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Abstract. The first aim of this paper is to give identities and relations for a new family of the combinatorial
numbers and the Apostol-Euler type numbers of the second kind, the Stirling numbers, the Apostol-
Bernoulli type numbers, the Bell numbers and the numbers of the Lyndon words by using some techniques
including generating functions, functional equations and inversion formulas. The second aim is to derive
some derivative formulas and combinatorial sums by applying derivative operators including the Caputo
fractional derivative operators. Moreover, we give a recurrence relation for the Apostol-Euler type numbers
of the second kind. By using this recurrence relation, we construct a computation algorithm for these
numbers. In addition, we derive some novel formulas including the Stirling numbers and other special
numbers. Finally, we also some remarks, comments and observations related to our results.

1. Introduction

The special numbers and polynomials with their generating funstions, recently, have been studied
by many authors in many different areas especially almost all branches of mathematics, probability and
statistics and the other areas. On the other hand, combinatorial numbers and combinatorial sums provide
significant tools to solve problems not only in number theory, but also in discrete probability theory. There
are various kind of studies and applications related to generating functions for the special numbers and
polynomials. For example, according to the work in [5, p. 55], we see that the generating functions tech-
niques emerged from while studying the distributions of random variables by De moivre and Laplace in
probability theory. It is well-known that interpreting probability and statistic problems by the combinatorial
way is very important. For instance, special numbers especially combinatorial numbers are of many appli-
cation in the theory of enumerative combinatorics, the theory of probability and algebraic combinatorics on
words. In this paper, we give connection between the numbers counting the k-ary n-length Lyndon words
and combinatorial numbers. The numbers of the k-ary n-length Lyndon words have many applications in
algebraic combinatorics, lie algebra, analytic number theory, and also the theory of generating functions.
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Motivation of this paper is to combine special numbers and polynomials, combinatorial numbers and the
numbers of Lyndon words (see [2], [8], [14], [15], [16], [17], [18]).

In order to achieve our goals of this paper, we consider a family of new combinatorial numbers and the
Apostol-Euler type polynomials of the second kind, which is introduced and investigated in recent papers
[19], [21] and [22]. By spirit of these numbers with their generating functions, we give many novel identities
including of them.

It is time to recall some notations, definitions, identities and formulas related to some well-known
numbers and polynomials with their generating functions.

LetN = {1, 2, 3, . . .},N0=N∪ {0}. Z,R and C corresponds the set of integers, the set of real numbers and
the set of complex numbers, respectively. Furthermore, we assume that

0n =

{
1, n = 0
0, n ∈N .

Also, throughout this paper, we assume that(
x
0

)
= 1 and

(
x
n

)
=

(x)n

n!
,

where x ∈ C, n ∈N0 and (x)n denotes the falling factorial defined as follows:

(x)n = x (x − 1) (x − 2) . . . (x − n + 1) (x ∈ C; n ∈N)

and

(x)0 = 1 (x ∈ C)

(cf. [1]-[24], and the references cited therein)
In this paper, our motivation is to study on the combinatorial numbers y1 (n, k;λ) defined by means of

the following generating function:

Fy1 (t, k;λ) =
1
k!

(
λet + 1

)k
=

∞∑
n=0

y1 (n, k;λ)
tn

n!
(1)

(cf. [19], [21]).
The explicit formula for the combinatorial numbers y1 (n, k;λ) is given by

y1 (n, k;λ) =
1
k!

k∑
j=0

(
k
j

)
jnλ j (2)

(cf. [19], [21]).
One can easily see that forλ = 1, these combinatorial numbers are reduced to the following combinatorial

sum:

B (n, k) = k!y1 (n, k; 1) =

k∑
j=0

(
k
j

)
jn (3)

(cf. [19], [21]).
The Apostol-Euler type polynomials of the second kind of order k, E∗(k)

n (x;λ) defined by means of the
following generating functions:

