The General Induction Functors for the Category of Entwined Hom-Modules

Shuangjian Guo ${ }^{\text {a }}$, Xiaohui Zhang ${ }^{\text {b }}$, Yuanyuan Ke $^{\mathbf{c}}$
${ }^{a}$ School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, P. R. China
${ }^{b}$ School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, P. R. China
${ }^{\text {c S School of Mathematics and Computer Science, Jianghan University, Wuhan, 430056, P. R. China }}$

Abstract

We find a sufficient condition for the category of entwined Hom-modules to be monoidal. Moreover, we introduce morphisms between the underlying monoidal Hom-algebras and monoidal Homcoalgebras, which give rise to functors between the category of entwined Hom-modules, and we study tensor identities for monodial categories of entwined Hom-modules. Finally, we give necessary and sufficient conditions for the general induction functor from $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ to $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}$ to be separable.

1. Introduction

Entwining modules were introduced in [1], which arise from noncommutative geometry, are modules of an algebra and comodules of a coalgebra such that the action and the coaction satisfy a certain compatibility condition. Unlike Doi-Hopf modules, entwined modules are defined purely using the properties of an algebra and a coalgebra combined into an entwining structure. There is no need for a "background" bialgebra, which is an indispensable part of the Doi-Hopf construction. Entwining modules are more general and easier to deal with, and provide new fields of applications. It is well-known that entwining modules unify modules, comodules, Sweedler's Hopf modules, Takeuchi's relative Hopf modules, graded modules, modules graded by G-sets, Long dimodules, Yetter-Drinfeld modules and Doi- Hopf modules [4].

Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov in [16] as generalizations of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is replaced by the Hom-associativity and similar for Hom-coassociativity. They also described the structures of Hom-bialgebras and Hom-Hopf algebras, and extended some important theories from ordinary Hopf algebras to Hom-Hopf algebras in [17] and [18]. Recently, many more properties and structures of Hom-Hopf algebras have been developed, see [5], [6], [7], [8], [9], [10], [12], [14], [20] and references cited therein.

Caenepeel and Goyvaerts studied in [3] Hom-bialgebras and Hom-Hopf algebras from a categorical view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively, which are slightly different from the above Hom-bialgebras and Hom-Hopf algebras. In [15], Makhlouf

[^0]and Panaite defined Yetter-Drinfeld modules over Hom-bialgebras and shown that Yetter-Drinfeld modules over a Hom-bialgebra with bijective structure map provide solutions of the Hom-Yang-Baxter equation. Also Liu and Shen [13] studied Yetter-Drinfeld modules over monoidal Hom-bialgebras and called them Hom-Yetter-Drinfeld modules, and shown that the category of Hom-Yetter-Drinfeld modules is a braided monoidal categories. Chen and Zhang [7] defined the category of Hom-Yetter-Drinfeld modules in a slightly different way to [13], and shown that it is a full monoidal subcategory of the left center of left Hom-module category. We have defined in [9] the category of Doi Hom-Hopf modules and we prove there that the category of Hom-Yetter-Drinfeld modules is a subcategory of our category of Doi Hom-Hopf modules.

As a generalization of entwining modules in a Hopf algebra setting, entwined Hom-modules were introduced by Karacuha [11]. It is natural to ask the following question: can we prove a Maschke type theorem for entwined Hom-modules under more general assumptions? This is the motivation of this paper.

In this paper, we discuss the following questions: how do we make the category of entwined Hommodules into monoidal? We show in Section 3 that it is sufficient that (A, β) and (C, γ) are monoidal Hom-bialgebras with some extra conditions. As an example, we consider the category of Doi Hom-Hopf modules[9], which is well known to be a monoidal category, this category is a special of our theory.

In Section 4, we first give the maps between the underlying Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of entwined Hom-modules. Moreover, we study tensor identities for monodial categories of entwined Hom-modules. As an application, we prove that the category of entwined Hom-modules has enough injective objects.

In Section 5, let $(\Phi, \Psi):(A, C, \psi) \rightarrow\left(A^{\prime}, C^{\prime}, \psi^{\prime}\right)$ be a morphism of (right-right) Hom-entwining structures. The results of [9] can be extended to the general induction functor

$$
F: \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} \rightarrow \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}
$$

In order to avoid technical complications, we will assume that the Hom-entwining map ψ is bijective, and write $\psi^{-1}=\vartheta$.

2. Preliminaries

Throughout this paper we work over a commutative ring k, we recall from [3] and [9] for some informations about Hom-structures which are needed in what follows.

Let C be a category. We introduce a new category $\widetilde{\mathscr{H}}(C)$ as follows: objects are couples (M, μ), with $M \in C$ and $\mu \in \operatorname{Aut}_{C}(M)$. A morphism $f:(M, \mu) \rightarrow(N, v)$ is a morphism $f: M \rightarrow N$ in C such that $v \circ f=f \circ \mu$.

Let \mathscr{M}_{k} denotes the category of k-modules. $\mathscr{H}\left(\mathscr{M}_{k}\right)$ will be called the Hom-category associated to \mathscr{M}_{k}. If $(M, \mu) \in \mathscr{M}_{k}$, then $\mu: M \rightarrow M$ is obviously a morphism in $\mathscr{H}\left(\mathscr{M}_{k}\right)$. It is easy to show that $\widetilde{\mathscr{H}\left(\mathscr{M}_{k}\right)=}$ $\left(\mathscr{H}\left(\mathscr{M}_{k}\right), \otimes,(I, I), \widetilde{a}, \widetilde{l}, \widetilde{r}\right)$) is a monoidal category by Proposition 1.1 in [3]: the tensor product of (M, μ) and (N, v) in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ is given by the formula $(M, \mu) \otimes(N, v)=(M \otimes N, \mu \otimes v)$.

Assume that $(M, \mu),(N, v),(P, \pi) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$. The associativity and unit constraints are given by the formulas

$$
\begin{gathered}
\widetilde{a}_{M, N, P}((m \otimes n) \otimes p)=\mu(m) \otimes\left(n \otimes \pi^{-1}(p)\right) \\
\widetilde{l}_{M}(x \otimes m)=\widetilde{r}_{M}(m \otimes x)=x \mu(m)
\end{gathered}
$$

An algebra in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ will be called a monoidal Hom-algebra.
Definition 2.1. A monoidal Hom-algebra is an object $(A, \alpha) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ together with a k-linear map $m_{A}: A \otimes A \rightarrow A$ and an element $1_{A} \in A$ such that

$$
\begin{gathered}
\alpha(a b)=\alpha(a) \alpha(b) ; \quad \alpha\left(1_{A}\right)=1_{A} \\
\alpha(a)(b c)=(a b) \alpha(c) ; \quad a 1_{A}=1_{A} a=\alpha(a)
\end{gathered}
$$

for all $a, b, c \in A$. Here we use the notation $m_{A}(a \otimes b)=a b$.

Definition 2.2. A monoidal Hom-coalgebra is an object $(C, \gamma) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ together with k-linear maps $\Delta: C \rightarrow$ $C \otimes C, \quad \Delta(c)=c_{(1)} \otimes c_{(2)}$ (summation implicitly understood) and $\varepsilon: C \rightarrow k$ such that

$$
\Delta(\gamma(c))=\gamma\left(c_{(1)}\right) \otimes \gamma\left(c_{(2)}\right) ; \quad \varepsilon(\gamma(c))=\varepsilon(c)
$$

and

$$
\gamma^{-1}\left(c_{(1)}\right) \otimes c_{(2)(1)} \otimes c_{(2)(2)}=c_{(1)(1)} \otimes c_{(1)(2)} \otimes \gamma^{-1}\left(c_{(2)}\right), \quad \varepsilon\left(c_{(1)}\right) c_{(2)}=\varepsilon\left(c_{(2)}\right) c_{(1)}=\gamma^{-1}(c)
$$

for all $c \in C$.
Definition 2.3. A monoidal Hom-bialgebra $H=(H, \alpha, m, \eta, \Delta, \varepsilon)$ is a bialgebra in the symmetric monoidal category $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$. This means that (H, α, m, η) is a monoidal Hom-algebra, $(H, \alpha, \Delta, \varepsilon)$ is a monoidal Hom-coalgebra and that Δ and ε are morphisms of Hom-algebras, that is,

$$
\begin{gathered}
\Delta(a b)=a_{(1)} b_{(1)} \otimes a_{(2)} b_{(2)} ; \quad \Delta\left(1_{H}\right)=1_{H} \otimes 1_{H}, \\
\varepsilon(a b)=\varepsilon(a) \varepsilon(b), \quad \varepsilon\left(1_{H}\right)=1_{H} .
\end{gathered}
$$

Definition 2.4. A monoidal Hom-Hopf algebra is a monoidal Hom-bialgebra (H, α) together with a linear map $S: H \rightarrow H$ in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ such that

$$
S * I=I * S=\eta \varepsilon, \quad S \alpha=\alpha S .
$$

Definition 2.5. Let (A, α) be a monoidal Hom-algebra. A right (A, α)-Hom-module is an object $(M, \mu) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ consists of a k-module and a linear map $\mu: M \rightarrow M$ together with a morphism $\psi: M \otimes A \rightarrow M, \psi(m \cdot a)=m \cdot a$, in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ such that

$$
(m \cdot a) \cdot \alpha(b)=\mu(m) \cdot(a b) ; \quad m \cdot 1_{A}=\mu(m),
$$

for all $a \in A$ and $m \in M$. The fact that $\psi \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ means that

$$
\mu(m \cdot a)=\mu(m) \cdot \alpha(a)
$$

A morphism $f:(M, \mu) \rightarrow(N, v)$ in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ is called right A-linear if it preserves the A-action, that is, $f(m \cdot a)=$ $f(m) \cdot a . \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)_{A}$ will denote the category of right (A, α)-Hom-modules and A-linear morphisms.
Definition 2.6. Let (C, γ) be a monoidal Hom-coalgebra. A right (C, γ)-Hom-comodule is an object $(M, \mu) \in \widetilde{\mathscr{H}\left(\mathscr{M}_{k}\right)}$ together with a k-linear map $\rho_{M}: M \rightarrow M \otimes C$ notation $\rho_{M}(m)=m_{[0]} \otimes m_{[1]}$ in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ such that

$$
m_{[0][0]} \otimes\left(m_{[0][1]} \otimes \gamma^{-1}\left(m_{[1]}\right)\right)=\mu^{-1}\left(m_{[0]}\right) \otimes \Delta_{C}\left(m_{[1]}\right) ; m_{[0]} \varepsilon\left(m_{[1]}\right)=\mu^{-1}(m)
$$

for all $m \in M$. The fact that $\rho_{M} \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ means that

$$
\rho_{M}(\mu(m))=\mu\left(m_{[0]}\right) \otimes \gamma\left(m_{[1]}\right)
$$

