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Abstract. In the present paper, firstly, we review the notion of R-complete metric spaces, where R is a
binary relation (not necessarily a partial order). This notion lets us to consider some fixed point theorems
for multivalued mappings in incomplete metric spaces. Secondly, as motivated by the recent work of
Wei-Shih Du (On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology and
its Applications 159 (2012) 49–56), we prove the existence of coincidence points and fixed points of a general
class of multivalued mappings satisfying a new generalized contractive condition in R-complete metric
spaces which extends some well-known results in the literature. In addition, this article consists of several
non-trivial examples which signify the motivation of such investigations. Finally, we give an application
to the nonlinear fractional boundary value equations.

1. Introduction and Preliminaries

Throughout this paper,N,Q and R denote, respectively, the sets of all natural numbers, rational numbers
and real numbers.

Let (X, d) be a metric space. We denote by CB(X) the class of all nonempty closed and bounded subsets
of X, and K(X) the class of all nonempty compact subsets of X.

For A,B ∈ CB(X) and x ∈ X, define

D(x,A) := inf{d(x, a); a ∈ A}

and
H(A,B) := max{sup

a∈A
D(a,B), sup

b∈B
D(b,A)}.

The function H is a metric on CB(X) and is called a Pompeiu-Hausdorff metric induced by d. It is well
known that if X is a complete metric space, then so is the metric space (CB(X),H).

Let f : X → X be a self-mapping and T : X → CB(X) be a multivalued map. A point x ∈ X is a
coincidence point of f and T if f x ∈ Tx. If f = id, the identity mapping, then x = f x ∈ Tx and we call x a
fixed point of T. The set of fixed points of T and the set of coincidence points of f and T are denoted by
F(T) and COP( f ,T), respectively.

In 1969, Nadler [15] extended the Banach contraction principle to multivalued mappings as follows.
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Theorem 1.1. Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume that there
exists r ∈ [0, 1) such that H(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X. Then there exists z ∈ X such that z ∈ T(z).

Inspiring from the results of Nadler the fixed point theory of multivalued contraction was further developed
in different directions by many authors, in particular, by Reich [18], Berinde-Berinde [7], Mizoguchi and
Takahashi [14], Du [11], Daffer et al. [9, 10], Amini-Harandi [2], Boonsri et al. [8], Petrusel et al.[16] and
many others.

Recently, Du [11] proved a generalization of Berinde-Berinde’s fixed point theorem [7] as follows.

Theorem 1.2. Let (X, d) be a complete metric space. Let T : X→ CB(X) be a multivalued mapping, f : X→ X be a
continuous self-mapping and β : [0,∞)→ [0, 1) be a function such that lim sups→t+ β(s) < 1 for each t ≥ 0. Assume
that
(a1) for each x ∈ X, { f y : y ∈ Tx} ⊆ Tx;
(a2) there exists a function ĥ : X→ [0,∞) such that

H(Tx,Ty) ≤ β(d(x, y)).d(x, y) + ĥ( f y)D( f y,Tx)

for each x, y ∈ X. Then COP( f ,T)
⋂

F(T) , ∅.

In the following, we state Berinde-Berinde’s fixed point theorem [7].

Theorem 1.3. Let (X, d) be a complete metric space. Let T : X→ CB(X) be a multivalued mapping and β : [0,∞)→
[0, 1) be a function such that lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that

H(Tx,Ty) ≤ β(d(x, y)).d(x, y) + L.D(y,Tx)

for each x, y ∈ X, where L ≥ 0. Then F(T) , ∅.

Notice that, if we let L = 0 in above theorem, then we can obtain Mizoguchi-Takahashi’s fixed point
theorem [14] which is a partial answer of Problem 9 in [18]. Indeed, Reich established the following:

Theorem 1.4. Let (X, d) be a complete metric space. Let T : X→ K(X) be a multivalued mapping and β : [0,∞)→
[0, 1) be a function such that lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that

H(Tx,Ty) ≤ β(d(x, y)).d(x, y)

for each x, y ∈ X. Then F(T) , ∅.

Reich [18] posed the question whether above theorem is also true for a mapping T : X → CB(X).
Mizoguchi and Takahashi [14] in 1989 responded to this conjecture and proved the following theorem
which additionally is more general than Nadler’s theorem.

Theorem 1.5. Let (X, d) be a complete metric space. Let T : X→ CB(X) be a multivalued mapping and β : [0,∞)→
[0, 1) be a function such that lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that

H(Tx,Ty) ≤ β(d(x, y)).d(x, y)

for each x, y ∈ X. Then F(T) , ∅.

In 2011, Amini-Harandi [2] introduced the concept of a set-valued quasi-contraction and proved the
following interesting fixed point theorem.