FP (t, x; k, λ) =
( 2
λet + λ−1e−t

)k

etx =

∞∑
n=0

E∗(k)
n (x;λ)

tn

n!
(4)
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and E∗(k)
n (λ) = E∗(k)

n (0;λ) are the Apostol-Euler type numbers of the second kind of order k and their
generating functions are given by

FN (t; k, λ) =
( 2
λet + λ−1e−t

)k

=

∞∑
n=0

E∗(k)
n (λ)

tn

n!
(5)

(cf. [19], [21]).
Moreover, for λ = k = 1, the E∗(k)

n (λ) numbers are reduced to the Euler numbers of the second kind E∗n:

E∗n = E∗(1)
n (1)

which are given by the following generating function:

2
et + e−t =

∞∑
n=0

E∗n
tn

n!
(6)

where |t| < π
2 (cf. [9], [21], [24]; and see also the references cited therein).

In [13], Kim et al. defined the λ-Bernoulli polynomials Bn (λ; x) are given by the following generating
function:

logλ + t
λet − 1

etx =

∞∑
n=0

Bn (λ; x)
tn

n!
(7)

For x = 0, these polynomials are reduced to the λ-Bernoulli numbers Bn (λ):

Bn (λ) = Bn (λ; 0)

which are given by the following generating function:

logλ + t
λet − 1

=

∞∑
n=0

Bn (λ)
tn

n!
(8)

(cf. [13], [11]; and see also the references cited therein).
In [13], Kim et al. considered the λ-Bernoulli numbers as follows:

λ (B (λ) + 1)n
− Bn (λ) =


logλ, n = 0

1, n = 1
0, n > 1

(9)

with the umbral calculus convention of replacing Bn (λ) by Bn (λ).
By using (9), some special values of Bn (λ) are given as follows:

B0 (λ) =
logλ
λ − 1

,B1 (λ) =
λ − 1 − λ logλ

(λ − 1)2 , . . .

(cf. [13], [11], [20]; and see also the references cited therein).
From equation (7) and equation (8), we have

Bn (λ; x) =

n∑
k=0

(
n
k

)
Bk (λ) xn−k

(cf. [13]).
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Also, in [13, p. 9], Kim et al. derived the following formula including the sums powers of consecutive
integers in terms of λ-Bernoulli numbers and polynomials:

Bl (λ; k) − λ−kBl (λ) = λ−kl
k−1∑
n=0

λnnl−1. (10)

The Stirling numbers of the second kind S2 (n, k) are defined by means of the following generating
functions:

xn =

n∑
k=0

S2 (n, k) (x)k (11)

and

1
k!

(ex
− 1)k =

∞∑
n=k

S2(n, k)
xn

n!

where k ∈ N0 (cf. [3], [9], [4], [5], [6], [24]; and the references cited therein). The recurrence relation for the
Stirling numbers of the second kind are given by

S2(n, k) = S2(n − 1, k − 1) + kS2(n − 1, k) (12)

and S2 (0, 0) = 1, S2 (n, k) = 0 if k > n; S2(n, 0) = 0 if n > 0. By using the above generating function, an explicit
formula for the Stirling numbers of the second kind is given by

S2(n, v) =
1
v!

v∑
j=0

(
v
j

)
(−1) j (v − j

)n (13)

(cf. [3], [4], [5], [6], [24]; and the references cited therein).
It may be worthy to note that the relation between the Stirling numbers of the second kind and the

combinatorial numbers y1 (n, k;λ) given by (cf. [19]):

S2(n, k) = (−1)k y1 (n, k;−1) . (14)

For n ≥ 1, the Bell numbers Bln, enumerates all partitions of a set with n elements, are given by

Bln =

n∑
k=1

S2(n, k) (15)

and their generating functions are given by

eex
−1 =

∞∑
n=0

Bln
xn

n!

(cf. [3]; [6]; and also see the references cited therein).
In [10, Vol. 7, Eq-(2.29)], Gould gave the following identity:
∞∑

n=0

nrxn

n!
= ex

r∑
k=1

S2(r, k)xk. (16)

The Möbius function µ, which is an arithmetical function, is given by (cf. [1]):

µ(n) =


1 if n = 1,
(−1)m if n is a square-free integer with m distinct prime factors,
0 if n has a squared prime factor.