Morphisms of right (C, γ)-Hom-comodule are defined in the obvious way. The category of right (C, γ)-Hom-comodules will be denoted by $\widetilde{\mathscr{H}\left(\mathscr{M}_{k}\right)^{C} \text {. }}$

Definition 2.7. A right-right Hom-entwining structure is a triple (A, C, ψ), where (A, β) is a monoidal Hom-algebra and (C, γ) is a monoidal Hom-coalgebra with a linear map $\psi: C \otimes A \rightarrow A \otimes C$ such that $\psi \circ(\gamma \otimes \beta)=(\beta \otimes \gamma) \circ \psi$ satisfying the following conditions:

$$
\begin{aligned}
(a b)_{\psi} \otimes c^{\psi} & \left.=a_{\psi} b_{\psi} \otimes \gamma\left(\left(\gamma^{-1}(c)^{\psi}\right)\right)^{\psi}\right) \\
\psi\left(c \otimes 1_{A}\right) & =1_{A} \otimes c \\
a_{\psi} \otimes \Delta\left(c^{\psi}\right) & =\beta\left(\beta^{-1}(a)_{\psi \psi}\right) \otimes\left(c_{(1)} \psi \otimes c_{(2)} \psi\right) \\
\varepsilon\left(c^{\psi}\right) a_{\psi} & =\varepsilon(c) a
\end{aligned}
$$

Over a Hom-entwining structure (A, C, ψ), a right-right entwined Hom-module (M, μ) is both a right (C, γ)-Homcomodule and a right (A, β)-Hom-module such that

$$
\begin{aligned}
\rho_{M}(m \cdot a) & =\mu\left(m_{[0]}\right) \cdot \psi\left(m_{[1]} \otimes \beta^{-1}(a)\right) \\
& =m_{[0]} \cdot \beta^{-1}(a)_{\psi} \otimes \gamma\left(m_{[1]}^{\psi}\right),
\end{aligned}
$$

for all $a \in A$ and $m \in M . \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ will denote the category of right entwined Hom-modules and morphisms between them.

A morphism between right-right entwined Hom-modules is a k-linear map which is a morphism in the categories $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)_{A}$ and $\widetilde{\mathscr{C}}\left(\mathscr{M}_{k}\right)^{C}$ at the same time. $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ will denote the category of right-right entwined Hom-modules and morphisms between them.

3. Making the Category of Entwined Hom-Modules into a Monoidal Category

Now suppose that (A, β) and (C, γ) are both monoidal Hom-bialgebras.
Proposition 3.1. Let $(M, \mu) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A^{\prime}}^{C}(N, v) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$. Then we have $M \otimes N \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ with structures:

$$
\begin{gathered}
(m \otimes n) \cdot a=m \cdot a_{(1)} \otimes n \cdot a_{(2)}, \\
\rho_{M \otimes N}(m \otimes n)=m_{[0]} \otimes n_{[0]} \otimes m_{[1]} n_{[1]}
\end{gathered}
$$

if and only if the following condition holds:

$$
\begin{equation*}
a_{(1) \psi} \otimes a_{(2) \psi} \otimes c^{\psi} d^{\psi}=a_{\psi(1)} \otimes a_{\psi(2)} \otimes(c d)^{\psi} \tag{3.1}
\end{equation*}
$$

for all $a \in A$ and $c, d \in C$. Furthermore, the category $C=\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ is a monoidal category.
Proof. It is easy to see that $M \otimes N$ is a right (A, β)-module and that $M \otimes N$ is a right (C, γ)-comodule. Now we check that the compatibility condition holds:

$$
\begin{aligned}
& \rho_{M \otimes N}((m \otimes n) \cdot a) \\
= & \left(m \cdot a_{(1)}\right)_{[0]} \otimes\left(n \cdot a_{(2)}\right)_{[0]} \otimes\left(m \cdot a_{(1)}\right)_{[1]}\left(n \cdot a_{(2)}\right)_{[1]} \\
= & m_{[0]} \cdot \beta^{-1}\left(a_{(1)}\right)_{\psi} \otimes n_{[0]} \cdot \beta^{-1}\left(a_{(2)}\right)_{\psi} \otimes\left(\gamma\left(m_{[1]}^{\psi}\right) \gamma\left(n_{[1]}^{\psi}\right)\right) \\
\stackrel{(3.1)}{=} & m_{[0]} \cdot \beta^{-1}(a)_{\psi(1)} \otimes n_{[0]} \cdot \beta^{-1}(a)_{\psi(2)} \otimes \gamma\left(\left(m_{[1]} n_{[1]}\right)^{\psi}\right) \\
= & \left(m_{[0]} \otimes n_{[0]}\right) \cdot \beta^{-1}(a)_{\psi} \otimes \gamma\left(\left(m_{[1]} n_{[1]}\right)^{\psi}\right) .
\end{aligned}
$$

So $M \otimes N \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$.
Conversely, one can easily check that $A \otimes C \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$, let $m=1 \otimes c$ and $n=1 \otimes d$ for any $c, d \in C$ and easily get (3.1).

Furthermore, k is an object in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ with structures:

$$
x \cdot a=\varepsilon_{A}(a) x, \quad \rho(x)=x \otimes 1_{C},
$$

for all $x \in k$ if and only if the following condition holds:

$$
\begin{equation*}
\varepsilon_{A}(a) 1_{C}=\varepsilon_{A}\left(\beta^{-1}(a)_{\psi}\right)\left(\gamma\left(1_{C}^{\psi}\right)\right) \tag{3.2}
\end{equation*}
$$

for all $a \in A$. Then it is easy to get that $\left(C=\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}, \otimes, k, \widetilde{a}, \widetilde{l}, \widetilde{r}\right)$ is a monoidal category, where $\tilde{a}, \widetilde{l}, \widetilde{r}$ are given by the formulas:

$$
\widetilde{a}_{M, N, P}((m \otimes n) \otimes p)=\mu(m) \otimes\left(n \otimes \pi^{-1}(p)\right)
$$

$$
\widetilde{l}_{M}(x \otimes m)=\widetilde{r}_{M}(m \otimes x)=x \mu(m)
$$

for $(M, \mu),(N, v),(P, \pi) \in C$.
We call $G=(A, C, \psi)$ a monoidal Hom-entwining structure if G is a Hom-entwining structure, and A, C are monoidal Hom-bialgebras with the additional compatibility relations (3.1) and (3.2).

If (A, C, ψ) is a monoidal Hom-entwining structure, then (A, β) and (C, γ) can be made into objects of $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$.
Proposition 3.2. Let (A, C, ψ) be a monoidal Hom-entwining structure. On (A, β) and (C, γ), we consider the following right (A, β)-action and right (C, γ)-coaction:

$$
\begin{gathered}
b \cdot a=b a \text { and } \rho^{r}(b)=\psi\left(1_{C} \otimes b\right)=\beta^{-1}\left(b_{\psi}\right) \otimes 1_{C^{\prime}}^{\psi} \\
c \cdot a=\varepsilon_{A}\left(a_{\psi}\right) \gamma\left(c^{\psi}\right) \text { and } \rho^{r}(c)=c_{(1)} \otimes c_{(2)} .
\end{gathered}
$$

Then (A, β) and (C, γ) are entwined Hom-modules.
Proof. We will show $(A, \beta) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A^{\prime}}^{C}$, and leave the other statement to the reader. First, (A, β) is a right (C, γ)-comdule, since

$$
\begin{gathered}
\left(i d_{A} \otimes \varepsilon_{C}\right) \rho^{r}(b)=\varepsilon_{C}\left(1_{C}^{\psi}\right) \beta^{-1}\left(b_{\psi}\right)=\varepsilon_{C}\left(1_{C}\right) \beta^{-1}(b)=b, \\
\left(\beta^{-1} \otimes \Delta_{C}\right) \rho^{r}(b)=\beta^{-2}\left(b_{\psi}\right) \otimes \Delta_{C}\left(1_{C}^{\psi}\right)=\beta^{-2}\left(b_{\psi \psi}\right) \otimes 1_{C}^{\psi} \otimes 1_{C}^{\psi}=\left(\rho^{r}(b) \otimes \gamma^{-1}\right) \rho^{r}(b)
\end{gathered}
$$

and

$$
b_{[0]} \beta^{-1}\left(a_{\psi}\right) \otimes \gamma\left(b_{[1]}^{\psi}\right)=\beta^{-1}\left(b_{\psi}\right) \beta^{-1}\left(a_{\psi}\right) \otimes \gamma\left(1_{C}^{\psi \psi}\right)=\beta^{-1}\left((b a)_{\psi}\right) \otimes \gamma\left(1_{C}^{\psi}\right)=\rho^{r}(b a)
$$

Thus $(A, \beta) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$.
Example 3.3. Let (H, α) be a monoidal Hom-Hopfalgebra, (C, γ) a right (H, α)-Hom module bialgebra, and that (H, α) acts on (C, γ) in such a way that (C, γ) is an (H, α)-Hom module algebra and (H, α)-Hom module coalgebra. Now let (A, β) be a monoidal Hom-bialgebra and a right (H, α)-Hom comodule algebra such that the following compatibility relation holds, for all $a \in A$:

$$
a_{(1)[0]} \otimes a_{(2)[0]} \otimes a_{(1)[1]} \otimes\left(a_{(2)[1]}=a_{[0](1)} \otimes a_{[0](2)} \otimes a_{1} \otimes a_{[1](2)}\right.
$$

We know that (H, A, C) is a right-right Doi Hom-Hopf datum in [9], and we have a corresponding right-right Hom-entwining structure (A, C, ψ). It is straightforward to check that (A, C, ψ) is monoidal.

