Published by Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

The Signless Laplacian Coefficients and the Incidence Energy of Unicyclic Graphs with given Pendent Vertices

Wen-Huan Wang ${ }^{\text {a }}$, Lei Zhong ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Shanghai University, Shanghai 200444, China

Abstract

Let \mathcal{U}_{n}^{r} be the set of unicyclic graphs with n vertices and r pendent vertices (namely, r leaves), where $n \geq 4$ and $r \geq 1$. We consider the signless Laplacian coefficients (SLCs) and the incidence energy (IE) in \mathcal{U}_{n}^{r}. Firstly, among a subset of \mathcal{U}_{n}^{r} in which each graph has a fixed odd girth $g \geq 3$, where $n \geq g+1$ and $r \geq 1$, we characterize a unique extremal graph which has the minimum SLCs and the minimum IE. Secondly, if $G \in \mathcal{U}_{n}^{r}$ and G has odd girth $g \geq 5$, where $n \geq 7$ and $r \geq 1$, then we prove that a unique extremal graph $L_{n} \in \mathcal{U}_{n}^{r}$ with girth 4 satisfies that both the SLCs and the IE of G are more than the counterparts of L_{n}.

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph with a vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and an edge set $E(G)=$ $\left\{e_{1}, \ldots, e_{m}\right\}$. The vertex-edge incidence matrix of G is denoted by $I(G)$, where $I(G)$ is an $(n \times m)$-matrix whose (i, j)-entry is 1 if the vertex v_{i} is incident with the edge e_{j}, and 0 otherwise. Let $d_{G}\left(v_{i}\right)$ be the degree of the vertex v_{i} with $1 \leq i \leq n$. The adjacency matrix, Laplacian matrix and signless Laplacian matrix of G are denoted by $\boldsymbol{A}(G), \boldsymbol{L}(G)=\boldsymbol{D}(G)-\boldsymbol{A}(G)$, and $Q(G)=\boldsymbol{D}(G)+\boldsymbol{A}(G)$, respectively. It is well known that $A(G)$ is a symmetric matrix and $L(G)$ and $Q(G)$ are positive semi-definite matrices.

The characteristic polynomial of G is defined as

$$
\begin{equation*}
\phi(G ; x)=\operatorname{det}(x I-A(G))=\sum_{i=0}^{n} a_{i}(G) x^{n-i} \tag{1}
\end{equation*}
$$

where \boldsymbol{I} is the identity matrix of order n and $a_{i}(G)$ are coefficients of characteristic polynomial with $0 \leq i \leq n$.
The Laplacian and signless Laplacian characteristic polynomials of G are respectively defined as

$$
\begin{equation*}
L(G ; x)=\operatorname{det}(x \boldsymbol{I}-\boldsymbol{L}(G))=\sum_{i=0}^{n}(-1)^{i} c_{i}(G) x^{n-i}, \tag{2}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
Q(G ; x)=\operatorname{det}(x I-Q(G))=\sum_{i=0}^{n}(-1)^{i} p_{i}(G) x^{n-i}, \tag{3}
\end{equation*}
$$

\]

where $c_{i}(G)$ and $p_{i}(G)$ are coefficients of corresponding characteristic polynomials.
The energy of G was defined by Gutman [1] in 1978 as the sum of the absolute values of the eigenvalues of $A(G)$. It has many chemical applications and stimulated interests among mathematician. For more details on the energy of G, one can refer to books [2,3]. By extending the concept of graph energy, Nikiforov [4] defined the energy of a matrix as the sum of the singular values of the matrix.

Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ be the singular values of $\boldsymbol{I}(G)$. The authors in $[5,6]$ defined the incidence energy (IE), denoted by $\operatorname{IE}(G)$, of a graph G as

$$
\begin{equation*}
\operatorname{IE}(G)=\sum_{i=1}^{n} \sigma_{i} . \tag{4}
\end{equation*}
$$

It is known that [5]

$$
\begin{equation*}
\boldsymbol{I}(G) \boldsymbol{I}^{\mathbf{t}}(G)=\boldsymbol{D}(G)+\boldsymbol{A}(G)=\boldsymbol{Q}(G) \tag{5}
\end{equation*}
$$

Recalled that for a matrix \boldsymbol{B} with real entries, the singular values of the matrix \boldsymbol{B} are the square roots of the eigenvalues of $\boldsymbol{B} \boldsymbol{B}^{\mathrm{t}}$, where $\boldsymbol{B}^{\mathrm{t}}$ is the transpose of \boldsymbol{B}. Denote by $\mu_{1}^{+}(G) \geq \mu_{2}^{+}(G) \geq \ldots \geq \mu_{n}^{+}(G)$ the eigenvalues of the signless Laplacian characteristic polynomial $Q(G ; x)$. Then $\mu_{1}^{+}(G), \mu_{2}^{+}(G), \ldots, \mu_{n}^{+}(G)$ are real and non-negative. Thus, from (4) and (5), we have

$$
\begin{equation*}
\operatorname{IE}(G)=\sum_{i=1}^{n} \sqrt{\mu_{i}^{+}(G)} \tag{6}
\end{equation*}
$$

We denote by $S(G)$ the subdivision graph of G, where $S(G)$ is the graph obtained from G by inserting an additional vertex into each edge of G. Obviously, $S(G)$ is a bipartite graph with $n+m$ vertices and $2 m$ edges. The characteristic polynomial of $S(G)$ is

$$
\begin{equation*}
\phi(S(G) ; x)=\operatorname{det}(x \mathbf{I}-A(S(G)))=\sum_{i=0}^{\left\lfloor\frac{n+m}{2}\right\rfloor} a_{2 i}(S(G)) x^{n+m-2 i} \tag{7}
\end{equation*}
$$

where $a_{2 i}(S(G))$ are coefficients of characteristic polynomial $\phi(S(G) ; x)$ with $0 \leq i \leq\left\lfloor\frac{n+m}{2}\right\rfloor$. Let $b_{2 i}(S(G))=$ $\left|a_{2 i}(S(G))\right|$, where $0 \leq i \leq\left\lfloor\frac{n+m}{2}\right\rfloor$. Specially, $b_{0}(S(G))=1$ and $b_{2}(S(G))=n+m$. If G is a tree, then $b_{2 i}(S(G))=m_{i}(S(G))$, where $m_{i}(S(G))$ is the number of i-matchings in $S(G)$. It is convenient to define $m(G, 0)=1$.

It has been obtained in [7] that

$$
\begin{equation*}
\phi(S(G) ; x)=x^{m-n} Q\left(G ; x^{2}\right) \tag{8}
\end{equation*}
$$

Therefore, we have [7]

$$
b_{2 i}(S(G))=\left\{\begin{array}{l}
p_{i}(G), \quad 0 \leq i \leq n ; \tag{9}\\
0, \quad n<i \leq\left\lfloor\frac{n+m}{2}\right\rfloor
\end{array}\right.
$$

The authors in [8] and [9] independently obtained

$$
\begin{equation*}
p_{i}\left(G_{1}\right) \leq p_{i}\left(G_{2}\right) \Longrightarrow \operatorname{IE}\left(G_{1}\right) \leq \operatorname{IE}\left(G_{2}\right) . \tag{10}
\end{equation*}
$$

Moreover, if there exists a positive integer i_{0} such that $p_{i_{0}}\left(G_{1}\right)<p_{i_{0}}\left(G_{2}\right)$, then $\operatorname{IE}\left(G_{1}\right)<\operatorname{IE}\left(G_{2}\right)$.
In 2007, among classes of Laplacian-cospectral trees of the same order n, Mohar [10] defined a new partial ordering, namely $T \leq T^{\prime}$ if $c_{i}(T) \leq c_{i}\left(T^{\prime}\right)$ for $i=1, \ldots, n$, and he [10] also showed that this poset has a
unique minimum and has a unique maximum element. Later, many interesting results have been obtained about the poset among many classes of graphs. For example, the trees with a fixed matching number [11], the unicyclic graphs [12, 13], the bicyclic graphs [14], etc.

Recently, the signless Laplacian matrix has attracted more and more attention [15], which may have more properties than the adjacency and Laplacian matrices, and can be used to discover more structural characterization of graphs. It is known that $L(G)$ and $Q(G)$ are similar if and only if (iff) G is bipartite. So the Laplacian coefficients are the same as the signless Laplacian coefficients (SLCs) iff G is bipartite.

We write $G \leq^{\prime} H$ if $p_{i}(G) \leq p_{i}(H)$ for $0 \leq i \leq n$. We write $G \prec^{\prime} H$ if $G \leq^{\prime} H$ with a k in such a way that $p_{k}(G)<p_{k}(H)$. Recently, some results have been obtained in terms of the ordering \leq^{\prime}. For example, Li et al. [16] determined two maximum elements and two minimum elements among the set of unicyclic graphs, Zhang and Zhang [15] got two minimum elements among the set of bicyclic graphs, Zhang and Zhang [17] characterized all the minimum elements among the set of unicyclic graphs having a fixed matching number. Mirzakhah and Kiani [9] studied the coefficients of the signless Laplacian matrix of unicyclic graphs. For further information on the signless Laplacian matrix, one can refer to three surveys [18-20].

The IE of G can help explain some phenomena of chemical molecule. By using (10) and other methods, the graphs with the extremal IE have been characterized among some classes of graphs. Among all the trees, Gutman et al. [5] got the graphs with the smallest and the largest IE and Tang and Hou [21] got the the trees with the second smallest, the third smallest, the second largest, and the third largest IE. Among all the trees with a given matching number, Ilić [22] obtained the graph with the minimum IE. Among all the trees with a described maximum degree, Jin et al. [23] characterized the trees with the minimum IE. Among all the trees with a given pendent vertex number, Zhang et al. [24] got the one with the minimum IE. Among all the unicyclic graphs and bicyclic graphs, Zhang and Li [8] determined the graphs having the minimum and the maximum IE, respectively.

Let \mathcal{U}_{n}^{r} be the set of unicyclic graphs with $n \geq 4$ vertices and $r \geq 1$ pendent vertices. Let $\mathcal{U}_{n, g}^{r}$ be the subset of \mathcal{U}_{n}^{r} in which every graph has a cycle with girth $g \geq 3$, where $n \geq g+1$ and $r \geq 1$. Motivated by all the above-mentioned work, we will deduce, in the present study, the graph having the minimum SLCs according to the ordering of \leq^{\prime} (namely, the graph with the minimum IE) in $\mathcal{U}_{n, g}^{r}$ and \mathcal{U}_{n}^{r}.

The rest of this paper is organized as follows. Firstly, for two graphs in $\mathcal{U}_{n, g}^{r}$, we introduce two new graph transformations (see Lemmas 3.1 and 3.2) that preserve order, size and the number of the pendent vertices, but decrease the matching number of the subdivision graphs and the SLCs of the graphs under consideration. Then, we characterize a unique extremal graph which has the minimum SLCs and the minimum IE among $\mathcal{U}_{n, g}^{r}$, where $r \geq 1, n>g \geq 3$ and g is odd (see Theorems 3.8 and 3.9). Secondly, if $G \in \mathcal{U}_{n}^{r}$ and G has odd girth $g \geq 5$, where $n \geq 7$ and $r \geq 2$, then we prove that a unique extremal graph $L_{n} \in \mathcal{U}_{n}^{r}$ with girth 4 satisfies that both the SLCs and the IE of G are more than the counterparts of L_{n} (see Theorems 3.17 and 3.18). Thirdly, in \mathcal{U}_{n}^{1} with $n \geq 5$, a graph with the minimum SLCs and the minimum IE is obtained (see Theorem 3.19).

