Filomat 33:1 (2019), 121–134 https://doi.org/10.2298/FIL1901121A



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Signed Double Roman Domination of Graphs

Hossein Abdollahzadeh Ahangar<sup>a</sup>, Mustapha Chellali<sup>b</sup>, Seyed Mahmoud Sheikholeslami<sup>c</sup>

<sup>a</sup>Department of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, I.R. Iran, Postal Code: 47148-71167 <sup>b</sup>LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria <sup>c</sup>Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran

**Abstract.** In this paper we continue the study of signed double Roman dominating functions in graphs. A signed double Roman dominating function (SDRDF) on a graph G = (V, E) is a function  $f : V(G) \rightarrow \{-1, 1, 2, 3\}$  having the property that for each  $v \in V(G)$ ,  $f[v] \ge 1$ , and if f(v) = -1, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) = 1, then vertex v must have at leat one neighbor w with  $f(w) \ge 2$ . The weight of a SDRDF is the sum of its function values over all vertices. The signed double Roman domination number  $\gamma_{sdR}(G)$  is the minimum weight of a SDRDF on G. We present several lower bounds on the signed double Roman domination number of a graph in terms of various graph invariants. In particular, we show that if G is a graph of order n and size m with no isolated vertex, then  $\gamma_{sdR}(G) \ge \frac{19n-24m}{9}$  and  $\gamma_{sdR}(G) \ge 4\sqrt{\frac{n}{3}} - n$ . Moreover, we characterize the graphs attaining equality in these two bounds.

### 1. Introduction

We consider finite, undirected and simple graphs *G* with vertex set V = V(G) and edge set E = E(G). The number of vertices |V| of a graph *G* is called the *order* of *G* and is denoted by *n*. The *size m* of a graph *G* is the number of edges |E|. For every vertex  $v \in V$ , the *open neighborhood* N(v) is the set  $\{u \in V(G) : uv \in E(G)\}$  and the *closed neighborhood* of v is the set  $N[v] = N(v) \cup \{v\}$ . For a subset  $S \subseteq V$ , we let  $d_S(v)$  denote the number of neighbors of a vertex  $v \in V$ . In particular,  $d_V(v) = \deg_G(v) = |N(v)|$ . The *minimum* and *maximum degree* of a graph *G* are denoted by  $\delta = \delta(G)$  and  $\Delta = \Delta(G)$ , respectively. A *leaf* of *G* is a vertex of degree one. We write  $P_n$  for the *path* of order *n*,  $C_n$  for the *cycle* of length *n*,  $K_{p,q}$  for the complete bipartite graph and  $\overline{G}$  for the complement graph of *G*.

A set  $S \subseteq V$  in a graph *G* is called a *dominating set* if every vertex of *G* is either in *S* or adjacent to a vertex of *S*. The *domination number*  $\gamma(G)$  equals the minimum cardinality of a dominating set in *G*.

A *double Roman dominating function* (DRDF) on a graph G = (V, E) is a function  $f : V(G) \rightarrow \{0, 1, 2, 3\}$  such that (i) every vertex v with f(v) = 0 is adjacent to least two vertices assigned a 2 or to at least one vertex assigned a 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w with  $f(w) \ge 2$ . The *double Roman domination number*  $\gamma_{dR}(G)$  equals the minimum weight of a double Roman dominating function on G. Double Roman domination was introduced in 2016 by Beeler et al. [5] and studied further in [1–3].

Received: 05 December 2017; Accepted: 24 December 2018

<sup>2010</sup> Mathematics Subject Classification. 05C69, 05C05

Keywords. Double Roman domination; signed double Roman domination

Communicated by Francesco Belardo

Email addresses: ha.ahangar@nit.ac.ir (Hossein Abdollahzadeh Ahangar), m\_chellali@yahoo.com (Mustapha Chellali), s.m.sheikholeslami@azaruniv.ac.ir (Seyed Mahmoud Sheikholeslami)

In this paper, we continue the study of the signed double Roman domination in graphs introduced in [4] as follows. A *signed double Roman dominating function* (SDRDF) on a graph G = (V, E) is a function  $f : V(G) \rightarrow \{-1, 1, 2, 3\}$  such that (i) every vertex v with f(v) = -1 is adjacent to least two vertices assigned a 2 or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex wwith  $f(w) \ge 2$  and (iii)  $f[v] = \sum_{u \in N[v]} f(u) \ge 1$  holds for any vertex v. The weight of a SDRDF f is the value  $\omega(f) = \sum_{u \in V(G)} f(u)$ . The *signed double Roman domination number*  $\gamma_{sdR}(G)$  is the minimum weight of a SDRDF on G. For a graph G, let  $f : V(G) \rightarrow \{-1, 1, 2, 3\}$  be a function, and let  $V_i = \{v \in V | f(v) = i\}$  for  $i \in \{-1, 1, 2, 3\}$ . In the whole paper, the function f can be denoted  $f = (V_{-1}, V_1, V_2, V_3)$ .

In this paper, we present various lower bounds on the signed double Roman domination number of a graph. Moreover, we determine the signed double Roman domination of some classes of graphs including complete graphs, cycles, and complete bipartite graphs.

#### 2. Preliminary results

In this section we investigate basic properties of signed double Roman domination number. The following observation is straightforward.

**Observation 2.1.** If  $f = (V_{-1}, V_1, V_2, V_3)$  is a SDRDF of a graph *G*, then the following holds.

(i) Every vertex in V<sub>-1</sub> ∪ V<sub>1</sub> is dominated by a vertex in V<sub>2</sub> ∪ V<sub>3</sub>.
(ii) w(f) = |V<sub>1</sub>| + 2|V<sub>2</sub>| + 3|V<sub>3</sub>| - |V<sub>-1</sub>|.
(iii) V<sub>2</sub> ∪ V<sub>3</sub> is a dominating set in *G*.

**Proposition 2.2.** Let  $f = (V_{-1}, V_1, V_2, V_3)$  be a SDRDF in a graph G of order n. Let  $\Delta = \Delta(G)$  and  $\delta = \delta(G)$ . Then the following holds.

(i)  $(3\Delta + 2)|V_3| + (2\Delta + 1)|V_2| + \Delta|V_1| \ge (\delta + 2)|V_{-1}|.$ (ii)  $(3\Delta + \delta + 4)|V_3| + (2\Delta + \delta + 3)|V_2| + (\Delta + \delta + 2)|V_1| \ge (\delta + 2)n.$ (iii)  $(\Delta + \delta + 2)w(f) \ge (\delta - \Delta + 2)n + (\delta - \Delta)|V_2| + 2(\delta - \Delta)|V_3|.$ (iv)  $w(f) \ge (\delta - 3\Delta)n/(3\Delta + \delta + 4) + |V_2| + 2|V_3|.$ 

Proof. (i) We have that

$$\begin{aligned} |V_{-1}| + |V_1| + |V_2| + |V_3| &= n \\ &\leq \sum_{v \in V} f[v] \\ &= \sum_{v \in V} (\deg_G(v) + 1) f(v) \\ &= \sum_{v \in V_3} 3(\deg_G(v) + 1) + \sum_{v \in V_2} 2(\deg_G(v) + 1) + \sum_{v \in V_1} (\deg_G(v) + 1) - \sum_{v \in V_1} (\deg_G(v) + 1) - \sum_{v \in V_1} (\deg_G(v) + 1) \\ &\leq 3(\Delta + 1)|V_3| + 2(\Delta + 1)|V_2| + (\Delta + 1)|V_1| - (\delta + 1)|V_{-1}|, \end{aligned}$$

and the desired result follows.