4. Tensor Identities

Theorem 4.1. Given two Hom-entwining structures (A, C, ψ) and $\left(A^{\prime}, C^{\prime}, \psi^{\prime}\right)$, suppose that two maps $\Phi: A \rightarrow A^{\prime}$ and $\Psi: C \rightarrow C^{\prime}$ which are respectively monodial Hom-algebra and monodial Hom-coalgebra maps satisfying

$$
\Phi\left(a_{\psi}\right) \otimes \Psi\left(c^{\psi}\right)=\Phi(a)_{\psi^{\prime}} \otimes \Psi(c)^{\psi^{\prime}}
$$

then the induction functor $F: \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} \rightarrow \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}$, defined as follows:

$$
F(M)=M \otimes_{A} A^{\prime}
$$

where $\left(A^{\prime}, \beta^{\prime}\right)$ is a left (A, β)-module via Φ and with structure maps defined by

$$
\begin{align*}
& \left(m \otimes_{A} a^{\prime}\right) \cdot b^{\prime}=\mu(m) \otimes_{A} a^{\prime} \beta^{\prime-1}\left(b^{\prime}\right) \tag{4.1}\\
& \rho_{F(M)}\left(m \otimes_{A} a^{\prime}\right)=m_{[0]} \otimes_{A}\left(\beta^{\prime-1}\left(a^{\prime}\right)\right)_{\psi^{\prime}} \otimes \Psi\left(\gamma^{-1}\left(m_{[1]}\right)^{\psi^{\prime}}\right) \tag{4.2}
\end{align*}
$$

for all $a^{\prime}, b^{\prime} \in A^{\prime}$ and $m \in M$.

Proof. Let us show that $M \otimes_{A} A^{\prime}$ is an object of ${ }_{A^{\prime}} \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(H^{\prime}\right)^{C^{\prime}}$. It is routine to check that $F(M)$ is a right $\left(A^{\prime}, \beta^{\prime}\right)$-module. For this, we need to show that $M \otimes_{A} A^{\prime}$ is a right $\left(C^{\prime}, \gamma^{\prime}\right)$-comodule and satisfy the compatible condition, for any $m \in M$ and $a^{\prime}, b^{\prime} \in A^{\prime}$, we have

$$
\begin{aligned}
\rho_{F(M)}\left(\left(m \otimes_{A} a^{\prime}\right) \cdot b^{\prime}\right) & =\rho_{F(M)}\left(\mu(m) \otimes_{A} a^{\prime} \beta^{\prime-1}\left(b^{\prime}\right)\right) \\
& =\mu\left(m_{[0]}\right) \otimes_{A}\left(\beta^{\prime-1}\left(a^{\prime} \beta^{\prime-1}\left(b^{\prime}\right)\right)\right)_{\psi^{\prime}} \otimes \Psi\left(m_{[1]}^{\psi^{\prime}}\right) \\
& =\left[m_{[0]} \otimes_{A}\left(\beta^{\prime-1}\left(a^{\prime}\right)\right)_{\psi^{\prime}} \otimes \Psi\left(\gamma^{-1}\left(m_{[1]}\right)^{\psi^{\prime}}\right)\right] b^{\prime} \\
& =\rho_{F(M)}\left(m \otimes_{A} a^{\prime}\right) b^{\prime},
\end{aligned}
$$

i.e., the compatible condition holds. It remains to prove that $M \otimes_{A} A^{\prime}$ is a right $\left(C^{\prime}, \gamma^{\prime}\right)$-comodule. For any $m \in M$ and $a^{\prime} \in A^{\prime}$, we have

$$
\begin{aligned}
& \left(\rho_{F(M)} \otimes i d_{C^{\prime}}\right) \rho_{F(M)}\left(m \otimes_{A} a^{\prime}\right) \\
= & \left(\rho_{F(M)} \otimes i d_{C}^{\prime}\right)\left(m_{[0]} \otimes_{A}\left(\beta^{\prime-1}\left(a^{\prime}\right)\right)_{\psi^{\prime}} \otimes \Psi\left(\gamma^{-1}\left(m_{[1]} \psi^{\prime}\right)\right)\right. \\
= & m_{[0][0]} \otimes_{A}\left(\beta^{\prime-2}\left(a^{\prime}\right)\right)_{\psi^{\prime} \varphi^{\prime}} \otimes \Psi\left(\gamma^{-1}\left(m_{[0][1]}\right)^{\varphi^{\prime}}\right) \otimes \Psi\left(\gamma^{-1}\left(m_{[1]}\right)^{\psi^{\prime}}\right) \\
= & {\left[m_{[0]} \otimes_{A}\left(\beta^{\prime-1}\left(a^{\prime}\right)\right)_{\psi^{\prime} \varphi^{\prime}}\right] \otimes \Psi\left(\gamma^{-1}\left(m_{1}\right)^{\varphi^{\prime}}\right) \otimes \Psi\left(\gamma^{-1}\left(m_{[1](2)}\right)^{\psi^{\prime}}\right) } \\
= & m_{[0]} \otimes_{A}\left(\beta^{\prime-1}\left(a^{\prime}\right)\right)_{\psi^{\prime}} \otimes \Psi\left(\gamma^{-1}\left(m_{[1]}\right)^{\psi^{\prime}}\right)_{(1)} \otimes \Psi\left(\gamma^{-1}\left(m_{[1]}\right)^{\psi^{\prime}}\right)_{(2)} \\
= & \left(i d_{F(M)} \otimes \Delta_{C^{\prime}}\right) \rho_{F(M)}\left(m \otimes_{A} a^{\prime}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(i d_{F(M)} \otimes \varepsilon\right) \rho_{F(M)}\left(m \otimes_{A} a^{\prime}\right) \\
= & \left(i d_{F(M)} \otimes \varepsilon\right)\left(m_{[0]} \otimes_{A}\left(\beta^{\prime-1}\left(a^{\prime}\right)\right)_{\psi^{\prime}} \otimes \Psi\left(\gamma^{-1}\left(m_{[1]}\right)^{\psi^{\prime}}\right)\right) \\
= & m \otimes_{A} a^{\prime},
\end{aligned}
$$

as desired. This completes the proof.
Theorem 4.2. Under the assumptions of Theorem 4.1, we have a functor $G: \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}} \rightarrow \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ which is right adjoint to F. G is defined by

$$
G\left(M^{\prime}\right)=M^{\prime} \square_{C^{\prime}} C,
$$

with structure maps

$$
\begin{align*}
& \left(m^{\prime} \otimes c\right) \cdot a=m^{\prime} \cdot \beta^{-1}(a)_{\psi} \otimes \gamma\left(c^{\psi}\right) \tag{4.3}\\
& \rho_{G\left(M^{\prime}\right)}\left(m^{\prime} \otimes c\right)=\mu^{\prime-1}\left(m^{\prime}\right) \otimes c_{(1)} \otimes \gamma\left(c_{(2)}\right) \tag{4.4}
\end{align*}
$$

for all $a \in A$.
Proof. We first show that $G\left(M^{\prime}\right)$ is an object of $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$. It is not hard to check that $G\left(M^{\prime}\right)$ is a right (A, β)-module. Now we check that $G\left(M^{\prime}\right)$ is a right (C, γ)-comodule and satisfy the compatible condition. For any $m^{\prime} \in M^{\prime}$ and $a \in A, c \in C$, we have

$$
\begin{aligned}
\rho_{G\left(M^{\prime}\right)}\left(\left(m^{\prime} \otimes c\right) \cdot a\right) & =\rho_{G\left(M^{\prime}\right)}\left(m^{\prime} \cdot \beta^{-1}(a)_{\psi} \otimes \gamma\left(c^{\psi}\right)\right) \\
& =\mu^{\prime-1}\left(m^{\prime}\right) \cdot \beta^{-2}\left(a_{\psi}\right) \otimes \gamma\left(c^{\psi}\right)_{(1)} \otimes \gamma\left(\gamma\left(c^{\psi}\right)_{(2)}\right) \\
& =\left(\mu^{\prime-1}\left(m^{\prime}\right) \otimes c_{(1)} \otimes \gamma\left(c_{(2)}\right)\right) a \\
& =\rho_{G\left(M^{\prime}\right)}\left(m^{\prime} \otimes c\right) a
\end{aligned}
$$

i.e., the compatible condition holds. It remains to prove that $M^{\prime} \square_{C^{\prime}} C$ is a right (C, γ)-comodule. For any
$m^{\prime} \in M^{\prime}$ and $a \in A$, we have

$$
\begin{aligned}
& \left(\rho_{G\left(M^{\prime}\right)} \otimes i d_{C^{\prime}}\right) \rho_{G\left(M^{\prime}\right)}\left(m^{\prime} \otimes_{A} c\right) \\
= & \left(\rho_{G\left(M^{\prime}\right)} \otimes i d_{C^{\prime}}\right)\left(\mu^{\prime-1}\left(m^{\prime}\right) \otimes c_{(1)} \otimes \gamma\left(c_{(2)}\right)\right) \\
= & \mu^{\prime-2}\left(m^{\prime}\right) \otimes c_{(1)(1)} \otimes \gamma\left(c_{(1)(2)}\right) \otimes \gamma\left(c_{(2)}\right) \\
= & \mu^{\prime-2}\left(m^{\prime}\right) \otimes \gamma^{-1}\left(c_{(1)}\right) \otimes \gamma\left(c_{(2)(1)}\right) \otimes \gamma^{2}\left(c_{(2)(2)}\right) \\
= & \mu^{\prime-1}\left(m^{\prime}\right) \otimes c_{(1)} \otimes\left[\gamma\left(c_{(2)(1)}\right) \otimes \gamma\left(c_{(2)(2)}\right)\right] \\
= & \left(i d_{G\left(M^{\prime}\right)} \otimes \Delta_{C}\right) \rho_{G\left(M^{\prime}\right)}\left(m^{\prime} \otimes c\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(i d_{G\left(M^{\prime}\right)} \otimes \varepsilon\right) \rho_{G\left(M^{\prime}\right)}\left(m^{\prime} \otimes c\right) \\
= & \left(i d_{G\left(M^{\prime}\right)} \otimes \varepsilon\right)\left(\mu^{\prime-1}\left(m^{\prime}\right) \otimes c_{(1)} \otimes \gamma\left(c_{(2)}\right)\right) \\
= & \mu^{\prime-1}\left(m^{\prime}\right) \otimes c_{(1)} \varepsilon\left(c_{(2)}\right) \otimes 1_{C}=m^{\prime} \otimes c
\end{aligned}
$$

as required.
$G\left(M^{\prime}\right) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ and the functorial properties can be checked in a straightforward way. Finally, we
 follows: for all $m \in M$,

$$
\eta_{M}(m)=m_{[0]} \otimes_{A} 1_{A^{\prime}} \otimes m_{[1]} .
$$

It is easy to see that $\eta_{M} \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$. Take $\left(M^{\prime}, \mu^{\prime}\right) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}$, define $\delta_{M^{\prime}}: F G\left(M^{\prime}\right) \rightarrow M^{\prime}$, where

$$
\delta_{M^{\prime}}\left(\left(m^{\prime} \otimes c\right) \otimes_{A} a^{\prime}\right)=\varepsilon_{C}(c) \mu^{\prime}\left(m^{\prime}\right) \cdot a^{\prime}
$$

