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Abstract. We find a sufficient condition for the category of entwined Hom-modules to be monoidal.
Moreover, we introduce morphisms between the underlying monoidal Hom-algebras and monoidal Hom-
coalgebras, which give rise to functors between the category of entwined Hom-modules, and we study
tensor identities for monodial categories of entwined Hom-modules. Finally, we give necessary and
sufficient conditions for the general induction functor from H̃ (Mk)(ψ)C

A to H̃ (Mk)(ψ′)C′
A′ to be separable.

1. Introduction

Entwining modules were introduced in [1], which arise from noncommutative geometry, are modules of
an algebra and comodules of a coalgebra such that the action and the coaction satisfy a certain compatibility
condition. Unlike Doi-Hopf modules, entwined modules are defined purely using the properties of an
algebra and a coalgebra combined into an entwining structure. There is no need for a “background”
bialgebra, which is an indispensable part of the Doi-Hopf construction. Entwining modules are more
general and easier to deal with, and provide new fields of applications. It is well-known that entwining
modules unify modules, comodules, Sweedler’s Hopf modules, Takeuchi’s relative Hopf modules, graded
modules, modules graded by G-sets, Long dimodules, Yetter-Drinfeld modules and Doi- Hopf modules [4].

Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov in [16] as generaliza-
tions of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is
replaced by the Hom-associativity and similar for Hom-coassociativity. They also described the structures
of Hom-bialgebras and Hom-Hopf algebras, and extended some important theories from ordinary Hopf al-
gebras to Hom-Hopf algebras in [17] and [18]. Recently, many more properties and structures of Hom-Hopf
algebras have been developed, see [5], [6], [7], [8], [9], [10], [12], [14], [20] and references cited therein.

Caenepeel and Goyvaerts studied in [3] Hom-bialgebras and Hom-Hopf algebras from a categorical
view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively,
which are slightly different from the above Hom-bialgebras and Hom-Hopf algebras. In [15], Makhlouf
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and Panaite defined Yetter-Drinfeld modules over Hom-bialgebras and shown that Yetter-Drinfeld modules
over a Hom-bialgebra with bijective structure map provide solutions of the Hom-Yang-Baxter equation.
Also Liu and Shen [13] studied Yetter-Drinfeld modules over monoidal Hom-bialgebras and called them
Hom-Yetter-Drinfeld modules, and shown that the category of Hom-Yetter-Drinfeld modules is a braided
monoidal categories. Chen and Zhang [7] defined the category of Hom-Yetter-Drinfeld modules in a slightly
different way to [13], and shown that it is a full monoidal subcategory of the left center of left Hom-module
category. We have defined in [9] the category of Doi Hom-Hopf modules and we prove there that the
category of Hom-Yetter-Drinfeld modules is a subcategory of our category of Doi Hom-Hopf modules.

As a generalization of entwining modules in a Hopf algebra setting, entwined Hom-modules were
introduced by Karacuha [11]. It is natural to ask the following question: can we prove a Maschke type
theorem for entwined Hom-modules under more general assumptions? This is the motivation of this paper.

In this paper, we discuss the following questions: how do we make the category of entwined Hom-
modules into monoidal? We show in Section 3 that it is sufficient that (A, β) and (C, γ) are monoidal
Hom-bialgebras with some extra conditions. As an example, we consider the category of Doi Hom-Hopf
modules[9], which is well known to be a monoidal category, this category is a special of our theory.

In Section 4, we first give the maps between the underlying Hom-comodule algebras and Hom-module
coalgebras, which give rise to functors between the category of entwined Hom-modules. Moreover, we
study tensor identities for monodial categories of entwined Hom-modules. As an application, we prove
that the category of entwined Hom-modules has enough injective objects.

In Section 5, let (Φ,Ψ) : (A,C, ψ)→ (A′,C′, ψ′) be a morphism of (right-right) Hom-entwining structures.
The results of [9] can be extended to the general induction functor

F : H̃ (Mk)(ψ)C
A → H̃ (Mk)(ψ′)C′

A′ .

In order to avoid technical complications, we will assume that the Hom-entwining map ψ is bijective, and
write ψ−1 = ϑ.

2. Preliminaries

Throughout this paper we work over a commutative ring k, we recall from [3] and [9] for some infor-
mations about Hom-structures which are needed in what follows.

Let C be a category. We introduce a new category H̃ (C) as follows: objects are couples (M, µ), with
M ∈ C and µ ∈ AutC(M). A morphism f : (M, µ) → (N, ν) is a morphism f : M → N in C such that
ν ◦ f = f ◦ µ.

Let Mk denotes the category of k-modules. H (Mk) will be called the Hom-category associated to Mk.
If (M, µ) ∈ Mk, then µ : M → M is obviously a morphism in H (Mk). It is easy to show that H̃ (Mk) =

( H (Mk), ⊗, (I, I), ã, l̃, r̃)) is a monoidal category by Proposition 1.1 in [3]: the tensor product of (M, µ) and
(N, ν) in H̃ (Mk) is given by the formula (M, µ) ⊗ (N, ν) = (M ⊗N, µ ⊗ ν).

Assume that (M, µ), (N, ν), (P, π) ∈ H̃ (Mk). The associativity and unit constraints are given by the
formulas

ãM,N,P((m ⊗ n) ⊗ p) = µ(m) ⊗ (n ⊗ π−1(p)),

l̃M(x ⊗m) = r̃M(m ⊗ x) = xµ(m).

An algebra in H̃ (Mk) will be called a monoidal Hom-algebra.

Definition 2.1. A monoidal Hom-algebra is an object (A, α) ∈ H̃ (Mk) together with a k-linear map mA : A⊗A→ A
and an element 1A ∈ A such that

α(ab) = α(a)α(b); α(1A) = 1A,

α(a)(bc) = (ab)α(c); a1A = 1Aa = α(a),

for all a, b, c ∈ A. Here we use the notation mA(a ⊗ b) = ab.
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Definition 2.2. A monoidal Hom-coalgebra is an object (C, γ) ∈ H̃ (Mk) together with k-linear maps ∆ : C →
C ⊗ C, ∆(c) = c(1) ⊗ c(2) (summation implicitly understood) and ε : C→ k such that

∆(γ(c)) = γ(c(1)) ⊗ γ(c(2)); ε(γ(c)) = ε(c),

and
γ−1(c(1)) ⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ γ

−1(c(2)), ε(c(1))c(2) = ε(c(2))c(1) = γ−1(c)

for all c ∈ C.