(ii) By substituting  $|V_{-1}| = n - |V_1| - |V_2| - |V_3|$  in Part (i), the result follows. (iii) By Observation 2.1 and Part (ii), we have

$$\begin{aligned} (\Delta + \delta + 2)w(f) &= (\Delta + \delta + 2)\left(2(|V_1| + |V_2| + |V_3|) - n + |V_2| + 2|V_3|\right) \\ &\geq 2(\delta + 2)n - 2(\Delta + 1)|V_2| - 4(\Delta + 1)|V_3| + (\Delta + \delta + 2)(|V_2| + 2|V_3| - n) \\ &= (\delta - \Delta + 2)n + (\delta - \Delta)|V_2| + 2(\delta - \Delta)|V_3|. \end{aligned}$$

(iv) It follows from the proof of Part (i) that

$$\begin{array}{rcl} n & \leq & 3(\Delta+1)|V_3| + 2(\Delta+1)|V_2| + (\Delta+1)|V_1| - (\delta+1)|V_{-1}| \\ & \leq & 3(\Delta+1)|V_1 \cup V_2 \cup V_3| - (\delta+1)|V_{-1}| \\ & = & (3\Delta+\delta+4)|V_1 \cup V_2 \cup V_3| - (\delta+1)n. \end{array}$$

And so  $|V_1 \cup V_2 \cup V_3| \ge n(\delta + 2)/(3\Delta + \delta + 4)$ . Therefore,

$$w(f) = 2|V_1 \cup V_2 \cup V_3| - n + |V_2| + 2|V_3| \\ \ge (\delta - 3\Delta)n/(3\Delta + \delta + 4) + |V_2| + 2|V_3|.$$

Next result is an immediate consequence of Proposition 2.2(iii).

**Corollary 2.3.** If  $r \ge 1$  is an integer and *G* is an *r*-regular graph of order *n*, then  $\gamma_{sdR}(G) \ge n/(r+1)$ .

If *G* is not a regular graph, then as a consequence of Proposition 2.2(iii) and (iv), we have the following result.

**Corollary 2.4.** If *G* is a graph of order *n*, minimum degree  $\delta$  and maximum degree  $\Delta$  where  $\delta < \Delta$ , then

$$\gamma_{sdR}(G) \ge \left(\frac{-3\Delta^2 + 3\Delta\delta + \Delta + 3\delta + 4}{(\Delta + 1)(3\Delta + \delta + 4)}\right)n.$$

**Proof.** Multiplying both sides of the inequality in Proposition 2.2(iv) by  $\Delta - \delta$  and adding the resulting inequality to the inequality in Proposition 2.2(iii) we obtain the desired result.  $\Box$ 

**Proposition 2.5.** For any graph G,  $\gamma_{sdR}(G) \ge \Delta(G) + 2 - n$ . This bound is sharp for complete graphs.

**Proof.** Let *v* be a vertex of maximum degree  $\Delta(G)$ . We have

$$\begin{aligned} \gamma_{sdR}(G) &= f[v] + \sum_{x \in V(G) - N[v]} f(x) \\ &\geq 1 - (n - \Delta(G) - 1) \\ &= \Delta(G) + 2 - n. \end{aligned}$$

We note that the bound of Proposition 2.5 is sharp for non-trivial complete graphs except  $K_4$  (see Proposition 4.1 for exact values of  $\gamma_{sdR}(K_n)$ ).

**Proposition 2.6.** For any graph G,  $\gamma_{sdR}(G) + \gamma_{sdR}(\overline{G}) \ge \Delta(G) - \delta(G) + 3 - n$ .

Proof. By Proposition 2.5, we have

$$\begin{split} \gamma_{sdR}(G) + \gamma_{sdR}(G) &\geq (\Delta(G) + 2 - n) + (\Delta(G) + 2 - n) \\ &= (\Delta(G) + 2 - n) + (n - 1 - \delta(\overline{G}) + 2 - n) \\ &= \Delta(G) - \delta(\overline{G}) + 3 - n. \end{split}$$

123

### 3. Bounds

In this section we present some sharp bounds on the signed double Roman domination number in graphs. First we introduce some notation for convenience.

Let  $V'_{-1} = \{v \in V_{-1} \mid N(v) \cap V_3 \neq \emptyset\}$  and  $V''_{-1} = V_{-1} - V'_{-1}$ . For disjoint subsets *U* and *W* of vertices, we let [U, W] denote the set of edges between *U* and *W*. For notational convenience, we let  $V_{12} = V_1 \cup V_2, V_{13} = V_1 \cup V_2 \cup V_3$  and let  $|V_{12}| = n_{12}, |V_{13}| = n_{13}, |V_{123}| = n_{123}$ , and let  $|V_1| = n_1, |V_2| = n_2$  and  $|V_3| = n_3$ . Then,  $n_{123} = n_1 + n_2 + n_3$ . Further, we let  $|V_{-1}| = n_{-1}$ , and so  $n_{-1} = n - n_{123}$ . Let  $G_{123} = G[V_{123}]$  be the subgraph induced by the set  $V_{123}$  and let  $G_{123}$  have size  $m_{123}$ . For i = 1, 2, 3, if  $V_i \neq \emptyset$ , let  $G_i = G[V_i]$  be the subgraph induced by the set  $V_i$  and let  $G_i$  have size  $m_i$ . Hence,  $m_{123} = m_1 + m_2 + m_3 + |[V_1, V_2]| + |[V_1, V_3]| + |[V_2, V_3]|$ .

For  $k \ge 1$ , let  $L_k$  be the graph obtained from a graph H of order k by adding  $3d_H(v) + 2$  pendant edges to each vertex v of H. Note that  $L_1 = K_{1,2}$ . Let  $\mathcal{H} = \{L_k \mid k \ge 1\}$ .

**Theorem 3.1.** Let *G* be a graph of order *n* and size *m* with no isolated vertex. Then

$$\gamma_{sdR}(G) \geq \frac{19n - 24m}{9}$$

with equality if and only if  $G \in \mathcal{H}$ .

**Proof.** The proof is by induction on *n*. If n = 2, then  $\gamma_{sdR}(K_2) = 2 > \frac{19n-24m}{9}$ . If n = 3, then  $G \in \{K_{1,2}, K_3\}$  and  $\gamma_{sdR}(G) \ge \frac{19n-24m}{9}$  with equality only if  $G = K_{1,2}$  that belongs to  $\mathcal{H}$ . Hence let  $n \ge 4$  and assume that the statement is true for all graphs of order less than *n* having no isolated vertex. Let *G* be a graph of order *n* with no isolated vertex and let  $f = (V_{-1}, V_1, V_2, V_3)$  be a  $\gamma_{sdR}(G)$ -function. If  $V_{-1} = \emptyset$ , then  $\gamma_{sdR}(G) > n > \frac{19n-24m}{9}$  since *G* has no isolated vertex. Hence  $V_{-1} \neq \emptyset$ . We consider the following cases.