Theorem 1.6. Let (X, d) be a complete metric space. Let T : X→ CB(X) be a multivalued mapping. Assume that

H(Tx,Ty) ≤ k.max{d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx)}

for each x, y ∈ X, where 0 < k < 1
2 . Then F(T) , ∅.
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On the other hand, Boonsri and Saejung in [8] showed that the conclusion of Daffer and Kaneno[9]
remains true without assuming the lower semicontinuity of the function x 7→ D(x,Tx). In the following, we
state Boonsri-Saejung’s fixed point theorem.

Theorem 1.7. Let (X, d) be a complete metric space. Let T : X→ CB(X) be a multivalued mapping. Assume that

H(Tx,Ty) ≤ k.max{d(x, y),D(x,Tx),D(y,Ty),
D(x,Ty) + D(y,Tx)

2
}

for each x, y ∈ X, where 0 < k < 1. Then F(T) , ∅.

As motivated by these works, we define a new type of monotone multivalued mappings and prove
some coincidence point and fixed point theorems under a new generalized contractive condition which
are different from Nadler’s theorem, Berinde-Berinde’s theorem, Boonsri-Saejung’s theorem, Mizoguchi-
Takahashi’s theorem, Du’s theorem and Amini-Harandi’s theorem for nonlinear multivalued contractive
mappings. Our results compliment and extend some important fixed point theorems for multivalued
contractive mappings.

2. Basic Definitions and Notations

Very recently, Eshaghi Gordji et al. [12] and Baghani et al. [4] introduced the notation of orthogonal sets and
gave a real generalization of the Banach fixed point theorem in incomplete metric spaces. The notion helps
them to find the solution of a integral equation in incomplete metric spaces. For more details, we refer the
reader to [1, 3, 5, 6, 17].

To set up our results in the next sections, we need to introduce some definitions that play a major roles
in further sections.

Let X be a nonempty set, A,B ⊆ X and R be an arbitrary binary relation on X. The binary relations
strongly relation (briefly, SR) and weakly relation (briefly, WR) are defined between A and B as follows.
(1) A (SR) B if a R b, for all a ∈ A and b ∈ B.
(2) A (WR) B if for each a ∈ A there exists b ∈ B such that a R b.

It is clear that the relation SR implies the relation WR. Example 2.2 shows that the converse of the
statement is not true in general. Now, we introduce a type of monotone multivalued mappings by using
the relation SR.

Definition 2.1. Let (X, d) be a metric space endowed a relation R on X and T : X → CB(X). Then T is said to be a
monotone mapping of type SR if

x, y ∈ X, x R y⇒ Tx (SR) Ty.

Example 2.2. Let X = { 12 ,
1
4 , · · · ,

1
2n , · · · } ∪ {0, 1}, d(x, y) = |x− y| for all x, y ∈ X, and relation R be defined on X by

x R y ⇐⇒

 y
x ∈N,

or x = y = 0.

Let T : X→ CB(X) be defined by

Tx =


{

1
2n , 1

2n+1 }, if x = 1
2n ,n = 1, 2, · · · ,

{0}, if x = 0,
{1, 1

2 ,
1
4 }, if x = 1.

It is easy to see that T is not monotone of type SR.
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Example 2.3. Let X = [0, 1) be equipped with the Euclidean metric. Define relation R on X by x R y iff either x = 0
or y = 0. Let T : X→ CB(X) be a mapping defined by

T(x) =

{ 12 x2, x}, if x ∈ Q ∩ X,
{0}, if x ∈ Qc

∩ X.

It is easy to see that T is monotone of type SR.

Definition 2.4. Let X , ∅ and R ⊆ X × X be a relation. A sequence {xn} is called an R-sequence if

(∀n, k ∈N : xnRxn+k).

Definition 2.5. Let (X, d) be a metric space and R be a relation on X. Then X is said to be R-regular if for each
R-sequence {xn} with xn → x for some x ∈ X, there exists n0 ∈N such that

(∀n ≥ n0 : xnRx).

Definition 2.6. Let (X, d) be a metric space and R be a relation on X. Then X is said to be R-complete if every Cauchy
R-sequence is convergent (briefly, (X, d,R) is called an R-complete metric space ).

Example 2.7. Consider X = [0, 1
2 ) ∪ ( 1

2 , 2] equipped with the Euclidean metric. Define relation R on X by R =
{(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)}. It is easy to see that (X, d,R) is an R-complete (not complete) metric space. We are
going to show that (X, d,R) is an R-regular metric space. Take R-sequence {xn} such that limn→∞ xn = x. Since {xn}

is an R-sequence then for each n ∈ N, (xn, xn+1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} which gives rise to {xn} ⊆ {0, 1}. As
{0, 1} is closed, we have xn R x for all n ∈N.