It is easy to check that $\delta_{M^{\prime}}$ is (A, β)-linear and therefore $\delta_{M^{\prime}} \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}$. We can also verify η and δ defined above are all natural transformations and satisfy

$$
G\left(\delta_{M^{\prime}}\right) \circ \eta_{G\left(M^{\prime}\right)}=I, \quad \delta_{F(M)} \circ F\left(\eta_{M}\right)=I
$$

for all $M \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ and $M^{\prime} \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}$. And this completes the proof.
A morphism (Φ, Ψ) between two monoidal Hom-entwining structures is called monoidal if Φ and Ψ are monoidal Hom-bialgebra maps. We now consider the particular situation where $A=A^{\prime}$ and $\Phi=I_{A}$. The following result is a generalization of [4].

Theorem 4.3. Let $\left(I_{A}, \Psi\right):(A, C, \psi) \rightarrow\left(A, C^{\prime}, \psi^{\prime}\right)$ be a monoidal morphism of monoidal Hom entwining structures. Then

$$
\begin{equation*}
G\left(C^{\prime}\right)=C \tag{4.5}
\end{equation*}
$$

Let $(M, \mu) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ be flat as a k-module, and take $(N, v) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A}^{C^{\prime}}$. If (C, γ) is a monoidal Hom-Hopf algebra, then

$$
\begin{equation*}
M \otimes G(N) \cong G(F(M) \otimes N) \text { in } \quad \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} \tag{4.6}
\end{equation*}
$$

If (C, γ) has a twisted antipode \bar{S}, then

$$
\begin{equation*}
G(N) \otimes M \cong G(N \otimes F(M)) \text { in } \quad \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} . \tag{4.7}
\end{equation*}
$$

Proof. We know that $\varepsilon_{C^{\prime}} \otimes i d_{C}: C^{\prime} \square_{C} C \rightarrow C$ is an isomorphism; the inverse map is $\left(\Psi \otimes i d_{C}\right) \Delta_{C}: C \rightarrow C^{\prime} \square_{C} C$. It is clear that $\varepsilon_{C^{\prime}} \otimes i d_{C}$ is (A, β)-linear and (C, γ)-colinear. And this prove (4.5).

Now we define the map

$$
\Gamma: M \otimes G(N)=M \otimes\left(N \square_{C^{\prime}} C\right) \rightarrow G(F(M) \otimes N)=(F(M) \otimes N) \square_{C^{\prime}} C
$$

which is given by

$$
\Gamma\left(m \otimes\left(n_{i} \otimes c_{i}\right)\right)=\left(m_{[0]} \otimes n_{i}\right) \otimes m_{[1]} c_{i}
$$

Recall that $F(M)=M$ as an (A, β)-module, with $\left(C^{\prime}, \gamma^{\prime}\right)$-coaction given by

$$
\rho_{F(M)}(m)=m_{[0]} \otimes \Psi\left(m_{[1]}\right) .
$$

(1) Γ is well-defined, we have to show that

$$
\Gamma\left(m_{i} \otimes\left(n_{i} \otimes c_{i}\right)\right) \in(F(M) \otimes N) \square_{C}^{\prime} C
$$

This may be seen as follows: for any $m \in M$ and $n_{i} \square_{C^{\prime}} c \in N \square_{C^{\prime}} C$, we have

$$
\begin{aligned}
& \left(\rho_{F(M) \otimes N} \otimes i d_{C}\right)\left(\left(m_{[0]} \otimes n_{i}\right) \otimes m_{[1]} c_{i}\right) \\
= & \left(m_{[0][0]} \otimes n_{i[0]}\right) \otimes \Psi\left(m_{[0][1]}\right) n_{i[1]} \otimes m_{[1]} c_{i} \\
= & \left(\mu\left(m_{[0]}\right) \otimes v\left(n_{i}\right)\right) \otimes \Psi\left(m_{[0][1]}\right) \Psi\left(c_{i(1)}\right) \otimes \gamma^{-1}\left(m_{[1]} c_{i(2)}\right) \\
= & \left(m_{[0]} \otimes n_{i}\right) \otimes\left[\phi\left(m_{[0][1]}\right) \Psi\left(c_{i(1)}\right) \otimes m_{[1]} c_{i(2)}\right] \\
= & \left(i d_{F(M) \otimes N} \otimes \rho_{C^{\prime}}\right)\left(\left(m_{[0]} \otimes n_{i}\right) \otimes m_{[1]} c_{i}\right) .
\end{aligned}
$$

(2) Γ is (A, β)-linear. Indeed, for any $a \in A, m \in M$ and $n_{i} \square_{C^{\prime}} c \in N \square_{C^{\prime}} C$, we have

$$
\begin{aligned}
& \Gamma\left(\left(m \otimes\left(n_{i} \otimes c_{i}\right)\right) \cdot a\right) \\
= & \Gamma\left(m \cdot a_{(1)} \otimes\left(n_{i} \cdot \beta^{-1}(a)_{(2) \psi} \otimes \gamma\left(c_{i}^{\psi}\right)\right)\right) \\
= & \left(m_{[0]} \cdot \beta^{-1}\left(a_{(1) \psi}\right) \otimes n_{i} \cdot \beta^{-1}(a)_{(2) \psi}\right) \otimes \gamma\left(m_{[1]}^{\psi}\right) \gamma\left(c_{i}^{\psi}\right) \\
= & \left(m_{[0]} \cdot \beta^{-1}\left(a_{\psi(1)}\right) \otimes n_{i} \cdot \beta^{-1}(a)_{\psi(2)}\right) \otimes \gamma\left(\left(m_{[1]} c_{i}\right)^{\psi}\right) \\
= & \left(m_{[0]} \otimes n_{i}\right) \cdot \beta^{-1}\left(a_{\psi}\right) \otimes \gamma\left(\left(m_{[1]} c_{i}\right)^{\psi}\right) \\
= & \Gamma\left(m \otimes\left(n_{i} \otimes c_{i}\right)\right) \cdot a .
\end{aligned}
$$

(3) Γ is (C, γ)-colinear. Indeed, for any $m \in M$ and $n_{i} \square_{C^{\prime}} C \in N \square_{C^{\prime}} C$, we have

$$
\begin{aligned}
& \rho \circ \Gamma\left(m \otimes\left(n_{i} \otimes c_{i}\right)\right) \\
= & \rho\left(\left(m_{[0]} \otimes n_{i}\right) \otimes m_{[1]} c_{i}\right) \\
= & \left(\mu^{-1}\left(m_{[0]}\right) \otimes v^{-1}\left(n_{i}\right)\right) \otimes m_{1} c_{i(1)} \otimes \gamma\left(m_{[1](2)} c_{i(2)}\right) \\
= & \left(m_{[0]} \otimes v^{-1}\left(n_{i}\right)\right) \otimes m_{[0] 11]} c_{i(1)} \otimes m_{[1]} \gamma\left(c_{i(2)}\right) \\
= & \left(\Gamma \otimes i d_{C}\right)\left(m_{[0]} \otimes\left(v^{-1}\left(n_{i}\right) \otimes c_{i(1)}\right)\right) \otimes m_{[1]} \gamma\left(c_{i(2)}\right) \\
= & \left(\Gamma \otimes i d_{C}\right) \circ \rho\left(m \otimes\left(n_{i} \otimes c_{i}\right)\right) .
\end{aligned}
$$

Assume (C, γ) has an antipode and define

$$
\begin{aligned}
& \Theta:(F(M) \otimes N) \square_{C^{\prime}} C \rightarrow M \otimes\left(N \square_{C^{\prime}} C\right) \\
& \Theta\left(\left(m_{i} \otimes n_{i}\right) \otimes c_{i}\right)=\mu^{2}\left(m_{i[0]}\right) \otimes\left(n_{i} \otimes S\left(m_{i[1]}\right) \gamma^{-2}\left(c_{i}\right)\right) .
\end{aligned}
$$

We have to show that Ψ is well-defined. (M, μ) is flat, so $M \otimes\left(N \square_{C^{\prime}} C\right)$ is the equalizer of the maps

$$
i d_{M} \otimes i d_{N} \otimes \rho_{C}: \quad M \otimes N \otimes C \rightarrow M \otimes N \otimes C^{\prime} \otimes C
$$

and

$$
i d_{M} \otimes \rho_{N} \otimes i d_{C}: \quad M \otimes N \otimes C \rightarrow M \otimes N \otimes C^{\prime} \otimes C
$$

Now take $\left(m_{i} \otimes n_{i}\right) \otimes c_{i} \in(F(M) \otimes N) \square_{C^{\prime}} C$, then

$$
\begin{equation*}
\left(m_{i[0]} \otimes n_{i[0]}\right) \otimes \phi\left(m_{i[1]}\right) n_{i[1]} \otimes c_{i}=\left(\mu^{-1}\left(m_{i}\right) \otimes v^{-1}\left(n_{i}\right)\right) \otimes \Psi\left(c_{i(1)}\right) \otimes \gamma\left(c_{i(2)}\right) \tag{4.8}
\end{equation*}
$$

