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THE BOLZANO-WEIERSTRASS THEOREM
AND SET-THEORY

Marion Scheepers

Abstract. We analyse one of the classical proofs of the Bolzano-Weierstrass
theorem. Cardinal numbers are associated with erucial steps of the proof. These
are intended to measure, in some sense, the mathematical power of the statement
proved in that step. By comparing the cardinal numbers we gather some informa-
tion on which implications in are not provably reversible.

Mathematicians often define numbers from the mathematical objects
which they study and then try to obtain information about the object by
studying the properties of these numbers. The number 7 is one of the most
ancient examples of this. In the case of Set Theory the numbers are usually
infinite ordinals or infinite cardinals. One of the typical questions about such
a cardinal number is then where it lies in the list of alephs, and another is
how it compares with other cardinals obtained in this way. F

rom this one then obtains mathematically important information about
the objects of study. n this paper I illustrate this practice by taking as object
of study one of the classical proofs of the following theorem:

Theorem 1 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

One of the standard proofs of this theorem proceeds as follows: Let a
bounded sequence of real numbers be given.

L. Extract a subsequence which is monotonic;
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9. Since the terms of this subsequence is a bounded set, determine the
least upper bound and greatest lower bound of this set;

3. If the sequence is increasing, then the least upper bound is its limit —
else, the greatest lower bound is its limit.

Steps 2 and 3 are straightforward observations. The crucial step lies in
the extraction of the monotonic subsequence, and several textbooks state
this as a separate lemma.

Theorem 2 (Monotonic Subsequence Theorem) Every sequence of real
numbers has a monotonic subsequence.

Thus the described proof of the Bolzano-Weierstrass theorem is really a
proof of the implication

Monotonic Subsequence Theorem = Bolzano-Weierstrass Theorem.

Could one also derive from the Bolzano-Weierstrass theorem the Monotonic
Subsequence theorem?

The area of “reverse mathematics” and has developed powerful tools to
treat these sorts of questions. Here I'll instead give a typical set theoretic
approach to the problem.

1 Associating cardinal numbers with the two the-
orems. :

First, observe that the Monotonic Subsequence Theorem is equivalent to
the statement that every sequence of real numbers has a subsequence which,
except for finitely many terms, is monotonic; we call these “eventually mono-
tonic” sequences. Next, observe that though the two theorems speak about
only a single sequence at a time, one could with minor modifications prove:

Let (zp, :n=1,2,3,...) and (yn : n =1,2,3,...) be sequences of
real numbers. Then there is an infinite set A of natural numbers
such that both (z, : n € A) and (y, : n € A) are eventually
monotonic.

and

Let (2, : n = 1,2,3,...) and (yn : n = 1,2,3,...) be bounded
sequences of real numbers. Then there is an infinite set A of
natural numbers such that both (z, : n € A) and (y, : n € A)
are convergent.
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We shall use the ability of extracting convergent subsequences or mono-
tonic subsequences “simultaneously” from a large number of given sequences
as a measure of the strength of these two theorems. To this end, let « be a
cardinal number. Define the statements M(x) and BW(x) as follows:

M(k) For every sequence (fn:n =1,2,3,...) of real-valued func-
tions defined on k there is a subsequence (fn : n € A) such that
for each o € K the sequence (frn(a) : n € A) is eventually mono-
tonic.

BW(k): For every sequence (fn : n = 1,2,3,...) of pointwise
bounded real-valued functions defined on k there is a subsequence
(fn : n € A) which is pointwise convergent.

Then we have for each cardinal number x:
M(k) = BW(x). (1)

For typographical convenience let the symbol ¢ denote 2%o the cardinal-
ity of the real line. The following two lemmas are set-theoretic folklore; I
include proofs in the interest of self-contained reading.

Lemma 3 The statement BW(c) is false.

Proof: Let the collection A of infinite subsets of the natural numbers with
infinite complements represent c¢. Define sequence (f, : n = 1,2,3,...) of
functions from A to the real line so that for each A € A and for each n,

1 ifneA,
Fn(4) = { 0 otherwise.

Then no subsequence of (f, : n = 1,2,3,...) is pointwise convergent. For
let A be any infinite set of natural numbers. Choose a Y € A such that
ANY and A\ Y are infinite. Then (fn(Y) : n € A) has both values 0 and 1
infinitely many times.

Lemma 3 indicates that there is a least cardinal number x for which
BW(k) is false, and there is a least cardinal number X for which M(}) is
false. We define:

m is the least cardinal number s such that M(x) is false.
bw is the least cardinal number s such that BW(x) is false.
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Lemma 4 m is uncountable.