**Case 1.**  $V_3 \neq \emptyset$ .

We distinguish the following.

**Subcase 1.1**  $V_2 \neq \emptyset$ .

By the definition of a SDRDF, each vertex in  $V_{-1}$  is adjacent to at least one vertex in  $V_3$  or to at least two vertices in  $V_2$ , and so

$$|[V_{-1}, V_{123}]| \ge |[V_{-1}, V_3]| + |[V_{-1}, V_2]| \ge |V'_{-1}| + 2|V''_{-1}| \ge n_{-1}.$$

Furthermore we have

$$2n_{-1} \leq 2|[V_{-1}, V_3]| + |[V_{-1}, V_2]| = 2\sum_{v \in V_3} d_{V_{-1}}(v) + \sum_{u \in V_2} d_{V_{-1}}(u).$$

For each vertex  $v \in V_3$ , we have that  $f(v) + 3d_{V_3}(v) + 2d_{V_2}(v) + d_{V_1}(v) - d_{V_{-1}}(v) = f[v] \ge 1$ , and so  $d_{V_{-1}}(v) \le 3d_{V_3}(v) + 2d_{V_2}(v) + d_{V_1}(v) + 2$ . Similarly, for each vertex  $u \in V_2$ , we have that  $d_{V_{-1}}(u) \le 3d_{V_3}(u) + 2d_{V_2}(u) + d_{V_1}(u) + 1$ . Now, we have

$$\begin{aligned} 2n_{-1} &\leq 2\sum_{v \in V_3} d_{V_{-1}}(v) + \sum_{u \in V_2} d_{V_{-1}}(u) \\ &\leq 2\sum_{v \in V_3} (3d_{V_3}(v) + 2d_{V_2}(v) + d_{V_1}(v) + 2) + \sum_{u \in V_2} (3d_{V_3}(u) + 2d_{V_2}(u) + d_{V_1}(u) + 1) \\ &= (12m_3 + 4|[V_2, V_3]| + 2|[V_1, V_3]| + 4n_3) + (3|[V_2, V_3]| + 4m_2 + |[V_1, V_2] + n_2) \\ &= 12m_3 + 4m_2 + 7|[V_2, V_3]| + 2|[V_1, V_3]| + |[V_1, V_2]| + 4n_3 + n_2 \\ &= 12m_{123} - 12m_1 - 8m_2 - 5|[V_2, V_3]| - 10|[V_1, V_3]| - 11|[V_1, V_2]| + 4n_3 + n_2, \end{aligned}$$

which implies that

$$m_{123} \ge \frac{1}{12}(2n_{-1} + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]| - 4n_3 - n_2).$$

Hence,

$$\begin{split} m &= m_{123} + |[V_{-1}, V_{123}]| + m_{-1} \\ &\ge m_{123} + |[V_{-1}, V_{123}]| \\ &\ge \frac{1}{12} (2n_{-1} + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]| - 4n_3 - n_2) + n_{-1} \\ &= \frac{1}{12} (14n_{-1} - 4n_{123} + 3n_2 + 4n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]|) \\ &= \frac{1}{12} (14n - 18n_{123} + 3n_2 + 4n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]|) \end{split}$$

and so

$$n_{123} \ge \frac{1}{18}(-12m + 14n + 3n_2 + 4n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]|).$$

Now, we have

$$\begin{split} \gamma_{sdR}(G) &= 3n_3 + 2n_2 + n_1 - n_{-1} \\ &= 4n_3 + 3n_2 + 2n_1 - n \\ &= 4n_{123} - n - n_2 - 2n_1 \\ &\geq \frac{2}{9}(-12m + 14n + 3n_2 + 4n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + \\ &\quad 11|[V_1, V_2]|) - n - n_2 - 2n_1 \\ &= \frac{2}{9}(-12m + 14n - \frac{9}{2}n) + \frac{2}{9}(3n_2 + 4n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + \\ &\quad 10|[V_1, V_3]| + 11|[V_1, V_2]| - \frac{9}{2}n_2 - 9n_1) \\ &= \frac{1}{9}(19n - 24m) + \frac{2}{9}(\frac{-3}{2}n_2 - 5n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]|) \end{split}$$

Let  $\Theta = \frac{-3}{2}n_2 - 5n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]|$ . Assume first that  $n_1 = 0$ . Clearly then  $\Theta = \frac{-3}{2}n_2 + 8m_2 + 5|[V_2, V_3]|$ . Suppose  $d_{V_{23}}(v) \ge 1$  for each  $v \in V_2$ . Then

$$\begin{split} \Theta &= \frac{-3}{2}n_2 + 8m_2 + 5|[V_2, V_3]| \\ &= 4\sum_{v \in V_2} d_{V_2}(v) + 4\sum_{v \in V_2} d_{V_3}(v) + (\frac{-3}{2}n_2 + |[V_2, V_3]|) \\ &= 4\sum_{v \in V_2} d_{V_{23}}(v) + (\frac{-3}{2}n_2 + |[V_2, V_3]|) \\ &\geq 4n_2 + \frac{-3}{2}n_2 + |[V_2, V_3]| \\ &\geq \frac{5}{2}n_2 + |[V_2, V_3]| \\ &\geq 0. \end{split}$$

Therefore  $\gamma_{sdR}(G) > \frac{19n-24m}{9}$ . Now let  $d_{V_{23}}(v) = 0$  for some  $v \in V_2$ . Since by assumption there is no isolated vertex in *G* and  $n_1 = 0$ , we have that every neighbor of v belongs to  $V_{-1}$ . Since  $f[v] \ge 1$ , we conclude that v is a leaf and has a neighbor,

say w, such that f(w) = -1. Let G' = G - v. Then the function  $g : V(G') \rightarrow \{-1, 1, 2, 3\}$  defined by g(w) = 1 and g(x) = f(x) for  $x \in V(G') - \{w\}$  is a SDRDF of G' of weight  $\omega(f)$ . By the induction hypothesis we have

$$\gamma_{sdR}(G) \ge \gamma_{sdR}(G') \\ \ge \frac{19(n-1) - 24(m-1)}{9} \\ = \frac{19n - 24m}{9} + \frac{5}{9} \\ > \frac{19n - 24m}{9}$$

Therefore  $\gamma_{sdR}(G) > \frac{19n-24m}{9}$ .

