Filomat 33:1 (2019), 13–26 https://doi.org/10.2298/FIL1901013B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Coincidence and Fixed Points for Multivalued Mappings in Incomplete Metric Spaces with Applications

Hamid Baghani^a, Maryam Ramezani^b

^a Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran ^b Department of Mathematics, Faculty of Science, University of Bojnord, Bojnord, Iran

Abstract. In the present paper, firstly, we review the notion of R-complete metric spaces, where R is a binary relation (not necessarily a partial order). This notion lets us to consider some fixed point theorems for multivalued mappings in incomplete metric spaces. Secondly, as motivated by the recent work of Wei-Shih Du (On coincidence point and fixed point theorems for nonlinear multivalued maps, *Topology and its Applications* 159 (2012) 49–56), we prove the existence of coincidence points and fixed points of a general class of multivalued mappings satisfying a new generalized contractive condition in R-complete metric spaces which extends some well-known results in the literature. In addition, this article consists of several non-trivial examples which signify the motivation of such investigations. Finally, we give an application to the nonlinear fractional boundary value equations.

1. Introduction and Preliminaries

Throughout this paper, \mathbb{N} , \mathbb{Q} and \mathbb{R} denote, respectively, the sets of all natural numbers, rational numbers and real numbers.

Let (X, d) be a metric space. We denote by CB(X) the class of all nonempty closed and bounded subsets of X, and K(X) the class of all nonempty compact subsets of X.

For $A, B \in CB(X)$ and $x \in X$, define

 $D(x,A) := \inf\{d(x,a); a \in A\}$

and

$$H(A,B) := \max\{\sup_{a \in A} D(a,B), \sup_{b \in B} D(b,A)\}.$$

The function *H* is a metric on CB(X) and is called a Pompeiu-Hausdorff metric induced by *d*. It is well known that if X is a complete metric space, then so is the metric space (CB(X), *H*).

Let $f : X \to X$ be a self-mapping and $T : X \to CB(X)$ be a multivalued map. A point $x \in X$ is a coincidence point of f and T if $fx \in Tx$. If f = id, the identity mapping, then $x = fx \in Tx$ and we call x a fixed point of T. The set of fixed points of T and the set of coincidence points of f and T are denoted by F(T) and COP(f, T), respectively.

In 1969, Nadler [15] extended the Banach contraction principle to multivalued mappings as follows.

Keywords. R-regular and R-complete metric spaces; Fixed point theorem; Fractional integral equation.

²⁰¹⁰ Mathematics Subject Classification. Primary 54H25; Secondary 18B10.

Received: 20 February 2018; Accepted: 15 November 2018

Communicated by Vasile Berinde

Email addresses: h.baghani@gmail.com,h.baghani@math.usb.ac.ir (Hamid Baghani),

mar.ram.math@gmail.com,m.ramezani@ub.ac.ir(Maryam Ramezani)

Theorem 1.1. Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume that there exists $r \in [0, 1)$ such that $H(Tx, Ty) \le rd(x, y)$ for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T(z)$.

Inspiring from the results of Nadler the fixed point theory of multivalued contraction was further developed in different directions by many authors, in particular, by Reich [18], Berinde-Berinde [7], Mizoguchi and Takahashi [14], Du [11], Daffer *et al.* [9, 10], Amini-Harandi [2], Boonsri *et al.* [8], Petrusel *et al.*[16] and many others.

Recently, Du [11] proved a generalization of Berinde-Berinde's fixed point theorem [7] as follows.

Theorem 1.2. Let (X, d) be a complete metric space. Let $T : X \to CB(X)$ be a multivalued mapping, $f : X \to X$ be a continuous self-mapping and $\beta : [0, \infty) \to [0, 1)$ be a function such that $\limsup_{s \to t^+} \beta(s) < 1$ for each $t \ge 0$. Assume that

 (a_1) for each $x \in X$, $\{fy : y \in Tx\} \subseteq Tx$;

(*a*₂) there exists a function $\hat{h} : X \to [0, \infty)$ such that

 $H(Tx, Ty) \le \beta(d(x, y)).d(x, y) + \hat{h}(fy)D(fy, Tx)$

for each $x, y \in X$. Then $\text{COP}(f, T) \cap F(T) \neq \emptyset$.

In the following, we state Berinde-Berinde's fixed point theorem [7].

Theorem 1.3. Let (X, d) be a complete metric space. Let $T : X \to CB(X)$ be a multivalued mapping and $\beta : [0, \infty) \to [0, 1)$ be a function such that $\limsup_{s \to t^+} \beta(s) < 1$ for each $t \ge 0$. Assume that

 $H(Tx, Ty) \le \beta(d(x, y)).d(x, y) + L.D(y, Tx)$

for each $x, y \in X$, where $L \ge 0$. Then $F(T) \ne \emptyset$.

Notice that, if we let L = 0 in above theorem, then we can obtain Mizoguchi-Takahashi's fixed point theorem [14] which is a partial answer of Problem 9 in [18]. Indeed, Reich established the following:

Theorem 1.4. Let (X, d) be a complete metric space. Let $T : X \to K(X)$ be a multivalued mapping and $\beta : [0, \infty) \to [0, 1)$ be a function such that $\limsup_{s \to t^+} \beta(s) < 1$ for each $t \ge 0$. Assume that

 $H(Tx, Ty) \le \beta(d(x, y)).d(x, y)$

for each $x, y \in X$. Then $F(T) \neq \emptyset$.

Reich [18] posed the question whether above theorem is also true for a mapping $T : X \rightarrow CB(X)$. Mizoguchi and Takahashi [14] in 1989 responded to this conjecture and proved the following theorem which additionally is more general than Nadler's theorem.

Theorem 1.5. Let (X, d) be a complete metric space. Let $T : X \to CB(X)$ be a multivalued mapping and $\beta : [0, \infty) \to [0, 1)$ be a function such that $\limsup_{s \to t^+} \beta(s) < 1$ for each $t \ge 0$. Assume that

 $H(Tx, Ty) \le \beta(d(x, y)).d(x, y)$

for each $x, y \in X$. Then $F(T) \neq \emptyset$.

In 2011, Amini-Harandi [2] introduced the concept of a set-valued quasi-contraction and proved the following interesting fixed point theorem.

Theorem 1.6. Let (X, d) be a complete metric space. Let $T : X \to CB(X)$ be a multivalued mapping. Assume that

 $H(Tx, Ty) \le k. \max\{d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)\}$

for each $x, y \in X$, where $0 < k < \frac{1}{2}$. Then $F(T) \neq \emptyset$.