Definition 2.3. A monoidal Hom-bialgebra H = (H, α,m, η,∆, ε) is a bialgebra in the symmetric monoidal category
H̃ (Mk). This means that (H, α,m, η) is a monoidal Hom-algebra, (H, α,∆, ε) is a monoidal Hom-coalgebra and that
∆ and ε are morphisms of Hom-algebras, that is,

∆(ab) = a(1)b(1) ⊗ a(2)b(2); ∆(1H) = 1H ⊗ 1H,

ε(ab) = ε(a)ε(b), ε(1H) = 1H.

Definition 2.4. A monoidal Hom-Hopf algebra is a monoidal Hom-bialgebra (H, α) together with a linear map
S : H→ H in H̃ (Mk) such that

S ∗ I = I ∗ S = ηε, Sα = αS.

Definition 2.5. Let (A, α) be a monoidal Hom-algebra. A right (A, α)-Hom-module is an object (M, µ) ∈ H̃ (Mk)
consists of a k-module and a linear map µ : M→M together with a morphism ψ : M ⊗ A→M, ψ(m · a) = m · a, in
H̃ (Mk) such that

(m · a) · α(b) = µ(m) · (ab); m · 1A = µ(m),

for all a ∈ A and m ∈M. The fact that ψ ∈ H̃ (Mk) means that

µ(m · a) = µ(m) · α(a).

A morphism f : (M, µ) → (N, ν) in H̃ (Mk) is called right A-linear if it preserves the A-action, that is, f (m · a) =

f (m) · a. H̃ (Mk)A will denote the category of right (A, α)-Hom-modules and A-linear morphisms.

Definition 2.6. Let (C, γ) be a monoidal Hom-coalgebra. A right (C, γ)-Hom-comodule is an object (M, µ) ∈ H̃ (Mk)
together with a k-linear map ρM : M→M ⊗ C notation ρM(m) = m[0] ⊗m[1] in H̃ (Mk) such that

m[0][0] ⊗ (m[0][1] ⊗ γ
−1(m[1])) = µ−1(m[0]) ⊗ ∆C(m[1]); m[0]ε(m[1]) = µ−1(m),

for all m ∈M. The fact that ρM ∈ H̃ (Mk) means that

ρM(µ(m)) = µ(m[0]) ⊗ γ(m[1]).

Morphisms of right (C, γ)-Hom-comodule are defined in the obvious way. The category of right (C, γ)-Hom-comodules
will be denoted by H̃ (Mk)C.

Definition 2.7. A right-right Hom-entwining structure is a triple (A,C, ψ), where (A, β) is a monoidal Hom-algebra
and (C, γ) is a monoidal Hom-coalgebra with a linear map ψ : C ⊗ A → A ⊗ C such that ψ ◦ (γ ⊗ β) = (β ⊗ γ) ◦ ψ
satisfying the following conditions:

(ab)ψ ⊗ cψ = aψbψ ⊗ γ((γ−1(c)ψ))ψ),
ψ(c ⊗ 1A) = 1A ⊗ c,

aψ ⊗ ∆(cψ) = β(β−1(a)ψψ) ⊗ (c(1)
ψ
⊗ c(2)

ψ),

ε(cψ)aψ = ε(c)a.
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Over a Hom-entwining structure (A,C, ψ), a right-right entwined Hom-module (M, µ) is both a right (C, γ)-Hom-
comodule and a right (A, β)-Hom-module such that

ρM(m · a) = µ(m[0]) · ψ(m[1] ⊗ β
−1(a))

= m[0] · β
−1(a)ψ ⊗ γ(mψ

[1]),

for all a ∈ A and m ∈ M. H̃ (Mk)(ψ)C
A will denote the category of right entwined Hom-modules and morphisms

between them.

A morphism between right-right entwined Hom-modules is a k-linear map which is a morphism in
the categories H̃ (Mk)A and C̃ (Mk)C at the same time. H̃ (Mk)(ψ)C

A will denote the category of right-right
entwined Hom-modules and morphisms between them.

3. Making the Category of Entwined Hom-Modules into a Monoidal Category

Now suppose that (A, β) and (C, γ) are both monoidal Hom-bialgebras.

Proposition 3.1. Let (M, µ) ∈ H̃ (Mk)(ψ)C
A, (N, ν) ∈ H̃ (Mk)(ψ)C

A. Then we have M ⊗ N ∈ H̃ (Mk)(ψ)C
A with

structures:
(m ⊗ n) · a = m · a(1) ⊗ n · a(2),

ρM⊗N(m ⊗ n) = m[0] ⊗ n[0] ⊗m[1]n[1]

if and only if the following condition holds:

a(1)ψ ⊗ a(2)ψ ⊗ cψdψ = aψ(1) ⊗ aψ(2) ⊗ (cd)ψ, (3. 1)

for all a ∈ A and c, d ∈ C. Furthermore, the category C = H̃ (Mk)(ψ)C
A is a monoidal category.

Proof. It is easy to see that M ⊗ N is a right (A, β)-module and that M ⊗ N is a right (C, γ)-comodule.
Now we check that the compatibility condition holds:

ρM⊗N((m ⊗ n) · a)
= (m · a(1))[0] ⊗ (n · a(2))[0] ⊗ (m · a(1))[1](n · a(2))[1]

= m[0] · β
−1(a(1))ψ ⊗ n[0] · β

−1(a(2))ψ ⊗ (γ(mψ
[1])γ(nψ[1]))

(3.1)
= m[0] · β

−1(a)ψ(1) ⊗ n[0] · β
−1(a)ψ(2) ⊗ γ((m[1]n[1])ψ)

= (m[0] ⊗ n[0]) · β−1(a)ψ ⊗ γ((m[1]n[1])ψ).

So M ⊗N ∈ H̃ (Mk)(ψ)C
A.