Assume now that  $n_1 \ge 1$  and recall that  $\Theta = \frac{-3}{2}n_2 - 5n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]|$ . By the definition of SDRDF of *G*, we have  $d_{V_{123}}(v) \ge 1$  for each  $v \in V_1$ . If  $d_{V_{123}}(v) = 0$  for some  $v \in V_2$ , then as above v is a leaf. By considering the graph G' = G - v and using a similar argument as previously, the result follows. Hence, let  $d_{V_{123}}(v) \ge 1$  for each  $v \in V_2$ . Then

$$\begin{split} &\Theta = \frac{-3}{2}n_2 - 5n_1 + 12m_1 + 8m_2 + 5|[V_2, V_3]| + 10|[V_1, V_3]| + 11|[V_1, V_2]| \\ &= 6\sum_{v \in V_1} d_{V_1}(v) + 6\sum_{v \in V_1} d_{V_2}(v) + 6\sum_{v \in V_1} d_{V_3}(v) + 4\sum_{v \in V_2} d_{V_1}(v) + 4\sum_{v \in V_2} d_{V_2}(v) + 4\sum_{v \in V_2} d_{V_3}(v) \\ &+ (\frac{-3}{2}n_2 - 5n_1 + |[V_2, V_3]| + 4|[V_1, V_3]| + |[V_1, V_2]|) \\ &= 6\sum_{v \in V_1} d_{V_{123}}(v) + 4\sum_{v \in V_2} d_{V_{123}}(v) + (\frac{-3}{2}n_2 - 5n_1 + |[V_2, V_3]| + 4|[V_1, V_3]| + |[V_1, V_2]|) \\ &\geq 6n_1 + 4n_2 + \frac{-3}{2}n_2 - 5n_1 + |[V_2, V_3]| + 4|[V_1, V_3]| + |[V_1, V_2]| \\ &= n_1 + \frac{5}{2}n_2 + |[V_2, V_3]| + 4|[V_1, V_3]| + |[V_1, V_2]| \\ &> 0. \end{split}$$

Therefore  $\gamma_{sdR}(G) > \frac{19n-24m}{9}$ . **Subcase 1.2**  $V_2 = \emptyset$ . By the definition of a SDRDF, each vertex in  $V_{-1}$  is adjacent to a vertex in  $V_3$ , and so

 $|[V_{-1}, V_{13}]| \ge |[V_{-1}, V_3]| \ge |V_{-1}| = n_{-1}.$ 

Furthermore we have

$$n_{-1} \le |[V_{-1}, V_3]| = \sum_{v \in V_3} d_{V_{-1}}(v).$$

For each vertex  $v \in V_3$ , we have that  $f(v) + 3d_{V_3}(v) + d_{V_1}(v) - d_{V_{-1}}(v) = f[v] \ge 1$ , and so  $d_{V_{-1}}(v) \le 3d_{V_3}(v) + d_{V_1}(v) + 2$ . It follows that

$$\begin{split} n_{-1} &\leq \sum_{v \in V_3} d_{V_{-1}}(v) \\ &\leq \sum_{v \in V_3} (3d_{V_3}(v) + d_{V_1}(v) + 2) \\ &= 6m_3 + |[V_1, V_3]| + 2n_3 \\ &= 6m_{13} - 6m_1 - 5|[V_1, V_3]| + 2n_3, \end{split}$$

which implies that

$$m_{13} \ge \frac{1}{6}(n_{-1} + 6m_1 + 5|[V_1, V_3]| - 2n_3).$$

Hence,

$$\begin{split} m &\geq m_{13} + |[V_{-1}, V_{13}]| + m_{-1} \\ &\geq m_{13} + |[V_{-1}, V_{13}]| \\ &\geq \frac{1}{6}(n_{-1} + 6m_1 + 5|[V_1, V_3]| - 2n_3) + n_{-1} \\ &= \frac{1}{6}(7n_{-1} - 2n_{13} + 2n_1 + 6m_1 + 5|[V_1, V_3]|) \\ &= \frac{1}{6}(7n - 9n_{13} + 2n_1 + 6m_1 + 5|[V_1, V_3]|) \end{split}$$

and so

$$n_{13} \ge \frac{1}{9}(-6m + 7n + 2n_1 + 6m_1 + 5|[V_1, V_3]|).$$

Now, we have

$$\begin{split} \gamma_{sdR}(G) &= 3n_3 + n_1 - n_{-1} \\ &= 4n_3 + 2n_1 - n \\ &= 4n_{13} - n - 2n_1 \\ &\geq \frac{4}{9}(-6m + 7n + 2n_1 + 6m_1 + 5|[V_1, V_3]|) - n - 2n_1 \\ &= \frac{4}{9}(-6m + 7n - \frac{9}{4}n) + \frac{4}{9}(2n_1 + 6m_1 + 5|[V_1, V_3]| - \frac{9}{2}n_1) \\ &= \frac{1}{9}(19n - 24m) + \frac{4}{9}(6m_1 + 5|[V_1, V_3]| - \frac{5}{2}n_1) \end{split}$$

Let  $\Theta = 6m_1 + 5|[V_1, V_3]| - \frac{5}{2}n_1$ . We shall show that  $\Theta \ge 0$ . Clearly,  $\Theta = 0$  if  $n_1 = 0$ . Thus we suppose that  $n_1 \ge 1$ . By the definition of a SDRDF, for each  $v \in V_1$  we have  $d_{V_{13}}(v) \ge 1$ . Hence

$$\begin{split} \Theta &= \frac{-5}{2}n_1 + 6m_1 + 5|[V_1, V_3]| \\ &= 3\sum_{v \in V_1} d_{V_1}(v) + 3\sum_{v \in V_1} d_{V_3}(v) + (2|[V_1, V_3]| - \frac{5}{2}n_1) \\ &= 3\sum_{v \in V_1} d_{V_{13}}(v) + (2|[V_1, V_3]| - \frac{5}{2}n_1) \\ &\geq 3n_1 + 2|[V_1, V_3]| - \frac{5}{2}n_1 \\ &= \frac{1}{2}n_1 + 2|[V_1, V_3]| \\ &> 0. \end{split}$$

Therefore  $\gamma_{sdR}(G) \geq \frac{19n-24m}{9}$ .

**Case 2.**  $V_3 = \emptyset$ .

Since  $V_{-1} \neq \emptyset$ , we conclude that  $V_2 \neq \emptyset$ . By the definition of a SDRDF, each vertex in  $V_{-1}$  is adjacent to at least two vertices in  $V_2$ , and so

$$|[V_{-1}, V_{12}]| \ge |[V_{-1}, V_2]| \ge 2|V_{-1}| = 2n_{-1}.$$

Furthermore we have

$$2n_{-1} \le |[V_{-1}, V_2]| = \sum_{v \in V_2} d_{V_{-1}}(v).$$

For each vertex  $v \in V_2$ , we have that  $f(v) + 2d_{V_2}(v) + d_{V_1}(v) - d_{V_{-1}}(v) = f[v] \ge 1$ , and so  $d_{V_{-1}}(v) \le 2d_{V_2}(v) + d_{V_1}(v) + 1$ . It follows that

$$2n_{-1} \le \sum_{v \in V_2} d_{V_{-1}}(v)$$
  
$$\le \sum_{v \in V_2} (2d_{V_2}(v) + d_{V_1}(v) + 1)$$
  
$$= 4m_2 + |[V_1, V_2]| + n_2$$
  
$$= 4m_{12} - 4m_1 - 3|[V_1, V_2]| + n_2,$$

which implies that

$$m_{12} \geq \frac{1}{4}(2n_{-1}+4m_1+3|[V_1,V_2]|-n_2).$$

Hence,

$$\begin{split} m &\geq m_{12} + |[V_{-1}, V_{12}]| + m_{-1} \\ &\geq m_{12} + |[V_{-1}, V_{12}]| \\ &\geq \frac{1}{4}(2n_{-1} + 4m_1 + 3|[V_1, V_2]| - n_2) + 2n_{-1} \\ &= \frac{1}{4}(10n_{-1} - 2n_{12} + 2n_1 + n_2 + 4m_1 + 3|[V_1, V_2]|) \\ &= \frac{1}{4}(10n - 12n_{12} + 2n_1 + n_2 + 4m_1 + 3|[V_1, V_2]|) \end{split}$$

and so

$$n_{12} \ge \frac{1}{12}(-4m + 10n + 2n_1 + n_2 + 4m_1 + 3|[V_1, V_2]|).$$

Now, we have

$$\begin{split} \gamma_{sdR}(G) &= 2n_2 + n_1 - n_{-1} \\ &= 3n_2 + 2n_1 - n \\ &= 3n_{12} - n - n_1 \\ &\geq \frac{1}{4}(-4m + 10n + 2n_1 + n_2 + 4m_1 + 3|[V_1, V_2]|) - n - n_1 \\ &= \frac{1}{4}(-4m + 10n - 4n) + \frac{1}{4}(2n_1 + n_2 + 4m_1 + 3|[V_1, V_2]| - 4n_1) \\ &= \frac{1}{4}(-4m + 6n) + \frac{1}{4}(4m_1 + n_2 + 3|[V_1, V_2]| - 2n_1) \end{split}$$