In order to give our identities, we need the Möbius inversion formula given by the following theorem:
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Theorem 1.1. Let f and 1 be arithmetical functions which satisfy

f (n) =
∑
d|n

1 (d)

if and only if

1 (n) =
∑
d|n

µ
(n

d

)
f (d) ,

(cf. [1, p. 32]).

The numbers Lk (n), counts the k-ary n length Lyndon words, are given as follows:

Lk (n) =
1
n

∑
d|n

µ
(n

d

)
kd, (17)

(cf [2], [8], [18], [16]).
In particular, in algebraic combinatorics, there exist various combinatorial interpretations related to

the numbers Lk (n). One of them is counting the numbers of the k-ary n-length Lyndon words from
lexicographically ordered free semigroup composed of the k-letters. The k-ary n-length Lyndon words are
representatives of the primitive necklaces and necklaces are formed by the ways of placing n colored beads
circularly with set of k various colours. It is also known that the numbers Lk (n) correspond dimension
formulas in some works based on the theory of free lie algebra. The formula in (17) is also known as a
Witt’s formula. The numbers Lk (n) are also used for the enumeration of monic irreducible polynomials of
degree n over Galois field GF(k) (cf. [2], [8], [14], [15], [16], [17], [18]).

The present paper consist of next four sections. We summarize our results as follows:
In Section 2, we construct not only recurrence relations for the Apostol-Euler type numbers of the second

kind, but also a computation algorithm for the Apostol-Euler type numbers of the second kind using these
recurrence relations.

In Section 3, by using some powerful techniques including generating functions, functional equations
and inversion formulas for any two arithmetical functions, we derive some identities related to a family
of new combinatorial numbers, the Apostol-Euler type numbers of the second kind, the Stirling numbers
of the second kind, the Euler numbers of the second kind, the Apostol-Bernoulli type numbers, the Bell
numbers and the numbers of special words.

In the last two sections, we derive some novel partial derivative formulas for a family of new combinato-
rial numbers by using derivative operator and the Caputo fractional derivative operator. These derivative
formulas provides ways to derive many identities for the special numbers and polynomials.

2. Recurrence relations for the Apostol-Euler type numbers of the second kind

In this section, we give recurrence relations for the Apostol-Euler type numbers of the second kind
E∗(k)

n (λ). By using these relations, we compute few values of these numbers.
By using Equation (5), we obtain a recurrence relation for the Apostol-Euler type numbers of the second

kind E∗(k)
n (λ) by the following theorem:

Theorem 2.1. Let n ∈N0. Starting with

E∗(0)
n (λ) =

{
1, n = 0
0, n > 0

and

E∗(1)
0 (λ) =

2λ
λ2 + 1

.
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If n > 0, then we have

n∑
j=0

(
n
j

) (
λ + (−1)n− j λ−1

)
E∗(1)

j (λ) = 0. (18)

By using the above relations, we compute the values of some E∗(1)
n (λ) numbers as follows:

E∗(1)
1 (λ) =

2λ
(
1 − λ2

)
(λ2 + 1)2 , E∗(1)

2 (λ) =
2λ

(
λ2
− 2λ − 1

) (
λ2 + 2λ − 1

)
(λ2 + 1)3 , . . .

It is time to compute the Apostol-Euler type numbers of the second kind of higher-order, E∗(k)
n (λ) by the

following theorem:

Theorem 2.2.

E∗(k1+k2)
n (λ) =

n∑
j=0

(
n
j

)
E∗(k1)

j (λ) E∗(k2)
n− j (λ) . (19)

Proof. We set the following functional equation:

FN (t; k1 + k2, λ) = FN (t; k1, λ) FN (t; k2, λ) .