Therefore, we get

$$
\begin{aligned}
& i d_{M} \otimes i d_{N} \otimes \rho_{C}\left(\mu^{2}\left(m_{i[0]}\right) \otimes\left(n_{i} \otimes S\left(m_{i[1]}\right) \gamma^{-2}\left(c_{i}\right)\right)\right) \\
= & \mu^{2}\left(m_{i[0]}\right) \otimes\left(n_{i} \otimes \Psi\left(S\left(m_{i[1](2)}\right) \gamma^{-2}\left(c_{i(1)}\right)\right) \otimes S\left(m_{i1}\right) \gamma^{-2}\left(c_{i(2)}\right)\right) \\
= & m_{i[0]} \otimes v^{-1}\left(n_{i}\right) \otimes \Psi\left(S\left(\gamma\left(m_{i[1](2)}\right)\right) \gamma^{-1}\left(c_{i(1)}\right)\right) \otimes S\left(\gamma^{2}\left(m_{i1}\right)\right) c_{i(2)},
\end{aligned}
$$

and

$$
\begin{aligned}
& i d_{M} \otimes \rho_{N} \otimes i d_{C}\left(\mu^{2}\left(m_{i[0]}\right) \otimes\left(n_{i} \otimes S\left(m_{i[1]}\right) \gamma^{-2}\left(c_{i}\right)\right)\right) \\
= & \mu^{2}\left(m_{i[0]}\right) \otimes\left(n_{i[0]} \otimes n_{i[1]} \otimes S\left(m_{i[1]}\right) \gamma^{-2}\left(c_{i}\right)\right) \\
= & m_{i[0]} \otimes n_{i[0]} \otimes \gamma\left(n_{i[1]}\right) \otimes S\left(\gamma\left(m_{i[1]}\right)\right) \gamma^{-1}\left(c_{i}\right) .
\end{aligned}
$$

Applying $\left(i d_{M} \otimes \Psi \otimes i d_{C}\right) \circ\left(i d_{M} \otimes\left(\Delta_{C} \circ S_{C}\right)\right) \circ \rho_{M}$ to the first factor of (4.8), we obtain

$$
\begin{aligned}
& m_{i[0][0]} \otimes \Psi\left(S\left(m_{i[0][1](2)}\right)\right) \otimes S\left(m_{i[0]1}\right) \otimes n_{i[0]} \otimes \Psi\left(m_{i[1]}\right) n_{i[1]} \otimes c_{i} \\
= & \mu^{-1}\left(m_{i[0]}\right) \otimes \Psi\left(S\left(\gamma^{-1}\left(m_{i[1](2)}\right)\right)\right) \otimes S\left(\gamma^{-1}\left(m_{i1}\right)\right) \otimes v^{-1}\left(n_{i}\right) \otimes \phi\left(c_{i(1)}\right) \otimes \gamma\left(c_{i(2)}\right) .
\end{aligned}
$$

Applying $i d_{M} \otimes \gamma^{2} \otimes i d_{C} \otimes i d_{N} \otimes \gamma^{-1} \otimes \gamma^{-1}$ to the above identity, we have

$$
\begin{aligned}
& m_{i[0][0]} \otimes \Psi\left(S\left(\gamma^{2}\left(m_{i[0][1](2)}\right)\right)\right) \otimes S\left(m_{i[0]1}\right) \otimes n_{i[0]} \otimes \gamma^{-1}\left(\phi\left(m_{i[1]}\right) n_{i[1]}\right) \otimes \gamma^{-1}\left(c_{i}\right) \\
= & \mu^{-1}\left(m_{i[0]}\right) \otimes \Psi\left(S\left(\gamma\left(m_{i[1](2)}\right)\right)\right) \otimes S\left(\gamma^{-1}\left(m_{i1}\right)\right) \otimes v^{-1}\left(n_{i}\right) \otimes \phi\left(\gamma^{-1}\left(c_{i(1)}\right)\right) \otimes c_{i(2)} .
\end{aligned}
$$

Multiplying the second and the fifth factor, and also the third and sixth factor, we have

$$
\begin{aligned}
& \mu\left(m_{i[0]}\right) \otimes n_{i[0]} \otimes \gamma\left(n_{i[1]}\right) \otimes S\left(\gamma\left(m_{i[1]}\right)\right) \gamma^{-1}\left(c_{i}\right) \\
= & \mu\left(m_{i[0]}\right) \otimes v^{-1}\left(n_{i}\right) \otimes \Psi\left(S\left(\gamma\left(m_{i[1](2)}\right)\right) \gamma^{-1}\left(c_{i(1)}\right)\right) \otimes S\left(\gamma^{2}\left(m_{i1}\right)\right) c_{i(2)},
\end{aligned}
$$

and applying $\mu^{-1} \otimes i d_{N} \otimes i d_{C} \otimes i d_{C}$ to the above identity, we obtain

$$
\begin{aligned}
& m_{i[0]} \otimes n_{i[0]} \otimes \gamma\left(n_{i[1]}\right) \otimes S\left(\gamma\left(m_{i[1]}\right)\right) \gamma^{-1}\left(c_{i}\right) \\
= & m_{i[0]} \otimes v^{-1}\left(n_{i}\right) \otimes \Psi\left(S\left(\gamma\left(m_{i[1](2)}\right)\right) \gamma^{-1}\left(c_{i(1)}\right)\right) \otimes S\left(\gamma^{2}\left(m_{i1}\right)\right) c_{i(2)},
\end{aligned}
$$

or

$$
i d_{M} \otimes \rho_{N} \otimes i d_{C} \circ\left(\Theta\left(\left(m_{i} \otimes n_{i}\right) \otimes c_{i}\right)\right)=i d_{M} \otimes i d_{N} \otimes \rho_{C} \circ\left(\Theta\left(\left(m_{i} \otimes n_{i}\right) \otimes c_{i}\right)\right)
$$

Let us point out that Γ and Θ are each other's inverses. In fact,

$$
\begin{aligned}
& \Gamma \circ \Theta\left(\left(m_{i} \otimes n_{i}\right) \otimes c_{i}\right) \\
= & \Gamma\left(\mu^{2}\left(m_{i[0]}\right) \otimes\left(n_{i} \otimes S\left(m_{i[1]} \gamma^{-2}\left(c_{i}\right)\right)\right)\right) \\
= & \left.\left(\mu^{2}\left(m_{i[0][0]}\right) \otimes n_{i}\right) \otimes \gamma^{2}\left(m_{i[0][1]}\right) S\left(m_{i[1]}\right) \gamma^{-2}\left(c_{i}\right)\right) \\
= & \left.\left(\mu^{2}\left(m_{i[0][0]}\right) \otimes n_{i}\right) \otimes\left[\gamma\left(m_{i[0][1]}\right) S\left(m_{i[1]}\right)\right] \gamma^{-1}\left(c_{i}\right)\right) \\
= & \left.\left(\mu\left(m_{i[0]}\right) \otimes n_{i}\right) \otimes\left[\gamma\left(m_{i1}\right) S\left(\gamma\left(m_{i[1](2)}\right)\right)\right] \gamma^{-1}\left(c_{i}\right)\right) \\
= & \left(m_{i} \otimes n_{i}\right) \otimes c_{i},
\end{aligned}
$$

and

$$
\begin{aligned}
& \Theta \circ \Gamma\left(m \otimes\left(n_{i} \otimes c_{i}\right)\right) \\
= & \Theta\left(\left(m_{[0]} \otimes n_{i}\right) \otimes m_{[1]} c_{i}\right) \\
= & \mu^{2}\left(m_{[0][0]}\right) \otimes\left(n_{i} \otimes\left[S\left(\gamma^{-1}\left(m_{[0][1]}\right)\right) \gamma^{-2}\left(m_{[1]}\right)\right] \gamma^{-1}\left(c_{i}\right)\right) \\
= & \mu\left(m_{[0]}\right) \otimes\left(n_{i} \otimes\left[S\left(\gamma^{-1}\left(m_{1}\right)\right) \gamma^{-1}\left(m_{[1][2)}\right)\right] \gamma^{-1}\left(c_{i}\right)\right) \\
= & m \otimes\left(n_{i} \otimes c_{i}\right) .
\end{aligned}
$$

The proof of (4.7) is similar and left to the reader.

Corollary 4.4. Let (A, C, ψ) be a monoidal Hom-entwining structure, $\Lambda: \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} \rightarrow \widetilde{\mathscr{H}\left(\mathscr{M}_{k}\right)_{A} \text { the functor }}$ forgetting the (C, γ)-coaction. For any flat entwined Hom-module (M, μ), we have an isomorphism

$$
M \otimes C \cong \Lambda(M) \otimes C
$$

in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$. Ifk is a field, then $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ has enough injective objects, and any injective object in $\left.\widetilde{\mathscr{H}}^{(} \mathscr{M}_{k}\right)(\psi)_{A}^{C}$ is a direct summand of an object of the form $I \otimes C$, where I is an injective (A, β)-module.

We have already proved that the category of Doi Hom-Hopf modules may be viewed as the category of entwined Hom-modules corresponding to a monoidal Hom-entwining structure. Then we have the following corollary.
Corollary 4.5. Let (H, A, C) be a monoidal Doi Hom-Hopf Datum. If k is a field, then $\widetilde{\mathscr{H}\left(\mathscr{M}_{k}\right)(H)_{A}^{C} \text { has enough }}$ injective objects, and any injective object in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(H)_{A}^{C}$ is a direct summand of an object of the form $I \otimes C$, where I is an injective (A, β)-module.

