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Abstract. Linear codes with complementary duals (LCD) have a great deal of significance amongst
linear codes. Maximum distance separable (MDS) codes are also an important class of linear codes since
they achieve the greatest error correcting and detecting capabilities for fixed length and dimension. The
construction of linear codes that are both LCD and MDS is a hard task in coding theory. In this paper,
we study the constructions of LCD codes that are MDS from negacyclic codes over finite fields of odd
prime power q elements. We construct four families of MDS negacyclic LCD codes of length n| q−1

2 , n| q+1
2

and a family of negacyclic LCD codes of length n = q − 1. Furthermore, we obtain five families of q2-ary
Hermitian MDS negacyclic LCD codes of length n|

(
q − 1

)
and four families of Hermitian negacyclic LCD

codes of length n = q2 + 1. For both Euclidean and Hermitian cases the dimensions of these codes are
determined and for some classes the minimum distances are settled. For the other cases, by studying q and
q2-cyclotomic classes we give lower bounds on the minimum distance.

1. Introduction

Linear codes with complementary-duals (LCD codes), which was introduced by Massey in 1992 (see
[18]), have many applications in cryptography, communication systems, data storage and consumer elec-
tronics. A linear code is called an LCD code if C⊥ ∩ C = {0} . LCD codes provide an optimum linear coding
solution for binary adder channel [18], and in [19] it has been shown that asymptotically good LCD codes
exist. Further, in [20] Sendrier proved that LCD codes meet Gilbert-Varshamov bound. In [22], Yang and
Massey gave a necessary and sufficient condition for a cyclic code to have a complementary dual. All
LCD constacyclic codes of length 2ltps has been determined in [5]. The LCD condition for a certain class of
quasi cyclic codes has been studied in [9]. In [8], Dougherty et al. have been given a linear programming
bound on the largest size of an LCD code of given length and minimum distance. Guneri et al. introduced
Hermitian LCD codes in [11]. In [24], a class of MDS negacyclic LCD codes of even length n| q− 1 has been
given. Carlet and Guiley have studied an application of LCD codes against side-channel attacks, and have
presented particular constructions for LCD codes in [3]. MDS LCD codes over finite field Fq with even q
have been completely solved in [12]. In [17], Li et al. have explored two special families of LCD cyclic
codes, which are both BCH codes. The authors of [16] have constructed several families of reversible cyclic
codes over finite fields and have analyzed their parameters. Galvez et al, gave exact values of dimension
k and length n of a binary LCD code, where 1 ≤ k ≤ n ≤ 12. In [15], Li has constructed some non MDS
cyclic Hermitian LCD codes over finite fields and has analysed their parameters. In [6], Chen and Liu have
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proposed a different approach to obtain new LCD MDS codes from generalized Reed-Solomon codes. In
[2], Beelen and Jin gave an explicit construction of several classes of LCD MDS codes, using tools from
algebraic function fields. In [4], Carlet et al. have studied several constructions of new Euclidean and
Hermitian LCD MDS codes. In [21], Sok et al. have proved existence of optimal LCD codes over large finite
fields and they have also gave methods to generate orthogonal matrices over finite fields and then apply
them to construct LCD codes.

In this paper, we obtain four families of MDS negacyclic LCD codes and a family of negacyclic LCD
codes as follows:

1. For even n > 2, [n,n − 2λ, 2λ + 1]q, where 1 ≤ λ ≤ n−2
2 , q is an odd prime power and n| q−1

2 such that
n , 1.

2. For odd n, [n,n − 2λ − 1, 2 (λ + 1)]q, where 0 ≤ λ ≤ n−3
2 , q is an odd prime power and n| q−1

2 such that
n , 1.

3. For even n > 2, [n, 2λ,n − 2λ + 1]q, where 1 ≤ λ ≤ n
2 − 1, q is an odd prime power and n| q+1

2 such that
n , 1.

4. For odd n, [n, 2λ,n − 2λ + 1]q, where 1 ≤ λ ≤ n−1
2 , q is an odd prime power and n| q+1

2 such that n , 1.

5.
[
q + 1, 4λ, d ≥ q+3

2 − 2λ
]

q
, where 1 ≤ λ ≤ q−3

4 , q is an odd prime power and n = q + 1 such that 4|n.

We also obtain five families of negacyclic MDS Hermitian LCD codes and four families of negacyclic
Hermitian LCD codes as follows:

1. [n,n − 2l − 2, 2l + 3]q2 , where 2 - γ, 0 ≤ l ≤ q−4γ−1
4γ , q ≡ 1 (mod 4) , and n =

q−1
γ > 2.

2. [n,n − 2l − 2, 2l + 3]q2 , where 2|γ, 0 ≤ l ≤ q−4γ−1
2γ , q ≡ 1 (mod 4) , n =

q−1
γ > 2, and n is even.

3. [n,n − 2l − 1, 2l + 2]q2 , where 2|γ, 0 ≤ l ≤ q−3γ−1
2γ , q ≡ 1 (mod 4) , n =

q−1
γ > 2, and n is odd.

4.
[
n,n−

( q−1
2 + 2l + 2

)
, d ≥ q−1

2γ + l + 2
]

q2
, where 2 - γ, 0 ≤ l ≤ q−8γ−1

4γ , n =
q−1
γ > 4, and q ≡ 1 (mod 4) .