Combining the above equation with (5), we get

∞∑
n=0

E∗(k1+k2)
n (λ)

tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

)
E∗(k1)

j (λ) E∗(k2)
n− j (λ)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.

By using the above relations, we compute the values of some E∗(k)
n (λ) numbers as follows:

E∗(2)
0 (λ) =

4λ2

(λ2 + 1)2 , E∗(2)
1 (λ) =

8λ2
(
1 − λ2

)
(λ2 + 1)2 , . . .

2.1. Computation algorithm for the Apostol-Euler type numbers of the second kind E∗(k)
n (λ)

Here, we give a computation algorithm for the Apostol-Euler type numbers of the second kind E∗(k)
n (λ)

by using Theorem 2.1 and Theorem 2.2.
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Algorithm 1 Let n, k ∈ N0. This algorithm will return the Apostol-Euler type numbers of the second kind,
E∗(k)

n (λ) by using Theorem 2.1 and Theorem 2.2., recursively.
procedure Second Kind Apostol Euler Type numbers(n: nonnegative integer, k: nonnegative integer, λ)

Begin
Lobal variables:
j : integer
if k = 0 then

if n = 0 then
return 1

else
if n > 0 then

return 0
end if

end if
else

if k = 1 then
if n = 0 then

return 2λ/
(
λ2 + 1

)
else

if n > 0 then
return −

(
1/

(
λ2 + 1

))
∗ sum( Binomial Coef

(
n, j

)
*
(
λ2 + Power

(
−1,n − j

))
↪→ ∗SECOND KIND APOSTOL EULER TYPE NUMBERS

(
n − j, k, λ

)
, j, 1,n)

end if
end if

else
if k > 1 then

return sum
(
Binomial Coef

(
n, j

)
∗SECOND KIND APOSTOL EULER TYPE NUMBERS

(
j, λ, k − 1

)
↪→ ∗SECOND KIND APOSTOL EULER TYPE NUMBERS

(
n − j, λ, 1

)
, j, 0,n

)
end if

end if
end if

end procedure

3. Identities and relations

In this section, we investigate two kind of identities and relations. One of them is related to the
combinatorial numbers and the Apostol-Euler type numbers of the second kind. For these identities, our
methods are depended on generating functions and their functional equations for these numbers. In order
to prove the other identities for the Möbius function and the Lyndon words, we use an arithmetical function
and Mobius inversion formula method.

3.1. Identities and relations for the combinatorial numbers and the Apostol-Euler type numbers of the second kind
Here, we give some functional equations for the generating functions of the combinatorial numbers and

the Apostol-Euler type numbers of the second kind. By using these equations, we derive many identities
and relations.

By using (1), we give the following functional equation:

λet
k−1∑
j=1

j!Fy1
(
t, j;λ

)
= k!Fy1 (t, k;λ) − Fy1 (t, 1;λ) .
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By using the above equation, we obtain

λ
∞∑

n=0

tn

n!

k−1∑
j=1

j!
∞∑

n=0

y1
(
n, j;λ

) tn

n!
=

∞∑
n=0

(
k!y1 (n, k;λ) − y1 (n, 1;λ)

) tn

n!
.

By using the Cauchy product, we get

∞∑
n=0

λ k−1∑
j=1

n∑
m=0

(
n
m

)
j!y1

(
m, j;λ

) tn

n!
=

∞∑
n=0

(
k!y1 (n, k;λ) − y1 (n, 1;λ)

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 3.1.

k!y1 (n, k;λ) = y1 (n, 1;λ) + λ
k−1∑
j=1

n∑
m=0

(
n
m

)
j!y1

(
m, j;λ

)
.

From (1) and (5), we have the following functional equation:

Fy1

(
2t, k;λ2

)
FN (t; k, λ) =

(2λ)k

k!
etk.

From the above equation, we get

∞∑
n=0

2ny1

(
n, k;λ2

) tn

n!

∞∑
n=0

E∗(k)
n (λ)

tn

n!
=

(2λ)k

k!

∞∑
n=0

kn tn

n!
.