2. Preliminaries

To obtain the main results of this paper, some necessary definitions and lemmas are introduced.
Lemma 2.1. [25] Let G be a graph with characteristic polynomial $\phi(G ; x)=\sum_{k=0}^{n} a_{k} x^{n-k}$. Then for $k \geq 1$,

$$
a_{k}=\sum_{S \in L_{k}}(-1)^{\omega(S)} 2^{c(S)},
$$

where L_{k} denotes the set of Sachs subgraphs of G with k vertices, that is, the subgraphs in which every component is either a K_{2} or a cycle; $\omega(S)$ is the number of connected components of S, and $c(S)$ is the number of cycles contained in S. In addition, $a_{0}=1$.

Let $b_{i}(G)=\left|a_{i}(G)\right|$ with $0 \leq i \leq n$. Then by Lemma 2.1, we get $b_{0}(G)=1, b_{1}(G)=0$, and $b_{2}(G)$ equals to the number of edges of G.

For a given graph G and $e \in E(G)$ (respectively, $e \notin E(G)$), let $G-e$ (respectively, $G+e$) be the graph obtained from G by deleting (respectively, adding) the edge e. For $v \in V(G)$, let $G-v$ be the graph obtained from G by deleting the vertex v together with its incident edges. Let $G-H$ be the graph obtained from G by deleting all the vertices of H and all the edges which are incident with the vertices of H.
Lemma 2.2. [26] Let G be a graph with n vertices.
(a) If G contains exactly one cycle C_{g} and uv is an edge on C_{g}, then

$$
\begin{array}{ll}
b_{i}(G)=b_{i}(G-u v)+b_{i-2}(G-u-v)-2 b_{i-g}\left(G-C_{g}\right) & \text { if } g=0(\bmod 4) \\
b_{i}(G)=b_{i}(G-u v)+b_{i-2}(G-u-v)+2 b_{i-g}\left(G-C_{g}\right) & \text { if } g \neq 0(\bmod 4) .
\end{array}
$$

(b) If $u v$ is a cut edge, then $b_{i}(G)=b_{i}(G-u v)+b_{i-2}(G-u-v)$.

Lemma 2.3. [27] Let G be a unicyclic graph and G^{\prime} a graph obtained from G by deleting at least one edge outside its unique cycle. Then $b_{i}\left(G_{1}\right) \geq b_{i}\left(G_{2}\right)$ for all $i \geq 0$. Moreover, there exists at least one i_{0} such that $b_{i_{0}}\left(G_{1}\right)>b_{i_{0}}\left(G_{2}\right)$.
Lemma 2.4. [7][28] Let $G \cup H$ denote the graph whose components are G and H. Then, we have $m_{k}(G \cup H)=$ $\sum_{h=0}^{k} m_{h}(G) m_{k-h}(H)$.
Lemma 2.5. [28] If $u v$ is an edge of G, then for all $k \geq 1, m_{k}(G)=m_{k}(G-u v)+m_{k-1}(G-u-v)$.
We denote by P_{n} a path with n vertices. The vertices of P_{n} are labeled by $u_{0}, u_{1}, \ldots, u_{n-1}$. Denote $P_{n_{1}} \cup P_{n_{2}}$ by $U_{n_{1}, n_{2}}$.
Lemma 2.6. [29] If $n=4 h+i$ with $h \geq 1$ and $i \in\{0,1,2,3\}$, then for $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor, m_{k}\left(P_{n}\right) \geq m_{k}\left(U_{2, n-2}\right) \geq \ldots \geq$ $m_{k}\left(U_{2 h, n-2 h}\right) \geq m_{k}\left(U_{2 h+1, n-2 h-1}\right) \geq m_{k}\left(U_{2 h-1, n-2 h+1}\right) \geq \ldots \geq m_{k}\left(U_{1, n-1}\right)$.

Let F and H be two disjoint graphs. Let u be a vertex of F and v a vertex of H. The graph obtained from F and H by identifying u of F and v of H is denoted by $F(u, v) H$.
Lemma 2.7. [29] Let v be an arbitrary vertex of G. If $n=4 h+i$ with $h \geq 1$ and $i \in\{-1,0,1,2\}$, then $m_{k}\left(P_{n}\left(u_{0}, v\right) G\right) \geq$ $m_{k}\left(P_{n}\left(u_{2}, v\right) G\right) \geq \ldots \geq m_{k}\left(P_{n}\left(u_{2 h}, v\right) G\right) \geq m_{k}\left(P_{n}\left(u_{2 h-1}, v\right) G\right) \geq m_{k}\left(P_{n}\left(u_{2 h-3}, v\right) G\right) \geq \ldots \geq m_{k}\left(P_{n}\left(u_{1}, v\right) G\right)$.
Lemma 2.8. [16] Let G be a unicyclic graph with n vertices and the girth of cycle contained in G be g. When $0 \leq k \leq n$ and $3 \leq g \leq n$, we have

$$
p_{k}(G)=m_{k}(S(G))+(-1)^{g+1} 2 m_{k-g}\left(S(G)-C_{2 g}\right) .
$$

We denote by $N_{G}(v)$ the neighbors of v in the graph G.
Lemma 2.9. Let F and T be disjoint graphs, where F is a connected graph with $u \in V(F)$ and T is a tree with $v \in V(T)$. Let $N_{T}(v)=\left\{w_{1}, \ldots, w_{\left|N_{T}(v)\right|}\right\}$. For $2 \leq i \leq|V(F)|+|V(T)|$, we have

$$
b_{i}(F(u, v) T)=b_{i}(F \cup(T-v))+\sum_{k=1}^{\left|N_{T}(v)\right|} b_{i-2}\left((F-u) \cup\left(T-v-w_{k}\right)\right) .
$$

Proof. Let $\widetilde{Q}=F(u, v) T$. Let G and $u v$ in Lemma 2.2 be \widetilde{Q} and $v w_{1}$, respectively. Let i be a fixed integer with $2 \leq i \leq|V(F)|+|V(T)|$. By Lemma 2.2(b), we have

$$
\begin{equation*}
b_{i}(\widetilde{Q})=b_{i}\left(\widetilde{Q}-v w_{1}\right)+b_{i-2}\left((F-u) \cup\left(T-v-w_{1}\right)\right) \tag{11}
\end{equation*}
$$

Again, let G and $u v$ in Lemma 2.2 be $\widetilde{Q}-v w_{1}$ and $v w_{2}$, respectively. By Lemma 2.2(b) and (11), we obtain

$$
\begin{equation*}
b_{i}(\widetilde{Q})=b_{i}\left(\widetilde{Q}-v w_{1}-v w_{2}\right)+\sum_{k=1}^{2} b_{i-2}\left((F-u) \cup\left(T-v-w_{k}\right)\right) . \tag{12}
\end{equation*}
$$

Furthermore, by the same procedure and by using Lemma 2.2(b) $\left|N_{T}(v)\right|-2$ times, we can get Lemma 2.9.

Figure 1: α-transformation from G to A_{n}

3. Main Results

3.1. The graph with the minimum SLCs and the minimum IE in $\mathcal{U}_{n, g}^{r}$

In this subsection, we will deduce the unique graph with the minimum SLCs and the minimum IE in $\mathcal{U}_{n, g}^{r}$, where $r \geq 1, n>g \geq 3$ and g is odd. Two new transformations (see Lemmas 3.1 and 3.2) will be introduced. These two new transformations preserve order, size and the number of the pendent vertices, but decrease the matching number of the subdivision graphs and the SLCs of the graphs under consideration.

We denote by C_{n} a cycle with $n \geq 3$ vertices. The vertices of C_{n} are clockwise labeled by $w_{0}, w_{1}, \ldots, w_{n-1}$. Obviously, for $G \in \mathcal{U}_{n, g}^{r}$, the vertex w_{i} on C_{g} of G maybe (or maybe not) be attached by a tree (denoted by T_{i}^{\prime}), where $0 \leq i \leq g-1$. For $G \in \mathcal{U}_{n, g}^{r}$, let A_{n} be the graph obtained from G by transplanting all the trees attached at w_{i} on C_{g} of G to the vertex w_{0} of C_{g}, where $1 \leq i \leq g-1$. In other words, for $G \in \mathcal{U}_{n, g}^{r}$

$$
A_{n}=G-\bigcup_{i=1}^{g-1}\left\{w_{i} v \mid v \in N_{T_{i}^{\prime}}\left(w_{i}\right)\right\}+\bigcup_{i=1}^{g-1}\left\{w_{0} v \mid v \in N_{T_{i}^{\prime}}\left(w_{i}\right)\right\} .
$$

G and A_{n} are shown in Fig. 1(a) and Fig. 1(b), respectively. The transformation from G to A_{n} is hereinafter called α-transformation, where $G \in \mathcal{U}_{n, g}^{r}$. Obviously, $A_{n} \in \mathcal{U}_{n, g}^{r}$.

Lemma 3.1. If $G \in \mathcal{U}_{n, g}^{r} \backslash\left\{A_{n}\right\}$ with $r \geq 2$ and $n>g \geq 3$, then after performing the α-transformation, we have $p_{i}(G) \geq p_{i}\left(A_{n}\right)$ for $0 \leq i \leq n$, and at least one inequality holds within $0 \leq i \leq n$.

Proof. By (9), to obtain $p_{i}(G) \geq p_{i}\left(A_{n}\right)$ for $0 \leq i \leq n$, we only need to prove $b_{2 i}(S(G)) \geq b_{2 i}\left(S\left(A_{n}\right)\right)$ for $0 \leq i \leq n$. Since $S(G)$ is a bipartite graph, by Lemma 2.1, $b_{2 i+1}(S(G))=0$ for $0 \leq i \leq n$. By Lemma 2.1, we have $b_{0}(S(G))=b_{0}\left(S\left(A_{n}\right)\right)=1$ and $b_{2}(S(G))=b_{2}\left(S\left(A_{n}\right)\right)=2 n$. Next, let $2 \leq i \leq n$.

In $S\left(A_{n}\right)$, we denote $S\left(T_{j}^{\prime}\right)-w_{0}$ by Q_{j}, where $0 \leq j \leq g-1$. Denote $Q_{0} \cup \ldots \cup Q_{g-1}$ by Q. Let $G \backslash H$ (respectively $G \backslash\{H, F\}$) be the graph obtained from G by deleting all the edges of H (respectively all the edges of H and F).