Conversely, one can easily check that A ⊗ C ∈ H̃ (Mk)(ψ)C
A, let m = 1 ⊗ c and n = 1 ⊗ d for any c, d ∈ C

and easily get (3.1).
Furthermore, k is an object in H̃ (Mk)(ψ)C

A with structures:

x · a = εA(a)x, ρ(x) = x ⊗ 1C,

for all x ∈ k if and only if the following condition holds:

εA(a)1C = εA(β−1(a)ψ)(γ(1ψC)), (3. 2)

for all a ∈ A. Then it is easy to get that (C = H̃ (Mk)(ψ)C
A,⊗, k, ã, l̃, r̃) is a monoidal category, where ã, l̃, r̃ are

given by the formulas:
ãM,N,P((m ⊗ n) ⊗ p) = µ(m) ⊗ (n ⊗ π−1(p)),
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l̃M(x ⊗m) = r̃M(m ⊗ x) = xµ(m),

for (M, µ), (N, ν), (P, π) ∈ C. �
We call G = (A,C, ψ) a monoidal Hom-entwining structure if G is a Hom-entwining structure, and A,C are

monoidal Hom-bialgebras with the additional compatibility relations (3.1) and (3.2).
If (A,C, ψ) is a monoidal Hom-entwining structure, then (A, β) and (C, γ) can be made into objects of

H̃ (Mk)(ψ)C
A.

Proposition 3.2. Let (A,C, ψ) be a monoidal Hom-entwining structure. On (A, β) and (C, γ), we consider the
following right (A, β)-action and right (C, γ)-coaction:

b · a = ba and ρr(b) = ψ(1C ⊗ b) = β−1(bψ) ⊗ 1ψC,

c · a = εA(aψ)γ(cψ) and ρr(c) = c(1) ⊗ c(2).

Then (A, β) and (C, γ) are entwined Hom-modules.

Proof. We will show (A, β) ∈ H̃ (Mk)(ψ)C
A, and leave the other statement to the reader. First, (A, β) is a

right (C, γ)-comdule, since

(idA ⊗ εC)ρr(b) = εC(1ψC)β−1(bψ) = εC(1C)β−1(b) = b,

(β−1
⊗ ∆C)ρr(b) = β−2(bψ) ⊗ ∆C(1ψC) = β−2(bψψ) ⊗ 1ψC ⊗ 1ψC = (ρr(b) ⊗ γ−1)ρr(b),

and
b[0]β

−1(aψ) ⊗ γ(bψ[1]) = β−1(bψ)β−1(aψ) ⊗ γ(1ψψC ) = β−1((ba)ψ) ⊗ γ(1ψC) = ρr(ba),

Thus (A, β) ∈ H̃ (Mk)(ψ)C
A. �

Example 3.3. Let (H, α) be a monoidal Hom-Hopf algebra, (C, γ) a right (H, α)-Hom module bialgebra, and that (H, α)
acts on (C, γ) in such a way that (C, γ) is an (H, α)-Hom module algebra and (H, α)-Hom module coalgebra. Now let
(A, β) be a monoidal Hom-bialgebra and a right (H, α)-Hom comodule algebra such that the following compatibility
relation holds, for all a ∈ A:

a(1)[0] ⊗ a(2)[0] ⊗ a(1)[1] ⊗ (a(2)[1] = a[0](1) ⊗ a[0](2) ⊗ a[1](1) ⊗ a[1](2).

We know that (H,A,C) is a right-right Doi Hom-Hopf datum in [9], and we have a corresponding right-right
Hom-entwining structure (A,C, ψ). It is straightforward to check that (A,C, ψ) is monoidal.

4. Tensor Identities

Theorem 4.1. Given two Hom-entwining structures (A,C, ψ) and (A′,C′, ψ′), suppose that two maps Φ : A→ A′

and Ψ : C→ C′ which are respectively monodial Hom-algebra and monodial Hom-coalgebra maps satisfying

Φ(aψ) ⊗Ψ(cψ) = Φ(a)ψ′ ⊗Ψ(c)ψ
′

,

then the induction functor F : H̃ (Mk)(ψ)C
A → H̃ (Mk)(ψ′)C′

A′ , defined as follows:

F(M) = M ⊗A A′,

where (A′, β′) is a left (A, β)-module via Φ and with structure maps defined by

(m ⊗A a′) · b′ = µ(m) ⊗A a′β′−1(b′), (4. 1)

ρF(M)(m ⊗A a′) = m[0] ⊗A (β′−1(a′))ψ′ ⊗Ψ(γ−1(m[1])ψ
′

), (4. 2)

for all a′, b′ ∈ A′ and m ∈M.
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Proof. Let us show that M ⊗A A′ is an object of A′H̃ (Mk)(H′)C′ . It is routine to check that F(M) is a
right (A′, β′)-module. For this, we need to show that M ⊗A A′ is a right (C′, γ′)-comodule and satisfy the
compatible condition, for any m ∈M and a′, b′ ∈ A′, we have

ρF(M)((m ⊗A a′) · b′) = ρF(M)(µ(m) ⊗A a′β′−1(b′))

= µ(m[0]) ⊗A (β′−1(a′β′−1(b′)))ψ′ ⊗Ψ(mψ′

[1])

= [m[0] ⊗A (β′−1(a′))ψ′ ⊗Ψ(γ−1(m[1])ψ
′

)]b′

= ρF(M)(m ⊗A a′)b′,

i.e., the compatible condition holds. It remains to prove that M ⊗A A′ is a right (C′, γ′)-comodule. For any
m ∈M and a′ ∈ A′, we have

(ρF(M) ⊗ idC′ )ρF(M)(m ⊗A a′)

= (ρF(M) ⊗ id′C)(m[0] ⊗A (β′−1(a′))ψ′ ⊗Ψ(γ−1(m[1])ψ
′

))

= m[0][0] ⊗A (β′−2(a′))ψ′ϕ′ ⊗Ψ(γ−1(m[0][1])ϕ
′

) ⊗Ψ(γ−1(m[1])ψ
′

)

= [m[0] ⊗A (β′−1(a′))ψ′ϕ′ ] ⊗Ψ(γ−1(m[1](1))ϕ
′

) ⊗Ψ(γ−1(m[1](2))ψ
′

)

= m[0] ⊗A (β′−1(a′))ψ′ ⊗Ψ(γ−1(m[1])ψ
′

)(1) ⊗Ψ(γ−1(m[1])ψ
′

)(2)

= (idF(M) ⊗ ∆C′ )ρF(M)(m ⊗A a′),

and

(idF(M) ⊗ ε)ρF(M)(m ⊗A a′)

= (idF(M) ⊗ ε)(m[0] ⊗A (β′−1(a′))ψ′ ⊗Ψ(γ−1(m[1])ψ
′

))
= m ⊗A a′,

as desired. This completes the proof. �

Theorem 4.2. Under the assumptions of Theorem 4.1, we have a functor G : H̃ (Mk)(ψ′)C′
A′ → H̃ (Mk)(ψ)C

A which
is right adjoint to F. G is defined by

G(M′) = M′�C′C,

with structure maps

(m′ ⊗ c) · a = m′ · β−1(a)ψ ⊗ γ(cψ), (4. 3)

ρG(M′)(m′ ⊗ c) = µ′−1(m′) ⊗ c(1) ⊗ γ(c(2)), (4. 4)

for all a ∈ A.