5. [n,n − 2l − 1, 2l + 2]q2 , where 2 - γ, 0 ≤ l ≤ q−2γ−1
4γ , q ≡ 3 (mod 4) , and n =

q−1
γ > 2.

6. [n,n − 2l − 1, 2l + 2]q2 , where 2
∣∣∣γ , 0 ≤ l ≤ q−3γ−1

2γ , q ≡ 3 (mod 4) , n =
q−1
γ > 2.

7.
[
n,n−

( q−1
2 + 2l + 2

)
, d ≥ q−1

2 + l + 2
]

q2
, where 2 - γ, 0 ≤ l ≤ q−6γ−1

4γ , n =
q−1
γ > 4, and q ≡ 3 (mod 4) .

8.
[
q2 + 1, 4l, d ≥ q2

−4l+3
2

]
q2
, where q is an odd prime power such that q ≡ 1 (mod 4) and (q−1)2

4 ≤ l ≤ q2
−1
4 .

9.
[
q2 + 1, 4l + 1, d ≥ q2

−4l+3
2

]
q2
, where q is an odd prime power such that q ≡ 3 (mod 4) and (q−1)(q−3)

4 ≤ l ≤

q2
−1
4 .

The rest of the paper is organized as follows. In Section 2, we present some definitions and basic
results of negacyclic codes. In Section 3, we construct four families of LCD codes of length n| q−1

2 , n| q+1
2

from negacyclic codes and we show that these codes are MDS. Moreover, by studying their defining sets
we determine parameters of a class of LCD codes of length n = q − 1. In Section 4, we handle Hermitian
negacyclic LCD codes over Fq2 . The last Section is devoted to conclusion.

2. Preliminaries

In this section, we will give some preliminaries, which are required for the subsequent sections. Let q
be a prime power and Fq be the finite field with q elements. An [n, k]q linear code C of length n over Fq is a
k-dimensional subspace of the vector space Fn

q . The elements of C are of the form (c0, c1, . . . , cn−1) and called
codewords. The Hamming weight of any c ∈ C is the number of nonzero coordinates of c and denoted
by w (c) . The minimum distance of C is defined as d = min {w (c)| 0 , c ∈ C} . An [n, k]q linear code with
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minimum distance d is said to be MDS (maximum distance separable) if n + 1 = k + d. The Euclidean dual
code of C is defined to be

C
⊥ =

x ∈ Fn
q

∣∣∣ n−1∑
i=0

xiyi = 0,∀y ∈ C

 .
A code C is Euclidean self-orthogonal if C ⊂ C⊥ and Euclidean self-dual if C⊥ = C.

Let
〈
x,y

〉
=

n−1∑
i=0

xiy
q
i be the Hermitian inner product of x and y ∈Fn

q2 and C be a code of length n over Fq2 .

The Hermitian dual code of C is defined to be

C
⊥H =

x ∈ Fn
q2

∣∣∣∣ n−1∑
i=0

xiy
q
i = 0,∀y ∈ C

 .
A code C is Hermitian self-orthogonal if C ⊂ C⊥H and Hermitian self-dual if C⊥H = C.

A linear codeCof length n overFq is said to be negacyclic if for any codeword (c0, c1, . . . , cn−1) ∈ Cwe have
that (−cn−1, c0, c1, . . . , cn−2) ∈ C.A negacyclic code of length n over Fq corresponds to a principal ideal

〈
1 (x)

〉
of the quotient ringFq [x] / 〈xn + 1〉where 1 (x)

∣∣∣ xn + 1. The roots of the codeC are the roots of the polynomial
1 (x) . So, if β1, β2, . . . , βn−k are the zeros of 1 (x) in the splitting field of xn + 1, then c = (c0, c1, . . . , cn−1) ∈C if
and only if c

(
β1

)
= c

(
β2

)
= . . . = c

(
βn−k

)
= 0, where c (x) = c0 + c1x + . . . + cn−1xn−1.

Let 2 = ordq (−1) and the multiplicative order of q modulo 2n be m. There exists δ ∈ F∗qm called a primitive
2nth root of unity such that δn = −1. Let ζ = δ2, then ζ is a primitive nth root of unity. Therefore, the roots of
xn + 1 are

{
δ, δ1+2, . . . , δ1+(n−1)2

}
. Define O2,n (1) as follows:

O2,n (1) = {1 + 2i| 0 ≤ i ≤ n − 1} (mod 2n) ⊆ Z2n. (1)

The defining set of the negacyclic code C is defined as

Z =
{
1 + 2i ∈ O2,n (1)

∣∣∣ δ1+2i is a root of C
}
. (2)

Clearly, Z ⊂ O2,n (1) and the dimension ofC is n−|Z| . LetZ2n = {0, 1, 2, . . . , 2n − 1} denote the ring of integers
modulo 2n. For any s ∈ Z2n, the q-cyclotomic coset of s modulo 2n is defined by Cs =

{
sq j (mod 2n)

∣∣∣ j ∈ Z
}
.

For each polynomial 1 (x) = 10 + 11x + . . . + 1rxr with 1r , 0, the reciprocal of 1 (x) is defined to be the
polynomial 1∗ (x) = xr1 (1/x) . 1 (x) is called self-reciprocal if and only if 1 (x) = 1∗ (x) .