Therefore, using the Cauchy product in the above equation, we obtain

∞∑
n=0

 n∑
m=0

(
n
m

)
2my1

(
m, k;λ2

)
E∗(k)

n−m (λ)

 tn

n!
=

(2λ)k

k!

∞∑
n=0

kn tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 3.2.

n∑
m=0

(
n
m

)
2my1

(
m, k;λ2

)
E∗(k)

n−m (λ) =
(2λ)k

k!
kn. (20)

Firstly, from equation (20), we have

k!
2k

n∑
m=0

(
n
m

)
2my1

(
m, k;λ2

)
E∗(k)

n−m (λ) = λkkn.

Summing the above equation over all 0 ≤ k ≤ v, we obtain the following combinatorial sums:

v∑
k=0

n∑
m=0

(
n
m

)
k!2m−ky1

(
m, k;λ2

)
E∗(k)

n−m (λ) =

v∑
k=0

λkkn.

Therefore, by combining the above equation with (10), we get the following theorem:
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Theorem 3.3.
v∑

k=0

n∑
m=0

(
n
m

)
k!2m−ky1

(
m, k;λ2

)
E∗(k)

n−m (λ) =
λv+1Bn+1 (λ; v + 1) − Bn+1 (λ)

n + 1
.

Secondly, summing both side of the equation (20) from 0 to infinity over k and using (16), we arrive at
the following result:

Corollary 3.4. Let n ∈N. Then we have
∞∑

k=0

n∑
m=0

(
n
m

)
2my1

(
m, k;λ2

)
E∗(k)

n−m (λ) = e2λ
n∑

j=1

(2λ) j S2
(
n, j

)
. (21)

Substituting λ = 1
2 into (21), we get sum of infinite series by the following corollary:

Corollary 3.5. Let n ∈N. Then we have
∞∑

k=0

n∑
m=0

(
n
m

)
2my1

(
m, k;

1
4

)
E∗(k)

n−m

(1
2

)
= e

n∑
j=1

S2
(
n, j

)
.

Substituting (15) into Corollary 3.5, we also get the following combinatorial sum:
∞∑

k=0

n∑
m=0

(
n
m

)
2my1

(
m, k;

1
4

)
E∗(k)

n−m

(1
2

)
= eBln.

Moreover, substituting λ = 1 into the equation (20) and combining with (3), we arrive at the following
corollary:

Corollary 3.6.
n∑

m=0

(
n
m

)
2mB (m, k) E∗(k)

n−m (1) = 2kkn.

By substituting k = 1 into the above equation and using (3) and (6), we also get a (presumably new)
formula for the Euler numbers of the second kind E∗n by the following corollary:

Corollary 3.7.
n∑

m=1

(
n
m

)
2m−1E∗n−m = 1 − E∗n.

3.2. Identities related to the Möbius function and the Lyndon words
Here, we derive two identities associated with the Möbius function and the Lyndon words by using an

arithmetical function and Mobius inversion formula.
By combining (2) with (17), we arrive at the following theorem:

Theorem 3.8.∑
d|n

µ
(n

d

)
y1 (d, k;λ) =

n
k!

k∑
j=0

(
k
j

)
λ jL j (n) . (22)

By applying the Möbius inversion formula to equation (22), we get the following novel identity related
to the numbers Lk (n) and y1 (n, k;λ):

Theorem 3.9.

y1 (n, k;λ) =
∑
d|n

k∑
j=0

(
k
j

)
d
k!
λ jL j (d) .
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4. Partial derivative equations for the functions Fy1 (t, k; λ) and their applications

In this section, we give partial derivative equations including the functions Fy1 (t, k;λ). By using these
equations, we derive recurrence relations for the combinatorial numbers y1 (n, k;λ).

Differentiating both side of (1) with respect to t, we get the following partial differential equation:

∂
∂t

{
Fy1 (t, k;λ)

}
= λetFy1 (t, k − 1;λ) . (23)

and

∂2

∂t2

{
Fy1 (t, k;λ)

}
= λ2e2tFy1 (t, k − 2;λ) + λetFy1 (t, k − 1;λ) .

