0}\left(\varphi_{0}^{\prime}\left|\varphi^{\prime}\right|^{-1}\right)_{2} .
$$

Then for a natural number $n \in \mathbb{N}$ with $n \geqslant k$ and $2^{j} \leqslant n \leqslant 2^{j+1}$, by applying Theorem 3.1 for φ_{0}^{\prime} we have

$$
\begin{aligned}
\left\|\pi_{2^{j+1}}^{\prime}-\pi_{n}^{\prime}\right\|_{L^{2}(G)} & \leqslant\left\|\pi_{2^{j+1}}^{\prime}-\varphi_{0}^{\prime}\right\|_{L^{2}(G)}+\left\|\varphi_{0}^{\prime}-\pi_{n}^{\prime}\right\|_{L^{2}(G)} \\
& =c_{6} \varepsilon_{2^{j+1}}\left(\varphi_{0}^{\prime}\right)_{2}+c_{5} \varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{2} \\
& \leqslant c_{7} \varepsilon_{n}\left(\varphi_{0}^{\prime}\right)_{2} \\
& \leqslant c_{8} n^{-\frac{1}{2}} E_{n}^{0}\left(\varphi_{0}^{\prime},\left|\varphi^{\prime}\right|^{-1}\right)_{2} \\
& \leqslant c_{9} n^{-\frac{1}{2}}\left\|p_{n}\left(z, \varphi_{0}^{\prime}\right)-\varphi_{0}^{\prime}\right\|_{L^{2}\left(\Gamma,\left|\varphi^{\prime}\right|^{-1}\right)} .
\end{aligned}
$$

We know that from [28], for $\Gamma \in C^{r, \alpha, \beta}$

$$
0<c_{10} \leqslant\left|\varphi^{\prime}(z)\right| \leqslant c_{11}, z \in \Gamma .
$$

Furthermore, substituting $f=\varphi_{0}^{\prime}, k=r-1$ into Theorem 3.1 and from Lemma 3.5 for $0<\alpha<1, \beta \geqslant 0$ we get

$$
\begin{aligned}
\left\|\pi_{2^{j+1}}^{\prime}-\pi_{n}^{\prime}\right\|_{L^{2}(G)} & \leqslant c_{12} n^{-\frac{1}{2}}\left\|p_{n}\left(z, \varphi_{0}^{\prime}\right)-\varphi_{0}^{\prime}\right\|_{L^{2}(\Gamma)} \\
& \leqslant c_{13} n^{-\frac{1}{2}} \frac{1}{n^{r-1}} \omega_{2}\left(\varphi_{0}^{(r)} o \psi, \frac{1}{n}\right) \\
& \leqslant \frac{c_{14} \ln ^{\beta}(n)}{n^{r+\alpha-\frac{1}{2}}} .
\end{aligned}
$$

By the similar way we can show that

$$
\left\|\pi_{2^{j+1}}^{\prime}-\pi_{2^{j}}^{\prime}\right\|_{L^{2}(G)} \leqslant \frac{c_{15} \ln ^{\beta}\left(2^{j}\right)}{2^{j\left(r+\alpha-\frac{1}{2}\right)}} .
$$

Using these estimations in (8) and lemma 3.6 we obtain the required estimation

$$
\begin{aligned}
\left\|\varphi_{0}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})} & \leqslant \frac{c_{16} 2^{(j+1) k} \ln ^{\beta}(n)}{n^{r+\alpha-\frac{1}{2}}}+c_{17} \sum_{m=j+1}^{\infty} \frac{2^{(m+1) k} \ln ^{\beta}\left(2^{m}\right)}{2^{m\left(r+\alpha-\frac{1}{2}\right)}} \\
& \leqslant \frac{c_{18} \ln ^{\beta}(n)}{n^{r+\alpha-k-\frac{1}{2}}}+c_{19} \sum_{m=j+1}^{\infty} \frac{\ln ^{\beta}\left(2^{m}\right)}{2^{m\left(r+\alpha-k-\frac{1}{2}\right)}} \\
& \leqslant \frac{c_{20} \ln ^{\beta}(n)}{n^{r+\alpha-k-\frac{1}{2}}} .
\end{aligned}
$$

Thus the proof of Theorem 2.1 is completed.
Proof of Theorem 2.3. As in the case of of Theorem 2.1, we obtain the following estimations

$$
\begin{equation*}
\left\|\pi_{2^{j+1}}^{\prime}-\pi_{n}^{\prime}\right\|_{L^{2}(G)} \leqslant \frac{c_{21} \ln ^{\beta+1}(n)}{n^{r-\frac{1}{2}}},\left\|\pi_{2^{j+1}}^{\prime}-\pi_{2^{j}}^{\prime}\right\|_{L^{2}(G)} \leqslant \frac{c_{22} \ln ^{\beta+1}\left(2^{j}\right)}{2^{j\left(r-\frac{1}{2}\right)}} . \tag{10}
\end{equation*}
$$

Combining (8), (10) and lemma 3.6 we have

$$
\left\|\varphi_{0}^{(k)}-\pi_{n}^{(k)}\right\|_{C(\bar{G})} \leqslant \frac{c_{23} \ln ^{\beta+1}(n)}{n^{r-k-\frac{1}{2}}}
$$

This gives the desired inequality.
Proof of Theorem 2.4. The proof of Theorem 2.4 is similar to that of Theorem 2.1.

