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Abstract. Let k ≥ 1 and q1, . . . , qk be some positive integers. The generalized theta graph Θq1 ,...,qk is the
graph that is formed by taking a pair of vertices u and v, and joining them by k internally disjoint paths
of lengths q1, . . . , qk. Let CΘC be the graph that obtained by attaching some cycles to at most two vertices
with degree k of the generalized theta graph Θq1 ,...,qk . An edge covering of a graph is a set of edges such that
every vertex of the graph is incident to at least one edge of the set. Let G be a simple graph with m edges.
The edge cover polynomial of G is the polynomial E(G, x) =

∑m
i=1 e(G, i)xi, where e(G, i) is the number of

edge coverings of G of size i. Let t be a positive integer and Ft be the friendship (or Dutch windmill) graph
with 2t + 1 vertices and 3t edges. In this paper we obtain the number of perfect matchings of CΘC graphs
and then study the edge cover polynomial of friendship graphs. We show that the friendship graphs are
determined by their edge cover polynomials. We find that all non-zero roots of the edge cover polynomial
of friendship graphs are simple. Finally we prove that the edge cover polynomials of friendship graphs are
unimodal.

1. Introduction

Throughout this paper we will consider only simple graphs. In other words the graphs are finite and
undirected, without loops and multiple edges. Let G = (V(G),E(G)) be a simple graph. The order and the
size of G denote the number of vertices and the number of edges of G, respectively. The complete graph, the
cycle, and the path of order n, are denoted by Kn, Cn and Pn, respectively. For every vertex v ∈ V(G), the
degree of v is the number of edges incident with v and is denoted by de1G(v). For simplicity we write de1(v)
instead of de1G(v). We denote the minimum degree of the vertices of G by δ(G). For two vertex-disjoint
graphs G1 = (V1,E1) and G2 = (V2,E2), the disjoint union of G1 and G2 is denoted by G1 + G2 is the graph
with vertex set V1 ∪ V2 and edge set E1 ∪ E2. The graph rG denotes the disjoint union of r copies of G. Let
S ⊆ V(G). By G\S we mean the graph that is obtained from G by removing the vertices of S. By n1, . . . ,nk ≥ t
we mean that n1 ≥ t, . . . ,nk ≥ t.

A matching of G is a set of edges of G that no two of them have common vertex. If the size of a matching
is r, then it is called an r-matching. A perfect matching of G is a matching with cardinality n

2 , where n is the
order of G. We denote the number of perfect matchings of G by pm(G). For every graph G with no isolated
vertex, an edge covering of G is a set of edges of G such that every vertex is incident with at least one edge
of the set. In other words, an edge covering of a graph is a set of edges that together meet all vertices of the
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graph. A minimum edge covering is an edge covering of the smallest possible size. The edge covering number
of G is the size of a minimum edge covering of G and denoted by ρ(G). In this paper we let ρ(G) = 0, if G
has some isolated vertices. For a detailed treatment of these parameters, the reader is referred to [14].

There are numerous polynomials associated with graphs. For example independence polynomial [6, 22, 23,
25, 27], matching polynomial [19, 21], vertex-cover polynomial [17], edge elimination polynomial [11], domination
polynomial [2–4, 7, 9, 26], chromatic polynomial [13, 28], and Tutte polynomial [30].

By studying these polynomials one can obtain some properties of a graph. For instance the roots of
these polynomials reflect some important information about the structure of graphs. Recently, authors
have defined a new graph polynomial edge cover polynomial as following [5]. Let G be a graph of size m and
with no isolated vertex. By E(G, i) we mean the family of all edge coverings of G with cardinality i. Let
e(G, i) = |E(G, i)|. The edge cover polynomial of G that is denoted by E(G, x) is defined as

E(G, x) =

m∑
i=ρ(G)

e(G, i)xi.

In fact the coefficient of xi is the number of edge coverings of G with cardinality i. If G has some isolated
vertices, then we let E(G, x) = 0. In addition we let E(G, x) = 1, when both order and size of G are zero. For
example E(K4, x) = x6 + 6x5 + 15x4 + 16x3 + 3x2. See [5, 16] for more details. The edge cover polynomial has
some interesting properties. One of the most nice results on the edge cover polynomial is that all roots of
this polynomial are in the following set [16]{

z ∈ C : |z| <
(2 +

√
3)2

1 +
√

3
' 5.099

}
.