On the other hand, Boonsri and Saejung in [8] showed that the conclusion of Daffer and Kaneno[9] remains true without assuming the lower semicontinuity of the function $x \mapsto D(x, Tx)$. In the following, we state Boonsri-Saejung's fixed point theorem.

Theorem 1.7. Let (X, d) be a complete metric space. Let $T : X \to CB(X)$ be a multivalued mapping. Assume that

$$H(Tx, Ty) \le k. \max\{d(x, y), D(x, Tx), D(y, Ty), \frac{D(x, Ty) + D(y, Tx)}{2}\}$$

for each $x, y \in X$, where 0 < k < 1. Then $F(T) \neq \emptyset$.

As motivated by these works, we define a new type of monotone multivalued mappings and prove some coincidence point and fixed point theorems under a new generalized contractive condition which are different from Nadler's theorem, Berinde-Berinde's theorem, Boonsri-Saejung's theorem, Mizoguchi-Takahashi's theorem, Du's theorem and Amini-Harandi's theorem for nonlinear multivalued contractive mappings. Our results compliment and extend some important fixed point theorems for multivalued contractive mappings.

2. Basic Definitions and Notations

Very recently, Eshaghi Gordji *et al.* [12] and Baghani *et al.* [4] introduced the notation of orthogonal sets and gave a real generalization of the Banach fixed point theorem in incomplete metric spaces. The notion helps them to find the solution of a integral equation in incomplete metric spaces. For more details, we refer the reader to [1, 3, 5, 6, 17].

To set up our results in the next sections, we need to introduce some definitions that play a major roles in further sections.

Let *X* be a nonempty set, $A, B \subseteq X$ and R be an arbitrary binary relation on *X*. The binary relations *strongly relation* (briefly, SR) and *weakly relation* (briefly, WR) are defined between *A* and *B* as follows. (1) *A* (SR) *B* if *a* R *b*, for all $a \in A$ and $b \in B$.

(2) *A* (WR) *B* if for each $a \in A$ there exists $b \in B$ such that $a \not R b$.

It is clear that the relation SR implies the relation WR. Example 2.2 shows that the converse of the statement is not true in general. Now, we introduce a type of monotone multivalued mappings by using the relation SR.

Definition 2.1. *Let* (*X*, *d*) *be a metric space endowed a relation* \mathbb{R} *on X and* $T : X \to CB(X)$ *. Then T is said to be a monotone mapping of type* SR *if*

$$x, y \in X, x \in Y \Rightarrow Tx$$
 (SR) Ty .

Example 2.2. Let $X = \{\frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots\} \cup \{0, 1\}, d(x, y) = |x - y|$ for all $x, y \in X$, and relation R be defined on X by

$$x \ \mathbb{R} \ y \iff \begin{cases} \frac{y}{x} \in \mathbb{N}, \\ or \ x = y = 0 \end{cases}$$

Let $T: X \to CB(X)$ be defined by

$$Tx = \begin{cases} \{\frac{1}{2^n}, \frac{1}{2^{n+1}}\}, & \text{if} & x = \frac{1}{2^n}, n = 1, 2, \cdots, \\ \{0\}, & \text{if} & x = 0, \\ \{1, \frac{1}{2}, \frac{1}{4}\}, & \text{if} & x = 1. \end{cases}$$

It is easy to see that T is not monotone of type SR.

Example 2.3. Let X = [0, 1) be equipped with the Euclidean metric. Define relation R on X by x R y iff either x = 0 or y = 0. Let $T : X \to CB(X)$ be a mapping defined by

$$T(x) = \begin{cases} \{\frac{1}{2}x^2, x\}, & \text{if } x \in \mathbb{Q} \cap X, \\ \{0\}, & \text{if } x \in \mathbb{Q}^c \cap X. \end{cases}$$

It is easy to see that T is monotone of type SR.

Definition 2.4. Let $X \neq \emptyset$ and $R \subseteq X \times X$ be a relation. A sequence $\{x_n\}$ is called an R-sequence if

 $(\forall n, k \in \mathbb{N} : x_n \mathbf{R} x_{n+k}).$

Definition 2.5. Let (X, d) be a metric space and R be a relation on X. Then X is said to be R-regular if for each R-sequence $\{x_n\}$ with $x_n \to x$ for some $x \in X$, there exists $n_0 \in \mathbb{N}$ such that

 $(\forall n \geq n_0 : x_n \mathbf{R} x).$

Definition 2.6. *Let* (X, d) *be a metric space and* R *be a relation on* X. *Then* X *is said to be* R*-complete if every Cauchy* R*-sequence is convergent (briefly,* (X, d, R) *is called an* R*-complete metric space).*

Example 2.7. Consider $X = [0, \frac{1}{2}) \cup (\frac{1}{2}, 2]$ equipped with the Euclidean metric. Define relation R on X by $R = \{(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)\}$. It is easy to see that (X, d, R) is an R-complete (not complete) metric space. We are going to show that (X, d, R) is an R-regular metric space. Take R-sequence $\{x_n\}$ such that $\lim_{n\to\infty} x_n = x$. Since $\{x_n\}$ is an R-sequence then for each $n \in \mathbb{N}$, $(x_n, x_{n+1}) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$ which gives rise to $\{x_n\} \subseteq \{0, 1\}$. As $\{0, 1\}$ is closed, we have $x_n R x$ for all $n \in \mathbb{N}$.

Example 2.8. Let X be a linear subspace of a Hilbert space H. For all $x, y \in X$, define $x \mathbb{R} y$ iff $|\langle x, y \rangle| = ||x|| ||y||$. We claim that $(X, ||.||, \mathbb{R})$ is an \mathbb{R} -complete metric space which is not \mathbb{R} -regular. Let $\{x_n\} \subseteq X$ be a Cauchy \mathbb{R} -sequence. Then $\{x_n\}$ converges to some $x \in H$. Our aim is to show that x is an element of X. The relation \mathbb{R} ensures that for all $n \in \mathbb{N}$,

$$\exists \alpha_n \ s.t. \quad x_n = \alpha_n x_{n+1} \quad or \quad x_{n+1} = \alpha_n x_n. \tag{1}$$

We distinguish two cases.