In Lemma 2.9, let $F(u, v) T=S\left(A_{n}\right)$, where $F=C_{2 g}, T=S\left(A_{n}\right) \backslash C_{2 g}$, and $u=v=w_{0}$. By Lemma 2.9, we get

$$
\begin{equation*}
b_{2 i}\left(S\left(A_{n}\right)\right)=b_{2 i}\left(C_{2 g} \cup Q\right)+\sum_{j=0}^{g-1} \sum_{w \in N_{S\left(T_{j}^{\prime}\right)}^{(}\left(w_{0}\right)} b_{2 i-2}\left(P_{2 g-1} \cup\left(Q_{j}-w\right) \cup\left(Q \backslash Q_{j}\right)\right) \tag{13}
\end{equation*}
$$

Let $G \in \mathcal{U}_{n, g}^{r} \backslash\left\{A_{n}\right\}$. In Lemma 2.9, let $F(u, v) T=S(G)$, where $F=S(G) \backslash S\left(T_{0}^{\prime}\right), T=S\left(T_{0}^{\prime}\right)$, and $u=v=w_{0}$. Then, we have $F-u=\left(S(G) \backslash S\left(T_{0}^{\prime}\right)\right)-w_{0}$ and $T-v=Q_{0}$. For a fixed $w_{a}^{\prime} \in N_{S\left(T_{0}^{\prime}\right)}\left(w_{0}\right),(F-u) \cup\left(T-v-w_{a}^{\prime}\right)$

Figure 2: β-transformation from A_{n} to A_{n}^{*}
contains $P_{2 g-1} \cup\left(Q_{0}-w_{a}^{\prime}\right) \cup\left(Q \backslash Q_{0}\right)$ as its proper subgraph. By Lemma 2.3, we get

$$
\begin{equation*}
b_{2 i-2}\left((F-u) \cup\left(T-v-w_{a}^{\prime}\right)\right) \geq b_{2 i-2}\left(P_{2 g-1} \cup\left(Q_{0}-w_{a}^{\prime}\right) \cup\left(Q \backslash Q_{0}\right)\right) \tag{14}
\end{equation*}
$$

Moreover, there exists one $i=2$ such that the inequality in (14) holds.
By Lemma 2.9 and (14), we get

$$
\begin{equation*}
b_{2 i}(S(G)) \geq b_{2 i}\left(S(G) \backslash S\left(T_{0}^{\prime}\right) \cup Q_{0}\right)+\sum_{a=1}^{\left|N_{S\left(T_{0}^{\prime}\right)}\left(w_{0}\right)\right|} b_{2 i-2}\left(P_{2 g-1} \cup\left(Q_{0}-w_{a}^{\prime}\right) \cup\left(Q \backslash Q_{0}\right)\right) \tag{15}
\end{equation*}
$$

Moreover, there exists one $i=2$ such that the inequality in (15) holds.
Next, for the first term in the right-hand side of (15), we will prove that (16) holds.
In Lemma 2.9, let $F(u, v) T=S(G) \backslash S\left(T_{0}^{\prime}\right)$, where $F=S(G) \backslash\left\{S\left(T_{0}^{\prime}\right), S\left(T_{1}^{\prime}\right)\right\}, T=S\left(T_{1}^{\prime}\right)$ and $u=v=w_{1}$. For a fixed vertex $w_{b}^{\prime} \in N_{S\left(T_{1}^{\prime}\right)}\left(w_{1}\right),\left(F-w_{1}\right) \cup\left(T-w_{1}-w_{b}^{\prime}\right) \cup Q_{0}$ contains $P_{2 g-1} \cup\left(Q_{1}-w_{b}^{\prime}\right) \cup\left(Q \backslash Q_{1}\right)$ as its subgraph. By Lemma 2.3, we get

$$
b_{2 i-2}\left(\left(F-w_{1}\right) \cup\left(T-w_{1}-w_{b}^{\prime}\right) \cup Q_{0}\right) \geq b_{2 i-2}\left(P_{2 g-1} \cup\left(Q_{1}-w_{b}^{\prime}\right) \cup\left(Q \backslash Q_{1}\right)\right)
$$

Furthermore, by Lemma 2.9, we obtain

$$
\begin{align*}
b_{2 i}\left(\left(S(G) \backslash S\left(T_{0}^{\prime}\right) \cup Q_{0}\right) \geq\right. & b_{2 i}\left(\left(S(G) \backslash\left\{S\left(T_{0}^{\prime}\right), S\left(T_{1}^{\prime}\right)\right\} \cup Q_{0} \cup Q_{1}\right)\right. \\
& +\sum_{b=1}^{\left|N_{S\left(T_{1}^{\prime}\right)}\left(w_{1}\right)\right|} b_{2 i-2}\left(P_{2 g-1} \cup\left(Q_{1}-w_{b}^{\prime}\right) \cup\left(Q \backslash Q_{1}\right)\right) . \tag{16}
\end{align*}
$$

By using Lemma $2.9(g-1)$ times and by the same procedure, we finally get

$$
\begin{equation*}
b_{2 i}(S(G)) \geq b_{2 i}\left(C_{2 g} \cup Q\right)+\sum_{j=0}^{g-1} \sum_{w \in N_{S\left(T_{j}^{\prime}\right)^{\prime}}\left(w_{j}\right)} b_{2 i-2}\left(P_{2 g-1} \cup\left(Q_{j}-w\right) \cup\left(Q \backslash Q_{j}\right)\right) \tag{17}
\end{equation*}
$$

By comparing (13) and (17), we obtain $b_{2 i}(S(G)) \geq b_{2 i}\left(S\left(A_{n}\right)\right)$ for $2 \leq i \leq n$. Thus, we get Lemma 3.1.
In Lemma 3.1, A_{n} can be viewed as the graph obtained from C_{g} by first attaching a tree H at w_{0} of C_{g}, and then attaching a path $P_{t+1}=u_{0} u_{1} \ldots u_{t}$ at w_{0} of C_{g}, where the vertex $u_{i}(1 \leq i \leq t-1)$ of P_{t+1} maybe (maybe not) be attached by a tree (denoted by T_{i}). A_{n} is shown in Fig. 2(a). Let A_{n}^{*} be the graph obtained from A_{n} by transplanting all the trees T_{i} attached at u_{i} of P_{t+1} to u_{0}, where $1 \leq i \leq t-1$. A_{n}^{*} is shown in Fig. 2(b). In other words,

$$
A_{n}^{*}=A_{n}-\bigcup_{i=1}^{t-1}\left\{u_{i} v \mid v \in N_{T_{i}}\left(u_{i}\right)\right\}+\bigcup_{i=1}^{t-1}\left\{u_{0} v \mid v \in N_{T_{i}}\left(u_{i}\right)\right\} .
$$

The transformation from A_{n} to A_{n}^{*} is hereinafter called β-transformation. Obviously, if $A_{n} \in \mathcal{U}_{n, g}^{r}$, then after performing the β-transformation, $A_{n}^{*} \in \mathcal{U}_{n, g}^{r}$.

Lemma 3.2. Let A_{n} and A_{n}^{*} be the graphs as shown in Fig. 2. If $n>g \geq 3$, then we have $m_{k}\left(S\left(A_{n}\right)\right) \geq m_{k}\left(S\left(A_{n}^{*}\right)\right)$, where $0 \leq k \leq n$.

Proof. We have $m_{0}\left(S\left(A_{n}^{*}\right)\right)=m_{0}\left(S\left(A_{n}\right)\right)=1$ and $m_{1}\left(S\left(A_{n}^{*}\right)\right)=m_{1}\left(S\left(A_{n}\right)\right)=2 n$. Next, we consider the cases with $2 \leq k \leq n$.

Let k be a fixed integer, where $2 \leq k \leq n$. The k-matchings of $S\left(A_{n}\right)$ and $S\left(A_{n}^{*}\right)$ are denoted by M and M^{*}, respectively. The sets of M and M^{*} are denoted by \mathcal{M} and \mathcal{M}^{*}, respectively.

In $S\left(A_{n}\right)$ and $S\left(A_{n}^{*}\right)$, the original vertex $u_{i}(0 \leq i \leq t)$ of P_{t} of A_{n} and of A_{n}^{*} is relabeled by $u_{2 i}(0 \leq i \leq t)$. Namely, the vertices of $P_{2 t+1}$ of $S\left(A_{n}\right)$ and of $S\left(A_{n}^{*}\right)$ are labeled by $u_{0}, u_{1}, \ldots, u_{2 t}$. Similarly, in $S\left(A_{n}\right)$ and $S\left(A_{n}^{*}\right)$, the original vertex $w_{i}(0 \leq i \leq g-1)$ on C_{g} of A_{n} and of A_{n}^{*} is relabeled by $w_{2 i}(0 \leq i \leq g-1)$. Namely, the vertices of $C_{2 g}$ of $S\left(A_{n}\right)$ and of $S\left(A_{n}^{*}\right)$ are labeled by $w_{0}, w_{1}, \ldots, w_{2 g-1}$.

We construct a mapping ξ as follows:

$$
\begin{equation*}
E\left(S\left(A_{n}\right)\right)=E\left(S\left(A_{n}^{*}\right)\right)-\bigcup_{i=1}^{t-1}\left\{u_{0} v \mid v \in N_{S\left(T_{i}\right)}\left(u_{0}\right)\right\}+\bigcup_{i=1}^{t-1}\left\{u_{2 i} v \mid v \in N_{S\left(T_{i}\right)}\left(u_{2 i}\right)\right\} . \tag{18}
\end{equation*}
$$

Obviously, ξ is a bijection.
Next, two cases are considered according to whether M^{*} of $S\left(A_{n}^{*}\right)$ contains $u_{0} v$ or not, where $v \in N_{S(T)}\left(u_{0}\right)$ and T is shown in Fig. 2(b).

Case (i). M^{*} of $S\left(A_{n}^{*}\right)$ does not contain $u_{0} v$, where $v \in N_{S(T)}\left(u_{0}\right)$.
In this case, the set of M^{*} of $S\left(A_{n}^{*}\right)$ is denoted by \mathcal{M}_{1}^{*}. By the mapping ξ, there is one-to-one correspondence between a matching M^{*} of $S\left(A_{n}^{*}\right)$ and a matching M of $S\left(A_{n}\right)$. We denote the set of this kind of M of $S\left(A_{n}\right)$ by \mathcal{M}_{1}. Obviously, $\left|\mathcal{M}_{1}^{*}\right|=\left|\mathcal{M}_{1}\right|$.

Case (ii). M^{*} of $S\left(A_{n}^{*}\right)$ contains $u_{0} v$, where v is a vertex of $S\left(T_{s}\right)$ of $S\left(A_{n}^{*}\right)$ with $1 \leq s \leq t-1$.
In this case, there subcases are considered as follows according to whether M^{*} of $S\left(A_{n}^{*}\right)$ contains the edge which is incident with $u_{2 s}$ or not, where $1 \leq s \leq t-1$.

Subcase (ii.i). $u_{2 s-1} u_{2 s}, u_{2 s} u_{2 s+1} \notin M^{*}$.
In this subcase, the set of M^{*} of $S\left(A_{n}^{*}\right)$ is denoted by \mathcal{M}_{2}^{*}. By the mapping ξ, there is one-to-one correspondence between a matching M^{*} of $S\left(A_{n}^{*}\right)$ and a matching M of $S\left(A_{n}\right)$. We denote the set of this kind of M of $S\left(A_{n}\right)$ by \mathcal{M}_{2}. We have $\left|\mathcal{M}_{2}^{*}\right|=\left|\mathcal{M}_{2}\right|$.

Subcase (ii.ii). $u_{2 s-1} u_{2 s} \in M^{*}, u_{2 s} u_{2 s+1} \notin M^{*}$.
In this subcase, the set of M^{*} of $S\left(A_{n}^{*}\right)$ is denoted by \mathcal{M}_{3}^{*}.
For a matching M^{*} of \mathcal{M}_{3}^{*}, by the mapping ξ, we get an edge set of $S\left(A_{n}\right)$ with k edges. We denote the edge set by \widetilde{E}. Obviously, \widetilde{E} has three properties. (i) \widetilde{E} does not contain the edges which are incident with u_{0} of $S\left(A_{n}\right)$. (ii) \widetilde{E} contains $u_{2 s} v$ and $u_{2 s-1} u_{2 s}$, where v is a vertex of $S\left(T_{s}\right)$ of $S\left(A_{n}\right)$. (iii) Except for $u_{2 s} v$ and $u_{2 s-1} u_{2 s}$, all the edges in \widetilde{E} are disjoint mutually. Therefore, \widetilde{E} of $S\left(A_{n}\right)$ is not a k-matching since $u_{2 s} v$ and $u_{2 s-1} u_{2 s}$ are adjacent.