One of the most important problems on the graph polynomials is the following:

Problem. Which graphs are determined by their related graph polynomials?

Another interesting property on graph polynomials is unimodality. A polynomial f (x) =
∑n

i=0 aixi with
real coefficients ( or a sequence (a0, . . . , an)) is called unimodal if there is some k ∈ {0, . . . ,n}, such that

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an.

Also, f (x) (or a sequence (a0, . . . , an)) is called logarithmically concave (or simply, log-concave), if for every
1 ≤ i ≤ n − 1, a2

i ≥ ai−1ai+1. f (x) ( or a sequence (a0, . . . , an)) is called symmetric ( or palindromic) if ai = an−i
for i = 0, 1, . . . ,n. It is known that any log-concave polynomial with positive coefficients (or a sequence of
positive numbers) is also unimodal.

The unimodality problems of graph polynomials have always been of great interest to researchers in
graph theory. For example in [28] it is conjectured that the chromatic polynomial of a graph is unimodal.
Also there is a famous conjecture due to Paul Erdös et al. on the unimodality of the independence polynomial
of trees [10]. The unimodality of graph polynomials, in particular the unimodality of independence
polynomial, have been extensively studied, see [8, 10, 12, 24, 29, 32].

The friendship (or Dutch windmill or t-fan) graph Ft is a graph that can be constructed by coalescence t
copies of the cycle graph C3 of length 3 with a common vertex. By construction, the friendship graph Ft is
isomorphic to the windmill graph Wd (3, t), see [20]. The Friendship Theorem of Paul Erdös, Alfred Rényi
and Vera T. Sós [18], states that graphs with the property that every two vertices have exactly one neighbor
in common are exactly the friendship graphs. The Figure 1 shows some examples of friendship graphs.

There are many papers on the properties of friendship graphs. In [31] it is proved that the friendship
graphs can be determined by their signless Laplacian spectrum. In [1] and [15] the authors have shown
that the friendship graphs can be determined by their eigenvalue spectrum. Recently in [7] the authors
have studied the domination polynomials of friendship graphs. These motivate us to study the edge cover
polynomial of friendship graphs. In [5] it has been proved that the complete graphs, the cycles and the
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complete bipartite graphs can be determined by their edge cover polynomials. In this paper we show that
the friendship graphs are determined by their edge cover polynomials. In addition we prove that the edge
cover polynomials of friendship graphs are unimodal. About the structure of this paper, in the next section
we define a new family of graphs that play an important role in the paper. We find the number of perfect
matchings of these graphs. In the last section we investigate the edge cover polynomials of friendship
graphs. In particular we show that if G is a simple graph such that E(G, x) = E(Ft, x), then G � Ft. Finally
we prove that the edge cover polynomials of friendship graphs are unimodal.

F1 F2 F3 F4 Ft

Figure 1: The friendship graphs F1, F2, F3, F4 and Ft

2. The number of perfect matchings of CθC graphs

In this section first we introduce some new families of graphs that appear in the proof of the main result
of the paper. Then we find the number of perfect matchings of them. Let k ≥ 1 and q1, . . . , qk be some
positive integers. The generalized theta graph Θq1,...,qk is the graph that is formed by taking a pair of vertices u
and v ( called the end vertices of Θq1,...,qk ) and joining them by k internally disjoint paths of lengths q1, . . . , qk.
Hence u and v have degree k. The generalized theta graph with three paths is called theta graph. In other
words, by theta graph we mean Θq1,q2,q3 , for some positive integers q1, q2 and q3. We note that Θq1 � Pq1+1
and Θq1,q2 � Cq1+q2 , if q1 + q2 ≥ 3. In Figure 2 the theta graph Θ2,3,3 and the generalized theta graph Θ2,3,4,4
have been shown. Let q1, . . . , qk ≥ 3 be some positive integers. By Cq1,...,qk we mean the graph that obtained
by joining the cycles Cq1 , . . . ,Cqk with a common vertex ( called the central vertex of Cq1,...,qk ). Note that the
central vertex of Cq1 , . . . ,Cqk has degree 2k. If q1 = · · · = qk = 3, then C3,...,3 is called the friendship graph Fk.
In other words Fk obtained by joining k copies of the cycle graph C3 with a common vertex. In Figure 3 the
graph C3,4,4,5 has been shown.