Proof. We first show that G(M′) is an object of H̃ (Mk)(ψ)C
A. It is not hard to check that G(M′) is a right

(A, β)-module. Now we check that G(M′) is a right (C, γ)-comodule and satisfy the compatible condition.
For any m′ ∈M′ and a ∈ A, c ∈ C, we have

ρG(M′)((m′ ⊗ c) · a) = ρG(M′)(m′ · β−1(a)ψ ⊗ γ(cψ))

= µ′−1(m′) · β−2(aψ) ⊗ γ(cψ)(1) ⊗ γ(γ(cψ)(2))

= (µ′−1(m′) ⊗ c(1) ⊗ γ(c(2)))a
= ρG(M′)(m′ ⊗ c)a,

i.e., the compatible condition holds. It remains to prove that M′�C′C is a right (C, γ)-comodule. For any
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m′ ∈M′ and a ∈ A, we have

(ρG(M′) ⊗ idC′ )ρG(M′)(m′ ⊗A c)

= (ρG(M′) ⊗ idC′ )(µ′−1(m′) ⊗ c(1) ⊗ γ(c(2)))
= µ′−2(m′) ⊗ c(1)(1) ⊗ γ(c(1)(2)) ⊗ γ(c(2))

= µ′−2(m′) ⊗ γ−1(c(1)) ⊗ γ(c(2)(1)) ⊗ γ2(c(2)(2))

= µ′−1(m′) ⊗ c(1) ⊗ [γ(c(2)(1)) ⊗ γ(c(2)(2))]
= (idG(M′) ⊗ ∆C)ρG(M′)(m′ ⊗ c),

and

(idG(M′) ⊗ ε)ρG(M′)(m′ ⊗ c)

= (idG(M′) ⊗ ε)(µ′−1(m′) ⊗ c(1) ⊗ γ(c(2)))

= µ′−1(m′) ⊗ c(1)ε(c(2)) ⊗ 1C = m′ ⊗ c,

as required.
G(M′) ∈ H̃ (Mk)(ψ)C

A and the functorial properties can be checked in a straightforward way. Finally, we
show that G is a right adjoint to F. Take (M, µ) ∈ H̃ (Mk)(ψ)C

A, define ηM : M→ GF(M) = (M ⊗A A′)�C′C as
follows: for all m ∈M,

ηM(m) = m[0] ⊗A 1A′ ⊗m[1].

It is easy to see that ηM ∈ H̃ (Mk)(ψ)C
A. Take (M′, µ′) ∈ H̃ (Mk)(ψ′)C′

A′ , define δM′ : FG(M′)→M′, where

δM′ ((m′ ⊗ c) ⊗A a′) = εC(c)µ′(m′) · a′,

It is easy to check that δM′ is (A, β)-linear and therefore δM′ ∈ H̃ (Mk)(ψ′)C′
A′ . We can also verify η and δ

defined above are all natural transformations and satisfy

G(δM′ ) ◦ ηG(M′) = I, δF(M) ◦ F(ηM) = I,

for all M ∈ H̃ (Mk)(ψ)C
A and M′ ∈ H̃ (Mk)(ψ′)C′

A′ . And this completes the proof. �
A morphism (Φ,Ψ) between two monoidal Hom-entwining structures is called monoidal if Φ and Ψ are

monoidal Hom-bialgebra maps. We now consider the particular situation where A = A′ and Φ = IA. The
following result is a generalization of [4].

Theorem 4.3. Let (IA,Ψ) : (A,C, ψ)→ (A,C′, ψ′) be a monoidal morphism of monoidal Hom entwining structures.
Then

G(C′) = C. (4. 5)

Let (M, µ) ∈ H̃ (Mk)(ψ)C
A be flat as a k-module, and take (N, ν) ∈ H̃ (Mk)(ψ′)C′

A . If (C, γ) is a monoidal Hom-Hopf
algebra, then

M ⊗ G(N) � G(F(M) ⊗N) in H̃ (Mk)(ψ)C
A. (4. 6)

If (C, γ) has a twisted antipode S, then

G(N) ⊗M � G(N ⊗ F(M)) in H̃ (Mk)(ψ)C
A. (4. 7)

Proof. We know that εC′⊗idC : C′�CC→ C is an isomorphism; the inverse map is (Ψ⊗idC)∆C : C→ C′�CC.
It is clear that εC′ ⊗ idC is (A, β)-linear and (C, γ)-colinear. And this prove (4.5).

Now we define the map

Γ : M ⊗ G(N) = M ⊗ (N�C′C)→ G(F(M) ⊗N) = (F(M) ⊗N)�C′C,
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which is given by
Γ(m ⊗ (ni ⊗ ci)) = (m[0] ⊗ ni) ⊗m[1]ci.

Recall that F(M) = M as an (A, β)-module, with (C′, γ′)-coaction given by

ρF(M)(m) = m[0] ⊗Ψ(m[1]).

(1) Γ is well-defined, we have to show that

Γ(mi ⊗ (ni ⊗ ci)) ∈ (F(M) ⊗N)�′CC.

This may be seen as follows: for any m ∈M and ni�C′c ∈ N�C′C, we have

(ρF(M)⊗N ⊗ idC)((m[0] ⊗ ni) ⊗m[1]ci)
= (m[0][0] ⊗ ni[0]) ⊗Ψ(m[0][1])ni[1] ⊗m[1]ci

= (µ(m[0]) ⊗ ν(ni)) ⊗Ψ(m[0][1])Ψ(ci(1)) ⊗ γ−1(m[1]ci(2))
= (m[0] ⊗ ni) ⊗ [φ(m[0][1])Ψ(ci(1)) ⊗m[1]ci(2)]
= (idF(M)⊗N ⊗ ρC′ )((m[0] ⊗ ni) ⊗m[1]ci).