We continue with the dual version of Theorem 4.3.
Theorem 4.6. Let $\left(\Phi, I_{C}\right):(A, C, \psi) \rightarrow\left(A^{\prime}, C, \psi\right)$ be a monoidal morphism of monoidal Hom-entwining structures. Then

$$
\begin{equation*}
F(A)=A^{\prime} \tag{4.9}
\end{equation*}
$$

Let $(M, \mu) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$ be flat as a k-module, and take $(N, v) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A^{\prime}}^{C}$. If $\left(A^{\prime}, \beta^{\prime}\right)$ is a monoidal Hom-Hopf algebra, then

$$
\begin{equation*}
F(M) \otimes N \cong F(M \otimes G(N)) \text { in } \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} . \tag{4.10}
\end{equation*}
$$

If $\left(A^{\prime}, \beta^{\prime}\right)$ has a twisted antipode \bar{S}, then

$$
\begin{equation*}
N \otimes F(M) \cong F(G(N) \otimes M) \text { in } \quad \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} \tag{4.11}
\end{equation*}
$$

Proof. We only prove (4.10) and similar for (4.9) and (4.11). Assume that ($A^{\prime}, \beta^{\prime}$) is a monoidal Hom-Hopf algebra and define

$$
\Gamma: F(M \otimes G(N))=M \otimes G(N) \otimes_{A} A^{\prime} \rightarrow F(M) \otimes N=\left(M \otimes_{A} A^{\prime}\right) \otimes N
$$

by

$$
\Gamma\left((m \otimes n) \otimes a^{\prime}\right)=\left(m \otimes a_{(1)}^{\prime}\right) \otimes n \cdot a_{(2)}^{\prime}
$$

for all $a^{\prime} \in A^{\prime}, m \in M$ and $n \in N$. Γ is well-defined since

$$
\begin{aligned}
\Gamma\left((m \otimes n) \otimes \Phi(a) a^{\prime}\right) & =\left(m \otimes \Phi\left(a_{(1)}\right) a_{(1)}^{\prime}\right) \otimes n \cdot \Phi\left(a_{(2)}\right) a_{(2)}^{\prime} \\
& =\left(m \cdot a_{(1)} \otimes a_{(1)}^{\prime}\right) \otimes n \cdot \Phi\left(a_{(2)}\right) a_{(2)}^{\prime} \\
& =\Gamma\left(\left(m \cdot a_{(1)} \otimes n \cdot \Phi\left(a_{(2)}\right)\right) \otimes a^{\prime}\right) \\
& =\Gamma\left((m \otimes n) \cdot a \otimes a^{\prime}\right) .
\end{aligned}
$$

It is easy to check that Γ is $\left(A^{\prime}, \beta^{\prime}\right)$-linear. Now we shall verify that Γ is (C, γ)-colinear based on (3.1). For any $a^{\prime} \in A^{\prime}, m \in M$ and $n \in N$, we have

$$
\begin{aligned}
\rho\left(\Gamma\left((m \otimes n) \otimes a^{\prime}\right)\right) & =\rho\left(\left(m \otimes a_{(1)}^{\prime}\right) \otimes n \cdot a_{(2)}^{\prime}\right) \\
& =\left(m_{[0]} \otimes \beta^{\prime-1}\left(a_{(1) \psi}^{\prime}\right)\right) \otimes\left(n_{[0]} \cdot \beta^{\prime-1}\left(a_{(2) \psi}^{\prime}\right)\right) \otimes \gamma\left(m_{[1]}\right)_{\psi} \gamma\left(n_{[1]}\right)_{\psi} \\
& \stackrel{(3.1)}{=}\left(m_{[0]} \otimes \beta^{\prime-1}\left(a_{\psi(1)}^{\prime}\right)\right) \otimes\left(n_{[0]} \cdot \beta^{\prime-1}\left(a_{\psi(2)}^{\prime}\right)\right) \otimes \gamma\left(m_{[1]} n_{[1]}\right)^{\psi} \\
& =\left(\Gamma \otimes i d_{c}\right)\left(\left(\left(m_{[0]} \otimes n_{[0]}\right) \otimes \beta^{\prime-1}\left(a^{\prime}\right)_{\psi}\right) \otimes \gamma\left(m_{[1]} n_{[1]}\right)^{\psi}\right) \\
& =\left(\Gamma \otimes i d_{c}\right) \rho\left((m \otimes n) \otimes a^{\prime}\right) .
\end{aligned}
$$

The inverse of Γ is given by

$$
\Pi\left(\left(m \otimes a^{\prime}\right) \otimes n\right)=\left(m \otimes v^{-2}(n) S^{-1}\left(a_{(2)}^{\prime}\right)\right) \otimes \beta^{\prime 2}\left(a_{(1)}^{\prime}\right)
$$

for all $a^{\prime} \in A^{\prime}, m \in M$ and $n \in N$. One can check that Π is well-defined similar to Γ. Finally, we have

$$
\begin{aligned}
\Pi\left(\Gamma\left((m \otimes n) \otimes a^{\prime}\right)\right) & =\Pi\left(\left(m \otimes a_{(1)}^{\prime}\right) \otimes n \cdot a_{(2)}^{\prime}\right) \\
& =\left(m \otimes v^{-2}\left(n \cdot a_{(2)}^{\prime}\right) S\left(a_{(1)(2)}^{\prime}\right)\right) \otimes \beta^{\prime 2}\left(a_{(1)(1)}^{\prime}\right) \\
& =\left(m \otimes v^{-1}(n) \cdot\left[\beta^{\prime-1}\left(a_{(2)(2)}^{\prime} S^{-1}\left(\beta^{\prime-1}\left(a_{(2)(1)}^{\prime}\right)\right)\right]\right) \otimes \beta^{\prime}\left(a_{(1)}^{\prime}\right)\right. \\
& =(m \otimes n) \otimes a^{\prime},
\end{aligned}
$$

and

$$
\begin{aligned}
\Gamma\left(\Pi\left(\left(m \otimes a^{\prime}\right) \otimes n\right)\right) & =\Gamma\left(\left(m \otimes v^{-2}(n) S^{-1}\left(a_{(2)}^{\prime}\right)\right) \otimes \beta^{\prime 2}\left(a_{(1)}^{\prime}\right)\right) \\
& =\left(m \otimes \beta^{\prime 2}\left(a_{(1)(1)}^{\prime}\right)\right) \otimes v^{-2}(n) \cdot S^{-1}\left(a_{(2)}^{\prime}\right) \beta^{\prime 2}\left(a_{(1)(2)}^{\prime}\right) \\
& =\left(\beta^{\prime}\left(a_{(1)}^{\prime}\right) \otimes m\right) \otimes v^{-1}(n) \cdot\left[S^{-1}\left(\beta^{\prime}\left(a_{(2)(2)}^{\prime}\right) \beta^{\prime}\left(a_{(2)(1)}^{\prime}\right)\right]\right. \\
& =\left(m \otimes a^{\prime}\right) \otimes n,
\end{aligned}
$$

as needed. The proof is completed.

5. The General Induction Functor

Let $(\Phi, \Psi):(A, C, \psi) \rightarrow\left(A^{\prime}, C^{\prime}, \psi^{\prime}\right)$ be a morphism of (right-right) Hom-entwining structures. The results of [9] can be extended to the general induction functor

$$
F: \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} \rightarrow \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}
$$

and its right adjoint G (see Theorem 4.2). In order to avoid technical complications, we will assume that the Hom-entwining map ψ is bijective, and write $\psi^{-1}=\vartheta$.

Proposition 5.1. Let $(\Phi, \Psi):(A, C, \psi) \rightarrow\left(A^{\prime}, C^{\prime}, \psi^{\prime}\right)$ be a morphism of (right-right) Hom-entwining structures. With ψ invertible, and $\vartheta: A \otimes C \rightarrow C \otimes A$ its inverse. Let V_{2} consist of all left and right (A, β)-linear maps $\lambda: G F(C \otimes A) \rightarrow A$ satisfying

$$
\begin{equation*}
\lambda\left(\left(\gamma^{-1}\left(c_{i}\right) \otimes a_{i}^{\prime}\right) \otimes d_{i(1)}\right) \otimes \gamma\left(d_{i(2)}\right)=\sum \lambda\left(\left(c_{i(2)} \otimes a_{i}^{\prime}\right) \otimes \gamma^{-1}\left(d_{i}\right)\right)_{\psi} \otimes \gamma^{2}\left(c_{i(1)}\right)^{\psi} \tag{5.1}
\end{equation*}
$$

for all $\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i} \in G F(C \otimes A)$. We have a k-linear isomorphism

$$
f_{1}: V_{1}={ }_{A}^{C} \operatorname{Hom}_{A}^{C}(G F(C \otimes A), C \otimes A) \rightarrow V_{2}, \quad f_{1}(\bar{v})=\left(\varepsilon \otimes I_{A}\right) \circ \bar{v} .
$$

Proof. $\lambda=f_{1}(\bar{v})$ is left and right (A, β)-linear since \bar{v} and $\varepsilon \otimes I_{A}$ are left and right (A, β)-linear. Take $\sum_{i}\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i} \in G F(C \otimes A)$, and we write

$$
\bar{v}\left(\sum_{i}\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i}\right)=\sum_{j} c_{j} \otimes a_{j} .
$$

Using the left (C, γ)-colinearity of \bar{v}, we have

$$
\gamma^{2}\left(c_{i(1)}\right) \otimes \bar{v}\left(\sum_{i}\left(c_{i(2)} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(d_{i}\right)\right)=\sum_{j} \gamma\left(c_{j(1)}\right) \otimes\left(c_{j(2)} \otimes \beta^{-1}\left(a_{j}\right)\right),
$$

and applying ε_{C} to the second factor

$$
\gamma^{2}\left(c_{i(1)}\right) \otimes \bar{\lambda}\left(\sum_{i}\left(c_{i(2)} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(d_{i}\right)\right)=\sum_{j} c_{j} \otimes \beta^{-1}\left(a_{j}\right),
$$

\bar{v} is also right (C, γ)-colinear, hence

$$
\bar{v}\left(\sum_{i}\left(\gamma^{-1}\left(c_{i}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes d_{i(1)}\right) \otimes \gamma\left(d_{i(2)}\right)=\sum_{j}\left[c_{j(1)} \otimes \beta^{-1}\left(a_{j \psi}\right)\right] \otimes \gamma\left(c_{j(2)}^{\psi}\right) .
$$