Proof: To see this, consider a sequence (f, : n = 1,2,3,...) of functions
from a countable set, say the natural numbers, to the real line. Using the
Monotonic Subsequence Theorem recursively choose a sequence

YIS YYD DY s

of infinite subsets of the natural numbers such that for each n the sequence
(fm(n) : m € Y,) is monotonic. Then choose ny; < ny < ng < ... such
that for each k& we have ny € Yy, and put Yo = {ng : £ =1,2,3,...}. The
subsequence (f, : n € Y, is a pointwise-eventually monotonic subsequence
of the original.

On account of implication (1) and Lemmas 3 and 4 we have the following
inequalities among cardinal numbers:

N <m<bw<e. (2)

The Continuum Hypothesis implies that these four cardinal numbers
are equal. Since the Continuum Hypothesis is consistent relative to the
consistency of classical mathematics, one cannot on the basis of classical
mathematics prove that these cardinals are distinct. However, the negation
of the Continuum Hypothesis is also consistent relative to the consistency
of classical mathematics. Should it be the case that it is consistent that
m < bw, this could be taken as evidence that the implication in (1) is not
reversible, and thus that the Monotonic Subsequence Theorem is formally
stronger statement than the Bolzano-Weierstrass theorem.

2 The cardinal number m.

Towards analysing the relationship between m and bw further, we introduce
a third cardinal number relevant to the task. For f and g functions from the
natural numbers to the natural numbers, write

48

to denote that lim, . (g(n) — f(n)) = oo.
Then < is a partial order. For a cardinal number & let B(x) denote the
statement:

If F is a family of at most & functions from the natural numbers
to the natural numbers, then there is such a function g such that
for each f € F we have f < g.
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It is evident that B(c) is false; a standard diagonalization argument shows
that B(Ng) is true. Define

b = min{x : B(k) is false }.
The following Lemma, also folklore, is useful in constructions regarding b.

Lemma 5 Let f and g be strictly increasing functions from the natural num-
bers to the natural numbers. If for all but finitely many n there is a k such
that

gln) < f(k) < f(k+1) < g(n +1)

then f < g.

Theorem 6 For each cardinal number  the following are equivalent:
1. M(k);
2. B(k) and BW(x).

Proof: M(x) = B(x) and BW(k): We already know that M(x) = BW(x).
Assume M(k) and let F be a family of s functions from the natural numbers
to the natural numbers. For each f € F define a new function ¥(f) so that
on intervals of integeers of the form '

(f(4-n), (4 n+3)]

the values of ¥(f) are strictly decreasing, but all larger than the values of
W(f) on any earlier intervals of this form. Since M(x) holds fix an infinite
set A of natural numbers such that for each f € F the sequence (¥(f)(n) :
n € A) is eventually monotonic. Then by the construction of the U(f)’s we
see that for each f € F and for all but finitely many n the set

YN[f(4-n),f(4-n+3))

has at most one element. Define g so that for each n g(n) is the 2 - n-th
element of ¥ in the increasing listing of ¥. Then for each f € F, for all but
finitely many n there are k with g(n) < f(k) < f(k+1) < g(n +1). By
Lemma 5 we see that f < g whenever f is in 7. This shows that B(x) is
true.

B(x) and BW(x) => M(x): Assume that both B(x) and BW(k) are true. Let
(fn :m=1,2,3,...) be a sequnce of real-valued functions defined on &.
Temporarily replace each fy, by g,, = arctanof,. Then the sequence (g, : n =
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1,2,3,...) is pointwise bounded. An application of BW(x) gives an infinite
set A of natural numbers such that (g, : n € A) is pointwise convergent.
For each a € & let s, be the limit of the sequence (gn(a) : n € A). Define

T ={a € &: (gn{ca) : n € A) not eventually constant}.

For each o € T and for each n define

1 1
Aa(n) = {m € A: — > |gm(@) — sal > ==}
and then define f, as follows: f,(1) is so large that if f,(1) < n, then
1 < min(Aq(n)) and max(Y,(1)) < fo(1). Recursively define it further so
that fo(k + 1) is so large that if n > f,(k) then fo(k) < min(As(n)), and
for each § < fo(k) we have max(A4,(j)) < fa(k + 1). Then each such f, is
increasing.

Next, for each o € T and for each n define fi(n) = fo(4-n). Since
B(k) is true, select an increasing sequence h of natural numbers such that
for each & € T we have f% < h, such that A(1) > 1, such that the range of h
is a subset of A, and such that for each k A2 (1) +2 < h2H5+1(1) (Here, h™
denotes the m-th iterate of h under composition). Then for each k define

£(k) = h%(1).

Since h is increasing, h < £. Let Z C A be the range of £. On account of the
definition of £ it is also true that for each o € 7" and for each but finitely
many m the set Z has at most one element in common with A, (m).

Now define for each a in T' the sequence (j (@) : n € Z) so that for each

neEZz,
z 10 iftgale) >8s
infer) = { 1 otherwise

Apply BW(k) to the sequence (j, : n € Z): we find an infinite set B C Z
such that (j, : n € B) is pointwise convergent. It follows that on x (g, : n €
B) is pointwise either eventually constant, or else eventually monotonically
convergent.