We construct a mapping ζ as follows. For $e \in \widetilde{E}$, if e is an edge of $P_{2 s+1}=u_{0} u_{1} \ldots u_{2 s}$ of $S\left(A_{n}\right)$, then denote e by $u_{i} u_{i+1}$ with $0 \leq i \leq 2 s-1$. Let $\zeta\left(u_{i} u_{i+1}\right)=u_{2 s-i-1} u_{2 s-i}$, where $0 \leq i \leq 2 s-1$. For example, $\zeta\left(u_{2 s-1} u_{2 s}\right)=u_{0} u_{1}$. Otherwise, for each edge (denoted by e) of the other edges in \widetilde{E}, let $\zeta(e)=e$. Obviously, ζ is a bijection. Therefore, we get a new edge set (denoted by M) of $S\left(A_{n}\right)$ with k edges. Obviously, M is a k-matching of $S\left(A_{n}\right)$ since any two edges in M are disjoint. We denote the set of this kind of M of $S\left(A_{n}\right)$ by \mathcal{M}_{3}. Therefore, we obtain $\left|\mathcal{M}_{3}^{*}\right|=\left|\mathcal{M}_{3}\right|$.

Subcase (ii.iii). $u_{2 s-1} u_{2 s} \notin M^{*}, u_{2 s} u_{2 s+1} \in M^{*}$.
In this subcase, the set of M^{*} of $S\left(A_{n}^{*}\right)$ is denoted by \mathcal{M}_{4}^{*}. In $S\left(A_{n}\right)$, we can choose a set of k-matching (denoted by \mathcal{M}_{4}) satisfying that for any $M \in \mathcal{M}_{4}$, there exists exactly one s with $1 \leq s \leq t-1$ such that $u_{2 s} v, u_{0} w_{1} \in M$ or $u_{2 s} v, u_{0} w_{2 g-1} \in M$, where $v \in N_{S\left(T_{s}\right)}\left(u_{2 s}\right)$, and w_{1} and $w_{2 g-1}$ are the vertices of $C_{2 g}$ of $S\left(A_{n}\right)$.

By the definition of \mathcal{M}_{4}^{*}, for any $M^{*} \in \mathcal{M}_{4}^{*}, u_{0} v, u_{2 s} u_{2 s+1} \in M^{*}$, where $1 \leq s \leq t-1$ and $v \in N_{S\left(T_{s}\right)}\left(u_{0}\right)$. Therefore, for fixed s and v, we denote the subsets of \mathcal{M}_{4} and \mathcal{M}_{4}^{*} by $\mathcal{M}_{s, v}$ and $\mathcal{M}_{s, v}^{*}$, respectively. Then, we have

$$
\begin{align*}
& \left|\mathcal{M}_{4}\right|=\sum_{1 \leq s \leq t-1} \sum_{v \in N_{S\left(T_{s}\right)}\left(u_{2 s}\right)}\left|\mathcal{M}_{s, v}\right|, \tag{19}\\
& \left|\mathcal{M}_{4}^{*}\right|=\sum_{1 \leq s \leq t-1} \sum_{v \in N_{S\left(T_{s}\right)}\left(u_{0}\right)}\left|\mathcal{M}_{s, v}^{*}\right| . \tag{20}
\end{align*}
$$

Since the k-matching in $\mathcal{M}_{s, v}$ (respectively $\mathcal{M}_{s, v}^{*}$) contains $u_{2 s} v$ and $u_{0} w_{1}$ or contains $u_{2 s} v$ and $u_{0} w_{2 g-1}$ (respectively $u_{0} v$ and $u_{2 s} u_{2 s+1}$), and $S\left(A_{n}\right)-u_{0}-w_{1}-u_{2 s}-v=S\left(A_{n}\right)-u_{0}-w_{2 g-1}-u_{2 s}-v$, we obtain

$$
\begin{equation*}
\left|\mathcal{M}_{s, v}\right|=2 m_{k-2}\left(S\left(A_{n}\right)-u_{0}-w_{1}-u_{2 s}-v\right) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left|\mathcal{M}_{s, v}^{*}\right|=m_{k-2}\left(S\left(A_{n}^{*}\right)-u_{2 s}-u_{2 s+1}-u_{0}-v\right) . \tag{22}
\end{equation*}
$$

Let $S\left(A_{n}^{*}\right)-u_{2 s}-u_{2 s+1}-u_{0}-v=F \cup U_{2 g-1,2 t-2 s-1}$ with $F=(S(H)-x) \cup\left(S\left(T_{s}\right)-u_{2 s}-v\right) \cup P_{2 s-1} \cup B$, where x is the rooted vertex of $S(H)$ which identifies with w_{0} of $C_{2 g}$, and $B=\bigcup_{1 \leq i \leq t-1, i \neq s}\left(S\left(T_{i}\right)-u_{2 i}\right)$. We can check that $S\left(A_{n}\right)-u_{0}-w_{1}-u_{2 s}-v$ contains $F \cup U_{2 g-2,2 t-2 s}$ as its proper subgraph. Therefore, by (21) and (22), we obtain

$$
\begin{align*}
& \left|\mathcal{M}_{s, v}\right| \geq 2 m_{k-2}\left(F \cup U_{2 g-2,2 t-2 s}\right)=2 \sum_{i+j=k-2} m_{i}(F) m_{j}\left(U_{2 g-2,2 t-2 s}\right), \tag{23}\\
& \left|\mathcal{M}_{s, v}^{*}\right|=m_{k-2}\left(F \cup U_{2 g-1,2 t-2 s-1}\right)=\sum_{i+j=k-2} m_{i}(F) m_{j}\left(U_{2 g-1,2 t-2 s-1}\right) . \tag{24}
\end{align*}
$$

By Lemma 2.6, $m_{j}\left(U_{2 g-2,2 t-2 s}\right) \geq m_{j}\left(U_{2 g-1,2 t-2 s-1}\right)$, where $0 \leq j \leq k-2$. Therefore, by (23) and (24), we obtain

$$
\begin{equation*}
\left|\mathcal{M}_{s, v}\right| \geq\left|\mathcal{M}_{s, v}^{*}\right| . \tag{25}
\end{equation*}
$$

Furthermore, by (19) and (20), we obtain $\left|\mathcal{M}_{4}\right| \geq\left|\mathcal{M}_{4}^{*}\right|$.
By the definitions of \mathcal{M}_{i}^{*} and $\mathcal{M}_{i}(1 \leq i \leq 4)$, we have $\mathcal{M}^{*}=\mathcal{M}_{1}^{*} \cup \mathcal{M}_{2}^{*} \cup \mathcal{M}_{3}^{*} \cup \mathcal{M}_{4}^{*}$ and $\mathcal{M}_{1} \cup \mathcal{M}_{2} \cup \mathcal{M}_{3} \cup \mathcal{M}_{4} \subseteq$ \mathcal{M}, where $\mathcal{M}_{i}^{*} \cap \mathcal{M}_{j}^{*}=\emptyset$ and $\mathcal{M}_{i} \cap \mathcal{M}_{j}=\emptyset$ with $1 \leq i, j \leq 4$. Therefore, for $2 \leq k \leq n$, we obtain

$$
\begin{equation*}
m_{k}\left(S\left(A_{n}\right)\right)-m_{k}\left(S\left(A_{n}^{*}\right)\right)=|\mathcal{M}|-\left|\mathcal{M}^{*}\right| \geq \sum_{i=1}^{4}\left|\mathcal{M}_{i}\right|-\sum_{i=1}^{4}\left|\mathcal{M}_{i}^{*}\right| . \tag{26}
\end{equation*}
$$

By the proofs of Cases (i) and (ii), we have $\left|\mathcal{M}_{i}\right|=\left|\mathcal{M}_{i}\right|$ for $i=1,2,3$ and $\left|\mathcal{M}_{4}\right| \geq\left|\mathcal{M}_{4}^{*}\right|$. Therefore, by (26), we get $m_{k}\left(S\left(A_{n}\right)\right) \geq m_{k}\left(S\left(A_{n}^{*}\right)\right)$ for $0 \leq k \leq n$. Lemma 3.2 is thus proved.

Let n, g and r be fixed. Let $H\left(l_{1}, l_{2}, \ldots, l_{r}\right)$ be the tree obtained from a common vertex v by attaching r paths of length $l_{1}, l_{2}, \ldots, l_{r}$ at v, where $l_{i}(1 \leq i \leq r)$ is a positive integer and $l_{1}+l_{2}+\ldots+l_{r}=n-g$. For simplicity, we denote $C_{g}\left(w_{0}, v\right) H\left(l_{1}, l_{2}, \ldots, l_{r}\right)$ by B_{n}^{*}.

Lemma 3.3. Let A_{n}^{*} be the graph as shown in Fig. 2(b). If $n>g \geq 3$, then we have $m_{k}\left(S\left(A_{n}^{*}\right)\right) \geq m_{k}\left(S\left(B_{n}^{*}\right)\right)$, where $0 \leq k \leq n$.

Proof. By repeatedly performing the β-transformation on A_{n}^{*}, we can finally get a graph $C_{g}\left(w_{0}, v\right) H\left(l_{1}, l_{2}, \ldots, l_{r}\right)=$ B_{n}^{*}. By repeatedly using Lemma 3.2, we obtain Lemma 3.3.

Lemma 3.4. In A_{n} and B_{n}^{*}, if $n>g \geq 3$ and g is odd, then we have $p_{k}\left(A_{n}\right) \geq p_{k}\left(B_{n}^{*}\right)$ for $0 \leq k \leq n$, and at least one of inequalities holds within $0 \leq k \leq n$.
Proof. By Lemma 2.8, we get $p_{0}\left(A_{n}\right)=p_{0}\left(B_{n}^{*}\right)=1$ and $p_{1}\left(A_{n}\right)=p_{1}\left(B_{n}^{*}\right)=n$. Let $2 \leq k \leq n$. By Lemma 2.8, we obtain

$$
\begin{align*}
& p_{k}\left(A_{n}\right)=m_{k}\left(S\left(A_{n}\right)\right)+(-1)^{g+1} 2 m_{k-g}\left(S\left(A_{n}\right)-C_{2 g}\right) \tag{27}\\
& p_{k}\left(B_{n}^{*}\right)=m_{k}\left(S\left(B_{n}^{*}\right)\right)+(-1)^{g+1} 2 m_{k-g}\left(S\left(B_{n}^{*}\right)-C_{2 g}\right) \tag{28}
\end{align*}
$$

By Lemmas 3.2 and 3.3, we have $m_{k}\left(S\left(A_{n}\right)\right) \geq m_{k}\left(S\left(B_{n}^{*}\right)\right)$ for $0 \leq k \leq n$. When $A_{n} \neq B_{n}^{*}, S\left(A_{n}\right)-C_{2 g}$ contains $S\left(B_{n}^{*}\right)-C_{2 g}$ as its proper subgraph. We have $m_{k-g}\left(S\left(A_{n}\right)-C_{2 g}\right) \geq m_{k-g}\left(S\left(B_{n}^{*}\right)-C_{2 g}\right)$. Furthermore, we have $m_{1}\left(S\left(A_{n}\right)-C_{2 g}\right)>m_{1}\left(S\left(B_{n}^{*}\right)-C_{2 g}\right)$. Thus, by (27) and (28), when g is odd, we get $p_{k}\left(A_{n}\right) \geq p_{k}\left(B_{n}^{*}\right)$ and there exists a $k=g+1$ such that $p_{k}\left(A_{n}\right)>p_{k}\left(B_{n}^{*}\right)$. Therefore, we obtain Lemma 3.4.