Acknowledgments

The author would like to thank the anonymous referees for his/her comments that helped me improve this article.

References

[1] F.G. Abdullayev, On the convergence of Bieberbach polynomials in domains with interior zero angles, Dokl. Akad. Nauk. Ukraine, 12 (1989), SSR. Ser. A., 3-5.
[2] F.G. Abdullayev, Uniform convergence of the Bieberbach polynomials inside and on the closure of domain in the complex plane, East Journal on Approximations, 7 (2001), number 1, 77.
[3] F.G. Abdullayev and N.D. Aral, The Relation between different norms of algebraic polynomials in the regions of complex plane, Azerbaijan Journal of Mathematics, 1 (2011), No 1, ISNN 2218-6816.
[4] F.G. Abdullayev and A. Baki, On the convergence of Bieberbach polynomials in domains with interior zero angles, Complex Variables: Theor. and Appl., 44 (2001), No 2, 131-144.
[5] M. Kucukaslan, T. Tunç, F.G. Abdullayev, On the convergence of the Bieberbach polynomials inside the domains of the complex plane, Bull. Belg. Math. Soc., 13 (2006), 657-671.
[6] S.Y.Alper, Approximation in the mean of analytic functions of class E^{p} (Russian), In Investigations on the Modern Problems of the Function Theory of a Complex Variable, (1960), Moscow: Gos. Izdat. Fiz. Mat. Lit., 273-286.
[7] V.V. Andrievskii, On the uniform convergence of Bieberbach polynomials in domains with piecewise quasiconformal boundary, In Mappings Theory and Approximation of Funct., (1983), Naukova Dumka Kiev, 3-18.
[8] V.V. Andrievskii, Convergence of Bieberbach polynomials in domains with quasiconformal boundary, Math. J., 35 (1983), 233-236.
[9] V.V. Andrievskii, I.E. Pritsker, Convergence of Bieberbach polynomials in domains with interior cusps, Journal d'Analyse Mathematique, 82 (2000), 315-332.
[10] E.M. Dyn'kn, The rate of polynomial approximation in the complex domain, In Complex Analysis and Spectral Theory (Leningrad 1979-1980), (1998), Springer Verlag, Berlin 90-142.
[11] O.J. Farrell, On approximation to an analytic function by polynomials, Bull. Amer. Math. Soc., 40 (1934), 908-914.
[12] D. Gaier, On the convergence of the Bieberbach polynomials in regions with corners, Const. Approx., 4 (1998),289-305.
[13] D. Gaier, Polynoimal approximation of conformal maps, Const. Approx., 14 (1998), 27-40.
[14] D. Gaier, Lectures on Complex Approximation, Birkhauser Boston Inc., 1987.
[15] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translation of Mathematical Monographs, Vol. 26 : AMS; 1969.
[16] D.M. Israfilov, Approximation by p-Faber polynomials in the weighted Simirnov class $E_{p}(G, w)$ and the Bieberbach polynomials, Const. Approx., 17 (2001), 335-351.
[17] D.M. Israfilov, Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation, Journal of Approximation Theory, 125 (2003), 116-130.
[18] D.M. Israfilov and B. Oktay, An approximation of conformal mappings on smooth domains, Complex Variables and Elliptic Equations, 58 (2013), No. 6, 741-750.
[19] D.M. Israfilov and B. Oktay, Approximation properties of the Bieberbach polynomials in closed Dini-smooth domains, Bull. Belg. Math. Soc., 13 (2006), 91-99.
[20] D.M. Israfilov, Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials, Hacettepe Journal of Mathematics and Statistic, 46 No.2, (2017), 209-216.
[21] M.V. Keldych, Sur I'approximation en moyenne quadratique des fontions analtiques, Math.Sb., 5 (1939), 47, 391-401.
[22] A.I. Markushevich, Conformal mapping of regions with variable bounday and application to the approximation of analytic functions by polynomials (Russian), Dissertation, Moscow, (1934).
[23] S.N. Mergelyan, Certain questions of the constructive theory of functions, Proc. Steklov Math. Inst., (1951).
[24] Ch. Pommerenke, Univalent Functions, Gottingen: Vandenboeck and Ruprecth, 1979.
[25] I.B. Simonenko, On the convergence of Bieberbach polynomials in the case of Lipschitz domain, Math. USSR-IZV., 13 (1979), 166-174.
[26] P.K. Suetin, Polynomials orthogonal over a region and Bieberbach polynomials, Proc. Steklov Inst. Math., Providence, RI: American Mathematical Society, 100 (1971).
[27] W.R. Wade, An Introduction to Analysis, Pearson Education International, Third Edition, 2004.
[28] S. Warschawski, Über das randverhalten der ableitung der abbildungs-funktionen bei konformer Abbildung, Math. Z., 35 (1932), 321-456.
[29] X-M Wu, On Bieberbach polynomials, Acta Math. Sinica, 13 (1963), 145-151.

[^0]: 2010 Mathematics Subject Classification. 30E10; 41A10; 41A25; 41A28; 41A30
 Keywords. Conformal mapping, Bieberbach polynomials, Simultaneous approximation.
 Received: 23 March 2018; Revised: 05 December 2018; Accepted: 11 February 2019
 Communicated by Miodrag Mateljević
 Email address: ckosar77@gmail.com (Cem Koşar)