(2) Γ is (A, β)-linear. Indeed, for any a ∈ A,m ∈M and ni�C′c ∈ N�C′C, we have

Γ((m ⊗ (ni ⊗ ci)) · a)

= Γ(m · a(1) ⊗ (ni · β
−1(a)(2)ψ ⊗ γ(cψi )))

= (m[0] · β
−1(a(1)ψ) ⊗ ni · β

−1(a)(2)ψ) ⊗ γ(mψ
[1])γ(cψi )

= (m[0] · β
−1(aψ(1)) ⊗ ni · β

−1(a)ψ(2)) ⊗ γ((m[1]ci)ψ)

= (m[0] ⊗ ni) · β−1(aψ) ⊗ γ((m[1]ci)ψ)
= Γ(m ⊗ (ni ⊗ ci)) · a.

(3) Γ is (C, γ)-colinear. Indeed, for any m ∈M and ni�C′c ∈ N�C′C, we have

ρ ◦ Γ(m ⊗ (ni ⊗ ci))
= ρ((m[0] ⊗ ni) ⊗m[1]ci)
= (µ−1(m[0]) ⊗ ν−1(ni)) ⊗m[1](1)ci(1) ⊗ γ(m[1](2)ci(2))

= (m[0] ⊗ ν
−1(ni)) ⊗m[0][1]ci(1) ⊗m[1]γ(ci(2))

= (Γ ⊗ idC)(m[0] ⊗ (ν−1(ni) ⊗ ci(1))) ⊗m[1]γ(ci(2))
= (Γ ⊗ idC) ◦ ρ(m ⊗ (ni ⊗ ci)).

Assume (C, γ) has an antipode and define

Θ : (F(M) ⊗N)�C′C→M ⊗ (N�C′C),
Θ((mi ⊗ ni) ⊗ ci) = µ2(mi[0]) ⊗ (ni ⊗ S(mi[1])γ−2(ci)).

We have to show that Ψ is well-defined. (M, µ) is flat, so M ⊗ (N�C′C) is the equalizer of the maps

idM ⊗ idN ⊗ ρC : M ⊗N ⊗ C→M ⊗N ⊗ C′ ⊗ C,

and

idM ⊗ ρN ⊗ idC : M ⊗N ⊗ C→M ⊗N ⊗ C′ ⊗ C.

Now take (mi ⊗ ni) ⊗ ci ∈ (F(M) ⊗N)�C′C, then

(mi[0] ⊗ ni[0]) ⊗ φ(mi[1])ni[1] ⊗ ci = (µ−1(mi) ⊗ ν−1(ni)) ⊗Ψ(ci(1)) ⊗ γ(ci(2)). (4. 8)
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Therefore, we get

idM ⊗ idN ⊗ ρC(µ2(mi[0]) ⊗ (ni ⊗ S(mi[1])γ−2(ci)))
= µ2(mi[0]) ⊗ (ni ⊗Ψ(S(mi[1](2))γ−2(ci(1))) ⊗ S(mi[1](1))γ−2(ci(2)))

= mi[0] ⊗ ν
−1(ni) ⊗Ψ(S(γ(mi[1](2)))γ−1(ci(1))) ⊗ S(γ2(mi[1](1)))ci(2),

and

idM ⊗ ρN ⊗ idC(µ2(mi[0]) ⊗ (ni ⊗ S(mi[1])γ−2(ci)))
= µ2(mi[0]) ⊗ (ni[0] ⊗ ni[1] ⊗ S(mi[1])γ−2(ci))
= mi[0] ⊗ ni[0] ⊗ γ(ni[1]) ⊗ S(γ(mi[1]))γ−1(ci).

Applying (idM ⊗Ψ ⊗ idC) ◦ (idM ⊗ (∆C ◦ SC)) ◦ ρM to the first factor of (4.8), we obtain

mi[0][0] ⊗Ψ(S(mi[0][1](2))) ⊗ S(mi[0][1](1)) ⊗ ni[0] ⊗Ψ(mi[1])ni[1] ⊗ ci

= µ−1(mi[0]) ⊗Ψ(S(γ−1(mi[1](2)))) ⊗ S(γ−1(mi[1](1))) ⊗ ν−1(ni) ⊗ φ(ci(1)) ⊗ γ(ci(2)).

Applying idM ⊗ γ2
⊗ idC ⊗ idN ⊗ γ−1

⊗ γ−1 to the above identity, we have

mi[0][0] ⊗Ψ(S(γ2(mi[0][1](2)))) ⊗ S(mi[0][1](1)) ⊗ ni[0] ⊗ γ
−1(φ(mi[1])ni[1]) ⊗ γ−1(ci)

= µ−1(mi[0]) ⊗Ψ(S(γ(mi[1](2)))) ⊗ S(γ−1(mi[1](1))) ⊗ ν−1(ni) ⊗ φ(γ−1(ci(1))) ⊗ ci(2).

Multiplying the second and the fifth factor, and also the third and sixth factor, we have

µ(mi[0]) ⊗ ni[0] ⊗ γ(ni[1]) ⊗ S(γ(mi[1]))γ−1(ci)
= µ(mi[0]) ⊗ ν−1(ni) ⊗Ψ(S(γ(mi[1](2)))γ−1(ci(1))) ⊗ S(γ2(mi[1](1)))ci(2),

and applying µ−1
⊗ idN ⊗ idC ⊗ idC to the above identity, we obtain

mi[0] ⊗ ni[0] ⊗ γ(ni[1]) ⊗ S(γ(mi[1]))γ−1(ci)
= mi[0] ⊗ ν

−1(ni) ⊗Ψ(S(γ(mi[1](2)))γ−1(ci(1))) ⊗ S(γ2(mi[1](1)))ci(2),

or

idM ⊗ ρN ⊗ idC ◦ (Θ((mi ⊗ ni) ⊗ ci)) = idM ⊗ idN ⊗ ρC ◦ (Θ((mi ⊗ ni) ⊗ ci)).