Remark. In A_{n} and B_{n}^{*}, if g is even, then $(-1)^{g+1}=-1$ in (27) and (28). Thus, the methods used to prove $p_{k}\left(A_{n}\right) \geq p_{k}\left(B_{n}^{*}\right)$ in Lemma 3.4 for odd $g \geq 3$ can not be applied to compare $p_{k}\left(A_{n}\right)$ and $p_{k}\left(B_{n}^{*}\right)$ for even g, where $0 \leq k \leq n$.

In $H\left(l_{1}, l_{2}, \ldots, l_{r}\right)$, specially, for any two $1 \leq i, j \leq k$, if $\left|l_{i}-l_{j}\right| \leq 1$, then we denote $H\left(l_{1}, l_{2}, \ldots, l_{r}\right)$ by $H_{n-g+1, r}$. Let $p=\left\lfloor\frac{n-g}{r}\right\rfloor+1$ and $s=(n-g)-r\left\lfloor\frac{n-g}{r}\right\rfloor$. Obviously, $H_{n-g+1, r}$ is the tree obtained from a common vertex v by attaching s paths of length p and $(r-s)$ paths of length $p-1$. Let $M_{n}=C_{g}\left(w_{0}, v\right) H_{n-g+1, r}$, where M_{n} is shown in Fig. 3(a). Obviously, $M_{n} \in \mathcal{U}_{n, g}^{r}$.

To obtain Lemma 3.7, we introduce Lemmas 3.5 and 3.6 as follows.
Lemma 3.5. If $G=C_{g}\left(w_{0}, v\right) H\left(l_{1}^{\prime}, l_{2}, \ldots, l_{r}^{\prime}\right)$ with $g \geq 3$, then we have $m_{k}(S(G)) \geq m_{k}\left(S\left(M_{n}\right)\right)$, where $k \geq 0$.
Proof. By contradiction. We suppose that there exists a graph $Q_{n}=C_{g}\left(w_{0}, v\right) H\left(l_{1}, l_{2}, \ldots, l_{r}\right)$ such that $m_{k}(S(G)) \geq m_{k}\left(S\left(Q_{n}\right)\right)$, where $Q_{n} \neq M_{n}$. Since $Q_{n} \neq M_{n}$, there exist at least two numbers l_{i} and l_{j} such that $\left|l_{i}-l_{j}\right| \geq 2$, where $1 \leq i, j \leq r$. Without loss of generality, we suppose $l_{2}-l_{1} \geq 2$. We rewrite $S\left(Q_{n}\right)$ by $P_{2 l_{1}+2 l_{2}+1}\left(u_{2 l_{1}}, v\right) \widehat{L}$, where $\widehat{L}=S\left(Q_{n}\right) \backslash P_{2 l_{1}+2 l_{2}+1}$. Since $2 l_{1} \leq l_{1}+l_{2}-2$, by Lemma 2.7 , we have $m_{k}\left(S\left(Q_{n}\right)\right) \geq m_{k}\left(P_{2 l_{1}+2 l_{2}+1}\left(u_{l_{1}+l_{2}}, v\right) \widehat{L}\right)=m_{k}\left(S\left(C_{g}\left(w_{0}, v\right) H\left(\frac{l_{1}+l_{2}}{2}, \frac{l_{1}+l_{2}}{2}, l_{3} \ldots, l_{r}\right)\right)\right)$ when $l_{1}+l_{2}$ is even or $m_{k}\left(S\left(Q_{n}\right)\right) \geq$ $m_{k}\left(P_{2 l_{1}+2 l_{2}+1}\left(u_{l_{1}+l_{2}-1}, v\right) \widehat{L}\right)=m_{k}\left(S\left(C_{g}\left(w_{0}, v\right) H\left(\frac{l_{1}+l_{2}-1}{2}, \frac{l_{1}+l_{2}+1}{2}, l_{3} \ldots, l_{r}\right)\right)\right)$ when $l_{1}+l_{2}$ is odd. This contradicts the minimality of $S\left(Q_{n}\right)$. Therefore, we get $Q_{n}=M_{n}$. Thus, we obtain Lemma 3.5.

For fixed n, g and r, let $P_{2 n-2 g, r}$ be the set of $P_{2 l_{1}} \cup P_{2 l_{2}} \cup \ldots \cup P_{2 l_{r}}$, where $2 l_{1}+\ldots+2 l_{r}=2 n-2 g$ and l_{i} is a positive integer for $1 \leq i \leq r$. Let $a P_{h}$ be the union graph with a paths of length $h-1$, where a and h are positive integers with $a \geq 2$ and $h \geq 2$.
Lemma 3.6. If $G \in P_{2 n-2 g, r}$, then we have $m_{k}(G) \geq m_{k}\left(s P_{2 p} \cup(r-s) P_{2 p-2}\right)$ for $0 \leq k \leq n-g$, where $2 p s+(r-s)(2 p-2)=$ $2 n-2 g$.
Proof. For any $G \in P_{2 n-2 g, r}$, we suppose that there exists a $\bar{G} \in P_{2 n-2 g, r}$ such that $m_{k}(G) \geq m_{k}(\bar{G})$ for $0 \leq k \leq n-g$. We denote \bar{G} by $P_{2 l_{1}} \cup P_{2 l_{2}} \cup \ldots \cup P_{2 l_{r}}$ and suppose $\bar{G} \neq s P_{2 p} \cup(r-s) P_{2 p-2}$. Thus, among $\left\{2 l_{1}, \ldots, 2 l_{r}\right\}$, there exist $2 l_{i}$ and $2 l_{j}$ such that $\left|l_{i}-l_{j}\right| \geq 2$, where $1 \leq i, j \leq r$. Without loss of generality, we suppose $l_{1}-l_{2} \geq 2$. By Lemma 2.6, we have $m_{i}\left(U_{2 l_{1}, 2 l_{2}}\right) \geq m_{i}\left(U_{2 l_{1}-2,2 l_{2}+2}\right)$ for $0 \leq i \leq l_{1}+l_{2}$. Let $\widetilde{G}=P_{2 l_{1}-2} \cup P_{2 l_{2}+2} \cup P_{2 l_{3}} \cup \ldots \cup P_{2 l_{r}}$. Obviously, $\widetilde{G} \in P_{2 n-2 g, r}$. By Lemma 2.4, we get

$$
\begin{equation*}
m_{k}(\bar{G})=\sum_{i=0}^{k} m_{i}\left(U_{2 l_{1}, 2 l_{2}}\right) m_{k-i}\left(\bar{G} \backslash\left\{U_{2 l_{1}, 2 l_{2}}\right\}\right) \geq \sum_{i=0}^{k} m_{i}\left(U_{2 l_{1}-2,2 l_{2}+2}\right) m_{k-i}\left(\bar{G} \backslash\left\{U_{2 l_{1}, 2 l_{2}}\right\}\right)=m_{k}(\widetilde{G}) \tag{29}
\end{equation*}
$$

This contradicts the minimality of \bar{G}. Therefore, for any two $2 l_{i}$ and $2 l_{j}$ with $1 \leq i, j \leq r$, we have $\left|l_{i}-l_{j}\right| \leq 1$. Therefore, $\bar{G}=s P_{2 p} \cup(r-s) P_{2 p-2}$. Lemma 3.6 is thus proved.

Lemma 3.7. In B_{n}^{*} and M_{n}, if $n>g \geq 3$ and g is odd, then we have $p_{k}\left(B_{n}^{*}\right) \geq p_{k}\left(M_{n}\right)$, where $0 \leq k \leq n$.
Proof. If the girth g of B_{n}^{*} and of M_{n} is odd, then by Lemma 2.8, we obtain

$$
\begin{align*}
& p_{k}\left(B_{n}^{*}\right)=m_{k}\left(S\left(B_{n}^{*}\right)\right)+2 m_{k-g}\left(S\left(B_{n}^{*}\right)-C_{2 g}\right) \tag{30}\\
& p_{k}\left(M_{n}\right)=m_{k}\left(S\left(M_{n}\right)\right)+2 m_{k-g}\left(S\left(M_{n}\right)-C_{2 g}\right) \tag{31}
\end{align*}
$$

Bearing in mind that $B_{n}^{*}=C_{g}\left(w_{0}, v\right) H\left(l_{1}, l_{2}, \ldots, l_{r}\right)$, therefore, by Lemma 3.5, we have $m_{k}\left(S\left(B_{n}^{*}\right)\right) \geq m_{k}\left(S\left(M_{n}\right)\right)$. Since $S\left(B_{n}^{*}\right)-C_{2 g}=P_{2 l_{1}} \cup P_{2 l_{2}} \cup \ldots \cup P_{2 l_{r}}$ and $S\left(M_{n}\right)-C_{2 g}=s P_{2 p} \cup(r-s) P_{2 p-2}$, by Lemma 3.6, we get $m_{k-g}\left(S\left(B_{n}^{*}\right)-C_{2 g}\right) \geq m_{k-g}\left(S\left(M_{n}\right)-C_{2 g}\right)$. Thus, Lemma 3.7 follows from (30) and (31).

Figure 3: The graphs M_{n} and L_{n}

In $\mathcal{U}_{n, g}^{r}$, we will characterize the minimum graph in terms of \leq^{\prime} according to their SLCs and then deduce the graph with the minimum IE.

Theorem 3.8. If $G \in \mathcal{U}_{n, g}^{r}$, where $r \geq 1, n>g \geq 3$ and g is odd, then for $0 \leq k \leq n$, we have $p_{k}(G) \geq p_{k}\left(M_{n}\right)$ and at least one of inequalities holds within $0 \leq k \leq n$.

Proof. Let $G \in \mathcal{U}_{n, g}^{r}$. Let $0 \leq k \leq n$. By Lemma 3.1, we have $p_{k}(G) \geq p_{k}\left(A_{n}\right)$. By Lemma 3.4, we get $p_{k}\left(A_{n}\right) \geq p_{k}\left(B_{n}^{*}\right)$, and at least one inequality holds within $0 \leq k \leq n$. Furthermore, by Lemma 3.7, we have $p_{k}\left(B_{n}^{*}\right) \geq p_{k}\left(M_{n}\right)$. Thus, we obtain Theorem 3.8.

Theorem 3.9. If $G \in \mathcal{U}_{n, g}^{r}$, where $r \geq 1, n>g \geq 3$ and g is odd, then we have $\operatorname{IE}(G) \geq \operatorname{IE}\left(M_{n}\right)$, with the equality iff $G=M_{n}$.

Proof. By (9) and Theorem 3.8, we have Theorem 3.9.

3.2. The graph with the minimum SLCs and the minimum IE in \mathcal{U}_{n}^{r}

In this subsection, we will consider the graph with the minimum SLCs and the minimum IE in \mathcal{U}_{n}^{r}. A graph L_{n} with girth 4 having the minimum SLCs and the minimum IE in \mathcal{U}_{n}^{r} is introduced.

Let n and $r \geq 2$ be fixed. Let L_{n} be the graph obtained from C_{4} by attaching t paths of length q and $r-t$ paths of length $q-1$ at w_{0} of C_{4}, where $q=\left\lfloor\frac{n-4}{r}\right\rfloor+1$ and $t=(n-4)-r\left\lfloor\frac{n-4}{r}\right\rfloor$. L_{n} is shown in Fig. 3(b). Obviously, $L_{n} \in \mathcal{U}_{n}^{r}$. When n and r are fixed, L_{n} is unique.

Lemmas 3.10-3.16 are introduced to obtain our results.
Lemma 3.10. Let H be a simple graph with n vertices. Let $b>2 a$, where a and b are positive integers. We have $m_{k}\left(P_{b} \cup H\right) \geq m_{k-a}\left(P_{b-2 a} \cup H\right)$ for $a \leq k \leq\left\lfloor\frac{n+b}{2}\right\rfloor$.