The following is a adapted version of BCH bound to negacyclic codes (for general case see [1, 14]).

Theorem 2.1. (The BCH bound for negacyclic codes) Let
(
n, q

)
= 1 and also let δ be an 2nth root of unity with

δn = −1. Then, the minimum distance of a negacyclic code of length n over Fq with the defining set Z containing the
set

{
1 + 2 j

∣∣∣ l ≤ j ≤ l + d − 2
}

is at least d.

In the following, the relation between LCD codes and generator polynomial of negacyclic codes is given.

Theorem 2.2. [24] Let C =
〈
1 (x)

〉
be a negacyclic code over Fq. Then, the following statements are equivalent.

1. C is an LCD code.
2. 1 (x) is self reciprocal.
3. δ−1 is a root of 1 (x) for every root δ of 1 (x) over the splitting field of 1 (x) .

The following is a direct result of Theorem 2.2.

Corollary 2.3. Euclidean LCD negacyclic codes overFq of length n exists if and only if Cs = C−s for some s ∈ O2,n (1) ,
where Cs is a q-cyclotomic coset modulo 2n.
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In the following, we give some necessary information about Hermitian dual of a negacyclic code over
Fq2 . As a reference for example Refs. [7, 23] can be used.

The following is an immediate result of Theorem 3.2 in [23].

Theorem 2.4. Let C =
〈
1 (x)

〉
be a negacyclic code over Fq2 . Then, the following statements are equivalent.

1. C is an Hermitian LCD code.
2. 1 (x) is Hermitian self reciprocal.
3. δ−q is a root of 1 (x) for every root δ of 1 (x) over the splitting field of 1 (x) .

The following corollary is a direct result of Theorem 2.4.

Corollary 2.5. Hermitian LCD negacyclic codes over Fq2 of length n exists if and only if Cs = C−qs for some
s ∈ O2,n (1) , where Cs is a q2-cyclotomic coset modulo 2n.

3. New MDS LCD Codes from Negacyclic Codes

In this section, we aim to derive some classes of LCD codes from negacyclic codes and to show that
these codes are MDS. For this reason, we first determine that the defining set Z of negacyclic codes should
satisfy Z = −Z, and contain consecutive terms. Then, we construct MDS negacyclic LCD codes from these
negacyclic codes with defining set Z.

3.1. New MDS negacyclic LCD codes of length n, where n| q−1
2

Let q be an odd prime power and let n| q−1
2 , where n ≥ 3. It is clear that q ≡ 1 (mod 2n) and then each

q-cyclotomic coset modulo 2n has exactly one element i.e., C1+2 j =
{
1 + 2 j

}
for all 0 ≤ j ≤ n− 1. We also have

the following result.

Lemma 3.1. For all 0 ≤ j ≤ n − 1, −C1+2 j = C1+2(n− j−1). Moreover, if n is odd and j = n−1
2 , then −C1+2 j = C1+2 j.

Proof. −
(
1 + 2 j

)
≡ 2n −

(
1 + 2 j

)
= 1 + 2

(
n − j − 1

)
(mod 2n). If n is odd and j = n−1

2 , then j = n − j − 1.

In the following, we give the number of LCD negacyclic codes of length n without proof.

Corollary 3.2. If n is even, then the number of nontrivial LCD negacyclic codes of length n is 2
(
2

n−2
2 − 1

)
. If n is

odd, then the number of nontrivial LCD negacyclic codes of length n is 2
(
2

n−1
2 − 1

)
.

For odd n, we adjust the defining set

Z1 =

λ⋃
i=0

(
C1+2( n−1

2 +i) ∪ C1+2( n−1
2 −i)

)
,

where 0 ≤ λ ≤ n−3
2 .

For even n, we establish the defining set

Z2 =

λ⋃
i=0

(
C1+2( n

2 +i) ∪ C1+2( n
2−1−i)

)
,

where 1 ≤ λ ≤ n−2
2 . By Lemma 3.1, it is immediate that −Z1 = Z1 and −Z2 = Z2 for each 0 ≤ λ ≤ n−3

2 and
1 ≤ λ ≤ n−2

2 , respectively. Now we are ready to introduce two new classes of LCD negacyclic codes of
length n which are MDS.

In the following we give generalized version of Theorem 6.1 in [24].
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Theorem 3.3. Let q be an odd prime power and let n| q−1
2 such that n , 1. For even n > 2, a class of MDS negacyclic

LCD codes with the parameters [n,n − 2λ − 2, 2λ + 3]q, where 1 ≤ λ ≤ n−2
2 , exists. For odd n, a class of MDS

negacyclic LCD codes with the parameters [n,n − 2λ − 1, 2 (λ + 1)]q, where 0 ≤ λ ≤ n−3
2 , exists.

Proof. Let n be even and, for each 1 ≤ λ ≤ n−2
2 , define C to be a negacyclic code of length n having the

defining set Z2 over Fq. Since, Z2 consists of 2λ + 2 consecutive terms, where 1 ≤ λ ≤ n−2
2 , the dimension

of C is n − 2λ − 2, and by Theorem 2.1 the minimum distance of C is at least 2λ + 3. Since −Z2 = Z2 and
C holds the definition of MDS codes, for each 1 ≤ λ ≤ n−2

2 , C is MDS negacyclic LCD codes with desired
parameters.