Example 2.8. Let X be a linear subspace of a Hilbert space H. For all x, y ∈ X, define x R y iff |〈x, y〉| = ‖x‖ ‖y‖.
We claim that (X, ‖.‖,R) is an R-complete metric space which is not R-regular. Let {xn} ⊆ X be a Cauchy R-sequence.
Then {xn} converges to some x ∈ H. Our aim is to show that x is an element of X. The relation R ensures that for all
n ∈N,

∃αn s.t. xn = αnxn+1 or xn+1 = αnxn. (1)

We distinguish two cases.
Case 1. There exists a subsequence {xnk } of {xn} such that xnk = 0 for all k. This implies that x = 0 ∈ X.
Case 2. For all sufficiently large n ∈N, xn , 0. Take n0 ∈N such that for all n ≥ no, xn , 0. It follows from (1)

that for all n ≥ n0 there exists αn > 0, such that xn = αnxn0 . In other words,

|αn − αm| ‖xn0‖ = ‖xn − xm‖ → 0 as m,n→∞.

Therefore, {αn} is a Cauchy sequence inR. Assume thatαn → α as n→∞. Then limn→∞ xn = limn→∞ αnxn0 = αxn0 .
This implies that x ∈ X.

Remark 2.9. Every complete metric space is R-complete, but Examples 2.8 and 2.7 show that the converse is not true
in general.

Definition 2.10. Let Λ denote the class of those functions φ(t1, t2, t3, t4, t5) : R5
+ → R+ which satisfy the following

conditions
(Λ1) φ is increasing in t2, t3, t4 and t5;
(Λ2) v < φ(u,u, v,u + v, 0) implies that v < u, for each u, v ∈ R+;
(Λ3) If tn, sn → 0 and un → γ > 0, as n→∞, then we have lim supn→∞ φ(tn, sn, γ,un, tn+1) ≤ γ;
(Λ4) φ(u,u,u, 2u, 0) ≤ u for each u ∈ R+ := [0,+∞).

Many functions belong to the class Λ as shown by the following examples.
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Example 2.11. (I)
φ1(t1, t2, t3, t4, t5) = α̂t1 + β̂t2 + γ̂t3 + δ̂t4 + Lt5,

where α̂, β̂, γ̂, δ̂,L ≥ 0, α̂ + β̂ + γ̂ + 2δ̂ = 1 and γ̂ , 1.

(II)

φ2(t1, t2, t3, t4, t5) =
1
2

max{t1, t2, t3, t4, t5}.

(III)

φ3(t1, t2, t3, t4, t5) = max{t1, t2, t3,
1
2

(t4 + t5)}.

Example 2.12. Let φ ∈ Λ. Suppose φ̃ : R5
+ → R+ is defined by

φ̃(t1, t2, t3, t4, t5) = φ(t1, t2, t3, t4, t5) + L.t5,

where L ≥ 0. It is easy to see that φ̃ ∈ Λ.

Definition 2.13. Let (X, d) be a metric space and R be a relation on X. A mapping f : X → X is R-continuous at
a ∈ X if for each R-sequence {an} in X if an → a, then f (an)→ f (a). Also, f is R-continuous on X if f is R-continuous
at each a ∈ X.

Example 2.14. Let X = [0, 1] with the Euclidean metric. Assume x R y is and only if xy = 0. Define f : X → X
by

f (x) =

1, if x ∈ Q ∩ [0, 1],
x, if x ∈ Qc

∩ [0, 1].

Notice that f is not continuous but we can see that f is R-continuous. If {xn} is a R-sequence in X which converges
to x ∈ X. Applying definition R we obtain xn = 0. This implies that 1 = f (xn)→ f (x) = 1.

3. Main Results

In below, we state and prove the main theorem of this manuscript in R-complete metric spaces. This theorem
helps us to find coincidence points and fixed points for multivalued mappings in incomplete metric spaces.

Theorem 3.1. Let (X, d,R) be an R-complete (not necessarily complete) and R-regular metric space. Let T : X →
CB(X) be a multivalued mapping, f : X→ X be an R-continuous self-mapping and ϕ : [0,∞)→ [0, 1) be a function
such that lim sups→t+ ϕ(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y : y ∈ Tx} ⊆ Tx;
(a2) there exist functions ĥ : X→ [0,∞) and φ ∈ Λ such that

H(Tx,Ty) ≤ ϕ(d(x, y)).φ(d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx)) + ĥ( f y)D( f y,Tx) (2)

for each x R y with x , y. Suppose that
(i) T is monotone of type SR;
(ii) there exists x0 ∈ X such that for each x ∈ X, {x0} (WR) Tx.
Then COP( f ,T)

⋂
F(T) , ∅.