Finally, since tan is monotonic on (—%,7), and since for each n f, =
tan ogn, we see that (f, : n € B) is pointwise either eventually constant, or
else eventually monotonic.

As a result we see that

m = min{b, bw}. (3)
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3 The cardinal number bw.

A collection A of subsets of the natural numbers is said to be a splitting
family if, for each infinite set X of natural numbers there is an A € A such
that X N A and X \ A are both infinite; A is said to “split” X.

For a cardinal number x let S(x) denote the statement:

For each family of & subsets of the natural numbers there is an
infinite set of natural numbers not split by any member of the
family.

Nowadays a family S which is a counterexample to the statement S(k)
is said to be a splitting family. It is evident that S(c) is false; one can show
that S(Rg) is true. Let s denote the minimal s for which S(k) is false. Booth
proved in Theorem 2 of [3] a result which amounts to:

Theorem 7 (Booth) For each cardinal number,
BW(k) < S(x).

Consequently, s = bw. Set theorists have proved that any of the follow-
ing relations

b<s (4)
b=s (5)
b>s (6)

is consistent relative to the consistency of classical mathematics.

Consequently it is consistent relative to the consistency of classical math-
ematics that m < bw. This gives evidence that the Monotonic Subsequence
Theorem is a formally stronger statement than the Bolzano Weierstrass The-
orer.

4 Proving the Monotonic Subsequence Theorem:
a conjecture.

It is also interesting to analyse in the same way the usual proofs of the
Monotonic Subsequence Theorem. One of the more sophisticated proofs
makes use of Ramsey’s theorem:

Theorem 8 (Ramsey) For each natural number n and each function f
defined on the n—element subsets of the set of natural numbers and with
finite range, there is an infinite set S of natural numbers such that f is
constant on the n—element subsets of S.
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One proof of the Monotonic Subsequence Theorem from Ramsey’s theo-
rem proceeds as follows: Let a sequence (z,, : n = 1,2,3,...) of real numbers
be given. Define f so that for m < n we have

0 ifzy, <z,
f{m,nP)=¢ 1 g, =mx,
2 ifxn, >x,

For an infinite set A of natural numbers on which f is constant one has that
(zy, : m € A) is monotonic or constant.

In the sense described above Blass has considered the strength of Ram-
sey’s theorem as follows: For a function f with finite range, defined on the
n—element subsets of the natural numbers, say that an infinite subset A of
the natural numbers is “almost homogeneous for f” if there is a finite subset
F C A such that f is constant on the set of n—tuples of A\ F. Let x be a
cardinal number. Let R(k) denote the statement:

For each family F of functions with finite ranges and with do-
main the two-element subsets of the natural numbers there is an
infinite set A of natural numbers which is almost homogeneous
for each f € F.

Standard techniques show that R(x) = M(xk).

Most familiar with the proof of Ramsey’s Theorem and with an elemen-
tary proof of the Monotonic Subsequence Theorem (see for example Theo-
rem 3.4.6 of [1]) would argue that resorting to Ramsey’s Theorem to prove
the Monotonic Subsequence Theorem is overkill. It is somewhat surprising
that the sort of analysis for comparing the Monotonic Subsequence Theorem
and the Bolzano Weierstrass Theorem is inconclusive when comparing the
Monotonic Subsequence Theorem with Ramsey’s Theorem. The reason is

as follows:

Following Blass, let par denote the least x for which R(k) is false. In[2]
Blass shows that

Theorem 9 (Blass) par = min{b,s}.

On account of our work above this means that par — m. I doubt that
this equation shows that the two theorems are formally of equal strength; it
more likely shows that the comparing these cardinal numbers is not the tool
for the task. I would conjecture that using the more refined tools of reverse
mathematics it can be shown that Ramsey’s Theorem is formally stronger
than the Monotonic Subsequence Theorem.




The Bolzano-Weierstrass theorem and set theory 29

References

[1] R.G. Bartle and D.R. Sherbert, Introduction to real analysis, (2-nd Ed.),
John Wiley and Sons, Inc. (1992).

[2] A. Blass, Simple cardinal characteristics of the continuum, Israel Math-
ematical Conference Proceedings 6 (1993), 63-90.

[3] D. Booth, A Boolean view of sequential compactness, Fundamenta Math-
ematicae 85 (1974), 99-102.

[4] F. P. Ramsey, On a problem of formal logic, Proceedings of the London
Mathematical Society 30 (1930), 24-286.

(5] W. Rudin, Principles of Mathematical Analysis, (third ed.), McGraw-
Hill, (1976).

Department of Mathematics, Boise State University, Boise, Idaho 83725,
U.S.A.




	1.pdf (p.1-31)
	2.pdf (p.32-63)
	3.pdf (p.64-97)
	4.pdf (p.98-135)