By iterating the above derivation for the variable t and using induction method, we arrive at the
following higher order differential equation for the functions Fy1 (t, k;λ) by the following theorem:

Theorem 4.1. Let m ∈N. Then

∂m

∂tm

{
Fy1 (t, k;λ)

}
=

m∑
j=1

λ je jtS2
(
m, j

)
Fy1

(
t, k − j;λ

)
. (24)

Remark 4.2. Replacing k by 2k in (24), we arrive at another differantial equation which was given by Simsek in [23].

By using (1), we have

∂m

∂tm

{
Fy1 (t, k;λ)

}
=

∞∑
n=0

y1 (n + m, k;λ)
tn

n!
.

Substituting the above equation and (1) into (24), we get

∞∑
n=0

y1 (n + m, k;λ)
tn

n!
=

m∑
j=1

λ jS2
(
m, j

) ∞∑
n=0

jn
tn

n!

∞∑
n=0

y1
(
n, k − j;λ

) tn

n!

and using the Cauchy product, we obtain

∞∑
n=0

y1 (n + m, k;λ)
tn

n!
=

∞∑
n=0

 m∑
j=1

n∑
l=0

(
n
l

)
λ j jn−lS2

(
m, j

)
y1

(
l, k − j;λ

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 4.3. Let m ∈N and n ∈N0. Then

y1 (n + m, k;λ) =

m∑
j=1

n∑
l=0

(
n
l

)
λ j jn−lS2

(
m, j

)
y1

(
l, k − j;λ

)
. (25)

It is time to give some applications of (25). By substituting some special value of λ, we obtain some
(presumably new) identities.

If we substitute λ = −1 into (25) and using (14), we arrive at the following theorem:

Theorem 4.4. Let m ∈N and n ∈N0. Then

S2 (n + m, k) =

m∑
j=1

n∑
l=0

(
n
l

)
jn−lS2

(
m, j

)
S2

(
l, k − j

)
. (26)
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Remark 4.5. In [23], Simsek also gave a similar formula to (26) by using functional equation method. We use partial
differential equation in our proof which is different from that of [23].

Substituting λ = 1 into (25) and using (3), we also arrive at the following corollary:

Corollary 4.6. Let m ∈N and n ∈N0. Then

1
k!

B (n + m, k) =

m∑
j=1

n∑
l=0

(
n
l

)
jn−lS2

(
m, j

)
B
(
l, k − j

)(
k − j

)
!

.

Therefore, by using the above equation with the definition of B (n, k) in (3), we arrive at a combinatorial
sum given by the following corollary:

Corollary 4.7.

k∑
j=0

(
k
j

)
jn+m =

m∑
j=1

n∑
l=0

k− j∑
v=0

(
n
l

) (
k
j

) (
k − j

v

)
vl jn−l j!S2

(
m, j

)
.

Differentiating both side of (1) m times with respect to λ, we get the following partial differential
equation:

∂m

∂λm

{
Fy1 (t, k;λ)

}
= emtFy1 (t, k −m;λ) . (27)

Remark 4.8. The special case of (27) when m = 1 is reduced to the Eq. (15) given by Simsek in [21].

By using (1), we have

∂m

∂λm

{
Fy1 (t, k;λ)

}
=

∞∑
n=0

∂m

∂λm

{
y1 (n, k;λ)

} tn

n!
.

Substituting the above equation and (1) into (27), we get

∞∑
n=0

∂m

∂λm

{
y1 (n, k;λ)

} tn

n!
=

∞∑
n=0

mn tn

n!

∞∑
n=0

y1 (n, k −m;λ)
tn

n!

and using the Cauchy product, we obtain

∞∑
n=0

∂m

∂λm

{
y1 (n, k;λ)

} tn

n!
=

∞∑
n=0

 n∑
j=0

(
n
j

)
m jy1

(
n − j, k −m;λ

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 4.9.