Proof. By (a1), we note that, for each x ∈ X, D( f y,Tx) = 0 for all y ∈ Tx. Also, it is easy to see that, if
x∗ ∈ T(x∗), then x∗ ∈ COP( f ,T)

⋂
F(T). For this reason we suppose that T has no fixed point, i.e., D(x,Tx) > 0

for all x ∈ X.
By properties of functions ϕ, for each t > 0, there exist k(t) > 0 and δ(t) > 0 such that

ϕ(s) ≤ k(t) < 1 for all s ∈ (t, t + δ(t)). (3)
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Since {x0} (WR) Tx0, there exists x1 ∈ Tx0 such that x0 R x1. If x0 = x1, then x0 = x1 ∈ Tx0 and this is a
contradiction. So, we may assume that x0 , x1. Moreover by monotonicity of T, we have Tx0 (SR) Tx1. Put
t1 = D(x1,Tx1). It is clear that D(x1,Tx1) ≤ d(x1, y) for all y ∈ Tx1. The following cases are considered:

Case 1. D(x1,Tx1) < d(x1, y) for all y ∈ Tx1. Select positive number d(t1) such that

d(t1) < min{δ(t1), (
1

k(t1)
− 1)t1}, (4)

and put

ε(x1) = min{1,
d(t1)

t1
}. (5)

Then there exists x2 ∈ Tx1 such that x1 R x2 and

d(x1, x2) < D(x1,Tx1) + ε(x1)D(x1,Tx1) = (1 + ε(x1))D(x1,Tx1). (6)

By the hypotheses that T no fixed point, we have x1 , x2. On the other hand by (2) and (Λ1), we can
write

D(x2,Tx2) ≤ H(Tx1,Tx2)
≤ ϕ(d(x1, x2)).φ(d(x1, x2),D(x1,Tx1),D(x2,Tx2),D(x1,Tx2),D(x2,Tx1))
≤ ϕ(d(x1, x2)).φ(d(x1, x2), d(x1, x2),D(x2,Tx2),D(x1,Tx2), 0)
≤ ϕ(d(x1, x2)).φ(d(x1, x2), d(x1, x2),D(x2,Tx2), d(x1, x2) + D(x2,Tx2), 0)
< φ(d(x1, x2), d(x1, x2),D(x2,Tx2), d(x1, x2) + D(x2,Tx2), 0).

(7)

Now by above relation, (Λ2), (Λ1) and (Λ4), we conclude that

D(x2,Tx2) ≤ ϕ(d(x1, x2)).d(x1, x2).

Therefore

D(x1,Tx1) −D(x2,Tx2) ≥ D(x1,Tx1) − ϕ(d(x1, x2)).d(x1, x2)

> (
1

1 + ε(x1)
− ϕ(d(x1, x2))).d(x1, x2).

(8)

By (4), (5) and (6)

t1 = D(x1,Tx1) < d(x1, x2) < D(x1,Tx1) + ε(x1).D(x1,Tx1) ≤ t1 + d(t1) < t1 + δ(t1).

This implies by (3) that ϕ(d(x1, x2)) ≤ k(t1) < 1. Since ε(x1) ≤ d(t1)
t1
< 1

k(t1) − 1, we have

1
1 + ε(x1)

− ϕ(d(x1, x2)) > 0. (9)

It follows (8) that D(x2,Tx2) < D(x1,Tx1).
Case 2. D(x1,Tx1) = d(x1, x2) for some x2 ∈ Tx1. Since Tx0 (SR) Tx1, then x1 R x2 and also

D(x1,Tx1) −D(x2,Tx2) ≥ (1 − ϕ(d(x1, x2))).d(x1, x2) > 0.

Therefore D(x2,Tx2) < D(x1,Tx1).
Next, let t2 = D(x2,Tx2). Then D(x2,Tx2) ≤ d(x2, y) for all y ∈ Tx2. Again we consider the following two

cases:
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Case A. D(x2,Tx2) < d(x2, y) for all y ∈ Tx2. For δ(t2) and k(t2), choose d(t2) with

d(t2) < min{δ(t2), (
1

k(t2)
− 1)t2}

and set

ε(x2) = min{
d(t2)

t2
,

1
2
,

t1

t2
− 1}.

By using the similar reason as above, we obtain x3 ∈ Tx2 such that x2 R x3, x2 , x3, d(x2, x3) < (1 +
ε(x2))D(x2,Tx2) and

D(x2,Tx2) −D(x3,Tx3) ≥ (
1

1 + ε(x2)
− ϕ(d(x1, x2))).d(x2, x3) > 0.

Hence D(x3,Tx3) < D(x2,Tx2). From ε(x2) ≤ t1
t2
− 1, it follows that

d(x2, x3) < (1 + ε(x2))D(x2,Tx2) ≤ D(x1,Tx1) ≤ d(x1, x2).

Case B. D(x2,Tx2) = d(x2, x3) for some x3 ∈ Tx2. Since Tx1 (SR) Tx2, then x2 R x3 and also by using the
same method as above, we can show that

D(x2,Tx2) −D(x3,Tx3) ≥ (1 − ϕ(d(x2, x3))).d(x2, x3) > 0

and

d(x2, x3) = D(x2,Tx2) < D(x1,Tx1) ≤ d(x1, x2).