Θ2,3,3

u v

Θ2,3,4,4

u v

Figure 2: The theta graph Θ2,3,3 and the generalized theta graph Θ2,3,4,4.

Let k, r, s ≥ 1 be some integers. Suppose that q1, . . . , qk ≥ 1, m1, . . . ,mr ≥ 3 and n1, . . . ,ns ≥ 3 are some inte-
gers. Consider the generalized theta graph Θq1,...,qk such that u and v are the end vertices of Θq1,...,qk . Let u′ and
v′ be the central vertices of Cm1,...,mr and Cn1,...,ns , respectively. By CΘ(m1, . . . ,mr; q1, . . . , qk) we mean the graph
that obtained by joining Cm1,...,mr and Θq1,...,qk at the vertices u and u′. By CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns)
we mean the graph that constructed by joining CΘ(m1, . . . ,mr; q1, . . . , qk) and Cn1,...,ns at the vertices v and v′.
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C3,4,4,5 CΘ(3, 3; 2, 3, 3)

u v

CΘC(3, 3; 2, 3, 3; 3, 4, 5)

u v

Figure 3: The graphs C3,4,4,5, CΘ(3, 3; 2, 3, 3) and CΘC(3, 3; 2, 2, 3; 3, 4, 5).

Similarly one can define ΘC(q1, . . . , qk; n1, . . . ,ns). In fact ΘC(q1, . . . , qk; n1, . . . ,ns) � CΘ(n1, . . . ,ns; q1, . . . , qk).
We say G is a CΘC graph if G � Cm1,...,mr or G � Θq1,...,qk or G � CΘ(m1, . . . ,mr; q1, . . . , qk) or G �
CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns) for some positive integers q1, . . . , qk ≥ 1, m1, . . . ,mr ≥ 3 and n1, . . . ,ns ≥

3. In Figure 3 the graphs CΘ(3, 3; 2, 3, 3) and CΘC(3, 3; 2, 3, 3; 3, 4, 5) have been shown.
Now we find the number of perfect matchings of CΘC graphs. Let M be a matching of G. Then the two

ends of each edge of M are said to be matched under M, and each vertex incident with an edge of M is said
to be covered by M. We recall that pm(G) is the number of perfect matchings of G.

Theorem 1. Let k, r and s be some positive integers. Let m1, . . . ,mr ≥ 3, q1, . . . , qk ≥ 1 and n1, . . . ,ns ≥ 3 be some
integers. Suppose that λ is the number of even numbers of m1, . . . ,mr, and ξ is the number of even numbers of
q1, . . . , qk and γ is the number of even numbers of n1, . . . ,ns. Let G = CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns). Then
the following hold:

1. pm(G) = 2 if and only if (λ, ξ, γ) ∈
{
(0, 2, 0), (0, 1, 1), (1, 1, 0)

}
or k = 2 and (λ, ξ, γ) = (0, 0, 0).

2. pm(G) = 4 if and only if (λ, ξ, γ) = (1, 0, 1) or k = 4 and (λ, ξ, γ) = (0, 0, 0).
3. Assume that k < {2, 4}. Then pm(G) = k if and only if (λ, ξ, γ) = (0, 0, 0).

4. pm(G) = 0 if and only if (λ, ξ, γ) <
{
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 2, 0)

}
.

Proof. Let H = Θq1,...,qk . Assume that u and v are the end vertices of H. Let u′ and v′ be the central vertices
of Cm1,...,mr and Cn1,...,ns , respectively. Thus G is obtained by joining Cm1,...,mr to H by identifying u and u′ and
joining Cn1,...,ns to H by identifying v and v′. Suppose that M is a perfect matching of G. We consider the
following cases:

A. Assume that u is covered by M with one of the paths of H between u and v with odd length. Thus
assume that P is a path of H with odd length between u and v, and e = ua is an edge of P such that e ∈ M
and a ∈ V(H). Since all vertices of G except u and v have degree two, the vertex v is also covered by M with
an edge of P. This shows that all paths of H between u and v have odd length. More precisely all numbers
q1, . . . , qk are odd. In addition, one can see that all the cycles of Cm1,...,mr and Cn1,...,ns have odd length. In other
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words all numbers m1, . . . ,mr and n1, . . . ,ns are odd. On the other hand if all numbers m1, . . . ,mr, q1, . . . , qk
and n1, . . . ,ns are odd, then the number of perfect matchings of G is k. In other words if (λ, ξ, γ) = (0, 0, 0),
then pm(G) = k.