Proof. By Lemma 2.5, we have $m_{k}\left(P_{b}\right) \geq m_{k}\left(P_{2 a} \cup P_{b-2 a}\right)$. Therefore, we get

$$
\begin{equation*}
m_{k}\left(P_{b} \cup H\right) \geq m_{k}\left(P_{2 a} \cup P_{b-2 a} \cup H\right) \tag{32}
\end{equation*}
$$

From Lemma 2.4 and $m_{a}\left(P_{2 a}\right)=1$, we obtain

$$
\begin{equation*}
m_{k}\left(P_{2 a} \cup P_{b-2 a} \cup H\right)=\sum_{k_{1}+k_{2}=k} m_{k_{1}}\left(P_{2 a}\right) m_{k_{2}}\left(P_{b-2 a} \cup H\right) \geq m_{a}\left(P_{2 a}\right) m_{k-a}\left(P_{b-2 a} \cup H\right)=m_{k-a}\left(P_{b-2 a} \cup H\right) \tag{33}
\end{equation*}
$$

Therefore, Lemma 3.10 follows from (32) and (33).
Let $\widehat{H}=S\left(M_{n}\right)-C_{2 g}=s P_{2 p} \cup(r-s) P_{2 p-2}$, where $|V(\widehat{H})|=2 n-2 g$ and $g \geq 4$. Let $\widetilde{H}=S\left(L_{n}\right)-C_{8}=$ $t P_{2 q} \cup(r-t) P_{2 q-2}$, where $|V(\widetilde{H})|=2 n-8$.

Lemma 3.11. Let \widehat{H} and \widetilde{H} be the graphs as defined as above. We have
(i) $p \leq q$.
(ii) If $p=q$, then $s \leq t$.

Proof. (i) The proof of Lemma 3.11(i).
Otherwise, we suppose $p \geq q+1$. Then we have $2 p>2 p-2 \geq 2 q>2 q-2$. Since both \widehat{H} and \widetilde{H} have r paths, we have $|V(\widehat{H})|>|V(\widetilde{H})|$. This contradicts the fact $|V(\widehat{H})|=2 n-2 g \leq 2 n-8=|V(\widetilde{H})|$ when $g \geq 4$.
(ii) The proof of Lemma 3.11(ii).

By the definitions of \widehat{H} and \widetilde{H}, we have $2 p s+(2 p-2)(r-s)=2 n-2 g$ and $2 q t+(2 q-2)(r-t)=2 n-8$. Since $g \geq 4$, we have $2 n-8 \geq 2 n-2 g$. It follows from $p=q$ that $s \leq t$.

Lemma 3.12. Let \widehat{H} and \widetilde{H} be the graphs as defined as above. Let $g \geq 5$. We have
(i) $m_{k-1}\left(P_{2 g-3} \cup \widehat{H}\right) \geq m_{k-1}\left(P_{5} \cup \widetilde{H}\right)$ for $k \geq 1$;
(ii) $m_{k-2}\left(P_{2 g-5} \cup \widehat{H}\right) \geq m_{k-2}\left(P_{3} \cup \widetilde{H}\right)$ for $k \geq 2$;
(iii) $m_{k-3}\left(P_{2 g-7} \cup \widehat{H}\right) \geq m_{k-3}(\widetilde{H})$ for $k \geq 3$.

Proof. (i) The proof of Lemma 3.12(i).
Obviously, when $r=1$, Lemma 3.12(i) holds. Let $r \geq 2$. We get that at least one of s and $r-s$ is not less than 1 . Next, we suppose $s \geq 1$. When $g \geq 5$, by Lemma 2.6, we have $m_{i}\left(U_{2 g-3,2 p}\right) \geq m_{i}\left(U_{5,2 g+2 p-8}\right)$ for $i \geq 0$. Therefore, we get

$$
\begin{equation*}
m_{k-1}\left(P_{2 g-3} \cup \widehat{H}\right) \geq m_{k-1}\left(P_{5} \cup P_{2 g+2 p-8} \cup(s-1) P_{2 p} \cup(r-s) P_{2 p-2}\right) \tag{34}
\end{equation*}
$$

We can easily check that both $P_{2 g+2 p-8} \cup(s-1) P_{2 p} \cup(r-s) P_{2 p-2}$ and \widetilde{H} have $2 n-8$ vertices, r disjoint paths, and the number of vertices of each path in the two graphs is even. Furthermore, for any two disjoint paths in \widetilde{H}, their length difference does not exceed 2. Therefore, by Lemmas 2.4 and 3.6, for $k \geq 1$, we get

$$
\begin{equation*}
m_{k-1}\left(P_{5} \cup P_{2 g+2 p-8} \cup(s-1) P_{2 p} \cup(r-s) P_{2 p-2}\right) \geq m_{k-1}\left(P_{5} \cup \widetilde{H}\right) \tag{35}
\end{equation*}
$$

It follows from (34) and (35) that Lemma 3.12(i) holds.
Similarly, if $r-s \geq 1$, then by the same analysis as that for $s \geq 1$, we get (35).
(ii) The proof of Lemma 3.12(ii)-(iii).

By the methods similar to those for Lemma 3.12(i), we have Lemma 3.12(ii)-(iii).
Lemma 3.13. Let \widehat{H} and \widetilde{H} be the graphs as defined as above. For $5 \leq g \leq k$, we have $m_{k-4}(\widetilde{H}) \geq m_{k-g}(\widehat{H})$.

Proof. By Lemma 3.11(i), we have $p \leq q$. Two cases are considered as follows.
Case (i) $p<q$.
In this case, we have $2 p-2<2 p \leq 2 q-2<2 q$. Bearing in mind that $\widehat{H}=s P_{2 p} \cup(r-s) P_{2 p-2}$ and $\widetilde{H}=t P_{2 q} \cup(r-t) P_{2 q-2}$. It is noted that \widehat{H} and \widetilde{H} are written according to the decreasing order of the lengths of their paths. So we get that the length of the i-th path in \widetilde{H} is not less than that of \widehat{H}.

For $1 \leq i \leq r$, let j_{i} and h_{i} be respectively the number of the vertices of the i-th path of \widetilde{H} and \widehat{H}. Obviously, j_{i} and h_{i} are even for $1 \leq i \leq r$. Let $j_{i}-h_{i}=2 \Delta_{i}$, where $\Delta_{i} \geq 0$ and $\sum_{i=1}^{r} \Delta_{i}=\frac{(2 n-8)-(2 n-2 g)}{2}=g-4$. By using Lemma 3.10 one time, we get

$$
m_{k-4}(\widetilde{H})=m_{k-4}\left(t P_{2 q} \cup(r-t) P_{2 q-2}\right) \geq m_{k-4-\Delta_{1}}\left(P_{2 p} \cup(t-1) P_{2 q} \cup(r-t) P_{2 q-2}\right)
$$

Furthermore, by using Lemma $3.10(r-1)$ times, we finally obtain

$$
m_{k-4}(\widetilde{H}) \geq m_{k-4-\sum_{i=1}^{r} \Delta_{i}}\left(s P_{2 p} \cup(r-s) P_{2 p-2}\right)=m_{k-g}(\widehat{H})
$$

Case (ii) $p=q$.
In this case, by Lemma 3.11(ii), we have $s \leq t$. Thus, \widehat{H} and \widetilde{H} can be rewritten as $\widehat{H}=s P_{2 p} \cup(t-s) P_{2 p-2} \cup$ $(r-t) P_{2 p-2}$ and $\widetilde{H}=s P_{2 q} \cup(t-s) P_{2 q} \cup(r-t) P_{2 q-2}$. So we get that the length of the i-th path in \widetilde{H} is not less than that of \widehat{H}. By the methods similar to those for Case (i), we obtain $m_{k-4}(\widetilde{H}) \geq m_{k-g}(\widehat{H})$.

In $S\left(M_{n}\right)$, the vertices on $C_{2 g}$ of $S\left(M_{n}\right)$ are labeled by $w_{0}, \ldots, w_{2 g-1}$. In $S\left(L_{n}\right)$, the vertices on C_{8} of $S\left(L_{n}\right)$ are labeled by $w_{0}^{\prime}, \ldots, w_{7}^{\prime}$.

Lemma 3.14. Let M_{n} and L_{n} be the graphs as shown in Fig 3, where $g \geq 5$ in M_{n}. We have $m_{k}\left(S\left(M_{n}\right)-w_{0} w_{2 g-1}\right) \geq$ $m_{k}\left(S\left(L_{n}\right)-w_{0}^{\prime} w_{7}^{\prime}\right)$, where $k \geq 0$.

Proof. Obviously, $S\left(M_{n}\right)-w_{0} w_{2 g-1}$ is the tree obtained from a common vertex v by attaching a path of length $2 g-1$,s paths of length $2 p$ and $r-s$ paths of length $2 p-2$. We denote this kind of tree by $T\left(2 g-1,(2 p)^{s},(2 p-2)^{r-s}\right)$.

Similarly, we have $S\left(L_{n}\right)-w_{0}^{\prime} w_{7}^{\prime}=T\left(7,(2 q)^{t},(2 q-2)^{r-t}\right)$.
By Lemma 2.5, we get

$$
\begin{equation*}
m_{k}\left(T\left(7,(2 q)^{t},(2 q-2)^{r-t}\right)\right)=m_{k}\left(P_{7} \cup T\left((2 q)^{t},(2 q-2)^{r-t}\right)\right)+m_{k-1}\left(P_{6} \cup t P_{2 q} \cup(r-t) P_{2 q-2}\right) \tag{36}
\end{equation*}
$$

Similarly, by Lemma 2.5, we obtain

$$
\begin{align*}
& m_{k}\left(T\left(7,2 g+2 p-8,(2 p)^{s-1},(2 p-2)^{r-s}\right)\right) \\
& \quad=m_{k}\left(P_{7} \cup T\left(2 g+2 p-8,(2 p)^{s-1},(2 p-2)^{r-s}\right)\right)+m_{k-1}\left(P_{6} \cup P_{2 g+2 p-8} \cup(s-1) P_{2 p} \cup(r-s) P_{2 p-2}\right) . \tag{37}
\end{align*}
$$

By the methods similar to those for Lemma 3.5, we have

$$
\begin{equation*}
m_{k}\left(T\left(2 g+2 p-8,(2 p)^{s-1},(2 p-2)^{r-s}\right)\right) \geq m_{k}\left(T\left((2 q)^{t},(2 q-2)^{r-t}\right)\right) \tag{38}
\end{equation*}
$$

Furthermore, $P_{6} \cup t P_{2 q} \cup(r-t) P_{2 q-2}$ and $P_{6} \cup P_{2 g+2 p-8} \cup(s-1) P_{2 p} \cup(r-s) P_{2 p-2}$ are graphs in $P_{2 n-6, r+1}$. By Lemma 3.6, we have

$$
\begin{equation*}
m_{k-1}\left(P_{6} \cup P_{2 g+2 p-8} \cup(s-1) P_{2 p} \cup(r-s) P_{2 p-2}\right) \geq m_{k-1}\left(P_{6} \cup t P_{2 q} \cup(r-t) P_{2 q-2}\right) \tag{39}
\end{equation*}
$$

By substitution (38) and (39) into (36) and (37), we finally deduce

$$
\begin{equation*}
m_{k}\left(T\left(7,2 g+2 p-8,(2 p)^{s-1},(2 p-2)^{r-s}\right)\right) \geq m_{k}\left(T\left(7,(2 q)^{t},(2 q-2)^{r-t}\right)\right) \tag{40}
\end{equation*}
$$