Hence, D(x3,Tx3) < D(x2,Tx2) and d(x2, x3) < d(x1, x2). Repeating this process, we find that there exists an
R-sequence {xn} with xn+1 ∈ Txn such that {D(xn,Txn)} and {d(xn, xn+1} are decreasing sequences of positive
numbers and for each n ∈N,

D(xn,Txn) −D(xn+1,Txn+1) ≥ (
1

1 + γ(xn)
− ϕ(d(xn, xn+1))).d(xn, xn+1), (10)

where γ(xn) is real number with 0 ≤ γ(xn) ≤ 1
n . Since {d(xn, xn+1)} is decreasing sequence, there exists

t ∈ [0,∞) such that limn→∞ d(xn, xn+1) = t.
Let an := 1

1+γ(xn) − ϕ(d(xn, xn+1) for all n ∈N, then

lim inf
n→∞

an ≥ lim
n→∞

1
1 + γ(xn)

− lim sup
n→∞

ϕ(d(xn, xn+1) > 0.

This implies that from (10), there exists b > 0 such that

D(xn,Txn) −D(xn+1,Txn+1) ≥ b.d(xn, xn+1)

for large enough n. Since {d(xn, xn+1)} is decreasing sequence, it is convergent. On the other hand, for each
n < m, we have

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
1
b

m−1∑
i=n

{D(xi,Txi) −D(xi+1,Ti+1)}

=
1
b
{D(xn,Txn) −D(xm,Txm)} → 0
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as n,m → ∞. Hence {xn} is a Cauchy R-sequence. Since X is R-complete then limn→∞ xn = x∗, for some
x∗ ∈ X. Since xn+1 ∈ Txn, it follows from (a1) that f xn+1 ∈ Txn for each n ∈ N. Since f is R-continuous and
limn→∞ xn = x∗, we have

lim
n→∞

f xn+1 = f x∗.

By assumption R-regularity of X, since xn R xn+k for all n, k ∈ N and xn → x∗, as n → ∞, then xn R x∗ for
n ≥ n0, for some n0 ∈N. Thus, from (2) with x = xn and y = x∗, we obtain

D(xn+1,Tx∗) ≤ H(Txn,Tx∗)

≤ ϕ(d(xn, x∗)).φ(d(xn, x∗), d(xn, xn+1),D(x∗,Tx∗),D(xn,Tx∗), d(x∗, xn+1)) + ĥ( f x∗)d( f x∗, f xn+1)
(11)

for each n ∈Nwith n ≥ n0.
Now since x∗ < Tx∗ then by using (11) and (Λ3) we have

D(x∗,Tx∗) = lim sup
n→∞

D(xn+1,Tx∗)

≤ lim sup
n→∞

(
ϕ(d(xn, x∗)).φ(d(xn, x∗), d(xn, xn+1),D(x∗,Tx∗),D(xn,Tx∗), d(x∗, xn+1)) + ĥ( f x∗)d( f x∗, f xn+1)

)
< D(x∗,Tx∗).

Then x∗ ∈ Tx∗ which is a contradiction because it is supposed that T has no fixed point. By (a1), f x∗ ∈ Tx∗.
Hence x∗ ∈ COP( f ,T). This completes the proof.

4. Some Consequences

Letting
φ(t1, t2, t3, t4, t5) = αt1 + βt2 + γt3 + δt4 + Lt5,

where α, β, γ, δ,L ≥ 0, α + β + γ + 2δ = 1 and γ , 1, we get a generalization of Theorem 2.2 of [11], Theorem
4 of [7] and Theorem 5 of [14].

Corollary 4.1. Let (X, d,R) be an R-complete (not necessarily complete) and R-regular metric space. Let T : X →
CB(X) be a multivalued mapping, f : X→ X be an R-continuous self-mapping and ϕ : [0,∞)→ [0, 1) be a function
such that lim sups→t+ ϕ(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y : y ∈ Tx} ⊆ Tx;
(a2) there exists a function ĥ : X→ [0,∞) such that

H(Tx,Ty) ≤ ϕ(d(x, y)).
(
α.d(x, y) + β.D(x,Tx) + γ.D(y,Ty) + δ.D(x,Ty)

)
+ L.D(y,Tx) + ĥ( f y).D( f y,Tx)

for each x R y with x , y, where α, β, γ, δ,L ≥ 0, α + β + γ + 2δ = 1 and γ , 1. Suppose that
(i) T is monotone of type SR;
(ii) there exists x0 ∈ X such that for each x ∈ X, {x0} (WR) Tx.
Then COP( f ,T)

⋂
F(T) , ∅.