∂m

∂λm

{
y1 (n, k;λ)

}
=

n∑
j=0

(
n
j

)
m jy1

(
n − j, k −m;λ

)
. (28)

Differentiating both side of (23) with respect to λ, we get the following partial differential equation:

∂2

∂t∂λ

{
Fy1 (t, k;λ)

}
= λe2tFy1 (t, k − 2;λ) + etFy1 (t, k − 1;λ) . (29)
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By using (1), we have

∂2

∂t∂λ

{
Fy1 (t, k;λ)

}
=

∞∑
n=0

∂
∂λ

{
y1 (n + 1, k;λ)

} tn

n!
.

Substituting the above equation and (1) into (29), we get
∞∑

n=0

∂
∂λ

{
y1 (n + 1, k;λ)

} tn

n!
= λ

∞∑
n=0

2n tn

n!

∞∑
n=0

y1 (n, k − 2;λ)
tn

n!
+

∞∑
n=0

tn

n!

∞∑
n=0

y1 (n, k − 1;λ)
tn

n!

and using the Cauchy product, we obtain

∞∑
n=0

∂
∂λ

{
y1 (n + 1, k;λ)

} tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

) (
λ2n− jy1

(
j, k − 2;λ

)
+ y1

(
j, k − 1;λ

)) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 4.10.

∂
∂λ

{
y1 (n + 1, k;λ)

}
=

n∑
j=0

(
n
j

) (
λ2n− jy1

(
j, k − 2;λ

)
+ y1

(
j, k − 1;λ

))
.

5. Applications of the Caputo fractional derivative to y1 (n, k; λ)

In this section, firstly we briefly give definition of the caputo fractional derivative, gamma and beta
functions. Secondly, by applying the caputo fractional derivative operator to y1 (n, k;λ), which is an analytic
function of λ variable, with beta integral, we derive a novel derivative formula for the y1 (n, k;λ).

Let α ∈ (0,∞) and n be the nearest positive integer greater than α. The Caputo fractional derivative of
order α of a function f is defined as follows:

Dα
∗

{
f (t)

}
=

1
Γ (n − α)

t∫
0

(t − u)n−α−1 dn

dun

{
f (u)

}
du,

(cf. [7], [12]).

Lemma 5.1.

b∫
a

(x − a)α−1 (b − x)β−1 dx = (b − a)α+β−1 B
(
α, β

)
. (30)

where a > b, Re (α) > 0 and Re
(
β
)
> 0 and

B
(
α, β

)
=

Γ (α) Γ
(
β
)

Γ
(
α + β

)
(cf. [25, p. 10, Eq-(69)]).

Applying the operator Dα
∗ to y1 (n, k;λ), we get

Dα
∗

{
y1 (n, k;λ)

}
=

1
Γ (m − α)

λ∫
0

(λ − u)m−α−1 dm

dum

{
y1 (n, k; u)

}
du



I. Kucukoglu, Y. Simsek / Filomat 32:20 (2018), 6879–6891 6891

where m is the nearest positive integer greater than α; that is, m depends on α.
By combining the above equation with (28) and (2), we get

Dα
∗

{
y1 (n, k;λ)

}
=

1
Γ (m − α)

n∑
j=0

(
n
j

)
m j

(k −m)!

k−m∑
l=0

(
k −m

l

)
ln− j

λ∫
0

(λ − u)m−α−1 uldu.

Combining the above equation with (30), we arrive at the following theorem:

Theorem 5.2. Let k ≥ m. Then we have

Dα
∗

{
y1 (n, k;λ)

}
=

n∑
j=0

k−m∑
l=0

(
n
j

)
m jln− jλm−α+l

Γ (m − α + l + 1) (k −m − l)!
. (31)

Substituting α = m ∈N into (31), we arrive at the following result:

Corollary 5.3. Let k ≥ m. Then we have

Dm
∗

{
y1 (n, k;λ)

}
=
∂m

∂λm

{
y1 (n, k;λ)

}
.
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