Case 1. There exists a subsequence $\{x_{n_k}\}$ *of* $\{x_n\}$ *such that* $x_{n_k} = 0$ *for all* k*. This implies that* $x = 0 \in X$ *.*

Case 2. For all sufficiently large $n \in \mathbb{N}$ *,* $x_n \neq 0$ *. Take* $n_0 \in \mathbb{N}$ *such that for all* $n \ge n_o$ *,* $x_n \neq 0$ *. It follows from (1) that for all* $n \ge n_0$ *there exists* $\alpha_n > 0$ *, such that* $x_n = \alpha_n x_{n_0}$ *. In other words,*

 $|\alpha_n - \alpha_m| \ ||x_{n_0}|| = ||x_n - x_m|| \to 0 \quad as \ m, n \to \infty.$

Therefore, $\{\alpha_n\}$ *is a Cauchy sequence in* \mathbb{R} *. Assume that* $\alpha_n \to \alpha$ *as* $n \to \infty$ *. Then* $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \alpha_n x_{n_0} = \alpha x_{n_0}$ *. This implies that* $x \in X$ *.*

Remark 2.9. Every complete metric space is R-complete, but Examples 2.8 and 2.7 show that the converse is not true in general.

Definition 2.10. Let Λ denote the class of those functions $\phi(t_1, t_2, t_3, t_4, t_5) : \mathbb{R}^5_+ \to \mathbb{R}_+$ which satisfy the following conditions

 $\begin{aligned} &(\Lambda_1) \ \phi \ is \ increasing \ in \ t_2, \ t_3, \ t_4 \ and \ t_5; \\ &(\Lambda_2) \ v < \phi(u, u, v, u + v, 0) \ implies \ that \ v < u, \ for \ each \ u, v \in \mathbb{R}_+; \\ &(\Lambda_3) \ If \ t_n, s_n \to 0 \ and \ u_n \to \gamma > 0, \ as \ n \to \infty, \ then \ we \ have \ \lim \sup_{n \to \infty} \phi(t_n, s_n, \gamma, u_n, t_{n+1}) \leq \gamma; \\ &(\Lambda_4) \ \phi(u, u, u, 2u, 0) \leq u \ for \ each \ u \in \mathbb{R}^+ := [0, +\infty). \end{aligned}$

Many functions belong to the class Λ as shown by the following examples.

Example 2.11. (I)

$$\phi_1(t_1, t_2, t_3, t_4, t_5) = \hat{\alpha}t_1 + \hat{\beta}t_2 + \hat{\gamma}t_3 + \delta t_4 + Lt_5$$

where $\hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\delta}, L \ge 0$, $\hat{\alpha} + \hat{\beta} + \hat{\gamma} + 2\hat{\delta} = 1$ and $\hat{\gamma} \ne 1$.

(II)

$$\phi_2(t_1, t_2, t_3, t_4, t_5) = \frac{1}{2} \max\{t_1, t_2, t_3, t_4, t_5\}.$$

(III)

$$\phi_3(t_1, t_2, t_3, t_4, t_5) = \max\{t_1, t_2, t_3, \frac{1}{2}(t_4 + t_5)\}$$

Example 2.12. Let $\phi \in \Lambda$. Suppose $\tilde{\phi} : \mathbb{R}^5_+ \to \mathbb{R}_+$ is defined by

$$\phi(t_1, t_2, t_3, t_4, t_5) = \phi(t_1, t_2, t_3, t_4, t_5) + L.t_5,$$

where $L \ge 0$. It is easy to see that $\tilde{\phi} \in \Lambda$.

Definition 2.13. Let (X, d) be a metric space and R be a relation on X. A mapping $f : X \to X$ is R-continuous at $a \in X$ if for each R-sequence $\{a_n\}$ in X if $a_n \to a$, then $f(a_n) \to f(a)$. Also, f is R-continuous on X if f is R-continuous at each $a \in X$.

Example 2.14. Let X = [0, 1] with the Euclidean metric. Assume $x \in R$ y is and only if xy = 0. Define $f : X \to X$ by

$$f(x) = \begin{cases} 1, & \text{if} \quad x \in \mathbb{Q} \cap [0, 1], \\ x, & \text{if} \quad x \in \mathbb{Q}^c \cap [0, 1]. \end{cases}$$

Notice that f is not continuous but we can see that f is R-continuous. If $\{x_n\}$ is a R-sequence in X which converges to $x \in X$. Applying definition R we obtain $x_n = 0$. This implies that $1 = f(x_n) \rightarrow f(x) = 1$.

3. Main Results

In below, we state and prove the main theorem of this manuscript in R-complete metric spaces. This theorem helps us to find coincidence points and fixed points for multivalued mappings in incomplete metric spaces.

Theorem 3.1. Let (X, d, \mathbb{R}) be an \mathbb{R} -complete (not necessarily complete) and \mathbb{R} -regular metric space. Let $T : X \to CB(X)$ be a multivalued mapping, $f : X \to X$ be an \mathbb{R} -continuous self-mapping and $\varphi : [0, \infty) \to [0, 1)$ be a function such that $\limsup_{s \to t^+} \varphi(s) < 1$ for each $t \ge 0$. Assume that (a_1) for each $x \in X$, $\{fy : y \in Tx\} \subseteq Tx$; (a₂) there exist functions $\hat{h} : X \to [0, \infty)$ and $\varphi \in \Lambda$ such that

 $H(Tx, Ty) \le \varphi(d(x, y)).\phi(d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)) + \hat{h}(fy)D(fy, Tx)$ (2)

for each $x \in R$ y with $x \neq y$. Suppose that (i) T is monotone of type SR; (ii) there exists $x_0 \in X$ such that for each $x \in X$, $\{x_0\}$ (WR) Tx. Then $COP(f, T) \cap F(T) \neq \emptyset$.

Proof. By (a_1) , we note that, for each $x \in X$, D(fy, Tx) = 0 for all $y \in Tx$. Also, it is easy to see that, if $x^* \in T(x^*)$, then $x^* \in COP(f, T) \cap F(T)$. For this reason we suppose that *T* has no fixed point, i.e., D(x, Tx) > 0 for all $x \in X$.