B. Assume that u is covered by M with one of the paths of H between u and v with even length. Thus
suppose that P′ is a path of H with even length between u and v, and e′ = ua′ is an edge of P′ such that
e′ ∈ M and a′ ∈ V(H). Thus ξ ≥ 1. If ξ ≥ 2, then there exists another path of even length between u and
v in H, say P′′. It is easy to see that v is covered by M with an edge of P′′. It is not hard to see that there
is no path of even length except P′ and P′′ between u and v ( in H). In other words ξ = 2. In addition
one can see that all cycles of Cm1,...,mr and Cn1,...,ns have odd length. Therefore (λ, γ) = (0, 0). On the other
hand if (λ, ξ, γ) = (0, 2, 0), then pm(G) = 2 ( since the two even paths of Θq1,...,qk construct an even cycle, and
any even cycle has just two perfect matchings, by considering these perfect matchings, the other edges of
perfect matchings of G are uniquely determined).

Now suppose that P′ is the unique path of even length between u and v ( in H), that is ξ = 1. Thus v is
covered by M with one of the cycles of Cn1,...,ns , say Cni , where 1 ≤ i ≤ s. Thus ni is even. One can see that
the other cycles of Cn1,...,ns have odd length. This means that all numbers n1, . . . ,ns except ni are odd. Thus
γ = 1. One can see that all cycles of Cm1,...,mr have odd length. Thus m1, . . . ,mr are odd. So λ = 0. On the
other hand if (λ, ξ, γ) = (0, 1, 1), then pm(G) = 2 ( since any even cycle has only two perfect matchings, by
considering the perfect matchings of the even cycle of Cn1,...,ns and the even path of Θq1,...,qk the other edges
of perfect matchings of G are uniquely determined).

C. Assume that u is covered by M with one of the cycles of Cm1,...,mr , say Cmh , where 1 ≤ h ≤ r. Thus mh is
even. In addition, the length of the other cycles of Cm1,...,mr is odd. Hence λ = 1. Suppose that v is covered
by M with one of the cycles of Cn1,...,ns , say Cni ( the case that v is covered by M with one of the paths of H
between u and v can be considered similar to the parts A and B). Thus ni is also even and the other cycles
of Cn1,...,ns have odd length. Thus γ = 1. One can see that all paths of H between u and v have odd length.
In other words q1, . . . , qk are odd and so ξ = 0. On the other hand if (λ, ξ, γ) = (1, 0, 1), then pm(G) = 4
( by considering the perfect matchings of the even cycles of Cm1,...,mr and Cn1,...,ns the other edges of perfect
matchings of G are uniquely determined).

Now we can enumerate the perfect matchings of G. For every perfect matching of G, say M, one of the
following holds:

1. The vertices u and v are covered by M with some paths of Θq1,...,qk between u and v. If u is covered by a
path of odd length, say P, then by Case A, v is also covered by P ( it means that v is covered by a path
of odd length). Thus m1, . . . ,mr, q1, . . . , qk, and n1, . . . ,ns are odd. In other words (λ, ξ, γ) = (0, 0, 0).
Therefore by Case A, G has exactly k perfect matchings. Now assume that u is covered by a path of
even length, say P. Thus by Case A, v is covered by another path of even length, say P′. By Case B,
P , P′. Also by Case B we obtain that (λ, ξ, γ) = (0, 2, 0). Thus pm(G) = 2.

2. u is covered by M with a path of Θq1,...,qk between u and v, say P, and v is covered by M with a cycle
of Cn1,...,ns , say Cni . By Case A, the length of P is even. On the other hand ni is even. Thus by Case
B, the path P is the unique path of Θq1,...,qk with even length. Therefore by Case B, m1, . . . ,mr are odd
and only one of the numbers q1, . . . , qk is even. In addition only one of the numbers n1, . . . ,ns is even.
Thus (λ, ξ, γ) = (0, 1, 1). This shows that pm(G) = 2.