By the methods similar to those for Lemma 3.12, we have $p \leq q$ and at least one of s and $r-s$ is positive when $r \geq 2$. Next, we suppose $s \geq 1$. Note that $T\left(2 g-1,(2 p)^{s},(2 p-2)^{r-s}\right)=P_{2 g+2 p}\left(u_{2 g-1}, v\right) T\left((2 p)^{s-1},(2 p-2)^{r-s}\right)$ and $T\left(7,2 g+2 p-8,(2 p)^{s-1},(2 p-2)^{r-s}\right)=P_{2 g+2 p}\left(u_{7}, v\right) T\left((2 p)^{s-1},(2 p-2)^{r-s}\right)$. By Lemma 2.6, when $g \geq 5$, we have

$$
\begin{equation*}
m_{k}\left(T\left(2 g-1,(2 p)^{s},(2 p-2)^{r-s}\right)\right) \geq m_{k}\left(T\left(7,2 g+2 p-8,(2 p)^{s-1},(2 p-2)^{r-s}\right)\right) \tag{41}
\end{equation*}
$$

Similarly, if $r-s \geq 1$, then by the same analysis as that for $s \geq 1$, we get (41).
Therefore, by (40) and (41), we have

$$
\begin{equation*}
m_{k}\left(T\left(2 g-1,(2 p)^{s},(2 p-2)^{r-s}\right)\right) \geq m_{k}\left(T\left(7,(2 q)^{t},(2 q-2)^{r-t}\right)\right) \tag{42}
\end{equation*}
$$

Note that $S\left(M_{n}\right)-w_{0} w_{2 g-1}=T\left(2 g-1,(2 p)^{s},(2 p-2)^{r-s}\right)$ and $S\left(L_{n}\right)-w_{0}^{\prime} w_{7}^{\prime}=T\left(7,(2 q)^{t},(2 q-2)^{r-t}\right)$. Thus, by (42), we get Lemma 3.14.

Since Lemma 3.15 can be obtained by using Lemma 2.5 three times, the proof of Lemma 3.15 is omitted.
Lemma 3.15. Let $G=P_{h} \cup Q$ with $h \geq 6$, where Q is a simple graph. Then we have $m_{k}(G)=m_{k}\left(P_{h-1} \cup Q\right)+$ $m_{k-1}\left(P_{h-3} \cup Q\right)+m_{k-2}\left(P_{h-5} \cup Q\right)+m_{k-3}\left(P_{h-6} \cup Q\right)$ for $k \geq 0$.

Lemma 3.16. We have $p_{k}\left(M_{n}\right) \geq p_{k}\left(L_{n}\right)$ for $0 \leq k \leq n$, where g in M_{n} is odd with $g \geq 5$ and $n \geq g+1$.
Proof. Case (i) g is even.
Obviously, $S\left(M_{n}\right)-C_{2 g}=\widehat{H}$ and $S\left(L_{n}\right)-C_{8}=\widetilde{H}$. By Lemma 2.8, we get

$$
\begin{align*}
& p_{k}\left(M_{n}\right)=m_{k}\left(S\left(M_{n}\right)\right)-2 m_{k-g}(\widehat{H}), \tag{43}\\
& p_{k}\left(L_{n}\right)=m_{k}\left(S\left(L_{n}\right)\right)-2 m_{k-4}(\widetilde{H}) . \tag{44}
\end{align*}
$$

Let G in Lemma 2.5 be $S\left(M_{n}\right)$ (respectively $\left.S\left(L_{n}\right)\right)$ and $u v$ in Lemma 2.5 be $w_{0} w_{2 g-1}$ (respectively $w_{0}^{\prime} w_{7}^{\prime}$). By Lemma 2.5, we obtain

$$
\begin{align*}
& m_{k}\left(S\left(M_{n}\right)\right)=m_{k}\left(S\left(M_{n}\right)-w_{0} w_{2 g-1}\right)+m_{k-1}\left(P_{2 g-2} \cup \widehat{H}\right), \tag{45}\\
& m_{k}\left(S\left(L_{n}\right)\right)=m_{k}\left(S\left(L_{n}\right)-w_{0}^{\prime} w_{7}^{\prime}\right)+m_{k-1}\left(P_{6} \cup \widetilde{H}\right) \tag{46}
\end{align*}
$$

By (43)-(46) and Lemma 3.14, we obtain

$$
\begin{equation*}
p_{k}\left(M_{n}\right)-p_{k}\left(L_{n}\right) \geq m_{k-1}\left(P_{2 g-2} \cup \widehat{H}\right)-m_{k-1}\left(P_{6} \cup \widetilde{H}\right)-2 m_{k-g}(\widehat{H})+2 m_{k-4}(\widetilde{H}) \tag{47}
\end{equation*}
$$

By Lemma 3.15, we have

$$
\begin{align*}
& m_{k-1}\left(P_{2 g-2} \cup \widehat{H}\right)=m_{k-1}\left(P_{2 g-3} \cup \widehat{H}\right)+m_{k-2}\left(P_{2 g-5} \cup \widehat{H}\right)+m_{k-3}\left(P_{2 g-7} \cup \widehat{H}\right)+m_{k-4}\left(P_{2 g-8} \cup \widehat{H}\right), \tag{48}\\
& m_{k-1}\left(P_{6} \cup \widetilde{H}\right)=m_{k-1}\left(P_{5} \cup \widetilde{H}\right)+m_{k-2}\left(P_{3} \cup \widetilde{H}\right)+m_{k-3}(\widetilde{H})+m_{k-4}(\widetilde{H}) \tag{49}
\end{align*}
$$

By (48), (49) and Lemma 3.12(i)-(iii), we obtain

$$
\begin{equation*}
m_{k-1}\left(P_{2 g-2} \cup \widehat{H}\right)-m_{k-1}\left(P_{6} \cup \widetilde{H}\right) \geq m_{k-4}\left(P_{2 g-8} \cup \widehat{H}\right)-m_{k-4}(\widetilde{H}) \tag{50}
\end{equation*}
$$

Therefore, by (50), (47) can be translated into

$$
\begin{equation*}
p_{k}\left(M_{n}\right)-p_{k}\left(L_{n}\right) \geq m_{k-4}\left(P_{2 g-8} \cup \widehat{H}\right)+m_{k-4}(\widetilde{H})-2 m_{k-g}(\widehat{H}) . \tag{51}
\end{equation*}
$$

By Lemma 2.4, when $g \geq 5$, we have

$$
\begin{equation*}
m_{k-4}\left(P_{2 g-8} \cup \widehat{H}\right) \geq m_{g-4}\left(P_{2 g-8}\right) m_{k-g}(\widehat{H}) \geq m_{k-g}(\widehat{H}) \tag{52}
\end{equation*}
$$

Furthermore, by Lemma 3.13, we have $m_{k-4}(\widetilde{H}) \geq m_{k-g}(\widehat{H})$. Therefore, from (51) and (52), we get $p_{k}\left(M_{n}\right) \geq$ $p_{k}\left(L_{n}\right)$ for $k \geq 0$.

Case (ii) g is odd with $g \geq 5$.
In this case, by Lemma 2.8, we have $p_{k}\left(M_{n}\right)=m_{k}\left(S\left(M_{n}\right)\right)+2 m_{k-g}\left(S\left(M_{n}\right)-C_{2 g}\right)$. By the methods similar to those for even g, we get $p_{k}\left(M_{n}\right) \geq p_{k}\left(L_{n}\right)$ for $k \geq 0$.

Theorem 3.17. Let $G \in \mathcal{U}_{n}^{r}$ with $n \geq 7$ and $r \geq 2$. If G has odd girth $g \geq 5$, then we have $p_{k}(G) \geq p_{k}\left(L_{n}\right)$ for $0 \leq k \leq n$ and at least one of inequalities holds within $0 \leq k \leq n$.

Proof. By Theorem 3.8 and Lemma 3.16, we obtain Theorem 3.17.
Theorem 3.18. Let $G \in \mathcal{U}_{n}^{r}$ with $n \geq 7$ and $r \geq 2$. If G has odd girth $g \geq 5$, then we have $\operatorname{IE}(G)>\operatorname{IE}\left(L_{n}\right)$.
Proof. By (9) and Theorem 3.17, we get Theorem 3.18.
In Theorems 3.17 and 3.18, if $G \in \mathcal{U}_{n}^{r}$ and G has odd girth $g \geq 5$, where $n \geq 7$ and $r \geq 2$, then we prove that there exists a graph $L_{n} \in \mathcal{U}_{n}^{r}$ with girth 4 such that both the SLCs and the IE of G are more than the counterparts of L_{n}. If $G \in \mathcal{U}_{n}^{r}$ with $r \geq 2$ and G has even girth $g \geq 4$, which graph has the minimum SLCs and the minimum IE? In \mathcal{U}_{n}^{r} with $n \geq 5$ and $r \geq 2$, which graph has the minimum SLCs and the minimum IE? The two unsolved problems remain a task for the future.

For these graphs in \mathcal{U}_{n}^{r} with $r \geq 2$, if their girth are even, then their Laplacian spectra and signless Laplacian spectra are the same, which implies the coefficients of both the Laplacian and signless Laplacian characteristic polynomials of the graphs in bipartite unicyclic graphs are the same. For the graphs with k leaves, Ilić and Ilić [30] characterized the trees with k leaves which simultaneously minimize all Laplacian coefficients and they posed a conjecture on the extremal unicyclic graphs with k leaves. Pai and Liu [31] completely solved the conjecture and they obtained the graph with the smallest Laplacian coefficients among unicyclic graphs with k leaves. Zhang and Zhang [32] investigated properties of the minimum elements in the partial ordering among the set of n-vertex unicyclic graphs with the number of leaves and girth. For the coefficients of the Laplacian characteristic polynomial of unicyclic graphs, one can refer to two references [12, 13].

Next, in \mathcal{U}_{n}^{r} with $n \geq 5$ and $r=1$, we will prove that E_{n} has the minimum SLCs and the minimum IE, where E_{n} is $C_{4}\left(w_{0}, u_{0}\right) P_{n-3}$ with $n \geq 5$. It is noted that E_{n} and L_{n} are the same graphs when $r=1$ and $t=0$ in L_{n}.

Theorem 3.19. Let $G \in \mathcal{U}_{n}^{r}$ with $n \geq 5$ and $r=1$. We have
(i) $p_{k}(G) \geq p_{k}\left(E_{n}\right)$ for $0 \leq k \leq n$ and at least one of inequalities holds within $0 \leq k \leq n$.
(ii) $I E(G)>I E\left(E_{n}\right)$.

Proof. (i) $5 \leq n \leq 8$.
When $G \in \mathcal{U}_{n}^{1}$ with $5 \leq n \leq 8$, by direct calculation, we can easily verify that $p_{k}(G) \geq p_{k}\left(E_{n}\right)$ for $0 \leq k \leq n$, and the equalities hold for all $0 \leq k \leq n$ iff $G=E_{n}$. Thus, we obtain Theorem 3.19(i) when $5 \leq n \leq 8$. Furthermore, by Theorem 3.19(i) and (9), we get Theorem 3.19(ii) when $5 \leq n \leq 8$.
(ii) $n \geq 9$.

By Lemma 2.8, we can check that $p_{0}(G)=p_{0}\left(E_{n}\right)=1, p_{1}(G)=p_{1}\left(E_{n}\right)=2 n, p_{n}(G)=p_{n}\left(E_{n}\right)=0$ if the girth of the cycle contained in G is even, and $p_{n}(G)=4>0=p_{n}\left(E_{n}\right)$ if the girth of the cycle contained in G is odd. Next, we consider the cases with $2 \leq k \leq n-1$.