By properties of functions φ , for each t > 0, there exist k(t) > 0 and $\delta(t) > 0$ such that

$$\varphi(s) \le k(t) < 1 \text{ for all } s \in (t, t + \delta(t)). \tag{3}$$

Since $\{x_0\}$ (WR) Tx_0 , there exists $x_1 \in Tx_0$ such that $x_0 R x_1$. If $x_0 = x_1$, then $x_0 = x_1 \in Tx_0$ and this is a contradiction. So, we may assume that $x_0 \neq x_1$. Moreover by monotonicity of *T*, we have Tx_0 (SR) Tx_1 . Put $t_1 = D(x_1, Tx_1)$. It is clear that $D(x_1, Tx_1) \leq d(x_1, y)$ for all $y \in Tx_1$. The following cases are considered:

Case 1. $D(x_1, Tx_1) < d(x_1, y)$ for all $y \in Tx_1$. Select positive number $d(t_1)$ such that

$$d(t_1) < \min\{\delta(t_1), (\frac{1}{k(t_1)} - 1)t_1\},\tag{4}$$

and put

$$\epsilon(x_1) = \min\{1, \frac{d(t_1)}{t_1}\}.$$
(5)

Then there exists $x_2 \in Tx_1$ such that $x_1 \ge x_2$ and

$$d(x_1, x_2) < D(x_1, Tx_1) + \epsilon(x_1)D(x_1, Tx_1) = (1 + \epsilon(x_1))D(x_1, Tx_1).$$
(6)

By the hypotheses that *T* no fixed point, we have $x_1 \neq x_2$. On the other hand by (2) and (Λ_1), we can write

$$D(x_{2}, Tx_{2}) \leq H(Tx_{1}, Tx_{2})$$

$$\leq \varphi(d(x_{1}, x_{2})).\phi(d(x_{1}, x_{2}), D(x_{1}, Tx_{1}), D(x_{2}, Tx_{2}), D(x_{1}, Tx_{2}), D(x_{2}, Tx_{1}))$$

$$\leq \varphi(d(x_{1}, x_{2})).\phi(d(x_{1}, x_{2}), d(x_{1}, x_{2}), D(x_{2}, Tx_{2}), D(x_{1}, Tx_{2}), 0)$$

$$\leq \varphi(d(x_{1}, x_{2})).\phi(d(x_{1}, x_{2}), d(x_{1}, x_{2}), D(x_{2}, Tx_{2}), d(x_{1}, x_{2}) + D(x_{2}, Tx_{2}), 0)$$

$$< \phi(d(x_{1}, x_{2}), d(x_{1}, x_{2}), D(x_{2}, Tx_{2}), d(x_{1}, x_{2}) + D(x_{2}, Tx_{2}), 0).$$
(7)

Now by above relation, (Λ_2) , (Λ_1) and (Λ_4) , we conclude that

 $D(x_2, Tx_2) \le \varphi(d(x_1, x_2)).d(x_1, x_2).$

Therefore

$$D(x_1, Tx_1) - D(x_2, Tx_2) \ge D(x_1, Tx_1) - \varphi(d(x_1, x_2)).d(x_1, x_2)$$

> $(\frac{1}{1 + \epsilon(x_1)} - \varphi(d(x_1, x_2))).d(x_1, x_2).$ (8)

By (4), (5) and (6)

$$t_1 = D(x_1, Tx_1) < d(x_1, x_2) < D(x_1, Tx_1) + \epsilon(x_1) \cdot D(x_1, Tx_1) \le t_1 + d(t_1) < t_1 + \delta(t_1).$$

This implies by (3) that $\varphi(d(x_1, x_2)) \le k(t_1) < 1$. Since $\epsilon(x_1) \le \frac{d(t_1)}{t_1} < \frac{1}{k(t_1)} - 1$, we have

$$\frac{1}{1+\epsilon(x_1)} - \varphi(d(x_1, x_2)) > 0.$$
(9)

It follows (8) that $D(x_2, Tx_2) < D(x_1, Tx_1)$.

Case 2. $D(x_1, Tx_1) = d(x_1, x_2)$ for some $x_2 \in Tx_1$. Since Tx_0 (SR) Tx_1 , then $x_1 R x_2$ and also

$$D(x_1, Tx_1) - D(x_2, Tx_2) \ge (1 - \varphi(d(x_1, x_2))).d(x_1, x_2) > 0.$$

Therefore $D(x_2, Tx_2) < D(x_1, Tx_1)$.

Next, let $t_2 = D(x_2, Tx_2)$. Then $D(x_2, Tx_2) \le d(x_2, y)$ for all $y \in Tx_2$. Again we consider the following two cases:

Case A. $D(x_2, Tx_2) < d(x_2, y)$ for all $y \in Tx_2$. For $\delta(t_2)$ and $k(t_2)$, choose $d(t_2)$ with

$$d(t_2) < \min\{\delta(t_2), (\frac{1}{k(t_2)} - 1)t_2\}$$

and set

$$\epsilon(x_2) = \min\{\frac{d(t_2)}{t_2}, \frac{1}{2}, \frac{t_1}{t_2} - 1\}.$$

By using the similar reason as above, we obtain $x_3 \in Tx_2$ such that $x_2 R x_3$, $x_2 \neq x_3$, $d(x_2, x_3) < (1 + \epsilon(x_2))D(x_2, Tx_2)$ and

$$D(x_2, Tx_2) - D(x_3, Tx_3) \ge (\frac{1}{1 + \epsilon(x_2)} - \varphi(d(x_1, x_2))).d(x_2, x_3) > 0.$$

Hence $D(x_3, Tx_3) < D(x_2, Tx_2)$. From $\epsilon(x_2) \le \frac{t_1}{t_2} - 1$, it follows that

$$d(x_2, x_3) < (1 + \epsilon(x_2))D(x_2, Tx_2) \le D(x_1, Tx_1) \le d(x_1, x_2).$$

Case B. $D(x_2, Tx_2) = d(x_2, x_3)$ for some $x_3 \in Tx_2$. Since Tx_1 (SR) Tx_2 , then $x_2 R x_3$ and also by using the same method as above, we can show that

$$D(x_2, Tx_2) - D(x_3, Tx_3) \ge (1 - \varphi(d(x_2, x_3))).d(x_2, x_3) > 0$$

and

$$d(x_2, x_3) = D(x_2, Tx_2) < D(x_1, Tx_1) \le d(x_1, x_2).$$

Hence, $D(x_3, Tx_3) < D(x_2, Tx_2)$ and $d(x_2, x_3) < d(x_1, x_2)$. Repeating this process, we find that there exists an R-sequence $\{x_n\}$ with $x_{n+1} \in Tx_n$ such that $\{D(x_n, Tx_n)\}$ and $\{d(x_n, x_{n+1})\}$ are decreasing sequences of positive numbers and for each $n \in \mathbb{N}$,

$$D(x_n, Tx_n) - D(x_{n+1}, Tx_{n+1}) \ge \left(\frac{1}{1 + \gamma(x_n)} - \varphi(d(x_n, x_{n+1}))\right) \cdot d(x_n, x_{n+1}),$$
(10)

where $\gamma(x_n)$ is real number with $0 \le \gamma(x_n) \le \frac{1}{n}$. Since $\{d(x_n, x_{n+1})\}$ is decreasing sequence, there exists $t \in [0, \infty)$ such that $\lim_{n\to\infty} d(x_n, x_{n+1}) = t$. Let $a_n := \frac{1}{1+\gamma(x_n)} - \varphi(d(x_n, x_{n+1}) \text{ for all } n \in \mathbb{N}$, then

$$\liminf_{n \to \infty} a_n \ge \lim_{n \to \infty} \frac{1}{1 + \gamma(x_n)} - \limsup_{n \to \infty} \varphi(d(x_n, x_{n+1}) > 0).$$