Proof. Define a function β̃ from [0,∞) into [0, 1) by β̃(t) =
ϕ(t)+1

2 for t ∈ [0,∞). Then the following hold:

1. lim sups→t+ β̃(s) < 1 for all t ∈ [0,∞).
2. ϕ(t) < β̃(t) for all t ∈ [0,∞).
3. β̃(t) ≥ 1

2 for all t ∈ [0,∞).
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Now we have

H(Tx,Ty) ≤ ϕ(d(x, y)).
(
α.d(x, y) + β.D(x,Tx) + γ.D(y,Ty) + δ.D(x,Ty)

)
+ L.D(y,Tx) + ĥ( f y).D( f y,Tx)

< β̃(d(x, y)).
(
α.d(x, y) + β.D(x,Tx) + γ.D(y,Ty) + δ.D(x,Ty)

)
+

L.β̃(d(x, y)).D(y,Tx)

β̃(d(x, y))
+ ĥ( f y).D( f y,Tx)

≤ β̃(d(x, y)).
(
α.d(x, y) + β.D(x,Tx) + γ.D(y,Ty) + δ.D(x,Ty) + 2L.D(y,Tx)

)
+ ĥ( f y).D( f y,Tx)

for each x R y with x , y.
Therefore by applying Theorem 2 and Example 2.11-I, we can see the results.

Letting

φ(t1, t2, t3, t4, t5) =
1
2

max{t1, t2, t3, t4, t5},

we get a generalization of Theorem 2.2 of [2].

Corollary 4.2. Let (X, d,R) be an R-complete (not necessarily complete) and R-regular metric space. Let T : X →
CB(X) be a multivalued mapping, f : X→ X be an R-continuous self-mapping and ϕ : [0,∞)→ [0, 1) be a function
such that lim sups→t+ ϕ(s) < 1

2 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y : y ∈ Tx} ⊆ Tx;
(a2) there exists a function ĥ : X→ [0,∞) such that

H(Tx,Ty) ≤ ϕ(d(x, y)).
(

max{d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx)}
)

+ L.D(y,Tx) + ĥ( f y)D( f y,Tx)

for each x R y with x , y, where L ≥ 0. Suppose that
(i) T is monotone of type SR;
(ii) there exists x0 ∈ X such that for each x ∈ X, {x0} (WR) Tx.
Then COP( f ,T)

⋂
F(T) , ∅.

Proof. We can prove this corollary by Example 2.11-II, Example 2.12 and the technique has been used in
Corollary 4.1.

Letting

φ(t1, t2, t3, t4, t5) = max{t1, t2, t3,
1
2

(t4 + t5)},

we get a generalization Theorem 1 of [8], Theorem 2.2 of [11] and Theorem 4 of [7].

Corollary 4.3. Let (X, d,R) be a R-complete (not necessarily complete) and R-regular metric space. Let T : X →
CB(X) be a multivalued mapping, f : X→ X be an R-continuous self-mapping and ϕ : [0,∞)→ [0, 1) be a function
such that lims→t+ ϕ(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y : y ∈ Tx} ⊆ Tx;
(a2) there exists a function ĥ : X→ [0,∞) such that

H(Tx,Ty) ≤ ϕ(d(x, y)).
(

max{d(x, y),D(x,Tx),D(y,Ty),
1
2

(D(x,Ty) + D(y,Tx))}
)

+ L.D(y,Tx) + ĥ( f y)D( f y,Tx)

for each x R y with x , y. Suppose that
(i) T is monotone of type SR;
(ii) there exists x0 ∈ X such that for each x ∈ X, {x0} (WR) Tx.
Then COP( f ,T)

⋂
F(T) , ∅.

Proof. We can prove this corollary by Example 2.11-III, Example 2.12 and the technique has been used in
Corollary 4.1.
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5. Some Examples

The following simple examples show the generality of our main theorem over Theorem 1 of [8], Theorem
2.2 of [11], Theorem 4 of [7], Theorem 5 of [14] and Theorem 2.2 of [2].

Example 5.1. Consider the sequence {Sn} as follows:

S1 = 1 × 2,
S2 = 1 × 2 + 2 × 3,
S3 = 1 × 2 + 2 × 3 + 3 × 4,
· · ·

Sn = 1 × 2 + 2 × 3 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3
,n ∈N.

Let X = {Sn : n ∈ N} and d(x, y) = |x − y|, x, y ∈ X. For all Sn,Sm ∈ X define Sn R Sm if and only if (1 = n ≤ m).
Hence (X, d,R) is an R-complete and R-regular metric space. Define a multivalued mapping T : X → CB(X) by the
formulae:

Tx =

{Sn−1,Sn+1}, if x = Sn,n = 3, 4, · · · ,
{S1}, if x = S1,S2.

It is easy to see that T is monotone of type SR and {S1} (WR) TSn for each n ∈N.
Now since,

lim
n→∞

H(T(Sn),T(S1))
d(Sn,S1)

= 1,

then T is not contraction.
First, observe that

Sn R Sm , T(Sn) , T(Sm)⇐⇒ (1 = n,m > 2).