Let n be odd and, for each 0 ≤ λ ≤ n−3
2 , define C to be a negacyclic code of length n having the defining

set Z1 over Fq. Since, Z1 consists of 2λ + 1 consecutive terms, where 0 ≤ λ ≤ n−3
2 , the dimension of C is

n− 2λ− 1, and by Theorem 2.1 the minimum distance of C is at least 2λ+ 2.. Since −Z1 = Z1 and C holds the
definition of MDS codes, for each 0 ≤ λ ≤ n−3

2 ,C is MDS negacyclic LCD codes with desired parameters.

Example 3.4. We present some parameters of MDS negacyclic LCD codes obtained by Theorem 3.3 in Table 1.

Table 1: Some MDS negacyclic LCD codes obtained from Theorem 3.3
q n λ MDS Negacyclic LCD Codes
7 3 0 [3, 2, 2]7
9 4 1 [4, 2, 3]9

11 5 0 ≤ λ ≤ 1 [5, 4 − 2λ, 2 (λ + 1)]11
13 6 1 ≤ λ ≤ 2 [6, 6 − 2λ, 2λ + 1]13
17 8 1 ≤ λ ≤ 3 [8, 8 − 2λ, 2λ + 1]17
17 4 1 [4, 2, 3]17
19 9 0 ≤ λ ≤ 3 [9, 8 − 2λ, 2 (λ + 1)]19
19 3 0 [3, 2, 2]19

3.2. New MDS negacyclic LCD codes of length n, where n| q+1
2

Let q be an odd prime power and let n| q+1
2 such that n ≥ 3. In this case, since q ≡ −1 (mod 2n), each

q-cyclotomic coset modulo 2n has at most two elements. We give all q-cyclotomic cosets modulo 2n.

Lemma 3.5. All q-cyclotomic cosets modulo 2n are given below.

1. If n is even, then each cyclotomic coset has exactly two elements, i.e., the cyclotomic coset C1+2 j is the set{
1 + 2 j, 1 + 2

(
n − 1 − j

)}
for all 0 ≤ j ≤ n

2 − 1.
2. If n is odd, then each cyclotomic coset has exactly two elements except for one, i.e., C1+2 j =

{
1 + 2 j, 1 + 2

(
n − 1 − j

)}
for all 0 ≤ j ≤ n−3

2 , but C1+2 j =
{
1 + 2 j

}
for j = n−1

2 .

Proof. Since q ≡ −1 (mod 2n), we get q
(
1 + 2 j

)
≡ −1 − 2 j = 1 + 2

(
n − 1 − j

)
(mod 2n). If n is odd and j = n−1

2 ,
then j = n − 1 − j and C1+2 j =

{
1 + 2 j

}
.

The following is immediately concluded from Lemma 3.5.

Corollary 3.6. For all q-cyclotomic cosets modulo 2n containing 1 + 2 j, −C1+2 j = C1+2 j.

We adjust the defining sets Z1 and Z2 with respect to the cases of n as follows: If n is even, then

Z1 =

n
2−1⋃
j=λ

C1+2 j, where 1 ≤ λ ≤ n
2 − 1. If n is odd, then Z2 =

n−1
2⋃

j=λ
C1+2 j, where 1 ≤ λ ≤ n−1

2 .
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Then, from Lemma 3.5, we get

Z1 =
{
1 + 2λ, 1 + 2 (λ+1) , . . . , 1 + 2

(n
2
− 1

)
, . . . , 1 + 2 (n − 1−λ)

}
, 1 ≤ λ ≤

n
2
− 1

Z2 =
{
1 + 2λ, 1 + 2 (λ+1) , . . . , 1 + 2

(n − 1
2

)
, . . . , 1 + 2 (n − 1−λ)

}
, 1 ≤ λ ≤

n − 1
2

.

So, Z1 and Z2 consists of exactly n − 2λ consecutive terms. Moreover, Corollary 3.6 implies that −Z1 = Z1

and −Z2 = Z2. Now, we are ready to give new MDS negacyclic LCD codes of length n dividing q+1
2 .

Theorem 3.7. Let q be an odd prime power and let n| q+1
2 such that n , 1. For even n > 2, a family of MDS

negacyclic LCD codes with the parameters [n, 2λ,n − 2λ + 1]q, where 1 ≤ λ ≤ n
2 − 1, exists. For odd n, a family of

MDS negacyclic LCD codes with the parameters [n, 2λ,n − 2λ + 1]q, where 1 ≤ λ ≤ n−1
2 , exists.