3. u is covered by M with a cycle of Cm1,...,mr , say Cm j , and v is covered by M with a path of Θq1,...,qk

between u and v, say P. Similar to the previous part, we obtain that n1, . . . ,ns are odd and exactly one
of the numbers m1, . . . ,mr is even. In addition exactly one of the numbers q1, . . . , qk is even. Hence
(λ, ξ, γ) = (1, 1, 0). Thus pm(G) = 2.

4. u is covered by M with a cycle of Cm1,...,mr and v is covered by M with a cycle of Cn1,...,ns . Thus by Case
C, q1, . . . , qk are odd, that is ξ = 0. In addition (λ, γ) = (1, 1). By Case C, pm(G) = 4.

The proof is complete.

Similar to Theorem 1 one can obtain the number of perfect matchings of other CΘC graphs.



M. R. Oboudi / Filomat 33:1 (2019), 111–120 116

Theorem 2. Let k and r be some positive integers. Let m1, . . . ,mr ≥ 3 and q1, . . . , qk ≥ 1 be some integers.
Assume that λ is the number of even numbers of m1, . . . ,mr and ξ is the number of even numbers of q1, . . . , qk. Let
G = CΘ(m1, . . . ,mr; q1, . . . , qk). Then the following hold:

1. pm(G) = 2 if and only if (λ, ξ) ∈
{
(0, 2), (1, 1)

}
or k = 2 and (λ, ξ) = (0, 0).

2. pm(G) = k if and only if (λ, ξ) = (0, 0) or k = 2 and (λ, ξ) ∈
{
(0, 2), (1, 1)

}
.

3. pm(G) = 0 if and only if (λ, ξ) <
{
(0, 0), (1, 1), (0, 2)

}
.

Theorem 3. Let r ≥ 1 and m1, . . . ,mr ≥ 3 be some integers. Suppose that λ is the number of even numbers of
m1, . . . ,mr. Let G = Cm1,...,mr . Then the following hold:

1. pm(G) = 2 if and only if λ = 1.
2. pm(G) = 0 if and only if λ , 1.

Theorem 4. Let k and q1, . . . , qk be some positive integers. Assume that ξ is the number of even numbers of q1, . . . , qk.
Let G = Θq1,...,qk . Then the following hold:

1. pm(G) = 2 if and only if ξ = 2 or k = 2 and ξ = 0.
2. pm(G) = k if and only if ξ = 0 or k = 2 and ξ = 2.
3. pm(G) = 0 if and only if ξ , 0, 2.

3. Edge cover polynomial of friendship graphs

In this section we study the edge cover polynomial of friendship graphs. We show that the friendship
graphs are uniquely determined by their edge cover polynomials. Also we show that the edge cover
polynomials of friendship graphs are unimodal. We need the following results. For more details we refer
to Lemma 2 and Corollaries 1 and 2 of [5]. For a graph G, by ak(G) we mean the number of vertices of G
with degree k.

Remark 1. [5] Let G be a graph of order n with no isolated vertex. Then n ≤ 2ρ(G).

Lemma 1. [5] Let G and H be two graphs with no isolated vertex. Let E(G, x) = E(H, x). Then the following hold:
i) The number of edges of G and H are the same.

ii) The minimum degree of G and H are the same.
iii) If δ(G) ≥ 2, then for k = 1, . . . , 2δ(G) − 2, ak(G) = ak(H).

Now we prove the main result of the paper.

Theorem 5. Let t ≥ 1 be an integer and Ft be the friendship graph. Let G be a simple graph such that E(G, x) = E(Ft, x).
Then G � Ft.

Proof. Since δ(Ft) = 2 , 0, E(Ft, x) , 0. Thus E(G, x) , 0. This shows that δ(G) , 0. Therefore G and Ft have
no isolated vertex. By the first and the second parts of Lemma 1 we obtain that δ(G) = 2 and the number of
edges of G is 3t. Using the third part of Lemma 1 we obtain that a2(G) = a2(Ft).

If t = 1, then F1 = C3. Thus δ(G) = 2, a2(G) = 3 and the number of edges of G is three. So G � C3.
Now assume that t ≥ 2. Thus a2(G) = a2(Ft) = 2t. Since δ(G) = 2 we have

2(3t) =
∑

v∈V(G)

de1(v) = 2(2t) +
∑

v∈V(G), de1(v)≥3

de1(v).