This implies that from (10), there exists b > 0 such that

$$D(x_n, Tx_n) - D(x_{n+1}, Tx_{n+1}) \ge b.d(x_n, x_{n+1})$$

for large enough *n*. Since $\{d(x_n, x_{n+1})\}$ is decreasing sequence, it is convergent. On the other hand, for each n < m, we have

$$d(x_n, x_m) \le \sum_{i=n}^{m-1} d(x_i, x_{i+1})$$

$$\le \frac{1}{b} \sum_{i=n}^{m-1} \{ D(x_i, Tx_i) - D(x_{i+1}, T_{i+1}) \}$$

$$= \frac{1}{b} \{ D(x_n, Tx_n) - D(x_m, Tx_m) \} \to 0$$

as $n, m \to \infty$. Hence $\{x_n\}$ is a Cauchy R-sequence. Since X is R-complete then $\lim_{n\to\infty} x_n = x^*$, for some $x^* \in X$. Since $x_{n+1} \in Tx_n$, it follows from (a_1) that $fx_{n+1} \in Tx_n$ for each $n \in \mathbb{N}$. Since f is R-continuous and $\lim_{n\to\infty} x_n = x^*$, we have

$$\lim_{n\to\infty} fx_{n+1} = fx^*$$

By assumption R-regularity of X, since $x_n \ge x_{n+k}$ for all $n, k \in \mathbb{N}$ and $x_n \to x^*$, as $n \to \infty$, then $x_n \ge x^*$ for $n \ge n_0$, for some $n_0 \in \mathbb{N}$. Thus, from (2) with $x = x_n$ and $y = x^*$, we obtain

$$D(x_{n+1}, Tx^*) \le H(Tx_n, Tx^*)$$

$$\le \varphi(d(x_n, x^*)).\phi(d(x_n, x^*), d(x_n, x_{n+1}), D(x^*, Tx^*), D(x_n, Tx^*), d(x^*, x_{n+1})) + \hat{h}(fx^*)d(fx^*, fx_{n+1})$$
(11)

for each $n \in \mathbb{N}$ with $n \ge n_0$. Now since $x^* \notin Tx^*$ then by using (11) and (Λ_3) we have

$$D(x^*, Tx^*) = \limsup_{n \to \infty} D(x_{n+1}, Tx^*)$$

$$\leq \limsup_{n \to \infty} \left(\varphi(d(x_n, x^*)) \cdot \varphi(d(x_n, x^*), d(x_n, x_{n+1}), D(x^*, Tx^*), D(x_n, Tx^*), d(x^*, x_{n+1})) + \hat{h}(fx^*) d(fx^*, fx_{n+1}) \right)$$

$$< D(x^*, Tx^*).$$

Then $x^* \in Tx^*$ which is a contradiction because it is supposed that *T* has no fixed point. By (a_1) , $fx^* \in Tx^*$. Hence $x^* \in COP(f, T)$. This completes the proof. \Box

4. Some Consequences

Letting

$$\phi(t_1, t_2, t_3, t_4, t_5) = \alpha t_1 + \beta t_2 + \gamma t_3 + \delta t_4 + L t_5,$$

where α , β , γ , δ , $L \ge 0$, $\alpha + \beta + \gamma + 2\delta = 1$ and $\gamma \ne 1$, we get a generalization of Theorem 2.2 of [11], Theorem 4 of [7] and Theorem 5 of [14].

Corollary 4.1. Let (X, d, R) be an R-complete (not necessarily complete) and R-regular metric space. Let $T : X \rightarrow C$ *CB*(*X*) be a multivalued mapping, $f : X \to X$ be an *R*-continuous self-mapping and $\varphi : [0, \infty) \to [0, 1)$ be a function such that $\limsup_{s \to t^+} \varphi(s) < 1$ for each $t \ge 0$. Assume that (a₁) for each $x \in X$, { $fy : y \in Tx$ } $\subseteq Tx$; (a_2) there exists a function $\hat{h} : X \to [0, \infty)$ such that

$$H(Tx,Ty) \leq \varphi(d(x,y)).(\alpha.d(x,y) + \beta.D(x,Tx) + \gamma.D(y,Ty) + \delta.D(x,Ty)) + L.D(y,Tx) + \hat{h}(fy).D(fy,Tx)$$

for each x R y with $x \neq y$, where $\alpha, \beta, \gamma, \delta, L \geq 0$, $\alpha + \beta + \gamma + 2\delta = 1$ and $\gamma \neq 1$. Suppose that (i) T is monotone of type SR; (ii) there exists $x_0 \in X$ such that for each $x \in X$, $\{x_0\}$ (WR) Tx. Then $\operatorname{COP}(f, T) \cap \operatorname{F}(T) \neq \emptyset$.

Proof. Define a function $\tilde{\beta}$ from $[0, \infty)$ into [0, 1) by $\tilde{\beta}(t) = \frac{\varphi(t)+1}{2}$ for $t \in [0, \infty)$. Then the following hold:

- 1. $\limsup_{s \to t^+} \tilde{\beta}(s) < 1$ for all $t \in [0, \infty)$.
- 2. $\varphi(t) < \tilde{\beta}(t)$ for all $t \in [0, \infty)$.
- 3. $\tilde{\beta}(t) \ge \frac{1}{2}$ for all $t \in [0, \infty)$.

Now we have

$$\begin{split} H(Tx,Ty) &\leq \varphi(d(x,y)).\left(\alpha.d(x,y) + \beta.D(x,Tx) + \gamma.D(y,Ty) + \delta.D(x,Ty)\right) + L.D(y,Tx) + \hat{h}(fy).D(fy,Tx) \\ &< \tilde{\beta}(d(x,y)).\left(\alpha.d(x,y) + \beta.D(x,Tx) + \gamma.D(y,Ty) + \delta.D(x,Ty)\right) \\ &+ \frac{L.\tilde{\beta}(d(x,y)).D(y,Tx)}{\tilde{\beta}(d(x,y))} + \hat{h}(fy).D(fy,Tx) \\ &\leq \tilde{\beta}(d(x,y)).\left(\alpha.d(x,y) + \beta.D(x,Tx) + \gamma.D(y,Ty) + \delta.D(x,Ty) + 2L.D(y,Tx)\right) + \hat{h}(fy).D(fy,Tx) \end{split}$$

for each *x* R *y* with $x \neq y$.