Obviously, $S(G)=C_{2 g}\left(w_{0}, u_{0}\right) P_{2 n-2 g+1}$ and $S\left(E_{n}\right)=C_{8}\left(w_{0}, u_{0}\right) P_{2 n-7}$. We get $S(G)-C_{2 g}=P_{2 n-2 g}$ and $S\left(E_{n}\right)-C_{8}=P_{2 n-8}$. Let G in Lemma 2.5 be $S(G)$ (respectively $S\left(E_{n}\right)$) and $u v$ in Lemma 2.5 be $w_{0} w_{1}$ (respectively $w_{0}^{\prime} w_{1}^{\prime}$). By Lemmas 2.5 and 2.8 , we obtain

$$
\begin{equation*}
p_{k}(G)=m_{k}\left(P_{2 n}\right)+m_{k-1}\left(U_{2 g-2,2 n-2 g}\right)+2(-1)^{g+1} m_{k-g}\left(P_{2 n-2 g}\right), \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
p_{k}\left(E_{n}\right)=m_{k}\left(P_{2 n}\right)+m_{k-1}\left(U_{6,2 n-8}\right)-2 m_{k-4}\left(P_{2 n-8}\right) \tag{54}
\end{equation*}
$$

Two cases are considered as follows.
Case (i) g is even.
From (53) and (54), we have

$$
\begin{equation*}
p_{k}(G)-p_{k}\left(E_{n}\right)=m_{k-1}\left(U_{2 g-2,2 n-2 g}\right)-m_{k-1}\left(U_{6,2 n-8}\right)-2 m_{k-g}\left(P_{2 n-2 g}\right)+2 m_{k-4}\left(P_{2 n-8}\right) . \tag{55}
\end{equation*}
$$

By Lemma 3.15, we have

$$
\begin{align*}
& m_{k-1}\left(U_{2 g-2,2 n-2 g}\right)=m_{k-1}\left(U_{2 g-3,2 n-2 g}\right)+m_{k-2}\left(U_{2 g-5,2 n-2 g}\right)+m_{k-3}\left(U_{2 g-7,2 n-2 g}\right)+m_{k-4}\left(U_{2 g-8,2 n-2 g}\right), \tag{56}\\
& m_{k-1}\left(U_{6,2 n-8}\right)=m_{k-1}\left(U_{5,2 n-8}\right)+m_{k-2}\left(U_{3,2 n-8}\right)+m_{k-3}\left(U_{1,2 n-8}\right)+m_{k-4}\left(P_{2 n-8}\right) . \tag{57}
\end{align*}
$$

When $g \geq 4$, by Lemma 2.6, we get $m_{k-1}\left(U_{2 g-3,2 n-2 g}\right) \geq m_{k-1}\left(U_{5,2 n-8}\right), m_{k-2}\left(U_{2 g-5,2 n-2 g}\right) \geq m_{k-2}\left(U_{3,2 n-8}\right)$, and $m_{k-3}\left(U_{2 g-7,2 n-2 g}\right) \geq m_{k-3}\left(U_{1,2 n-8}\right)$. Thus, from (56) and (57),

$$
\begin{equation*}
m_{k-1}\left(U_{2 g-2,2 n-2 g}\right)-m_{k-1}\left(U_{6,2 n-8}\right) \geq m_{k-4}\left(U_{2 g-8,2 n-2 g}\right)-m_{k-4}\left(P_{2 n-8}\right) . \tag{58}
\end{equation*}
$$

By (58), (55) can be translated into

$$
\begin{equation*}
p_{k}(G)-p_{k}\left(E_{n}\right) \geq m_{k-4}\left(U_{2 g-8,2 n-2 g}\right)+m_{k-4}\left(P_{2 n-8}\right)-2 m_{k-g}\left(P_{2 n-2 g}\right) . \tag{59}
\end{equation*}
$$

When $g \geq 4$, by Lemmas 2.6 and 3.10, we have $m_{k-4}\left(P_{2 n-8}\right) \geq m_{k-4}\left(U_{2 g-8,2 n-2 g}\right) \geq m_{k-g}\left(P_{2 n-2 g}\right)$. Furthermore, when $k=5$, we have $m_{k-4}\left(P_{2 n-8}\right)=2 n-9>2 n-10=m_{k-4}\left(U_{2 g-8,2 n-2 g}\right)$. Therefore, by (59), we obtain $p_{k}(G) \geq p_{k}\left(E_{n}\right)$ for $0 \leq k \leq n$ and there exists at least one $k_{0}=5$ such that $p_{k_{0}}(G)>p_{k_{0}}\left(E_{n}\right)$.

Case (ii) g is odd.
Two subcases are considered as follows.
Subcase (ii.i) $g=3$.
When $g=3, G=C_{3}\left(w_{0}, u_{0}\right) P_{n-2}$. By the same procedure as that for (55), we get

$$
\begin{equation*}
p_{k}(G)-p_{k}\left(E_{n}\right)=m_{k-1}\left(U_{4,2 n-6}\right)-m_{k-1}\left(U_{6,2 n-8}\right)+2 m_{k-3}\left(P_{2 n-6}\right)+2 m_{k-4}\left(P_{2 n-8}\right) . \tag{60}
\end{equation*}
$$

When $n>9$, it follows from Lemma 2.6 that $m_{k-1}\left(U_{4,2 n-6}\right) \geq m_{k-1}\left(U_{6,2 n-8}\right)$. Furthermore, when $k=4$ and $n \geq 9$, we have $m_{k-3}\left(P_{2 n-6}\right)=2 n-7>1=m_{k-4}\left(P_{2 n-8}\right)$. Thus, by (60), we get $p_{k}(G) \geq p_{k}\left(E_{n}\right)$ for $0 \leq k \leq n$ and there exists at least one $k_{0}=4$ such that $p_{k_{0}}(G)>p_{k_{0}}\left(E_{n}\right)$.

Subcase (ii.ii) $g \geq 5$.
When g is odd, by the same methods as those for even g in Case (i), we can get $p_{k}(G) \geq p_{k}\left(E_{n}\right)$ for $0 \leq k \leq n$ and there exists at least one k_{0} such that $p_{k_{0}}(G)>p_{k_{0}}\left(E_{n}\right)$.

By combination of the proofs in Cases (i) and (ii), we obtain Theorem 3.19(i) when $n \geq 9$. Furthermore, by Theorem 3.19(i) and (9), we obtain Theorem 3.19(ii) when $n \geq 9$.

Acknowledgments

The authors are grateful to the anonymous referee for his/her constructive comments.

References

[1] I. Gutman, The energy of a graph, Berichte Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978) 1-22.
[2] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Berlin: Springer Verlag, 1986.
[3] X. L. Li, Y. T. Shi, I. Gutman, Graph Energy, New York: Springer, 2012.
[4] V. Nikiforov, The energy of graphs and matrices, Journal of Mathematical Analysis and Applications 326 (2007) 1472-1475.
[5] I. Gutman, D. Kiani, M. Mirzakhah, On incidence energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 62 (2009) 573-580.
[6] M. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCH Communications in Mathematical and in Computer Chemistry 62 (2009) 561-572.
[7] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, 1980.
[8] J. B. Zhang, J. P. Li, New results on the incidence energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 68 (2012) 777-803.
[9] M. Mirzakhah, D. Kiani, Some results on signless Laplacian coefficients of graphs, Linear Algebra and its Applications 437 (2012) 2243-2251.
[10] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra and its Applications 722 (2007) 736-741.
[11] A. Ilić, On the ordering of trees by the Laplacian coefficients, Linear Algebra and its Applications 431 (2009) 2203-2212.
[12] D. Stevanović, A. Ilić, On the Laplacian coefficients of unicyclic graphs, Linear Algebra and its Applications 430 (2009) $2290-2300$.
[13] S. W. Tan, On the Laplacian coefficients of unicyclic graphs with prescribed matching number, Discrete Mathematics 311 (2011) 582-594.
[14] C. X. He, H. Y. Shan, On the Laplacian coefficients of bicyclic graphs, Discrete Mathematics 310 (2010) 3404-3412.
[15] J. Zhang, X. D. Zhang, The signless Laplacian coefficients and incidence energy of bicyclic graphs, Linear Algebra and its Applications 439 (2013) 3859-3869.
[16] H. H. Li, B. S. Tam, L. Su, On the signless Laplacian coefficients of unicyclic graphs, Linear Algebra and its Applications 439 (2013) 2008-2028.
[17] J. Zhang, X. D. Zhang, Signless Laplacian coefficients and incidence energy of unicyclic graphs with the matching number, Linear and Multilinear Algebra 63 (2015) 1981-2008.
[18] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publications De Linstitut Mathematique 85 (2009) 19-33.
[19] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra and its Applications 432 (2010) 2257-2272.
[20] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, III, Applicable Analysis and Discrete Mathematics 4 (2010) 156-166.
[21] Z. K. Tang, Y. P. Hou, On incidence energy of trees, MATCH Communications in Mathematical and in Computer Chemistry 66 (2011) 977-984.
[22] A. Ilić, Trees with minimal Laplacian coefficients, Computers and Mathematics with Applications 59 (2010) 2776-2783.
[23] Y. L. Jin, Y. N. Yeh, X. D. Zhang, Laplacian coefficient, matching polynomial and incidence energy of trees with described maximum degree, Journal of Combinatorial Optimization 31 (2016) 1345-1372.
[24] J. B. Zhang, H. B. Kan, X. D. Liu, Graphs with extremal incidence energy, Filomat 29 (2015) 1251-1258.
[25] I. Gutman, X. Li, J. Zhang, Graph energy, Analysis of Complex Networks. From Biology to Linguistics, Wiley-VCH, Weinheim, 2009.
[26] H. B. Hua, M. L. Wang, Unicyclic graphs with given number of pendent vertices and minimal energy, Linear Algebra and its Applications 426 (2007) 478-489.
[27] F. Li, B. Zhou, Minimal energy of unicyclic graphs of a given diameter, Journal of Mathematical Chemistry 43 (2008) 476-484.
[28] C. D. Godsil, I. Gutman, On the theory of the matching polynomial, Journal of Graph Theory 5 (2010) 137-144.
[29] I. Gutman, F. J. Zhang, On the ordering of graphs with respect to their matching members, Discrete Applied Mathematics 15 (1986) 25-33.
[30] A. Ilić, M. Ilić, Laplacian coefficients of trees with given number of leaves or vertices of degree two, Linear Algebra and its Applications 431 (2009) 2195-2202.
[31] X. Y. Pai, S. Y. Liu, On the Laplacian coefficients and Laplacian-Like energy of unicyclic graphs with n vertices and m pendent vertices, Journal of Applied Mathematics 2012 (2012) 404067.
[32] J. Zhang, X. D. Zhang, Laplacian coefficients of unicyclic graphs with the number of leaves and girth, Applicable Analysis and Discrete Mathematics 8 (2014) 330-345.

[^0]: 2010 Mathematics Subject Classification. Primary 05C50; Secondary 92E10
 Keywords. Signless Laplacian coefficient, incidence energy, unicyclic graph, pendent vertex
 Received: 26 January 2018; Accepted: 13 February 2019
 Communicated by Francesco Belardo
 Research supported by the National Natural Science Foundation of China under Grant No. 11001166 and the Shanghai Leading Academic Discipline Project under Project No. S30104.

 Email address: whwang@shu.edu. cn (Wen-Huan Wang)