This shows that∑
v∈V(G), de1(v)≥3 de1(v) = 2t. (1)

Let n be the order of G. The last equality shows that n ≥ a2(G) + 1. Thus n ≥ 2t + 1. On the other hand
E(G, x) = E(Ft, x) implies that ρ(G) = ρ(Ft). By Remark 1 one has ρ(Ft) ≥ 2t+1

2 . By this fact it is easy to see
that ρ(Ft) = t + 1. Hence by Remark 1, t + 1 = ρ(Ft) = ρ(G) ≥ n

2 . Thus n ≤ 2t + 2. Since n ≥ 2t + 1, n = 2t + 1
or n = 2t + 2. Therefore we consider the following cases:
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(i) Assume that n = 2t + 1. Since a2(G) = 2t, by Equation (1) we obtain that G has only one vertex of
degree 2t. This shows that G � Ft.

(ii) Suppose that n = 2t + 2. The equality ρ(G) = ρ(Ft) = t + 1 implies that ρ(G) =
|V(G)|

2 . Thus M is an edge
covering of G with cardinality t+1 if and only if M is a perfect matching of G. Thus pm(G) = e(G, t+1).
On the other hand E(G, x) = E(Ft, x) implies that e(G, t + 1) = e(Ft, t + 1) = 3t. Thus pm(G) = 3t. Since
a2(G) = 2t and the order of G is 2t + 2, by Equation (1) we obtain that G has exactly two vertices
of degree greater than two, say u and v. Thus de1(u), de1(v) ≥ 3 and de1(u) + de1(v) = 2t. Since the
maximum degree of the vertices of G \ {u, v} is at most two, every connected component of G \ {u, v} is
a path or a cycle or a single vertex. This shows that G is isomorphic with one of the following graphs:

1) G � Cm1,...,mr +Cn1,...,ns +Ct1 + · · ·+Cth , where r ≥ 2, s ≥ 2, h ≥ 0 and m1, . . . ,mr ≥ 3, n1, . . . ,ns ≥ 3 and
t1, . . . , th ≥ 3 are some integers. If h = 0, then G � Cm1,...,mr + Cn1,...,ns . Thus by Theorem 3, pm(G) =
pm(Cm1,...,mr ) pm(Cn1,...,ns ) ≤ 4. On the other hand pm(G) = 3t. Thus 3t ≤ 4, a contradiction ( since
t ≥ 2). Thus h ≥ 1. Since pm(G) = 3t , 0 all numbers t1, . . . , th are even. Thus pm(Cti ) = 2, for
i = 1, . . . , h. Hence pm(G) = 2hpm(Cm1,...,mr )pm(Cn1,...,ns ). By Theorem 3, pm(Cm1,...,mr ), pm(Cn1,...,ns ) ∈
{0, 2}. Since pm(G) , 0, the latter equality shows that pm(Cm1,...,mr ) = pm(Cn1,...,ns ) = 2. Therefore

3t = pm(G) = 2h pm(Cm1,...,mr ) pm(Cn1,...,ns ) = 2h+2.

This is a contradiction, since 2h+2 is not divided by 3.
2) G � CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns) + Ct1 + · · · + Cth , where r ≥ 1, k ≥ 1, s ≥ 1, h ≥ 0

and m1, . . . ,mr ≥ 3, n1, . . . ,ns ≥ 3, q1, . . . , qk ≥ 1 and t1, . . . , th ≥ 3 are some integers. If h = 0,
then G � CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns). Hence by Theorem 1, pm(G) ∈ {0, 2, 4, k}. On the
other hand pm(G) = 3t. Thus pm(G) = k. Therefore k = 3t ≥ 6. On the other hand G has
two vertices, say a and b, such that de1(a), de1(b) ≥ k ( the end vertices of Θq1,...,qk ). Therefore
de1(a), de1(b) ≥ 3 and de1(a) + de1(b) ≥ 2k = 6t, a contradiction ( by Equation (1)). Thus h ≥ 1.
Since pm(G) = 3t , 0, all numbers t1, . . . , th are even. Thus pm(Cti ) = 2, for i = 1, . . . , h. That
is t1, . . . , th are even. Hence pm(G) = 2h pm(CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns)). By Theorem 1,
pm(CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns)) ∈ {0, 2, 4, k}. Since pm(G) = 3t , 0, the latter equality
shows that pm(CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns)) = k. Thus by the third part of Theorem 1 all
numbers m1, . . . ,mr, q1, . . . , qk,n1, . . . ,ns are odd. In addition we get