Therefore by applying Theorem 2 and Example 2.11-I, we can see the results. \Box

Letting

$$\phi(t_1, t_2, t_3, t_4, t_5) = \frac{1}{2} \max\{t_1, t_2, t_3, t_4, t_5\},\$$

we get a generalization of Theorem 2.2 of [2].

Corollary 4.2. Let (X, d, R) be an R-complete (not necessarily complete) and R-regular metric space. Let $T : X \to CB(X)$ be a multivalued mapping, $f : X \to X$ be an R-continuous self-mapping and $\varphi : [0, \infty) \to [0, 1)$ be a function such that $\limsup_{s \to t^+} \varphi(s) < \frac{1}{2}$ for each $t \ge 0$. Assume that (a_1) for each $x \in X$, $\{fy : y \in Tx\} \subseteq Tx$;

`

(*a*₂) there exists a function $\hat{h} : X \to [0, \infty)$ such that

$$H(Tx,Ty) \le \varphi(d(x,y)) \left(\max\{d(x,y), D(x,Tx), D(y,Ty), D(x,Ty), D(y,Tx)\} \right)$$

 $+L.D(y,Tx) + \hat{h}(fy)D(fy,Tx)$

for each $x \in R$ y with $x \neq y$, where $L \ge 0$. Suppose that (i) T is monotone of type SR; (ii) there exists $x_0 \in X$ such that for each $x \in X$, $\{x_0\}$ (WR) Tx. Then $COP(f, T) \cap F(T) \neq \emptyset$.

Proof. We can prove this corollary by Example 2.11-II, Example 2.12 and the technique has been used in Corollary 4.1. □

Letting

$$\phi(t_1, t_2, t_3, t_4, t_5) = \max\{t_1, t_2, t_3, \frac{1}{2}(t_4 + t_5)\},\$$

we get a generalization Theorem 1 of [8], Theorem 2.2 of [11] and Theorem 4 of [7].

Corollary 4.3. Let (X, d, R) be a R-complete (not necessarily complete) and R-regular metric space. Let $T : X \to CB(X)$ be a multivalued mapping, $f : X \to X$ be an R-continuous self-mapping and $\varphi : [0, \infty) \to [0, 1)$ be a function such that $\lim_{s \to t^+} \varphi(s) < 1$ for each $t \ge 0$. Assume that (a_1) for each $x \in X$, $\{fy : y \in Tx\} \subseteq Tx$;

 $(u_1) \text{ for each } x \in X, (fy) \in IX \subseteq IX,$

(*a*₂) there exists a function $\hat{h} : X \to [0, \infty)$ such that

$$H(Tx, Ty) \le \varphi(d(x, y)) \cdot \left(\max\{d(x, y), D(x, Tx), D(y, Ty), \frac{1}{2}(D(x, Ty) + D(y, Tx))\} \right) + L \cdot D(y, Tx) + \hat{h}(fy) D(fy, Tx)$$

for each $x \in \mathbb{R}$ y with $x \neq y$. Suppose that (i) T is monotone of type SR; (ii) there exists $x_0 \in X$ such that for each $x \in X$, $\{x_0\}$ (WR) Tx. Then $\operatorname{COP}(f, T) \cap F(T) \neq \emptyset$.

Proof. We can prove this corollary by Example 2.11-III, Example 2.12 and the technique has been used in Corollary 4.1. □

5. Some Examples

The following simple examples show the generality of our main theorem over Theorem 1 of [8], Theorem 2.2 of [11], Theorem 4 of [7], Theorem 5 of [14] and Theorem 2.2 of [2].

Example 5.1. *Consider the sequence* $\{S_n\}$ *as follows:*

$$S_{1} = 1 \times 2,$$

$$S_{2} = 1 \times 2 + 2 \times 3,$$

$$S_{3} = 1 \times 2 + 2 \times 3 + 3 \times 4,$$

...

$$S_{n} = 1 \times 2 + 2 \times 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}, n \in \mathbb{N}.$$

Let $X = \{S_n : n \in \mathbb{N}\}$ and $d(x, y) = |x - y|, x, y \in X$. For all $S_n, S_m \in X$ define $S_n \in S_m$ if and only if $(1 = n \le m)$. Hence (X, d, \mathbb{R}) is an \mathbb{R} -complete and \mathbb{R} -regular metric space. Define a multivalued mapping $T : X \to CB(X)$ by the formulae:

$$Tx = \begin{cases} \{S_{n-1}, S_{n+1}\}, & \text{if } x = S_n, n = 3, 4, \cdots, \\ \{S_1\}, & \text{if } x = S_1, S_2. \end{cases}$$

It is easy to see that T is monotone of type SR *and* {*S*₁} (WR) *TS*_n *for each* $n \in \mathbb{N}$ *. Now since,*

$$\lim_{n\to\infty}\frac{H(T(S_n),T(S_1))}{d(S_n,S_1)}=1,$$

then T is not contraction. First, observe that

$$S_n \mathbb{R} S_m$$
, $T(S_n) \neq T(S_m) \iff (1 = n, m > 2)$.

On the other hand, for every $m \in \mathbb{N}$ *,* m > 2 *we have*

 $H(TS_1, TS_m) \le \varphi(d(S_1, S_m))(\alpha.d(S_1, S_m)) + L.D(S_m, TS_1),$

where $\alpha = 1$, $L = \frac{9}{2}$ and $\varphi : [0, \infty) \to [0, 1)$ is defined by $\varphi(t) = \frac{1}{2}$, $t \in [0, \infty)$. Hence by Corollary 4.1, for any function $\hat{h} : X \to [0, \infty)$ and any R-continuous self-mapping $f : X \to X$ satisfying condition (a_1) of Corollary 4.1, we conclude that $COP(f, T) \cap F(T) \neq \emptyset$.

Notice that the mapping T does not satisfy the assumptions of Theorem 1 of [8], Theorem 2.2 of [11], Theorem 4 of [7], Theorem 5 of [14] and Theorem 2.2 of [2]. For this reason take $x = S_3$ and $y = S_4$.