On the other hand, for every m ∈N,m > 2 we have

H(TS1,TSm) ≤ ϕ(d(S1,Sm))(α.d(S1,Sm)) + L.D(Sm,TS1),

where α = 1, L = 9
2 and ϕ : [0,∞) → [0, 1) is defined by ϕ(t) = 1

2 , t ∈ [0,∞). Hence by Corollary 4.1, for any
function ĥ : X → [0,∞) and any R-continuous self-mapping f : X → X satisfying condition (a1) of Corollary 4.1,
we conclude that COP( f ,T)

⋂
F(T) , ∅.

Notice that the mapping T does not satisfy the assumptions of Theorem 1 of [8], Theorem 2.2 of [11], Theorem 4
of [7], Theorem 5 of [14] and Theorem 2.2 of [2]. For this reason take x = S3 and y = S4.

Example 5.2. Let `∞ be the Banach space consisting of all bounded real sequences with supremum norm and let {en}

be the canonical basis of `∞. Let {τn} be a bounded, strictly increasing sequence in (0,∞) satisfying τn+1 < 2τn for all
n ∈N (for example, let τn = 2n

−1
2n n ∈N). Put xn = τnen for each n ∈N. Define a bounded, complete subset X of `∞

by X = {x1, x2, x3, · · · } and a mapping T from X into CB(X) by

Txn =

{xn−1, xn+1}, if n = 2, 3, · · · ,
{x1}, if n = 1.

For all xn, xm ∈ X define xn R xm if and only if (1 = n ≤ m). Hence (X, d,R) is an R-complete and R-regular metric
space. It is easy to see that T is monotone of type SR and {x1} (WR) Txn for each n ∈N. On the other hand, for every
m ∈N we have

H(Tx1,Txm) ≤ ϕ(d(x1, xm))(α.d(x1, xm)) + L.D(xm,Tx1),
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where α = 1, L = 3
2 and ϕ : [0,∞) → [0, 1) is defined by ϕ(t) = 1

2 , t ∈ [0,∞). Hence by Corollary 4.1, for any
function ĥ : X → [0,∞) and any R-continuous self-mapping f : X → X satisfying condition (a1) of Corollary 4.1,
we conclude that COP( f ,T)

⋂
F(T) , ∅.

Notice that the mapping T does not satisfy the assumptions of Theorem 1 of [8], Theorem 2.2 of [11], Theorem 4
of [7], Theorem 5 of [14] and Theorem 2.2 of [2]. For this reason take x = x4 and y = x5.

Below we explain a simple proof of Example A and Example B of [11].

Example 5.3. [11] Let `∞ be the Banach space consisting of all bounded real sequences with supremum norm and let
{en} be the canonical basis of `∞. Let {τn} be a sequence of positive real numbers satisfying τ1 = τ2 and τn+1 < τn for
n ≥ 2 (for example, let τ1 = 1

2 and τn = 1
n for n ≥ 2). Put xn = τnen for each n ∈ N. Define a bounded, complete

subset X of `∞ by X = {x1, x2, x3, · · · } and a mapping T from X into CB(X) by

Txn =

{x1, x2}, if n = 1, 2,
X\{x1, x2, · · · , xn, xn+1}, if n ≥ 3.

For all xn, xm ∈ X define xn R xm if and only if (1 = n ≤ m). Hence (X, d,R) is an R-complete and R-regular metric
space. It is easy to see that T is monotone of type SR and {x1} (WR) Txn for each n ∈N. On the other hand, for every
m ∈N we have

H(Tx1,Txm) ≤ ϕ(d(x1, xm))(α.d(x1, xm)) + L.D(xm,Tx1),

where α = 1, L = 3 and ϕ : [0,∞) → [0, 1) is defined by ϕ(t) = 1
2 , t ∈ [0,∞). Hence by Corollary 4.1, for any

function ĥ : X → [0,∞) and any R-continuous self-mapping f : X → X satisfying condition (a1) of Corollary 4.1,
we conclude that COP( f ,T)

⋂
F(T) , ∅. In particular, let f : X→ X be defined by

f xn =

x2, if n = 1, 2,
xn+1, if n ≥ 3,

then COP( f ,T)
⋂

F(T) , ∅.