3t = pm(G) = 2h pm(CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns)) = 2hk. (2)

On the other hand the number of edges of CΘC(m1, . . . ,mr; q1, . . . , qk; n1, . . . ,ns) + Ct1 + · · ·+ Cth is∑r
i=1 mi +

∑k
i=1 qi +

∑s
i=1 ni +

∑h
i=1 ti. Since G has 3t edges, we obtain that∑r

i=1 mi +
∑k

i=1 qi +
∑s

i=1 ni +
∑h

i=1 ti = 3t. (3)

Since G has two vertices with degrees 2r+k and 2s+k, by Equation (1) we obtain that 2r+k+2s+k =
2t. Therefore

r + s + k = t. (4)

This shows that k < t, since r, s ≥ 1. Hence by Equation (2) we obtain h ≥ 2. Since G is a
simple graph, there is at most one i ∈ {1, . . . , k} such that qi = 1. First assume that q j = 1 for
some j, 1 ≤ j ≤ k. Since q1, . . . , qk are odd, the others are at least 3. Thus

∑k
i=1 qi ≥ 3k − 2.

Therefore
∑r

i=1 mi +
∑k

i=1 qi +
∑s

i=1 ni +
∑h

i=1 ti ≥ 3r+3k−2+3s+4h. Thus by Equation (4) we obtain∑r
i=1 mi+

∑k
i=1 qi+

∑s
i=1 ni+

∑h
i=1 ti ≥ 3t+4h−2. Since h ≥ 2, thus

∑r
i=1 mi+

∑k
i=1 qi+

∑s
i=1 ni+

∑h
i=1 ti > 3t,

a contradiction ( see Equation (3)). Now assume that all numbers q1, . . . , qk are at least 3. Similarly
we obtain

∑r
i=1 mi +

∑k
i=1 qi +

∑s
i=1 ni +

∑h
i=1 ti > 3t, a contradiction.

3) G � CΘ(m1, . . . ,mr; q1, . . . , qk) + Ct1 + · · · + Cth , where r ≥ 1, k ≥ 3, h ≥ 0 and m1, . . . ,mr ≥ 3,
q1, . . . , qk ≥ 1 and t1, . . . , th ≥ 3 are some integers. Similar to the previous part one can see that
this case does not happen.



M. R. Oboudi / Filomat 33:1 (2019), 111–120 118

4) G � Θq1,...,qk + Ct1 + · · · + Cth , where k ≥ 3, h ≥ 0 and q1, . . . , qk ≥ 1 and t1, . . . , th ≥ 3 are some
integers. Similar to the second part one can see that this case does not happen.

Therefore the case (ii) does not happen. In other words n = 2t + 1. Hence by case (i), G � Ft. The
proof is complete.

In sequel we study the unimodality of edge cover polynomial of friendship graphs. First we compute
E(Ft, x) for every t. There are some recursive formulas for computing the edge cover polynomials [5, 16].
Let G and H be two disjoint graphs. Let u ∈ V(G) and v ∈ V(H). By G · uv · H we denote the graph that
obtained by identifying the vertices u and v. For example if u is a vertex of the cycle Cn and v is a vertex of
Cm. Then Cn · uv · Cm � Cm,n. In fact Cm1,...,mk is obtained from the cycles Cm1 , . . . ,Cmk by this operation, see
Figure 3.

Lemma 2. [16] Let G and H be two disjoint graphs. Let u ∈ V(G) and v ∈ V(H). Then

E(G · uv ·H, x) = E(G, x)E(H, x) + E(G \ u, x)E(H, x) + E(G, x)E(H \ v, x).

Theorem 6. [5] Let G be a graph with connected components G1, . . . ,Gk. Then E(G, x) =
∏k

i=1 E(Gi, x).

Lemma 3. Let t be a positive integer. Then

(i) E(Ft, x) = xt
(
(x2 + 3x + 1)t

− 1
)
.

(ii) Every non-zero root of E(Ft, x) is simple. In other words the multiplicity of every non-zero root of E(Ft, x) is
one.

(iii) If z < {0,−3} is a root of E(Ft, x), then z = − 3
2 ±

1
2

√
5 + 4 exp

2kπi
t , where k ∈ {1, . . . , t − 1}.