Example 5.2. Let ℓ^{∞} be the Banach space consisting of all bounded real sequences with supremum norm and let $\{e_n\}$ be the canonical basis of ℓ^{∞} . Let $\{\tau_n\}$ be a bounded, strictly increasing sequence in $(0, \infty)$ satisfying $\tau_{n+1} < 2\tau_n$ for all $n \in \mathbb{N}$ (for example, let $\tau_n = \frac{2^n - 1}{2^n}$ $n \in \mathbb{N}$). Put $x_n = \tau_n e_n$ for each $n \in \mathbb{N}$. Define a bounded, complete subset X of ℓ^{∞} by $X = \{x_1, x_2, x_3, \cdots\}$ and a mapping T from X into CB(X) by

 $Tx_n = \begin{cases} \{x_{n-1}, x_{n+1}\}, & \text{if } n = 2, 3, \cdots, \\ \{x_1\}, & \text{if } n = 1. \end{cases}$

For all $x_n, x_m \in X$ define $x_n \in X_m$ if and only if $(1 = n \le m)$. Hence (X, d, \mathbb{R}) is an \mathbb{R} -complete and \mathbb{R} -regular metric space. It is easy to see that T is monotone of type SR and $\{x_1\}$ (WR) Tx_n for each $n \in \mathbb{N}$. On the other hand, for every $m \in \mathbb{N}$ we have

$$H(Tx_1, Tx_m) \le \varphi(d(x_1, x_m))(\alpha.d(x_1, x_m)) + L.D(x_m, Tx_1),$$

where $\alpha = 1$, $L = \frac{3}{2}$ and $\varphi : [0, \infty) \to [0, 1)$ is defined by $\varphi(t) = \frac{1}{2}$, $t \in [0, \infty)$. Hence by Corollary 4.1, for any function $\hat{h} : X \to [0, \infty)$ and any R-continuous self-mapping $f : X \to X$ satisfying condition (a_1) of Corollary 4.1, we conclude that $COP(f, T) \cap F(T) \neq \emptyset$.

Notice that the mapping T does not satisfy the assumptions of Theorem 1 of [8], Theorem 2.2 of [11], Theorem 4 of [7], Theorem 5 of [14] and Theorem 2.2 of [2]. For this reason take $x = x_4$ and $y = x_5$.

Below we explain a simple proof of Example A and Example B of [11].

Example 5.3. [11] Let ℓ^{∞} be the Banach space consisting of all bounded real sequences with supremum norm and let $\{e_n\}$ be the canonical basis of ℓ^{∞} . Let $\{\tau_n\}$ be a sequence of positive real numbers satisfying $\tau_1 = \tau_2$ and $\tau_{n+1} < \tau_n$ for $n \ge 2$ (for example, let $\tau_1 = \frac{1}{2}$ and $\tau_n = \frac{1}{n}$ for $n \ge 2$). Put $x_n = \tau_n e_n$ for each $n \in \mathbb{N}$. Define a bounded, complete subset X of ℓ^{∞} by $X = \{x_1, x_2, x_3, \cdots\}$ and a mapping T from X into CB(X) by

$$Tx_n = \begin{cases} \{x_1, x_2\}, & \text{if } n = 1, 2, \\ X \setminus \{x_1, x_2, \cdots, x_n, x_{n+1}\}, & \text{if } n \ge 3. \end{cases}$$

For all $x_n, x_m \in X$ define $x_n \in X$ and only if $(1 = n \le m)$. Hence (X, d, \mathbb{R}) is an \mathbb{R} -complete and \mathbb{R} -regular metric space. It is easy to see that T is monotone of type SR and $\{x_1\}$ (WR) Tx_n for each $n \in \mathbb{N}$. On the other hand, for every $m \in \mathbb{N}$ we have

$$H(Tx_1, Tx_m) \le \varphi(d(x_1, x_m))(\alpha.d(x_1, x_m)) + L.D(x_m, Tx_1),$$

where $\alpha = 1$, L = 3 and $\varphi : [0, \infty) \to [0, 1)$ is defined by $\varphi(t) = \frac{1}{2}$, $t \in [0, \infty)$. Hence by Corollary 4.1, for any function $\hat{h} : X \to [0, \infty)$ and any R-continuous self-mapping $f : X \to X$ satisfying condition (a_1) of Corollary 4.1, we conclude that $COP(f, T) \cap F(T) \neq \emptyset$. In particular, let $f : X \to X$ be defined by

$$fx_n = \begin{cases} x_2, & \text{if } n = 1, 2, \\ x_{n+1}, & \text{if } n \ge 3, \end{cases}$$

then $\operatorname{COP}(f, T) \cap F(T) \neq \emptyset$.

6. Application to the Nonlinear Fractional Boundary Value Equations

Let $X = \{u \in C[0, 1] : u(t) \ge 0, \forall t \in [0, 1]\}$ endowed with the metric *d* induced by supremum norm. Consider the following nonlinear fractional boundary value equations

$$\begin{cases} D_{0^+}^{\alpha} u(t) + \lambda f(t, u(t)) = 0, & 0 < t < 1, \ 3 < \alpha \le 4, \\ u(0) = u'(0) = u''(0) = u''(1) = 0, \end{cases}$$
(12)

where $0 < \lambda < 1$ is constant, $f : [0, 1] \times [0, \infty) \longrightarrow [0, \infty)$ is a continuous function and $D_{0^+}^{\alpha}$ is the standard Riemann-Liouville fractional derivative.

Here, we consider the following hypotheses:

(C₁) For all $u, v \in X$ with $u(t)v(t') \le \max\{v(t), v(t')\}$ for each $t, t' \in [0, 1]$, we have

$$\begin{split} & \left(f(t, u(t)) f(t^{'}, v(t^{'})) \leq \frac{1}{\lambda} f(t, v(t)), \forall t, t^{'} \in [0, 1] \right), \\ & \text{or} \\ & \left(f(t, u(t)) f(t^{'}, v(t^{'})) \leq \frac{1}{\lambda} f(t^{'}, v(t^{'})), \forall t, t^{'} \in [0, 1] \right). \end{split}$$

(*C*₂) For all $u, v \in X$ with $u(t)v(t) \le v(t)$ for each $t \in [0, 1]$, we have

$$|f(t, u(t)) - f(t, v(t))| \le \frac{||u - v||}{A},$$

where $||u|| = \max_{t \in [0,1]} u(t)$ and $A = \max_{0 \le t \le 1} \int_0^1 k(t, s) ds$, where $k : [0, 1] \times [0, 1] \longrightarrow [0, 1]$ denotes the Green's function for the boundary value system (12).

Note that $f : [0, 1] \times [0, \infty) \longrightarrow [0, \infty)$ is not necessarily Lipschitz from the given condition (C_2) and there exist some functions satisfying in condition (C_2) but not Lipschitz.