Let  $\Theta = 4m_1 + n_2 + 3|[V_1, V_2]| - 2n_1$ . We will show that  $\Theta > 0$ . Clearly if  $n_1 = 0$ , then  $\Theta = n_2 > 0$ . Hence

assume that  $n_1 \ge 1$ . By the definition of a SDRDF of *G*, we have  $d_{V_{12}}(v) \ge 1$  for each  $v \in V_1$ . Hence,

$$\begin{split} \Theta &= 4m_1 + n_2 + 3|[V_1, V_2]| - 2n_1 \\ &= 2\sum_{v \in V_1} d_{V_1}(v) + 2\sum_{v \in V_1} d_{V_2}(v) + (n_2 + |[V_1, V_2]| - 2n_1) \\ &= 2\sum_{v \in V_1} d_{V_{12}}(v) + (n_2 + |[V_1, V_2]| - 2n_1) \\ &\geq 2n_1 + n_2 + |[V_1, V_2]| - 2n_1 \\ &= n_2 + |[V_1, V_2]| \\ &> 0 \end{split}$$

Therefore  $\gamma_{sdR}(G) > \frac{1}{2}(3n - 2m)$ , implying that  $\gamma_{sdR}(G) > \frac{1}{2}(3n - 2m) > \frac{1}{9}(19n - 24m)$ , which completes the proof of the lower bound.

Assume now that  $\gamma_{sdR}(G) = \frac{1}{9}(19n-24m)$ . Then all the above inequalities must be equalities. In particular,  $n_1 = 0$  and  $n_3 = n_{13}$ . Hence  $V_{13} = V_3$  and  $V = V_3 \cup V_{-1}$ . Moreover,  $m = m_{13} + |[V_{-1}, V_3]|$ ,  $|[V_{-1}, V_3]| = n_{-1}$  and  $m_{13} = \frac{1}{6}(n_{-1} - 2n_3)$ . This implies that for each vertex  $v \in V_{-1}$  we have  $d_{V_{-1}}(v) = 0$  and  $d_{V_3}(v) = 1$ , that is each vertex of  $V_{-1}$  is a leaf in G. Moreover for each vertex  $v \in V_3$  we have  $d_{V_{-1}}(v) = 3d_{V_3}(v) + 2$ . Hence,  $G \in \mathcal{H}$ .

On the other hand, let  $G \in \mathcal{H}$ . Then  $G = L_k$  for some  $k \ge 1$ . Thus, G is obtained from a graph H (possibly disconnected) of order k by adding  $3 \deg_H(v) + 2$  pendant edges to each vertex v of H. Let G have order n and size m. Then,

$$n = \sum_{v \in V(H)} (3 \deg_H(v) + 3) = 6m(H) + 3n(H)$$

and

$$m = m(H) + \sum_{v \in V(H)} (3 \deg_H(v) + 2) = 7m(H) + 2n(H)$$

Assigning to every vertex in V(H) the weight 3 and to every vertex in V(G) - V(H) the weight -1 produces a SDRDF *f* of weight  $\omega(f) = 3n(H) - (6m(H) + 2n(H)) = n(H) - 6m(H) = \frac{19n - 24m}{9}$ . Hence  $\gamma_{sdR}(G) \le \frac{1}{9}(19n - 24m)$ . It follows that  $\gamma_{sdR}(G) = \frac{1}{9}(19n - 24m)$  and this completes the proof.  $\Box$ 

For  $k \ge 1$ , let  $F_k$  be the graph obtained from the complete graph  $K_k$  by adding 3k - 1 pendant edges at each vertex and let  $A(F_k)$  be the family of graphs obtained from  $F_k$  by adding edges (possibly none) between the leaves of  $F_k$  so that to be independent. Let  $\mathcal{F} = \bigcup_{k\ge 1} A(F_k)$ .

**Theorem 3.2.** Let *G* be a graph of order *n*. Then  $\gamma_{sdR}(G) \ge 4\sqrt{\frac{n}{3}} - n$ , with equality if and only if  $G \in \mathcal{F}$ .

**Proof.** Let  $f = (V_{-1}, V_1, V_2, V_3)$  be a  $\gamma_{sdR}(G)$ -function. If  $|V_{-1}| = 0$ , then  $\gamma_{sdR}(G) \ge n + 1 \ge 4\sqrt{\frac{n}{3}} - n$ . Hence, let  $|V_{-1}| \ge 1$ . Since each vertex in  $V'_{-1}$  is adjacent to at least one vertex in  $V_3$ , we deduce, by the Pigeonhole Principle, that at least one vertex v of  $V_3$  is adjacent to at least  $\frac{n'_{-1}}{n_3}$  vertices of  $V'_{-1}$ . It follows that  $1 \le f[v] \le 3n_3 + 2n_2 + n_1 - \frac{n'_{-1}}{n_3}$ , and thus

$$0 \le 3n_3^2 + 2n_2n_3 + n_1n_3 - n'_{-1} - n_3. \tag{1}$$

Likewise, since each vertex in  $V_{-1}''$  is adjacent to at least two vertices in  $V_2$ , we deduce that at least one vertex u of  $V_2$  is adjacent to at least  $\frac{2n_{-1}''}{n_2}$  vertices of  $V_{-1}''$ . As above we have

$$0 \le 3n_3n_2 + 2n_2^2 + n_1n_2 - 2n_{-1}'' - n_2.$$
<sup>(2)</sup>

Now, by multiplying the inequality (1) by 2 and summing it with the inequality (2), we obtain

$$0 \le 6n_3^2 + 2n_2^2 + 7n_2n_3 + 2n_1n_3 + n_1n_2 - 2n_{-1}' - 2n_{-1}'' - n_2 - 2n_3$$