Proof. Let n be even and, for each 1 ≤ λ ≤ n
2 − 1, define C to be a negacyclic code of length n having the

defining set Z1 over Fq. Since, Z1 consists of n − 2λ consecutive terms, where 1 ≤ λ ≤ n−2
2 ,the dimension of

C is 2λ, and by Theorem 2.1 the minimum distance of C is at least n−2λ+ 1. Since −Z1 = Z1 and C holds the
definition of MDS codes, for each 1 ≤ λ ≤ n

2 − 1, C is MDS negacyclic LCD codes with desired parameters.
Let n be odd and, for each 1 ≤ λ ≤ n−1

2 , define C to be a negacyclic code of length n having the defining
set Z2 over Fq. Since, Z2 consists of n − 2λ consecutive terms, where 1 ≤ λ ≤ n−1

2 ,the dimension of C is
2λ, and by Theorem 2.1 the minimum distance of C is at least n − 2λ + 1. Since −Z2 = Z2 and C holds the
definition of MDS codes, for each 1 ≤ λ ≤ n−1

2 ,C is MDS negacyclic LCD codes with desired parameters.

Example 3.8. We present some parameters of MDS negacyclic LCD codes obtained by Theorem 3.7 in Table 2.

Table 2: Some MDS negacyclic LCD codes obtained from Theorem 3.7
q n λ MDS Negacyclic LCD Codes
5 3 1 [3, 2, 2]5
7 4 1 [4, 2, 3]7
9 5 1 ≤ λ ≤ 2 [5, 2λ, 5 − 2λ + 1]9
11 6 1 ≤ λ ≤ 2 [6, 2λ, 6 − 2λ + 1]11
11 3 1 [3, 2, 2]11
13 7 1 ≤ λ ≤ 3 [7, 2λ, 7 − 2λ + 1]13
17 9 1 ≤ λ ≤ 4 [9, 2λ, 9 − 2λ + 1]17
17 3 1 [3, 2, 2]17
19 10 1 ≤ λ ≤ 4 [10, 2λ, 10 − 2λ + 1]19
19 5 1 ≤ λ ≤ 2 [5, 2λ, 5 − 2λ + 1]19

3.3. New negacyclic LCD codes of length n = q + 1 with 4|n
Let q be an odd prime power and let n = q + 1 such that 4|n. In this subsection, we derive negacyclic

codes of length q + 1 which do not have to be MDS. It follows from q . 1 (mod 2
(
q + 1

)
) and q2

≡ 1 (mod
2
(
q + 1

)
) that each q-cyclotomic coset modulo 2n has at most two elements. Suppose q

(
1 + 2 j

)
≡

(
1 + 2 j

)
(mod 2

(
q + 1

)
) for some 0 ≤ j ≤ n − 1. Since

(
q − 1, q + 1

)
= 2 and 1 ≤ 1 + 2 j ≤ 2n − 1, we get 2 j = q, which is

a contradiction. This implies that each q-cyclotomic coset modulo 2
(
q + 1

)
has precisely two elements. We

give an exact characterization for all q-cyclotomic cosets modulo 2n.

Lemma 3.9. All q-cyclotomic cosets modulo 2
(
q + 1

)
are as follows.

1. C1+2 j =
{
1 + 2 j, 1 + 2

( q−1
2 − j

)}
, for all 0 ≤ j ≤ q−3

4 .

2. C1+2 j =
{
1 + 2 j, 1 + 2

(
n +

q−1
2 − j

)}
, for all q+1

2 ≤ j ≤ 3q−1
4 .
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Proof. 1. If 0 ≤ j ≤ q−3
4 , then j < q−1

2 . Since 2qj ≡ −2 j (mod 2n), q
(
1 + 2 j

)
≡ q− 2 j = 1 + 2

( q−1
2 − j

)
(mod 2n).

2. If q+1
2 ≤ j ≤ 3q−1

4 , then j > q−1
2 and so q

(
1 + 2 j

)
≡ 1 + 2

(
n +

q−1
2 − j

)
(mod 2n).

The union of all q-cyclotomic cosets given here makes up the set O2,q+1 (1) and so the proof is com-
pleted.

Lemma 3.10. For all 0 ≤ j ≤ q−3
4 , −C1+2 j = C1+2

( q+1
2 + j

).
Proof. It can be seen that −

(
1 + 2 j

)
≡ 1 + 2

(
n − j − 1

)
(mod 2n). From Lemma 3.9(1), it is enough to find a

integer k such that n +
q+1

2 − k = n − j − 1. This is possible only when k =
q+1

2 + j.

As a result of Lemma 3.10, one can see that C1+2 j , −C1+2 j for all 0 ≤ j ≤ n− 1. We establish the defining

set Z to be Z =

 q−3
4⋃

j=λ
C1+2 j

 ∪


3q−1
4⋃

j= q+1
2 +λ

C1+2 j

 , where 1 ≤ λ ≤ q−3
4 . Then, by Lemma 3.9, we have

Z =

 1 + 2λ, 1 + 2 (λ + 1) , . . . , 1 + 2
( q−1

2 − λ
)
,

1 + 2
( q+1

2 + λ
)
, 1 + 2

( q+3
2 + λ

)
, . . . , 1 + 2

(
q − λ

)  .
Clearly, Z contains q+1

2 − 2λ consecutive terms and |Z| = q + 1 − 4λ. These facts provide us to derive a
class of LCD negacyclic codes.

Theorem 3.11. Assume that q is an odd prime power and n = q + 1 such that 4|n. Then, a class of LCD negacyclic
codes with parameters[

q + 1, 4λ, d ≥
q + 3

2
− 2λ

]
q

where 1 ≤ λ ≤ q−3
4 , exists.