Let us point out that Γ and Θ are each other’s inverses. In fact,

Γ ◦Θ((mi ⊗ ni) ⊗ ci)
= Γ(µ2(mi[0]) ⊗ (ni ⊗ S(mi[1]γ

−2(ci))))
= (µ2(mi[0][0]) ⊗ ni) ⊗ γ2(mi[0][1])S(mi[1])γ−2(ci))
= (µ2(mi[0][0]) ⊗ ni) ⊗ [γ(mi[0][1])S(mi[1])]γ−1(ci))
= (µ(mi[0]) ⊗ ni) ⊗ [γ(mi[1](1))S(γ(mi[1](2)))]γ−1(ci))
= (mi ⊗ ni) ⊗ ci,

and

Θ ◦ Γ(m ⊗ (ni ⊗ ci))
= Θ((m[0] ⊗ ni) ⊗m[1]ci)
= µ2(m[0][0]) ⊗ (ni ⊗ [S(γ−1(m[0][1]))γ−2(m[1])]γ−1(ci))
= µ(m[0]) ⊗ (ni ⊗ [S(γ−1(m[1](1)))γ−1(m[1](2))]γ−1(ci))
= m ⊗ (ni ⊗ ci).

The proof of (4.7) is similar and left to the reader. �
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Corollary 4.4. Let (A,C, ψ) be a monoidal Hom-entwining structure, Λ: H̃ (Mk)(ψ)C
A → H̃ (Mk)A the functor

forgetting the (C, γ)-coaction. For any flat entwined Hom-module (M, µ), we have an isomorphism

M ⊗ C � Λ(M) ⊗ C

in H̃ (Mk)(ψ)C
A. If k is a field, then H̃ (Mk)(ψ)C

A has enough injective objects, and any injective object in H̃ (Mk)(ψ)C
A

is a direct summand of an object of the form I ⊗ C, where I is an injective (A, β)-module.

We have already proved that the category of Doi Hom-Hopf modules may be viewed as the category
of entwined Hom-modules corresponding to a monoidal Hom-entwining structure. Then we have the
following corollary.

Corollary 4.5. Let (H,A,C) be a monoidal Doi Hom-Hopf Datum. If k is a field, then H̃ (Mk)(H)C
A has enough

injective objects, and any injective object in H̃ (Mk)(H)C
A is a direct summand of an object of the form I ⊗ C, where I

is an injective (A, β)-module.

We continue with the dual version of Theorem 4.3.

Theorem 4.6. Let (Φ, IC) : (A,C, ψ)→ (A′,C, ψ) be a monoidal morphism of monoidal Hom-entwining structures.
Then

F(A) = A′. (4. 9)

Let (M, µ) ∈ H̃ (Mk)(ψ)C
A be flat as a k-module, and take (N, ν) ∈ H̃ (Mk)(ψ)C

A′ . If (A′, β′) is a monoidal Hom-Hopf
algebra, then

F(M) ⊗N � F(M ⊗ G(N)) in H̃ (Mk)(ψ)C
A. (4. 10)

If (A′, β′) has a twisted antipode S, then

N ⊗ F(M) � F(G(N) ⊗M) in H̃ (Mk)(ψ)C
A. (4. 11)

Proof. We only prove (4.10) and similar for (4.9) and (4.11). Assume that (A′, β′) is a monoidal Hom-Hopf
algebra and define

Γ : F(M ⊗ G(N)) = M ⊗ G(N) ⊗A A′ → F(M) ⊗N = (M ⊗A A′) ⊗N

by
Γ((m ⊗ n) ⊗ a′) = (m ⊗ a′(1)) ⊗ n · a′(2),

for all a′ ∈ A′,m ∈M and n ∈ N. Γ is well-defined since

Γ((m ⊗ n) ⊗Φ(a)a′) = (m ⊗Φ(a(1))a′(1)) ⊗ n ·Φ(a(2))a′(2)

= (m · a(1) ⊗ a′(1)) ⊗ n ·Φ(a(2))a′(2)

= Γ((m · a(1) ⊗ n ·Φ(a(2))) ⊗ a′)
= Γ((m ⊗ n) · a ⊗ a′).

It is easy to check that Γ is (A′, β′)-linear. Now we shall verify that Γ is (C, γ)-colinear based on (3.1). For
any a′ ∈ A′,m ∈M and n ∈ N, we have

ρ(Γ((m ⊗ n) ⊗ a′)) = ρ((m ⊗ a′(1)) ⊗ n · a′(2))

= (m[0] ⊗ β
′−1(a′(1)ψ)) ⊗ (n[0] · β

′−1(a′(2)ψ)) ⊗ γ(m[1])ψγ(n[1])ψ
(3.1)
= (m[0] ⊗ β

′−1(a′ψ(1))) ⊗ (n[0] · β
′−1(a′ψ(2))) ⊗ γ(m[1]n[1])ψ

= (Γ ⊗ idc)(((m[0] ⊗ n[0]) ⊗ β′−1(a′)ψ) ⊗ γ(m[1]n[1])ψ)
= (Γ ⊗ idc)ρ((m ⊗ n) ⊗ a′).
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The inverse of Γ is given by

Π((m ⊗ a′) ⊗ n) = (m ⊗ ν−2(n)S−1(a′(2))) ⊗ β
′2(a′(1))

for all a′ ∈ A′,m ∈M and n ∈ N. One can check that Π is well-defined similar to Γ. Finally, we have

Π(Γ((m ⊗ n) ⊗ a′)) = Π((m ⊗ a′(1)) ⊗ n · a′(2))

= (m ⊗ ν−2(n · a′(2))S(a′(1)(2))) ⊗ β
′2(a′(1)(1))

= (m ⊗ ν−1(n) · [β′−1(a′(2)(2)S
−1(β′−1(a′(2)(1)))]) ⊗ β

′(a′(1))

= (m ⊗ n) ⊗ a′,

and

Γ(Π((m ⊗ a′) ⊗ n)) = Γ((m ⊗ ν−2(n)S−1(a′(2))) ⊗ β
′2(a′(1)))

= (m ⊗ β′2(a′(1)(1))) ⊗ ν
−2(n) · S−1(a′(2))β

′2(a′(1)(2))

= (β′(a′(1)) ⊗m) ⊗ ν−1(n) · [S−1(β′(a′(2)(2))β
′(a′(2)(1))]

= (m ⊗ a′) ⊗ n,

as needed. The proof is completed. �

5. The General Induction Functor

Let (Φ,Ψ) : (A,C, ψ)→ (A′,C′, ψ′) be a morphism of (right-right) Hom-entwining structures. The results
of [9] can be extended to the general induction functor

F : H̃ (Mk)(ψ)C
A → H̃ (Mk)(ψ′)C′

A′

and its right adjoint G (see Theorem 4.2). In order to avoid technical complications, we will assume that
the Hom-entwining map ψ is bijective, and write ψ−1 = ϑ.