Since  $n = n_3 + n_2 + n_1 + n_{-1}$ , we have

$$0 \le 6n_3^2 + 2n_2^2 + 7n_2n_3 + 2n_1n_3 + n_1n_2 + 2n_1 + n_2 - 2n_1$$

equivalently

$$0 \le 16n_3^2 + \frac{16}{3}n_2^2 + \frac{56}{3}n_2n_3 + \frac{16}{3}n_1n_3 + \frac{16}{6}n_1n_2 + \frac{16}{3}n_1 + \frac{16}{6}n_2 - \frac{16}{3}n_1 \\ \le 16n_3^2 + 9n_2^2 + 4n_1^2 + 24n_2n_3 + 16n_1n_3 + 12n_1n_2 - \frac{16}{3}n_1 \\ = (4n_3 + 3n_2 + 2n_1)^2 - \frac{16}{3}n_1$$

which implies that  $4\sqrt{\frac{n}{3}} \le 4n_3 + 3n_2 + 2n_1$ . Therefore

$$\begin{split} \gamma_{sdR}(G) &= 3n_3 + 2n_2 + n_1 - n_{-1} \\ &= 4n_3 + 3n_2 + 2n_1 - n \\ &\geq 4\sqrt{\frac{n}{3}} - n. \end{split}$$

Let  $\gamma_{sdR}(G) = 4\sqrt{\frac{n}{3}} - n$ . Then all the above inequalities must be equalities. In particular,  $n_1 = n_2 = 0$ ,  $n_3 = n_{123}$ ,  $n = 3n_3^2$  and  $n_{-1} = n_3(3n_3 - 1)$ . Thus,  $V_{123} = V_3$  and  $V = V_3 \cup V_{-1}$ . Furthermore, each vertex of  $V_{-1}$  is adjacent to exactly one vertex of  $V_3$  and each vertex of  $V_3$  is adjacent to all other  $n_3 - 1$  vertices of  $V_3$  and to  $3n_3 - 1$  vertices of  $V_{-1}$ . Since  $f[v] \ge 1$  for each vertex  $v \in V_{-1}$ , we conclude that  $d_{V_{-1}}(v) \le 1$  for each vertex  $v \in V_{-1}$ , and so  $G \in \mathcal{F}$ .

On the other hand, suppose  $G \in \mathcal{F}$ . Then  $G \in A(F_k)$  for some  $k \ge 1$ . Then, G has order  $n = 3k^2$ , and so  $k = \sqrt{\frac{n}{3}}$ . Assigning 3 to the vertices of  $K_k$  and -1 to the remaining vertices, produces a SDRDF f of weight

$$\omega(f) = 3k - k(3k - 1) = 4k - 3k^2 = 4\sqrt{\frac{n}{3}} - n$$

Hence  $\gamma_{sdR}(G) \leq 4\sqrt{\frac{n}{3}} - n$  which implies that  $\gamma_{sdR}(G) = 4\sqrt{\frac{n}{3}} - n$ . This completes the proof.  $\Box$ 

**Proposition 3.3.** For every graph *G* of order *n*,  $\gamma_{dR}(G) - \gamma_{sdR}(G) + \gamma(G) \le n$ .

**Proof.** Let  $f = (V_{-1}, V_1, V_2, V_3)$  be a  $\gamma_{sdR}(G)$ -function. Recall that  $\gamma_{sdR}(G) = w(f) = |V_1| + 2|V_2| + 3|V_3| - |V_{-1}|$  and  $\gamma(G) \le |V_{23}|$  since  $V_{23}$  dominates G. Define the function g on V(G) by g(x) = 0 if  $x \in V_{-1}$  and g(x) = f(x) otherwise. Clearly, g is a double Roman dominating function on G, and thus  $\gamma_{dR}(G) \le |V_1| + 2|V_2| + 3|V_3| = \gamma_{sdR}(G) + |V_{-1}|$ . It follows that

$$\gamma_{dR}(G) \leq \gamma_{sdR}(G) + (n - |V_{123}|) \leq \gamma_{sdR}(G) + n - \gamma(G) - |V_1| \leq \gamma_{sdR}(G) + n - \gamma(G),$$

and the result follows.  $\Box$ 

The following two lower bounds on the double Roman domination number are given in [2] and [5], respectively.

**Proposition 3.4.** ([5]) For any graph G,  $\gamma_{dR}(G) \ge 2\gamma(G)$ .

**Proposition 3.5.** ([2]) For any graph *G* of order *n* with maximum degree  $\Delta$ ,

$$\gamma_{dR}(G) \geq \frac{2n}{\Delta} + \frac{\Delta - 2}{\Delta} \gamma(G).$$

The next results are immediate consequences of Propositions 3.3, 3.4 and 3.5

**Corollary 3.6.** For any graph G,  $\gamma_{sdR}(G) \ge 3\gamma(G) - n$ .

**Proof.** By Propositions 3.3 and 3.4, we have

$$\gamma_{sdR}(G) \ge \gamma_{dR}(G) + \gamma(G) - n$$
$$\ge 3\gamma(G) - n.$$

The previous corollary gives a partial answer to Question posed in [4] concerning a characterization of graphs *G* for which  $\gamma_{sdR}(G) \ge 0$ . Clearly, by Corollary 3.6,  $\gamma_{sdR}(G) \ge 0$  for all graphs *G* of order *n* with  $\gamma(G) \ge n/3$ .

**Corollary 3.7.** For any graph *G* of order *n* with maximum degree  $\Delta$ ,

$$\gamma_{sdR}(G) \geq \frac{(2-\Delta)}{\Delta}n + \frac{(2\Delta-2)}{\Delta}\gamma(G).$$

**Proof.** By Propositions 3.3 and 3.5, we have

$$\begin{split} \gamma_{sdR}(G) &\geq \gamma_{dR}(G) + \gamma(G) - n \\ &\geq \frac{2n}{\Delta} + \frac{\Delta - 2}{\Delta}\gamma(G) + \gamma(G) - n \\ &= \frac{(2 - \Delta)}{\Delta}n + \frac{(2\Delta - 2)}{\Delta}\gamma(G). \end{split}$$

Recall that a set *S* of vertices in a graph *G* is a *packing* if the vertices in *S* are pairwise at distance at least 3 apart in *G*, or equivalently, for every vertex  $v \in V$ ,  $|N[v] \cap S| \le 1$ . The *packing number*  $\rho(G)$  is the maximum cardinality of a packing in *G*. Note that for a packing *S*, we have  $|N[S]| \ge (\delta + 1)|S|$ .

**Proposition 3.8.** For every graph *G* of order n,  $\gamma_{sdR}(G) \ge (\delta + 2)\rho(G) - n$ . This bound is sharp for  $K_n$ ,  $n \ne 4$  and cycles  $C_{3t}$  ( $t \ge 1$ ).

**Proof.** Let *S* be a maximum packing set in *G*, and let *f* be a  $\gamma_{sdR}(G)$ -function. Then

$$\begin{array}{lll} \gamma_{sdR}(G) &=& \sum_{v \in S} f[v] + \sum_{v \in V - N[S]} f(v) \\ &\geq & \sum_{v \in S} 1 + \sum_{v \in V - N[S]} (-1) \\ &\geq & |S| - |V| + |N[S]| \\ &\geq & (\delta + 2)\rho(G) - n. \end{array}$$

#### 4. Special classes of graphs

In this section, we determine the signed double Roman domination number of some classes of graphs including complete graphs, cycles and complete bipartite graphs.