Proof. LetC be a negacyclic code of length q+1 with defining set Z overFq. The parameters ofC are followed
from that Z contains q+1

2 − 2λ consecutive terms and |Z| = q + 1 − 4λ.

Example 3.12. We list some parameters of negacyclic LCD codes acquired by Theorem 3.11 in Table 3.

Table 3: Some negacyclic LCD codes obtained from Theorem 3.11
q n λ Negacyclic LCD Codes

19 20 1 ≤ λ ≤ 4 [20, 4λ,≥ 11 − 2λ]19
23 24 1 ≤ λ ≤ 5 [24, 4λ,≥ 13 − 2λ]23

4. Negacyclic MDS Hermitian LCD Codes

In this section, we study Hermitian LCD codes over finite fields Fq2 . We use negacyclic codes of length
n, where n|q − 1 and n = q2 + 1 to construct q2-ary MDS Hermitian LCD codes and Hermitian LCD codes.
To accomplish this task, we need to determine the defining set Z of negacyclic codes and the number
of consecutive terms contained by Z, where Z = −qZ. At the beginning, we determine exact structure of
q2-cyclotomic cosets modulo 2n.
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4.1. Negacyclic MDS Hermitian LCD codes of length n|
(
q − 1

)
In this subsection, we use negacyclic codes of length n =

q−1
γ to construct MDS Hermitian LCD codes,

where q is an odd prime power. Since n|
(
q2
− 1

)
and gcd

(
n, q + 1

)
= 1 or 2 we have that q2 = 1 +γn

(
q + 1

)
≡

1 (mod 2n) or q2 = 1 + 2γn (q+1)
2 ≡ 1 (mod 2n) . This means that each q2-cyclotomic coset modulo 2n has only

one element.
The following enables us to determine the number of elements and consecutive terms contained by the

defining set Z which we define later.

Lemma 4.1. Let n =
q−1
γ .

1. If 2 - γ, then for all j ≤ n
2 − 1 we have that −qC1+2 j = C1+2( n

2−1− j) and for all j > n
2 we have that

−qC1+2 j = C1+2( 3n
2 −1− j).

2. If 2
∣∣∣γ , then for all j ≤ n − 1 we have that −qC1+2 j = C1+2(n−1− j).

Proof. 1. Observe that −q ≡ n − 1 (mod 2n) . Then we have −q
(
1 + 2 j

)
= −q − 2qj ≡ n − 1 + 2 (n − 1) j ≡

1+n−2−2 j = 1+2
(

n
2 − 1 − j

)
(mod 2n) . If j > n

2 , then n
2 −1− j < 0 and so we have that 1+2

(
n
2 − 1 − j

)
≡

1 + 2
(

n
2 − 1 − j

)
+ 2n = 1 + 2

(
3n
2 − 1 − j

)
(mod 2n) .

2. In this case −q ≡ −1 (mod 2n) . So, we have −q
(
1 + 2 j

)
≡ −1 − 2 j ≡ 1 − 2 − 2 j + 2n = 1 + 2

(
n − 1 − j

)
(mod 2n) .

Let n =
q−1
γ > 4 and q ≡ 1 (mod 4) . Then, we give the defining set Z as below:

If 2 - γ, then Z =

q−1
4γ +l⋃

j= q−4γ−1
4γ −l

C1+2 j, where 0 ≤ l ≤ q−4γ−1
4γ .

If 2
∣∣∣γ and n is even, then Z =

q−1
2γ +l⋃

j= q−2γ−1
2γ −l

C1+2 j, where 0 ≤ l ≤ q−4γ−1
2γ .

If 2
∣∣∣γ and n is odd, then Z =

q−γ−1
2γ +l⋃

j= q−γ−1
2γ −l

C1+2 j, where 0 ≤ l ≤ q−3γ−1
2γ .

From the definitions of the defining sets Z, we give the number of elements of the defining sets Z and
we show that all of the elements are consecutive.

If 2 - γ, then
∣∣∣Z∣∣∣ = 2l + 2, where 0 ≤ l ≤ q−4γ−1

4γ .

If 2
∣∣∣γ and n is even, then

∣∣∣Z∣∣∣ = 2l + 2, where 0 ≤ l ≤ q−4γ−1
2γ .

If 2
∣∣∣γ and n is odd, then

∣∣∣Z∣∣∣ = 2l + 1, where 0 ≤ l ≤ q−3γ−1
2γ .

So, the following is immediate.

Theorem 4.2. Let q ≡ 1 (mod 4) , and n =
q−1
γ > 2.

1. If 2 - γ, then there exists a q2
−ary [n,n − 2l − 2, 2l + 3] negacyclic MDS Hermitian LCD code, where 0 ≤ l ≤

q−4γ−1
4γ .
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2. If 2
∣∣∣γ and n is even, then there exists a q2

−ary [n,n − 2l − 2, 2l + 3] negacyclic MDS Hermitian LCD code,
where 0 ≤ l ≤ q−4γ−1

2γ .

3. If 2
∣∣∣γ and n is odd, then there exists a q2

−ary [n,n − 2l − 1, 2l + 2] negacyclic MDS Hermitian LCD code,
0 ≤ l ≤ q−3γ−1

2γ .