Applying ε_{C} to the first factor, we obtain

$$
\bar{\lambda}\left(\sum_{i}\left(\gamma^{-1}\left(c_{i}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right) \otimes d_{i(1)}\right) \otimes \gamma\left(d_{i(2)}\right)=\sum_{j} \beta^{-1}\left(a_{j \psi}\right) \otimes c_{j}^{\psi},\right.
$$

and we have shown that $\bar{\lambda}$ satisfies (5.1), and f_{1} is well-defined. The inverse of f_{1} is given by

$$
g_{1}\left(\sum_{i}\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i}\right)=\sum_{i} \gamma^{2}\left(c_{i(1)}\right) \otimes \lambda\left(\sum_{i}\left(c_{i(2)} \otimes \beta^{-1}\left(a_{i}\right)\right) \otimes \gamma^{-1}\left(d_{i}\right)\right) .
$$

It is obvious that $\bar{v}=g_{1}(\lambda)$ is left (C, γ)-colinear and right (A, β)-linear. \bar{v} is right (C, γ)-colinear since

$$
\begin{aligned}
& \bar{v}\left(\sum_{i}\left(\gamma^{-1}\left(c_{i}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right) \otimes d_{i(1)}\right) \otimes \gamma\left(d_{i(2)}\right)\right. \\
= & \sum_{i} \gamma\left(c_{i(1)}\right) \otimes \bar{\lambda}\left(\sum_{i}\left(\gamma^{-1}\left(c_{i(2)}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(d_{i(1)}\right)\right) \otimes \gamma\left(d_{i(2)}\right) \\
= & \sum_{i} \gamma\left(c_{i(1)}\right) \otimes \bar{\lambda}\left(\sum_{i}\left(c_{i(2)(2)} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-2}\left(d_{i}\right)\right) \psi \otimes \gamma^{2}\left(c_{i(2)(1)}^{\psi}\right) \\
= & \rho\left(\sum_{i} \gamma^{2}\left(c_{i(1)}\right) \otimes \bar{\lambda}\left(\left(c_{i(2)} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(d_{i}\right)\right)\right) \\
= & \rho\left(\bar{v}\left(\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i}\right)\right),
\end{aligned}
$$

and \bar{v} is left (A, β)-linear since

$$
\begin{aligned}
& \bar{v}\left(a\left(\sum_{i}\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i}\right)\right) \\
= & \bar{v}\left(\sum_{i}\left(\gamma\left(c_{i}^{\vartheta}\right) \otimes \Phi\left(\beta^{-2}\left(a_{\vartheta}\right)\right) \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma\left(d_{i}\right)\right) \\
= & \gamma^{3}\left(c_{i(1)}^{\vartheta}\right) \otimes \lambda\left(\left(\gamma\left(c_{i(2)}^{\vartheta}\right) \otimes \Phi\left(\beta^{-3}\left(a_{\vartheta}\right)\right) \beta^{\prime 2}\left(a_{i}^{\prime}\right)\right) \otimes d_{i}\right) \\
= & \gamma^{3}\left(c_{i(1)}^{\vartheta}\right) \otimes \lambda\left(\left(\gamma\left(c_{i(2)}^{\psi}\right) \otimes \Phi\left(\beta^{-3}\left(a_{\otimes \psi}\right)\right) \beta^{\prime-2}\left(a_{i}^{\prime}\right)\right) \otimes d_{i}\right) \\
= & \gamma^{3}\left(c_{i(1)}^{9}\right) \otimes \lambda\left(\beta^{-2}\left(a_{\vartheta}\right)\left(c_{i(2)} \otimes \beta^{\prime-3}\left(a_{i}^{\prime}\right)\right) \otimes d_{i}\right) \\
= & a\left(\sum_{i} \gamma^{2}\left(c_{i(1)}\right) \otimes \lambda\left(c_{i(2)} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(d_{i}\right)\right) \\
= & a \bar{v}\left(\sum_{i}\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i}\right) .
\end{aligned}
$$

We have it to the reader to show that $g_{1}=f_{1}^{-1}$.
Theorem 5.2. Let $(\Phi, \Psi):(A, C, \psi) \rightarrow\left(A^{\prime}, C^{\prime}, \psi^{\prime}\right)$ be a morphism of (right-right) Hom-entwining structures. With ψ invertible, and $\vartheta: A \otimes C \rightarrow C \otimes A$ its inverse. Define the A-action on $C \otimes A^{\prime}$ by

$$
a \cdot\left(c \otimes b^{\prime}\right)=\sum \gamma^{-1}\left(c^{\vartheta}\right) \otimes \beta^{-1}(a)_{\otimes} b^{\prime}, \quad \text { where } a \in A, c \in C, b^{\prime} \in B^{\prime} .
$$

If (C, γ) is left $\left(C^{\prime}, \gamma^{\prime}\right)$-coflat, then V_{1} and V_{2} are isomorphic as k-modules.

Proof. In view of the previous results, it suffices to show that $f \circ f_{1}: V \rightarrow V_{2}$ is surjective. Starting from $\lambda \in V_{2}$, we have to construct a natural transformation v, that is, for all $(M, \mu) \in \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A^{C}}^{C}$, we have to construct a morphism

$$
v_{M}: G F(M)=\left(M \otimes_{A} A^{\prime}\right) \square_{C^{\prime}} C \rightarrow M
$$

First we remark that the map

$$
\phi: M \otimes_{A} A^{\prime} \rightarrow M \otimes_{A}\left(C \otimes A^{\prime}\right), \quad \phi\left(m \otimes_{A} a^{\prime}\right)=\mu\left(m_{[0]}\right) \otimes_{A}\left(m_{[1]} \otimes \beta^{\prime-1}\left(a^{\prime}\right)\right)
$$

is well-defined. Indeed,

$$
\begin{aligned}
\phi\left(m a \otimes_{A} a^{\prime}\right) & =\mu\left((m a)_{[0]}\right) \otimes_{A}\left((m a)_{[1]} \otimes \beta^{\prime-1}\left(a^{\prime}\right)\right) \\
& =\sum \mu\left(m_{[0]}\right) \cdot \beta\left(\beta^{-1}(a)_{\psi}\right) \otimes_{A}\left(\gamma\left(m_{[1]}^{\psi}\right) \otimes \beta^{\prime-1}\left(a^{\prime}\right)\right) \\
& =\sum \mu\left(m_{[0]}\right) \otimes_{A} \beta\left(\beta^{-1}(a)_{\psi}\right) \cdot\left(\gamma\left(m_{[1]}{ }^{\psi}\right) \otimes \beta^{\prime-1}\left(a^{\prime}\right)\right) \\
& =\sum \mu\left(m_{[0]}\right) \otimes_{A}\left(\gamma^{-1}\left(\gamma\left(m_{[1]}\right)^{\vartheta}\right) \otimes \beta^{-1}(a)_{\psi_{\vartheta}} \beta^{\prime-1}\left(a^{\prime}\right)\right) \\
& =\mu\left(m_{[0]}\right) \otimes_{A}\left(m_{[1]} \otimes \beta^{\prime-1}\left(a a^{\prime}\right)\right)=\phi\left(m \otimes_{A} a a^{\prime}\right) .
\end{aligned}
$$

From the fact that (C, γ) is left $\left(C^{\prime}, \gamma^{\prime}\right)$-coflat, so we have

$$
\left(M \otimes_{A}\left(C \otimes A^{\prime}\right)\right) \square_{C^{\prime}} C \cong M \otimes_{A}\left(\left(C \otimes A^{\prime}\right) \square_{C^{\prime}} C\right)
$$

and we consider the map

$$
v_{M}=\left(I_{M} \otimes_{A} \lambda\right) \circ \widetilde{a} \circ\left(\phi \square_{C^{\prime}} I_{C}\right): G F(M) \rightarrow M \otimes_{A} A \cong M
$$

given by

$$
v_{M}\left(\sum\left(m_{i} \otimes a_{i}^{\prime}\right) \otimes c_{i}\right)=\sum \mu^{2}\left(m_{i[0]}\right) \cdot \lambda\left(\left(m_{i[1]} \otimes \beta^{-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right)
$$

Let us first show that v is right A-linear.

$$
\begin{aligned}
& v_{M}\left(\left(\sum\left(m_{i} \otimes a_{i}^{\prime}\right) \otimes c_{i}\right) \cdot a\right) \\
= & v_{M}\left(\sum\left(\mu\left(m_{i}\right) \otimes a_{i}^{\prime} \beta^{\prime-1}\left(\alpha\left(\beta^{-1}(a)_{\psi}\right)\right)\right) \otimes \gamma\left(c_{i}^{\psi}\right)\right) \\
= & \sum \mu^{3}\left(m_{i[0]}\right) \cdot \lambda\left(\left(\gamma\left(m_{i[1]}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right) \beta^{\prime-2}\left(\alpha\left(\beta^{-1}(a)_{\psi}\right)\right)\right) \otimes c_{i}^{\psi}\right) \\
= & \sum \mu^{3}\left(m_{i[0]}\right) \cdot \lambda\left(\left(\gamma\left(m_{i[1]}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right) \beta^{\prime-1}\left(\alpha \beta^{-1}\left(\beta^{-1}(a)_{\psi}\right)\right)\right) \otimes \gamma\left(\gamma^{-1}\left(c_{i}^{\psi}\right)\right)\right) \\
= & \sum \mu^{3}\left(m_{i[0]}\right) \cdot \lambda\left(\left(\gamma\left(m_{i[1]}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right) \beta^{\prime-1}\left(\alpha\left(\beta^{-2}(a)_{\psi}\right)\right)\right) \otimes \gamma\left(\gamma^{-1}\left(c_{i}\right)^{\psi}\right)\right) \\
= & \sum \mu^{3}\left(m_{i[0]}\right) \cdot \lambda\left(\left(\left(m_{i[1]} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right) \cdot \beta^{-1}(a)\right) \\
= & \sum \mu^{3}\left(m_{i[0]}\right) \cdot\left(\lambda\left(\left(m_{i[1]} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right) \beta^{-1}(a)\right) \\
= & \sum\left(\mu^{2}\left(m_{i[0]}\right) \cdot \lambda\left(\left(m_{i[1]} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right)\right) \cdot a \\
= & v_{M}\left(\sum\left(m_{i} \otimes a_{i}^{\prime}\right) \otimes c_{i}\right) \cdot a .
\end{aligned}
$$