**Proposition 4.1.** For 
$$n \ge 2$$
,  $\gamma_{sdR}(K_n) = \begin{cases} 2 & \text{if } n = 2 \text{ or } 4.\\ 1 & \text{otherwise.} \end{cases}$ 

**Proof.** The result is trivial to check for  $n \le 4$ . Assume that  $n \ge 5$  and let f be a  $\gamma_{sdR}(G)$ -function. For any vertex  $v \in V(G)$ , we have that  $w(f) = f[v] \ge 1$  and so  $\gamma_{sdR}(G) = w(f) \ge 1$ . If  $n \equiv 0 \pmod{3}$ , then assign to one vertex the weight 3, to n/3 - 1 vertices the weight 2, and to the remaining vertices the weight -1. Next, if  $n \equiv 1 \pmod{3}$ , then assign to one vertex the weight 1, to (n - 1)/3 vertices the weight 2 and to the remaining vertices the weight -1. Finally, if  $n \equiv 2 \pmod{3}$ , then assign to (n + 1)/3 vertices the weight 2 and to the remaining vertices the weight -1. In all cases, we produce a SDRDF of weight 1, and so  $\gamma_{sdR}(G) \le 1$ . Consequently,  $\gamma_{sdR}(G) = 1$ .  $\Box$ 

**Proposition 4.2.** For  $n \ge 3$ ,

$$\gamma_{sdR}(C_n) = \begin{cases} n/3 & \text{if } n \equiv 0 \pmod{3}, \\ \lceil \frac{n}{3} \rceil + 2 & \text{if } n \equiv 1 \pmod{3}, \\ \lceil \frac{n}{3} \rceil + 1 & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

**Proof.** Let  $C_n := (v_1v_2...v_n)$ . Define  $f : V(C_n) \to \{-1, 1, 2, 3\}$  as follows. If  $n \equiv 0 \pmod{3}$ , then let  $f(v_{3i+2}) = 3$  for  $0 \le i \le (n-3)/3$  and f(x) = -1 otherwise. If  $n \equiv 1 \pmod{3}$ , then let  $f(v_n) = 3$ ,  $f(v_{3i+2}) = 3$  for  $0 \le i \le (n-4)/3$  and f(x) = -1 otherwise. If  $n \equiv 2 \pmod{3}$ , then let  $f(v_{3i+2}) = 3$ for  $0 \le i \le (n-2)/3$  and f(x) = -1 otherwise. Clearly, f is a SDRDF of  $C_n$  of desired weight and so (n/3) if  $n \equiv 0 \pmod{3}$ ,

$$\gamma_{sdR}(C_n) \leq \begin{cases} \lceil \frac{n}{3} \rceil + 2 & \text{if } n \equiv 1 \pmod{3}, \\ \lceil \frac{n}{2} \rceil + 1 & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

To prove the inverse inequality, let *f* be a  $\gamma_{sdR}(C_n)$ -function. Assume first that  $n \equiv 0 \pmod{3}$ . Then we have

$$\gamma_{sdR}(C_n) = \sum_{i=0}^{\frac{n}{3}-1} f(N[v_{3i+2}]) \ge \sum_{i=0}^{\frac{n}{3}-1} 1 = \frac{n}{3}.$$

Assume now that  $n \equiv 1 \pmod{3}$ . The result is trivial for n = 4. Let  $n \ge 5$ . Obviously, the result is valid if  $f(v) \ge 1$  for each  $v \in V(C_n)$ . Hence, without loss of generality, we assume that  $f(v_2) = -1$ . By definition,  $v_2$  must have a neighbor with label 3 or two neighbors with label 2. If  $v_2$  has a neighbor with label 3, say  $v_1$ , then we have

$$\gamma_{sdR}(C_n) = f(v_1) + \sum_{i=1}^{\frac{n-1}{3}} f(N[v_{3i}]) \ge 3 + \sum_{i=1}^{\frac{n-1}{3}} 1 = 3 + \frac{n-1}{3} = \left\lceil \frac{n}{3} \right\rceil + 2.$$

Let  $v_2$  have two neighbors with label 2, i.e  $f(v_1) = f(v_3) = 2$ . Since  $f(N[v_3]) \ge 1$ , we must have  $f(v_4) \ge 1$ . It follows that

$$\gamma_{sdR}(C_n) = \sum_{i=1}^4 f(v_i) + \sum_{i=2}^{\frac{n-1}{3}} f(N[v_{3i}]) \ge 4 + \sum_{i=2}^{\frac{n-1}{3}} 1 = 4 + \frac{n-1}{3} - 1 = \left\lceil \frac{n}{3} \right\rceil + 2.$$

Finally, let  $n \equiv 2 \pmod{3}$ . The result holds if  $f(v) \ge 1$  for all  $v \in V(C_n)$ . Hence, without loss of generality, assume that  $f(v_2) = -1$ . By definition,  $v_2$  must have a neighbor with label 3 or two neighbors with label 2. If  $v_2$  has a neighbor with label 3, say  $v_1$ , then we have

$$\gamma_{sdR}(C_n) = f(v_1) + f(v_2) + \sum_{i=1}^{\frac{n-2}{3}} f(N[v_{3i+1}]) \ge 2 + \sum_{i=1}^{\frac{n-2}{3}} 1 = 2 + \frac{n-2}{3} = \left\lceil \frac{n}{3} \right\rceil + 1.$$

Let  $v_2$  have two neighbors with label 2, i.e  $f(v_1) = f(v_3) = 2$ . Since  $f(N[v_1]) \ge 1$  and  $f(N[v_3]) \ge 1$ , we must have  $f(v_n) \ge 1$  and  $f(v_4) \ge 1$ . It follows that

$$\gamma_{sdR}(C_n) = f(v_n) + \sum_{i=1}^4 f(v_i) + \sum_{i=2}^{\frac{n-2}{3}} f(N[v_{3i}]) \ge 5 + \sum_{i=2}^{\frac{n-2}{3}} 1 = 5 + \frac{n-2}{3} - 1 \ge \left\lceil \frac{n}{3} \right\rceil + 2$$

and the proof is complete.  $\Box$ 

**Proposition 4.3.** For  $2 \le m \le n$ ,

$$\gamma_{sdR}(K_{m,n}) = \begin{cases} 3 & \text{if } m = 2 \text{ and } n \ge 3, \\ 4 & \text{if } m \ge 4 \text{ or } m = n = 2, \\ 5 & \text{if } m = 3. \end{cases}$$

**Proof.** Let  $X = \{x_1, x_2, ..., x_m\}$  and  $Y = \{y_1, y_2, ..., y_n\}$  be the bipartite sets of  $K_{m,n}$ . The result is immediate for n = 2. Assume that  $n \ge 3$ .

First let m = 2. Define the function  $f : V(K_{2,n}) \to \{-1, 1, 2, 3\}$  by  $f(x_1) = f(x_2) = 2$  and  $f(y_i) = (-1)^i$  for  $1 \le i \le n$ , when n is odd, and by  $f(x_1) = f(x_2) = 2$ ,  $f(y_1) = f(y_2) = -1$ ,  $f(y_3) = 2$  and  $f(y_i) = (-1)^{i+1}$  for  $4 \le i \le n$  when n is even. It is clear that f is a SDRDF of  $K_{2,n}$  of weight 3 and so  $\gamma_{sdR}(K_{2,n}) \le 3$ .