Example 4.3. Let q = 29 and n = 28
λ .Then, by applying Theorem 4.2, we obtain 17 q2-ary negacyclic MDS Hermitian

LCD codes with parameters [28, 26, 3] , [28, 24, 5] , [28, 22, 7] , [28, 20, 9] , [28, 18, 11] , [28, 16, 13] , [28, 14, 15] ,
[14, 12, 3] , [14, 10, 5] , [14, 8, 7] , [14, 6, 9] , [14, 4, 11] , [14, 2, 13] , [7, 6, 2] , [7, 4, 4] , [7, 2, 6] , [4, 3, 2] .

Table 4: Some Hermitian MDS negacyclic LCD codes obtained from Theorem 4.2
q n γ l Negacyclic MDS Hermitian LCD Codes
5 4 1 l = 0 [5, 4,2]52

13 12 1 0 ≤ l ≤ 2 [12, 12 − 2l − 2,2l + 3]132

13 6 2 0 ≤ l ≤ 1 [6, 6 − 2l − 2,2l + 3]132

17 16 1 0 ≤ l ≤ 3 [16, 16 − 2l − 2,2l + 3]172

17 8 2 0 ≤ l ≤ 2 [8, 8 − 2l − 2,2l + 3]172

17 4 4 l = 0 [4, 2,3]172

By expanding the defining set Z,we can obtain non MDS negacyclic Hermitian LCD codes over Fq2 . Let
n =

q−1
γ > 4, 2 - γ and q ≡ 1 (mod 4) . Then adjust the defining set Z as below.

Z =


q−2γ−1

2γ⋃
j=0

C1+2 j

 ∪


q−γ−1
γ −l⋃

j= q−1
2γ +l

C1+2 j

 , where 0 ≤ l ≤
q − 8γ − 1

4γ
.

Theorem 4.4. Let n =
q−1
γ > 4, 2 - γ and q ≡ 1 (mod 4) . Then for each 0 ≤ l ≤ q−8γ−1

4γ there exists a q2
−ary[

n,n−
( q−1

2 + 2l + 2
)
, d ≥ q−1

2γ + l + 2
]

negacyclic Hermitian LCD code.

Let n =
q−1
γ > 2 and q ≡ 3 (mod 4) . Then, we can give the defining set Z as the following.

If 2 - γ, then Z =

q−2γ−1
4γ +l⋃

j= q−2γ−1
4γ −l

C1+2 j, where 0 ≤ l ≤ q−2γ−1
4γ .

If 2
∣∣∣γ , then Z =

q−γ−1
2γ +l⋃

j= q−γ−1
2γ −l

C1+2 j, where 0 ≤ l ≤ q−3γ−1
2γ .

By the definition of Z, the cardinality of Z,
∣∣∣Z∣∣∣ is as the following and all its elements are consecutive.

If 2 - γ, then
∣∣∣Z∣∣∣ = 2l + 1, where 0 ≤ l ≤ q−2γ−1

4γ .

If 2|γ, then
∣∣∣Z∣∣∣ = 2l + 1, where 0 ≤ l ≤ q−3γ−1

2γ .

Thus, the following is immediate.

Theorem 4.5. Let q ≡ 3 (mod 4) , and n =
q−1
γ > 2.

1. If 2 - γ, then there exists a q2
−ary [n,n − 2l − 1, 2l + 2] negacyclic MDS Hermitian LCD code, where 0 ≤ l ≤

q−2γ−1
4γ .

2. If 2
∣∣∣γ , then there exists a q2

−ary [n,n − 2l − 1, 2l + 2] negacyclic MDS Hermitian LCD code, where 0 ≤ l ≤
q−3γ−1

2γ .
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Table 5: Some Hermitian MDS negacyclic LCD codes obtained from Theorem 4.5
q n γ l Negacyclic MDS Hermitian LCD Codes
7 6 1 0 ≤ l ≤ 1 [6, 6 − 2l − 1,2l + 2]72

11 10 1 0 ≤ l ≤ 2 [10, 10 − 2l − 1,2l + 2]112

11 5 2 0 ≤ l ≤ 1 [5, 5 − 2l − 1,2l + 2]112

19 18 1 0 ≤ l ≤ 4 [18, 18 − 2l − 1,2l + 2]192

19 9 2 0 ≤ l ≤ 3 [9, 9 − 2l − 1,2l + 2]192

19 6 3 0 ≤ l ≤ 1 [6, 6 − 2l − 1,2l + 2]192

Let n =
q−1
γ > 4, 2 - γ and q ≡ 3 (mod 4) . Then we establish the defining set Z as follows.

Z =


q−2γ−1

2⋃
j=0

C1+2 j

 ∪


q−γ−1
γ −l⋃

j= q−1
2γ +l

C1+2 j

 , where 0 ≤ l ≤
q − 6γ − 1

4γ
.

Now, we can construct non MDS negacyclic Hermitian LCD codes over Fq2 .

Theorem 4.6. Let n =
q−1
γ > 4, 2 - γ and q ≡ 3 (mod 4) . Then for each 0 ≤ l ≤ q−6γ−1

4γ there exists a q2
−ary[

n,n−
( q−1

2 + 2l + 2
)
, d ≥ q−1

2 + l + 2
]

negacyclic Hermitian LCD code.