Proposition 5.1. Let (Φ,Ψ) : (A,C, ψ) → (A′,C′, ψ′) be a morphism of (right-right) Hom-entwining structures.
With ψ invertible, and ϑ : A ⊗ C → C ⊗ A its inverse. Let V2 consist of all left and right (A, β)-linear maps
λ : GF(C ⊗ A)→ A satisfying

λ((γ−1(ci) ⊗ a′i ) ⊗ di(1)) ⊗ γ(di(2)) =
∑

λ((ci(2) ⊗ a′i ) ⊗ γ
−1(di))ψ ⊗ γ2(ci(1))

ψ
(5. 1)

for all (ci ⊗ a′i ) ⊗ di ∈ GF(C ⊗ A). We have a k-linear isomorphism

f1 : V1 = C
AHomC

A(GF(C ⊗ A),C ⊗ A)→ V2, f1(v) = (ε ⊗ IA) ◦ v.

Proof. λ = f1(v) is left and right (A, β)-linear since v and ε ⊗ IA are left and right (A, β)-linear. Take∑
i(ci ⊗ a′i ) ⊗ di ∈ GF(C ⊗ A), and we write

v(
∑

i

(ci ⊗ a′i ) ⊗ di) =
∑

j

c j ⊗ a j.

Using the left (C, γ)-colinearity of v, we have

γ2(ci(1)) ⊗ v(
∑

i

(ci(2) ⊗ β
′−1(a′i )) ⊗ γ

−1(di)) =
∑

j

γ(c j(1)) ⊗ (c j(2) ⊗ β
−1(a j)),
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and applying εC to the second factor

γ2(ci(1)) ⊗ λ(
∑

i

(ci(2) ⊗ β
′−1(a′i )) ⊗ γ

−1(di)) =
∑

j

c j ⊗ β
−1(a j),

v is also right (C, γ)-colinear, hence

v(
∑

i

(γ−1(ci) ⊗ β′−1(a′i )) ⊗ di(1)) ⊗ γ(di(2)) =
∑

j

[c j(1) ⊗ β
−1(a jψ)] ⊗ γ(cψj(2)).

Applying εC to the first factor, we obtain

λ(
∑

i

(γ−1(ci) ⊗ β′−1(a′i ) ⊗ di(1)) ⊗ γ(di(2)) =
∑

j

β−1(a jψ) ⊗ cψj ,

and we have shown that λ satisfies (5.1), and f1 is well-defined. The inverse of f1 is given by

11(
∑

i

(ci ⊗ a′i ) ⊗ di) =
∑

i

γ2(ci(1)) ⊗ λ(
∑

i

(ci(2) ⊗ β
−1(ai)) ⊗ γ−1(di)).

It is obvious that v = 11(λ) is left (C, γ)-colinear and right (A, β)-linear. v is right (C, γ)-colinear since

v(
∑

i

(γ−1(ci) ⊗ β′−1(a′i ) ⊗ di(1)) ⊗ γ(di(2))

=
∑

i

γ(ci(1)) ⊗ λ(
∑

i

(γ−1(ci(2)) ⊗ β′−1(a′i )) ⊗ γ
−1(di(1))) ⊗ γ(di(2))

=
∑

i

γ(ci(1)) ⊗ λ(
∑

i

(ci(2)(2) ⊗ β
′−1(a′i )) ⊗ γ

−2(di))ψ ⊗ γ2(cψi(2)(1))

= ρ(
∑

i

γ2(ci(1)) ⊗ λ((ci(2) ⊗ β
′−1(a′i )) ⊗ γ

−1(di)))

= ρ(v((ci ⊗ a′i ) ⊗ di)),

and v is left (A, β)-linear since

v(a(
∑

i

(ci ⊗ a′i ) ⊗ di))

= v(
∑

i

(γ(cϑi ) ⊗Φ(β−2(aϑ))β′−1(a′i )) ⊗ γ(di))

= γ3(cϑi(1)) ⊗ λ((γ(cϑi(2)) ⊗Φ(β−3(aϑ))β′−2(a′i )) ⊗ di)

= γ3(cϑi(1)) ⊗ λ((γ(cψi(2)) ⊗Φ(β−3(aϑψ))β′−2(a′i )) ⊗ di)

= γ3(cϑi(1)) ⊗ λ(β−2(aϑ)(ci(2) ⊗ β
′−3(a′i )) ⊗ di)

= a(
∑

i

γ2(ci(1)) ⊗ λ(ci(2) ⊗ β
′−1(a′i )) ⊗ γ

−1(di))

= av(
∑

i

(ci ⊗ a′i ) ⊗ di).

We have it to the reader to show that 11 = f−1
1 .

Theorem 5.2. Let (Φ,Ψ) : (A,C, ψ)→ (A′,C′, ψ′) be a morphism of (right-right) Hom-entwining structures. With
ψ invertible, and ϑ : A ⊗ C→ C ⊗ A its inverse. Define the A-action on C ⊗ A′ by

a · (c ⊗ b′) =
∑

γ−1(cϑ) ⊗ β−1(a)ϑb′, where a ∈ A, c ∈ C, b′ ∈ B′.

If (C, γ) is left (C′, γ′)-coflat, then V1 and V2 are isomorphic as k-modules.



S. J. Guo et al. / Filomat 33:1 (2019), 27–41 39

Proof. In view of the previous results, it suffices to show that f ◦ f1 : V → V2 is surjective. Starting from
λ ∈ V2, we have to construct a natural transformation v, that is, for all (M, µ) ∈ H̃ (Mk)(ψ)C

A, we have to
construct a morphism

vM : GF(M) = (M ⊗A A′)�C′C→M.

First we remark that the map

φ : M ⊗A A′ →M ⊗A (C ⊗ A′), φ(m ⊗A a′) = µ(m[0]) ⊗A (m[1] ⊗ β
′−1(a′))

is well-defined. Indeed,

φ(ma ⊗A a′) = µ((ma)[0]) ⊗A ((ma)[1] ⊗ β
′−1(a′))

=
∑

µ(m[0]) · β(β−1(a)ψ) ⊗A (γ(m[1]
ψ) ⊗ β′−1(a′))

=
∑

µ(m[0]) ⊗A β(β−1(a)ψ) · (γ(m[1]
ψ) ⊗ β′−1(a′))

=
∑

µ(m[0]) ⊗A (γ−1(γ(m[1]
ψ)ϑ) ⊗ β−1(a)ψϑβ

′−1(a′))

= µ(m[0]) ⊗A (m[1] ⊗ β
′−1(aa′)) = φ(m ⊗A aa′).