To prove  $\gamma_{sdR}(K_{2,n}) \ge 3$ , let  $f = (V_{-1}, V_1, V_2, V_3)$  be a  $\gamma_{sdR}(K_{2,n})$ -function. Without loss of generality, we assume that  $f(x_2) \ge f(x_1)$ . If  $f(x_1) = f(x_2) = -1$  or  $f(x_1) = -1$  and  $f(x_2) = 1$ , then  $f(y_i) \ge 2$  for each i and clearly  $\gamma_{sdR}(K_{2,n}) \ge 2n - 2 \ge 4$ . If  $f(x_1) = -1$  and  $f(x_2) \ge 2$ , then we have  $\gamma_{sdR}(K_{2,n}) = f(x_2) + f[x_1] \ge 2 + f[x_1] \ge 3$  as desired. Assume that  $f(x_2) \ge f(x_1) \ge 1$ . If  $f(x_2) \ge 2$ , then  $\gamma_{sdR}(K_{2,n}) = f(N[x_1]) + f(x_2) \ge 3$ . If  $f(x_2) = f(x_1) = 1$ , then we must have  $f(y_i) \ge 2$  for each i and hence  $\gamma_{sdR}(K_{2,n}) \ge 2n + 2$ . In any case,  $\gamma_{sdR}(K_{2,n}) \ge 3$  and therefore  $\gamma_{sdR}(K_{2,n}) = 3$ .

Now let m = 3. Define the function  $f : V(K_{m,n}) \to \{-1, 1, 2, 3\}$  by  $f(x_i) = 2$  for i = 1, 2, 3,  $f(y_1) = f(y_2) = -1$ and  $f(y_i) = (-1)^{i+1}$ , when n is odd, and by  $f(x_i) = 2$  for i = 1, 2, 3,  $f(y_1) = f(y_2) = -1$ ,  $f(y_3) = 2$  and  $f(y_i) = (-1)^{i+1}$ , when n is even. Clearly f is a SDRDF of  $K_{3,n}$  of weight 5 yielding  $\gamma_{sdR}(K_{3,n}) \leq 5$ .

To prove the inverse inequality, let  $f = (V_{-1}, V_1, V_2, V_3)$  be a  $\gamma_{sdR}(K_{3,n})$ -function. Without loss of generality, we assume that  $f(x_3) \ge f(x_2) \ge f(x_1)$ . If  $f(x_2) + f(x_3) \ge 4$ , then we have  $\gamma_{sdR}(K_{3,n}) \ge f(x_2) + f(x_3) + f[x_1] \ge 5$  as desired. Suppose  $f(x_2) + f(x_3) \le 3$ . It follows that  $f(x_1) \le 1$ . First let  $f(x_1) = -1$ . Then clearly  $f(x_2) + f(x_3) \ge 0$ , for otherwise since  $f[y_i] \le 0$  for every *i*. Now if  $f(x_2) + f(x_3) = 0$ , then we must have  $f(y_i) \ge 2$  for each *i* and so  $\gamma_{sdR}(K_{3,n}) \ge 2n - 1 \ge 5$ . Hence we assume that  $1 \le f(x_2) + f(x_3) \le 3$ . Since any vertex with label -1, must have a neighbor with label 3 or two neighbors with label 2, we conclude that  $f(y_i) \ge 1$  for each *i*, and because of  $f(x_1) = -1$ , either  $f(y_i) = 3$  for some *i* or  $f(y_i) = f(y_j) = 2$  for some *i*, *j*. It follows that  $\gamma_{sdR}(K_{3,n}) \ge n + 2 \ge 5$ . Now let  $f(x_1) = 1$ . Then we must have  $2 \le f(x_2) + f(x_3) \le 3$ . As above, we have  $f(y_i) \ge 1$  for each *i*, implying that  $\gamma_{sdR}(K_{3,n}) \ge n + 4 \ge 5$ . Thus  $\gamma_{sdR}(K_{3,n}) = 5$ .

Finally, let  $m \ge 4$ . To show that  $\gamma_{sdR}(K_{m,n}) \ge 4$ , let  $f = (V_{-1}, V_1, V_2, V_3)$  be a  $\gamma_{sdR}(K_{m,n})$ -function. If  $V_{-1} = \emptyset$ , then the result is trivial. Thus we assume that  $V_{-1} \ne \emptyset$ . If  $V_{-1} \cap X = \emptyset$  (the case  $V_{-1} \cap Y = \emptyset$  is similar), then we have  $\gamma_{sdR}(K_{m,n}) = \sum_{i=1}^{m-1} f(x_i) + f[x_m] \ge (m-1) + 1 \ge 4$ . Hence we assume that  $V_{-1} \cap X \ne \emptyset$  and  $V_{-1} \cap Y \ne \emptyset$ . Without loss of generality, let  $x_1 \in V_{-1}$  and  $y_1 \in V_{-1}$ . It follows from  $f[x_1] \ge 1$  and  $f[y_1] \ge 1$  that  $\sum_{i=1}^n f(y_i) \ge 2$  and  $\sum_{i=1}^m f(x_i) \ge 2$ . Hence  $\gamma_{sdR}(K_{m,n}) = \sum_{i=1}^m f(x_i) + \sum_{i=1}^n f(y_i) \ge 4$ , and thus  $\gamma_{sdR}(K_{m,n}) \ge 4$ . To prove the inverse inequality, define the functions  $f, g, h : V(K_{m,n}) \rightarrow \{-1, 1, 2, 3\}$  as follows:

If *m*, *n* are even, then let  $f(x_1) = f(y_1) = 3$ ,  $f(x_i) = (-1)^{i+1}$  for  $2 \le i \le m$  and  $f(y_i) = (-1)^{i+1}$  for  $2 \le i \le n$ . If *m*, *n* are odd, then let  $g(x_1) = g(y_1) = 3$ ,  $g(x_2) = g(y_2) = 2$ ,  $g(x_i) = g(y_i) = -1$  for  $3 \le i \le 5$ ,  $g(x_i) = (-1)^i$  for  $6 \le i \le m$  and  $g(y_i) = (-1)^i$  for  $6 \le i \le n$ . If *m* is even and *n* is odd (the case *m* is odd and *n* is even is similar), then let h(x) = f(x) if  $x \in X$  and h(x) = g(x) if  $x \in Y$ . Clearly, each of these functions according to the situation for which it is defined is a SDRDF of weight 4, and thus  $\gamma_{sdR}(K_{m,n}) \le 4$ . Hence  $\gamma_{sdR}(K_{m,n}) = 4$  and the proof is complete.  $\Box$ 

### Acknowledgements

H. Abdollahzadeh Ahangar was supported by the Babol Noshirvani University of Technology under research Grant Number BNUT/385001/98.

## References

- [1] H. Abdollahzadeh Ahangar, J. Amjadi, M. Atapour, M. Chellali and S.M. Sheikholeslami, Double Roman trees. Ars Combin. to appear.
- [2] H. Abdollahzadeh Ahangar, M. Chellali and S.M. Sheikholeslami, On the double Roman domination in graphs. Discrete Appl. Math. 232 (2017) 1–7.
- [3] H. Abdollahzadeh Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam and S.M. Sheikholeslami, Trees with double Roman domination number twice the domination number plus two. *Iran. J. Sci. Technol. Trans. A, Sci.* to appear.
- [4] H. Abdollahzadeh Ahangar, M. Chellali and S.M. Sheikholeslami, Signed double Roman domination in graphs. *Discrete Appl. Math.* 257 (2019) 1–11.
- [5] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination. Discrete Appl. Math. 211 (2016) 23–29.