Theorem 6.1. *Let the above conditions are satisfied. Then, the fractional boundary value problem* (12) *has a positive solution.*

Proof. We define a operator equation $T : X \rightarrow X$ as follows:

$$Tu(t) = \lambda \int_0^1 k(t,s) f(s,u(s)) ds,$$
(13)

where

$$k(t,s) = \frac{1}{\Gamma(\alpha)} \begin{cases} t^{\alpha-1}(1-s)^{\alpha-3} - (t-s)^{\alpha-1}, & 0 \le s \le t \le 1, \\ t^{\alpha-1}(1-s)^{\alpha-3}, & 0 \le t \le s \le 1. \end{cases}$$

We know that the differential equation has a positive solution if and only if *T* has a fixed point in *X* (see [13, Lemma 2.3]). We consider the following relation in *X*:

$$u \ \mathbf{R} \ v \iff u(t)v(t') \le \max\{v(t), v(t')\},\tag{14}$$

for all $t, t' \in [0, 1]$ and $u, v \in X$. Since (X, d) is a complete metric space, then (X, d, R) is an R-complete and R-regular metric space. Now, we prove the following two steps to complete the proof.

Step1: *T* is monotone of type SR. Let $u, v \in X$ with uRv. We must show that

 $Tu(t)Tv(t') \le \max\{T(v(t)), T(v(t'))\}$

for all $t, t' \in [0, 1]$. Applying (13), we have

$$Tu(t)Tv(t') = \lambda^2 \int_0^1 \int_0^1 k(t,s)k(t',s')f(s,u(s))f(s',v(s'))ds'ds$$

Applying (C_1) , we have two cases:

(1). $f(s, u(s))f(s', v(s')) \leq \frac{1}{\lambda}f(s, v(s))$ for each $s, s' \in [0, 1]$. Applying (13) and definition of k, we have

$$Tu(t)Tv(t') = \lambda^2 \int_0^1 \int_0^1 k(t,s)k(t',s')f(s,u(s))f(s',v(s'))ds'ds$$

$$\leq \lambda \int_0^1 \int_0^1 k(t,s)k(t',s')f(s,v(s))ds'ds$$

$$\leq \lambda \int_0^1 k(t,s)f(s,v(s))ds$$

$$= T(v(t))$$

$$\leq \max\{T(v(t)), T(v(t'))\}.$$

(2). $f(s, u(s))f(s', v(s')) \leq \frac{1}{\lambda}f(s', v(s'))$ for each $s, s' \in [0, 1]$. Applying (13) and definition of k, we have

$$Tu(t)Tv(t') = \lambda^2 \int_0^1 \int_0^1 k(t,s)k(t',s')f(s,u(s))f(s',v(s'))ds'ds$$

$$\leq \lambda \int_0^1 \int_0^1 k(t,s)k(t',s')f(s',v(s'))ds'ds$$

$$\leq \lambda \int_0^1 k(t',s')f(s',v(s'))ds'$$

$$= T(v(t'))$$

$$\leq \max\{T(v(t)), T(v(t'))\}.$$

These imply that *T* is monotone of type SR.

Step2: Show that for each elements $u, v \in X$ with $u \in V$, we have

$$d(Tu, Tv) \leq \lambda d(u, v).$$

Let $u, v \in X$ with u R v. Then for all $t \in [0, 1]$, we have $u(t)v(t) \le v(t)$. Applying (C_2), we obtain that

$$\begin{aligned} |Tu(t) - Tv(t)| &= \left| \lambda \int_0^1 k(t,s) f(s,u(s)) ds - \lambda \int_0^1 k(t,s) f(s,v(s)) ds \right| \\ &\leq \lambda \int_0^1 k(t,s) \left| f(s,u(s)) - f(s,v(s)) \right| ds \\ &\leq \lambda ||u - v|| \end{aligned}$$

for all $t \in [0, 1]$. Hence,

$$d(Tu, Tv) \le \lambda d(u, v)$$

for all $u, v \in X$ with $u \in V$.

Applying Corollary 4.1, *T* has a fixed point in *X* which is a positive solution of the differential equation (12). \Box

References

- Z. Ahmadi, R. Lashkaripour, H. Baghani, A fixed point problem with constraint inequalities via a contraction in incomplete metric spaces, *Filomat* 32 (2018) 3365-3379.
- [2] A. Amini-Harandi, Fixed point theory for set-valued quasi-contraction maps in metric spaces, Appl. Math. Lett. 24 (2011) 1791– 1794.
- [3] H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fixed Point Theory Appl. 20:63 (2018).
- [4] H. Baghani, M. Eshaghi Gordji, M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl. 18 (2016) 465-477.
- [5] H. Baghani, M. Ramezani, A fixed point theorem for a new class of set-valued mappings in R-complete (not necessarily complete) metric spaces, *Filomat* 31 (2017) 3875-3884.
- [6] O. Baghani, H. Baghani, A new contraction condition and its application to weakly singular Volterra integral equations of the second kind, J. Fixed Point Theory Appl. 19 (2017) 2601-2615.
- [7] M. Berinde, V. Berinde, On a general class of multi-valued weakly picard mappings, J. Math. Anal. Appl. 326 (2007) 772-782.
- [8] N. Boonsri, S. Saejung, Some fixed point theorems for multivalued mappings in metric spaces, RACSAM 111 (2017) 489-497.
- [9] P.Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192 (1995) 655-666.
- [10] P.Z. Daffer, H. Kaneko, W. Li, On a conjecture of S. Reich, Proc. Amer. Math. Soc. 124 (1996) 3159-3162.
- [11] W.-S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, *Topology. Appl.* 159 (2012) 49–56.
- [12] M. Eshaghi Gordji, M. Ramezani, M. De La Sen, Y.J. Cho, On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory 18 (2017) 569–578.

- [13] S. Liang, J. Zhanga, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71 (2009) 5545–5550.
- [14] N. Mizogochi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric space, J. Math. Anal. Appl. 141 (1989) 177–188.
- [15] S. B. Nadler Jr, Multi–valued contraction mappings, Pacific J. Math. 30 (1969) 475–488.
- [16] A. Petrusel, G. Petrugel, Jen-Chih Yao, Variational analysis concepts in the theory of multi-valued coincidence problems, J. Nonlinear Convex Anal. (2018) 935-958.
- [17] M. Ramezani, H. Baghani, The Meir-Keeler fixed point theorem in incomplete modular spaces with application, J. Fixed Point Theory Appl. (2017) 2369-2382.
- [18] S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983) 179-187.