4.2. Negacyclic Hermitian LCD codes of length n = q2 + 1

In this subsection, we use negacyclic codes of length n = q2 +1 to construct Hermitian LCD codes, where
q is an odd prime power. The following is similar to Lemma 4.1 in [13].

Lemma 4.7. Let n = q2 + 1. Then, the q2-cyclotomic cosets modulo 2n containing odd integers from 1 to 2n are
C1+2 j =

{
1 + 2 j,n − 1 − 2 j

}
, 0 ≤ j < n−2

4 ,C1+2 j =
{
1 + 2 j

}
, j = n−2

4 , C1+2 j =
{
1 + 2 j, 3n − 1 − 2 j

}
, n

2 ≤ j < 3n−2
4 ,

and C1+2 j =
{
1 + 2 j

}
, j = 3n−2

4 .

For the length n = q2 + 1 we consider two cases. The first case is q ≡ 1 (mod 4). We establish the defining

set Z as Z = Z1 ∪ −qZ1 where Z1 =

q2
−1
4⋃

j=l
C1+2 j,

(q−1)2

4 ≤ l ≤ q2
−1
4 . In [13] it was shown that Z1 ∩ −qZ1 = ∅.

Therefore, the cardinality of the defining set Z is
∣∣∣Z∣∣∣ = 4

(
q2
−1
4 − l

)
+ 2 = q2

− 4l + 1. Furthermore, Z contains

at least q2
−4l+1

2 consecutive terms. Then, we have the following result.

Theorem 4.8. Let q be an odd prime power with q ≡ 1 (mod 4). Then, there exists a class of q2-ary negacyclic

Hermitian LCD codes with parameters
[
q2 + 1, 4l, d ≥ q2

−4l+3
2

]
, where (q−1)2

4 ≤ l ≤ q2
−1
4 .

The other case is q ≡ 3 (mod 4).

Lemma 4.9. Let n = q2 + 1 and q ≡ 3 (mod 4). Then, we have the following.

1. For j =
q2
−1
4 , C1+2 j = −qC1+2 j.

2. For all (q−1)(q−3)
4 ≤ j, k < q2

−1
4 , C1+2k , −qC1+2 j.

Proof. 1. For j =
q2
−1
4 , C1+2 j =

{
q2+1

4

}
. Since 4|

(
q + 1

)
,
(
q + 1

) (q2+1)
2 ≡ 0 (mod 2n) and so −q (q2+1)

2 ≡
(q2+1)

2

(mod 2n).
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2. Assume otherwise. Then, for some (q−1)(q−3)
4 ≤ j, k ≤ (q−1)(q+5)

4 except for q2
−1
4 , −q

(
1 + 2 j

)
≡ 1 + 2k (mod

2n) or q+1
2 + k + qj ≡ 0 (mod n). It follows from (q−1)(q−3)

4 ≤ j, k ≤ (q−1)(q+5)
4 that (q−3)

4 n + 2 ≤ q+1
2 + k + qj ≤

(q+5)
4 n − 2. This implies that the possible value of q+1

2 + k + qj is only (q+1)
4 n, which is possible only

when k = j =
q2
−1
4 . This contradicts with the choice of j and k.

For the case q ≡ 3 (mod 4), we adjust the defining set Z as Z = Z2 ∪ −qZ2, where Z2 =

q2
−1
4⋃

j=l
C1+2 j,

(q−1)(q−3)
4 ≤ l ≤ q2

−1
4 . By Lemma 4.9, the cardinality of the defining set Z is

∣∣∣Z∣∣∣ = 4
(

q2
−1
4 − l

)
+ 1 = q2

− 4l.

Additionally, Z contains at least q2
−4l+1

2 consecutive terms. Then, we have the following result.

Theorem 4.10. Let q be an odd prime power with q ≡ 3 (mod 4). Then, there exists a class of q2
−ary negacyclic

Hermitian LCD codes with parameters
[
q2 + 1, 4l + 1, d ≥ q2

−4l+3
2

]
, where (q−1)(q−3)

4 ≤ l ≤ q2
−1
4 .

Table 6: Some negacyclic Hermitian LCD codes obtained from Theorems 4.8 and 4.10
q n l Negacyclic Hermitian LCD Codes
3 10 0 ≤ l ≤ 2

[
10, 4l + 1,≥ 9−4l+3

2

]
32

5 26 4 ≤ l ≤ 6
[
26, 4l, d ≥ 25−4l+3

2

]
52

7 50 6 ≤ l ≤ 12
[
50, 4l + 1, d ≥ 49−4l+3

2

]
72

13 170 36 ≤ l ≤ 42
[
170, 4l, d ≥ 169−4l+3

2

]
132

5. Conclusion

In this paper, we study some classes of MDS negacyclic LCD codes of length n| q−1
2 , n| q+1

2 and some
classes of negacyclic LCD codes of length n = q + 1. In Theorem 3.3 we give a corrected and generalized
of the result of Theorem 6.1 in [24]. We also obtain some classes of q2-ary Hermitian MDS negacyclic LCD
codes of length n|

(
q − 1

)
and some classes of q2-ary Hermitian negacyclic LCD codes n = q2 + 1.We remark

that the parameters of Hermitian LCD codes, which was given in [10, 15], haven’t covered ones given in
this paper.
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