v is right C-colinear since

$$
\begin{aligned}
& \rho^{r}\left(v_{M}\left(\sum\left(m_{i} \otimes a_{i}^{\prime}\right) \otimes c_{i}\right)\right) \\
= & \rho^{r}\left(\sum \mu^{2}\left(m_{i[0]}\right) \cdot \lambda\left(\left(m_{i[1]} \otimes \beta^{-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right)\right) \\
= & \sum \mu^{2}\left(m_{i[0[0]}\right) \cdot\left(\beta^{-1}\left(\lambda\left(\left(m_{i[1]} \otimes \beta^{-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right)\right)\right) \psi \otimes \gamma\left(\gamma^{2}\left(m_{i[0[1]}\right)^{\psi}\right) \\
= & \sum \mu\left(m_{i[0]}\right) \cdot\left(\lambda\left(\left(m_{i[1][2)} \otimes \beta^{-2}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-2}\left(c_{i}\right)\right)\right)_{\psi} \otimes \gamma\left(\gamma^{2}\left(m_{i[1][1]}\right)^{\psi}\right) \\
\stackrel{(5.1)}{=} & \sum \mu\left(m_{i[0]}\right) \cdot \lambda\left(\left(\gamma^{-1}\left(m_{i[1]}\right) \otimes \beta^{-2}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i[1]]}\right)\right) \otimes \gamma\left(c_{i[2]}\right) \\
= & \sum v_{M}\left(\left(\mu^{-1}\left(m_{i}\right) \otimes \beta^{-1}\left(a_{i}^{\prime}\right)\right) \otimes c_{i[1]}\right) \otimes \gamma\left(c_{i[2]]}\right) \\
= & \sum v_{M}\left(\sum\left(m_{i} \otimes a_{i}^{\prime}\right) \otimes c_{i}\right)\left[00 \otimes v_{M}\left(\sum\left(m_{i} \otimes a_{i}^{\prime}\right) \otimes c_{i}\right)[1] .\right.
\end{aligned}
$$

Let us show that v is natural. Let $g:(M, \mu) \rightarrow(N, v)$ be a morphism in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C}$, and take $x=$ $\sum\left(m_{i} \otimes a_{i}^{\prime}\right) \otimes c_{i} \in\left(M \otimes_{A} A^{\prime}\right) \square_{c^{\prime}} C$. Then

$$
\begin{aligned}
v_{N}(G F(g))(x) & =\sum v_{N}\left(\left(g\left(m_{i}\right) \otimes a_{i}^{\prime}\right) \otimes c_{i}\right) \\
& =\sum \mu^{2}\left(g\left(m_{i[0]}\right)\right) \cdot \lambda\left(\left(m_{i[1]} \otimes \beta^{-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right) \\
& =\sum g\left(\mu^{2}\left(m_{i[0]}\right) \cdot \lambda\left(\left(m_{i[1]} \otimes \beta^{-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(c_{i}\right)\right)\right) \\
& =\sum g\left(v_{M}(x)\right) .
\end{aligned}
$$

Finally, we have to show that $f_{1}(f(v))=\lambda$. Indeed, we have

$$
\begin{aligned}
& \left.\widetilde{(}_{A} \circ\left(\varepsilon_{C} \otimes I_{A}\right)\right)\left(v_{C \otimes A}\left(\sum\left(\left(c_{i} \otimes 1_{A}\right) \otimes a_{i}^{\prime}\right) \otimes d_{i}\right)\right) \\
= & \left.\widetilde{(}_{A} \circ\left(\varepsilon_{C} \otimes I_{A}\right)\right)\left(\sum\left(\gamma^{2}\left(c_{i(1)}\right) \otimes 1_{A}\right) \cdot \lambda\left(\left(c_{i(2)} \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(d_{i}\right)\right)\right) \\
= & \left.\sum 1_{A} \lambda\left(\left(\gamma^{-1}\left(c_{i}\right) \otimes \beta^{\prime-1}\left(a_{i}^{\prime}\right)\right) \otimes \gamma^{-1}\left(d_{i}\right)\right)\right) \\
= & \left.\sum \lambda\left(\left(c_{i} \otimes a_{i}^{\prime}\right) \otimes d_{i}\right)\right),
\end{aligned}
$$

as needed.
Corollary 5.3. Let $(\Phi, \Psi):(A, C, \psi) \rightarrow\left(A^{\prime}, C^{\prime}, \psi^{\prime}\right)$ be a morphism of (right-right) Hom-entwining structures. with ψ invertible, and $\vartheta: A \otimes C \rightarrow C \otimes A$ its inverse. If (C, γ) is left $\left(C^{\prime}, \gamma^{\prime}\right)$-coflat, then induction functor $F: \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)(\psi)_{A}^{C} \rightarrow \widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)\left(\psi^{\prime}\right)_{A^{\prime}}^{C^{\prime}}$, s separable if and only if there exists $\lambda \in V_{2}$ such that

$$
\begin{equation*}
\lambda\left(\left(\gamma^{-1}\left(c_{(1)}\right) \otimes 1_{A^{\prime}}\right) \otimes c_{(2)}\right)=\varepsilon(c) 1_{A} \tag{5.2}
\end{equation*}
$$

for all $c \in c$ and $a \in A$. F is full and faithful if and only if $\eta_{C \otimes A}$ is an isomorphism.
Proof. If F is separable, then there exists $v \in V$ such that $v \circ \eta$ is the identity natural transformation, in particular

$$
v_{C \otimes A} \circ \eta_{C \otimes A}=I_{C \otimes A} .
$$

Write $\bar{v}=f(v)$ and $\lambda=f_{1}(\bar{v})$, and apply both sides to $c \otimes 1_{A}$:

$$
\bar{v}\left(\left(\gamma^{-1}\left(c_{(1)}\right) \otimes \Phi\left(\left(1_{A}\right) \psi\right)\right) \otimes c_{(2)}^{\psi}\right)=c \otimes 1_{A},
$$

and (5.2) follows after we apply ε to the first factor. Conversely, if $\lambda \in V_{2}$ satisfies (5.2), and v is the natural transformation corresponding to λ, then

$$
\begin{aligned}
v_{M}\left(\eta_{M}(m)\right) & =v_{M}\left(\left(\mu^{-1}\left(m_{[0]}\right) \otimes 1_{A}^{\prime}\right) \otimes m_{[1]}\right) \\
& =\mu\left(m_{[00][0]}\right) \otimes \lambda\left(\left(\gamma^{-1}\left(m_{[0][1]}\right) \otimes 1_{A}^{\prime}\right) \otimes \gamma^{-1}\left(m_{[1]}\right)\right) \\
& =m_{[0]} \otimes \lambda\left(\left(\gamma^{-1}\left(m_{1}\right) \otimes 1_{A}^{\prime}\right) \otimes m_{[1](2)}\right) \\
& \left.=m_{[0]}\right) \varepsilon\left(m_{[1]}\right) 1_{A}=m .
\end{aligned}
$$

The second statement is proved in the same way.

References

[1] T. Brzeziński, S. Majid, Coalgebra bundles, Comm. Math. Phys. 191 (1998) 467-492.
[2] T. Brzeziński, Frobenius properties and Maschke-type theorems for entwined modules, Proc. Amer. Math. Soc. 128 (2000) 2261-2270.
[3] S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011) 2216-2240.
[4] S. Caenepeel, G. Militaru, S. Zhu, (2002). Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Mathematics, 1787. Berlin: Springer Verlag.
[5] Y. Y. Chen, Z. W. Wang, L. Y. Zhang, Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54 (2013) 073515.
[6] Y. Y. Chen, Z. W. Wang, L. Y. Zhang, The FRT-type theorem for the Hom-Long equation, Comm. Algebra 41 (2013) 3931-3948.
[7] Y. Y. Chen, L. Y. Zhang. The category of Yetter-Drinfeld Hom-modules and the quantum Hom-Yang-Baxter equation, J. Math. Phys. 55 (3) (2014) 031702.
[8] S. J. Guo, X. L. Chen, A Maschke type theorem for relative Hom-Hopf modules, Czech. Math. J. 64 (2014) 783-799.
[9] S. J. Guo, X. H. Zhang, Separable functors for the category of Doi Hom-Hopf modules, Colloq. Math. 143 (1) (2016) 23-38.
[10] S. J. Guo, X. H. Zhang, S. X. Wang, Braided monoidal categories and Doi Hopf modules for monoidal Hom-Hopf algebras, Colloq. Math. 143 (1) (2016) 79-103.
[11] S. Karacuha, Hom-entwining structures and Hom-Hopf-type modules, arXiv:1412.2002v2 [math.QA] 8 May 2015.
[12] H. Li, T. Ma, A construction of Hom-Yetter-Drinfeld category, Colloq. Math. 137 (2014) 43-65.
[13] L. Liu, B. L. Shen, Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55 (2014) 031701.
[14] T. Ma, H. Li, T. Yang, Cobraided Hom-smash product Hopf algebra, Colloq. Math. 134 (2014) 75-92.
[15] A. Makhlouf, F. Panaite. Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55 (1) (2014) 013501.
[16] A. Makhlouf, S. D. Silvestrov, Hom-algebra stuctures, J. Gen. Lie Theory Appl. 2 (2008) 51-64.
[17] A. Makhlouf, S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, J. Gen. Lie Theory in Mathematics, Physics and beyond. Springer-Verlag, Berlin, 2009, pp. 189-206.
[18] A. Makhlouf, S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010) 553-589.
[19] M. E. Sweedler, Hopf Algebras, New York, Benjamin, 1969.
[20] S. X. Wang, S. J. Guo, Symmetries and the u-condition in Hom-Yetter-Drinfeld categories, J. Math. Phys. 55 (2014) 081708.

[^0]: 2010 Mathematics Subject Classification. 16T05
 Keywords. Monoidal Hom-Hopf algebra; Hom-entwining structure; entwined Hom-module; separable functors.
 Received: 18 April 2018; Accepted: 11 December 2018
 Communicated by Dragana Cvetković-Ilić
 Corresponding author: Yuanyuan Ke
 Research supported by the Youth Project of Guizhou University of Finance and Economics (No. 2018XQN08).
 Email address: keyy086@126. com (Yuanyuan Ke)