6. Application to the Nonlinear Fractional Boundary Value Equations

Let X = {u ∈ C[0, 1] : u(t) > 0,∀t ∈ [0, 1]} endowed with the metric d induced by supremum norm. Consider
the following nonlinear fractional boundary value equations{

Dα
0+ u(t) + λ f (t,u(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = u′′(1) = 0, (12)

where 0 < λ < 1 is constant, f : [0, 1] × [0,∞) −→ [0,∞) is a continuous function and Dα
0+ is the standard

Riemann-Liouville fractional derivative.
Here, we consider the following hypotheses:

(C1) For all u, v ∈ X with u(t)v(t′ ) ≤ max{v(t), v(t′ )} for each t, t′ ∈ [0, 1], we have(
f (t,u(t)) f (t

′

, v(t
′

)) ≤
1
λ

f (t, v(t)),∀t, t
′

∈ [0, 1]
)
,

or(
f (t,u(t)) f (t

′

, v(t
′

)) ≤
1
λ

f (t
′

, v(t
′

)),∀t, t
′

∈ [0, 1]
)
.
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(C2) For all u, v ∈ X with u(t)v(t) ≤ v(t) for each t ∈ [0, 1], we have

| f (t,u(t)) − f (t, v(t))| ≤
‖u − v‖

A
,

where ‖u‖ = maxt∈[0,1] u(t) and A = max06t61

∫ 1

0 k(t, s)ds, where k : [0, 1] × [0, 1] −→ [0, 1] denotes the
Green’s function for the boundary value system (12).

Note that f : [0, 1]× [0,∞) −→ [0,∞) is not necessarily Lipschitz from the given condition (C2) and there
exist some functions satisfying in condition (C2) but not Lipschitz.

Theorem 6.1. Let the above conditions are satisfied. Then, the fractional boundary value problem (12) has a positive
solution.

Proof. We define a operator equation T : X→ X as follows:

Tu(t) = λ

∫ 1

0
k(t, s) f (s,u(s))ds, (13)

where

k(t, s) =
1

Γ(α)

tα−1(1 − s)α−3
− (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−3, 0 ≤ t ≤ s ≤ 1.

We know that the differential equation has a positive solution if and only if T has a fixed point in X (see
[13, Lemma 2.3]). We consider the following relation in X:

u R v ⇐⇒ u(t)v(t
′

) ≤ max{v(t), v(t
′

)}, (14)

for all t, t′ ∈ [0, 1] and u, v ∈ X. Since (X, d) is a complete metric space, then (X, d,R) is an R-complete and
R-regular metric space. Now, we prove the following two steps to complete the proof.

Step1: T is monotone of type SR. Let u, v ∈ X with uRv. We must show that

Tu(t)Tv(t
′

) ≤ max{T(v(t)),T(v(t
′

))}

for all t, t′ ∈ [0, 1]. Applying (13), we have

Tu(t)Tv(t
′

) = λ2
∫ 1

0

∫ 1

0
k(t, s)k(t

′

, s
′

) f (s,u(s)) f (s′, v(s′))ds′ds.

Applying (C1), we have two cases:

(1). f (s,u(s)) f (s′ , v(s′ )) 6 1
λ f (s, v(s)) for each s, s′ ∈ [0, 1]. Applying (13) and definition of k, we have

Tu(t)Tv(t
′

) =λ2
∫ 1

0

∫ 1

0
k(t, s)k(t

′

, s
′

) f (s,u(s)) f (s′, v(s′))ds′ds

≤ λ

∫ 1

0

∫ 1

0
k(t, s)k(t

′

, s
′

) f (s, v(s))ds′ds

≤ λ

∫ 1

0
k(t, s) f (s, v(s))ds

= T(v(t))

≤ max{T(v(t)),T(v(t
′

))}.
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(2). f (s,u(s)) f (s′ , v(s′ )) 6 1
λ f (s′, v(s′)) for each s, s′ ∈ [0, 1]. Applying (13) and definition of k, we have

Tu(t)Tv(t
′

) =λ2
∫ 1

0

∫ 1

0
k(t, s)k(t

′

, s
′

) f (s,u(s)) f (s′, v(s′))ds′ds

≤ λ

∫ 1

0

∫ 1

0
k(t, s)k(t

′

, s
′

) f (s′, v(s′))ds′ds

≤ λ

∫ 1

0
k(t′, s′) f (s′, v(s′))ds′

= T(v(t′))

≤ max{T(v(t)),T(v(t
′

))}.

These imply that T is monotone of type SR.

Step2: Show that for each elements u, v ∈ X with u R v, we have

d(Tu,Tv) ≤ λd(u, v).

Let u, v ∈ X with uRv. Then for all t ∈ [0, 1], we have u(t)v(t) ≤ v(t). Applying (C2), we obtain that

|Tu(t) − Tv(t)| =
∣∣∣∣λ∫ 1

0
k(t, s) f (s,u(s))ds − λ

∫ 1

0
k(t, s) f (s, v(s))ds

∣∣∣∣
≤ λ

∫ 1

0
k(t, s)

∣∣∣∣ f (s,u(s)) − f (s, v(s))
∣∣∣∣ds

≤ λ‖u − v‖

for all t ∈ [0, 1]. Hence,

d(Tu,Tv) ≤ λd(u, v)

for all u, v ∈ X with u R v.
Applying Corollary 4.1, T has a fixed point in X which is a positive solution of the differential equation

(12).
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