Proof. (i) Since E(F1, x) = x3 + 3x2, for t = 1 there is nothing to prove. Now let t ≥ 2. Let u be a vertex of
F1 and v be the vertex of Ft−1 with degree 2t− 2. Thus Ft � F1 ·uv ·Ft−1. Since E(P2, x) = x, by Lemma 2
and Theorem 6 we obtain that

E(Ft, x) = E(F1, x)E(Ft−1, x) + xE(Ft−1, x) + E(F1, x)xt−1.

By the fact that E(F1, x) = x3 + 3x2 we find that E(Ft, x) = (x3 + 3x2 + x)E(Ft−1, x) + E(F1, x)xt−1. Using
this recursive formula ( applying t − 1 times) we obtain that

E(Ft, x) = E(F1, x)
∑t−1

j=0 x j1t−1− j, (5)

where 1 = x3 + 3x2 + x. On the other hand

t−1∑
j=0

x j1t−1− j = xt−1
t−1∑
j=0

(x2 + 3x + 1)t−1− j = xt−1 (x2 + 3x + 1)t
− 1

x2 + 3x
.

Thus by Equation 5, E(Ft, x) = xt
(
(x2 + 3x + 1)t

− 1
)
.

(ii) First note that for every graph G with no isolated vertex, the multiplicity of zero as a root of E(G, x) is
ρ(G). Since ρ(Ft) = t + 1, the multiplicity of zero as a root of E(Ft, x) is t + 1. Now assume that z is a
non-zero root of E(Ft, x). That is E(Ft, z) = 0. Thus by the first part, z is a root of h(x) = (x2 + 3x + 1)t

−1.
Obviously z , − 3

2 . This shows that h′(z) = t(2z + 3)(z2 + 3z + 1)t−1 , 0, where h′(x) is the derivative of
h(x) with respect to x. Thus all non-zero roots of E(Ft, x) are simple.

(iii) First we note that by the first part, 0 and −3 are two roots of E(Ft, x). Now suppose that z < {0,−3}
and E(Ft, z) = 0 ( so t ≥ 2). Thus by the first part, (z2 + 3z + 1)t = 1. Therefore z2 + 3z + 1 = exp

2kπi
t for

some k ∈ {0, 1, . . . , t − 1}. Since z < {0,−3}, z2 + 3z + 1 = exp
2kπi

t for some k ∈ {1, . . . , t − 1}. On the other

hand z2 + 3z + 1 = exp
2kπi

t implies that (z + 3
2 )2 = 5

4 + exp
2kπi

t . Thus z = − 3
2 ±

1
2

√
5 + 4 exp

2kπi
t , where

k ∈ {1, . . . , t − 1}.
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We use the following result to show that the edge cover polynomial of friendship graphs are unimodal.

Theorem 7. [29] Let f (x) and 1(x) be some polynomials with positive coefficients. Then

(i) If both f (x) and 1(x) are log-concave, then so is their product f (x)1(x).
(ii) If f (x) is log-concave and 1(x) is unimodal, then their product f (x)1(x) is unimodal.

(iii) If both f (x) and 1(x) are symmetric and unimodal, then so is their product f (x)1(x).

Theorem 8. For every positive integer t, E(Ft, x) is log-concave and unimodal.

Proof. Since 1 + 3x + x2 is log-concave, by the first part of Theorem 7, (1 + 3x + x2)t is log-concave. Thus
(1 + 3x + x2)t

− 1 is log-concave. Therefore xt
(
(1 + 3x + x2)t

− 1
)

is also log-concave. Hence by the first part of
Lemma 3, E(Ft, x) is log-concave. Similarly by the second part of Theorem 7 one can easily see that E(Ft, x)
is unimodal. We note that by the third part of Theorem 7, (1 + 3x + x2)t is symmetric.

By Lemma 3, every non-zero root of E(Ft, x) is simple. For example E(F1, x) = x2(x + 3) and E(F2, x) =
x3(x + 1)(x + 2)(x + 3). It is also one of the interesting properties of friendship graphs. We are interested to
find all graphs with this property. We finish the paper by the following problem:

Problem. Characterize all graphs G such that all non-zero roots of E(G, x) are simple.

Acknowledgements. The author is grateful to the referees for their useful comments.
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