From the fact that (C, γ) is left (C′, γ′)-coflat, so we have

(M ⊗A (C ⊗ A′))�C′C �M ⊗A ((C ⊗ A′)�C′C),

and we consider the map

vM = (IM ⊗A λ) ◦ ã ◦ (φ�C′ IC) : GF(M)→M ⊗A A �M

given by

vM(
∑

(mi ⊗ a′i ) ⊗ ci) =
∑

µ2(mi[0]) · λ((mi[1] ⊗ β
−1(a′i )) ⊗ γ

−1(ci)).

Let us first show that v is right A-linear.

vM((
∑

(mi ⊗ a′i ) ⊗ ci) · a)

= vM(
∑

(µ(mi) ⊗ a′iβ
′−1(α(β−1(a)ψ))) ⊗ γ(ci

ψ))

=
∑

µ3(mi[0]) · λ((γ(mi[1]) ⊗ β′−1(a′i )β
′−2(α(β−1(a)ψ))) ⊗ ci

ψ)

=
∑

µ3(mi[0]) · λ((γ(mi[1]) ⊗ β′−1(a′i )β
′−1(αβ−1(β−1(a)ψ))) ⊗ γ(γ−1(ci

ψ)))

=
∑

µ3(mi[0]) · λ((γ(mi[1]) ⊗ β′−1(a′i )β
′−1(α(β−2(a)ψ))) ⊗ γ(γ−1(ci)

ψ
))

=
∑

µ3(mi[0]) · λ(((mi[1] ⊗ β
′−1(a′i )) ⊗ γ

−1(ci)) · β−1(a))

=
∑

µ3(mi[0]) · (λ((mi[1] ⊗ β
′−1(a′i )) ⊗ γ

−1(ci))β−1(a))

=
∑

(µ2(mi[0]) · λ((mi[1] ⊗ β
′−1(a′i )) ⊗ γ

−1(ci))) · a

= vM(
∑

(mi ⊗ a′i ) ⊗ ci) · a.
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v is right C-colinear since

ρr(vM(
∑

(mi ⊗ a′i ) ⊗ ci))

= ρr(
∑

µ2(mi[0]) · λ((mi[1] ⊗ β
−1(a′i )) ⊗ γ

−1(ci)))

=
∑

µ2(mi[0][0]) · (β−1(λ((mi[1] ⊗ β
−1(a′i )) ⊗ γ

−1(ci))))ψ ⊗ γ(γ2(mi[0][1])
ψ

)

=
∑

µ(mi[0]) · (λ((mi[1](2) ⊗ β
−2(a′i )) ⊗ γ

−2(ci)))ψ ⊗ γ(γ2(mi[1](1))
ψ

)

(5.1)
=

∑
µ(mi[0]) · λ((γ−1(mi[1]) ⊗ β−2(a′i )) ⊗ γ

−1(ci[1])) ⊗ γ(ci[2])

=
∑

vM((µ−1(mi) ⊗ β−1(a′i )) ⊗ ci[1]) ⊗ γ(ci[2])

=
∑

vM(
∑

(mi ⊗ a′i ) ⊗ ci)[0] ⊗ vM(
∑

(mi ⊗ a′i ) ⊗ ci)[1].

Let us show that v is natural. Let 1 : (M, µ) → (N, ν) be a morphism in H̃ (Mk)(ψ)C
A, and take x =∑

(mi ⊗ a′i ) ⊗ ci ∈ (M ⊗A A′)�C′C. Then

vN(GF(1))(x) =
∑

vN((1(mi) ⊗ a′i ) ⊗ ci)

=
∑

µ2(1(mi[0])) · λ((mi[1] ⊗ β
−1(a′i )) ⊗ γ

−1(ci))

=
∑
1(µ2(mi[0]) · λ((mi[1] ⊗ β

−1(a′i )) ⊗ γ
−1(ci)))

=
∑
1(vM(x)).

Finally, we have to show that f1( f (v)) = λ. Indeed, we have

(̃lA ◦ (εC ⊗ IA))(vC⊗A(
∑

((ci ⊗ 1A) ⊗ a′i ) ⊗ di))

= (̃lA ◦ (εC ⊗ IA))(
∑

(γ2(ci(1)) ⊗ 1A) · λ((ci(2) ⊗ β
′−1(a′i )) ⊗ γ

−1(di)))

=
∑

1Aλ((γ−1(ci) ⊗ β′−1(a′i )) ⊗ γ
−1(di)))

=
∑

λ((ci ⊗ a′i ) ⊗ di)),

as needed.

Corollary 5.3. Let (Φ,Ψ) : (A,C, ψ) → (A′,C′, ψ′) be a morphism of (right-right) Hom-entwining structures.
with ψ invertible, and ϑ : A ⊗ C → C ⊗ A its inverse. If (C, γ) is left (C′, γ′)-coflat, then induction functor
F : H̃ (Mk)(ψ)C

A → H̃ (Mk)(ψ′)C′
A′ is separable if and only if there exists λ ∈ V2 such that

λ((γ−1(c(1)) ⊗ 1A′ ) ⊗ c(2)) = ε(c)1A (5. 2)

for all c ∈ c and a ∈ A. F is full and faithful if and only if ηC⊗A is an isomorphism.

Proof. If F is separable, then there exists v ∈ V such that v ◦ η is the identity natural transformation, in
particular

vC⊗A ◦ ηC⊗A = IC⊗A.

Write v = f (v) and λ = f1(v), and apply both sides to c ⊗ 1A:

v((γ−1(c(1)) ⊗Φ((1A)ψ)) ⊗ cψ(2)) = c ⊗ 1A,



S. J. Guo et al. / Filomat 33:1 (2019), 27–41 41

and (5.2) follows after we apply ε to the first factor. Conversely, if λ ∈ V2 satisfies (5.2), and v is the natural
transformation corresponding to λ, then

vM(ηM(m)) = vM((µ−1(m[0]) ⊗ 1′A) ⊗m[1])

= µ(m[0][0]) ⊗ λ((γ−1(m[0][1]) ⊗ 1′A) ⊗ γ−1(m[1]))

= m[0] ⊗ λ((γ−1(m[1](1)) ⊗ 1′A) ⊗m[1](2))
= m[0])ε(m[1])1A = m.

The second statement is proved in the same way.
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