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Abstract. The paper is mainly devoted to deriving the relationship between an entire function and its
derivative when they share one small function except possibly a set, which is related to the famous Brück
conjecture. In addition, two propositions of infinite products are obtained. The first one is the growth
property of a certain infinite product. The second one is the property of entire solutions of the differential
equation which concerns infinite products.

1. Introduction and main results

It was Rubel and Yang [22] who firstly studied the relationship between an entire function and its
derivative when these functions share two values. They proved that if entire functions f − ei and f ′− ei have
the same zeros counting multiplicities (CM), where ei (i = 1, 2) is a finite constant, then f = f ′. From then
on, many outstanding works have been obtained, see [15, 21]. In 1996, Brück [3] also considered the related
problem and posed the following famous conjecture. The present paper mainly concerns this conjecture. It
says that:

Brück conjecture. Let f be a nonconstant entire function such that the hyper order is finite but not a positive
integer. If f − a and f ′ − a have same zeros with the same multiplicities (CM), where a is a finite value, then
f ′ − a = c( f − a), where c is a nonzero constant.

Here, the order ρ( f ) and hyper order σ2( f ) are defined as

ρ( f ) = lim sup
r→+∞

log T(r, f )
log r

, σ2( f ) = lim sup
r→+∞

log log T(r, f )
log r

,

where T(r, f ) is the characteristic function of f .

When a = 0, Brück himself proved the conjecture. Since then, many authors devoted to studying this
conjecture. In 1998, Gundersen-Yang [12] affirmed the conjecture for the case f is of finite order. Later,
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Chen-Shon [7] got that the conjecture also holds when f is of hyper order strictly less than 1/2. Cao [4]
further proved that the conjecture is right if the hyper order of f is 1/2. Recently, there is another research
direction on the conjecture. That is to weaken the condition of sharing value, see e.g. [8, 19]. Below, the
meromorphic function a is called a small function of f if T(r, a) = o{T(r, f )} as r → ∞ outside a set of r of
finite Lebesgue measure. By the notation NL(r, f − a, f ′ − a) (see Definition 1 below), Wang [24, Theorem
1.2] generalized some previous results, and her result can be described as follows.

Theorem A. Let f be an entire function of finite order, and let a be a small function of f . If f − a and f ′ − a
have the same zeros ignoring multiplicities (IM), and

s = max{lim sup
r→+∞

log NL(r, F,G)
log r

, lim sup
r→+∞

log NL(r, G,F)
log r

} < 1, (1)

where F = f − a and G = f ′ − a, then, f ′ − a = h(z)( f − a), where h is a meromorphic function of order no
more than s.

Definition 1. Let z0 be a common zero of F and G with multiplicity p and q, respectively. Let nL(r,F,G) be
the number of this point z0 with |z0| < r and p > q, each point counted p − q times, where z0 runs over the
zeros of F. And denote by NL(r, F,G) the counting function of nL(r,F,G).

In order to state our main result, we introduce a new notation, (see e.g. [2, 18]).

Definition 2. Let F and G be two meromorphic functions, and mF(ρ) (resp. mG(ρ)) the multiplicity of ρ as
zero of F (resp. G). Let D(F, G) be the set of the point ρ which runs over the zeros of FG, counting with
|mF(ρ)−mG(ρ)| times. If |mF(ρ)−mG(ρ)| = 0, then D(F, G) does not contain ρ. It is mentioned that if F and G
have the same zeros counting multiplicities, then D(F,G) = {∅}.

The size of a set Λ is measured by the counting function n(r,Λ), the number of these points in Λ ∩ {z :
|z| < r} counted with multiplicities. And the order ρ(Λ) of Λ is defined as

ρ(Λ) = lim sup
r→∞

log n(r,Λ)
log r

.

The set D(F,G) is called the exceptional set. It follows from Theorem A that

n(r,D(F,G)) = nL(r, f − a, f ′ − a) + nL(r, f ′ − a, f − a) = O(rt), (2)

where t is a positive number less than 1, since for arbitrary small ε > 0

(2r)s+ε
≥ NL(2r, f − a, f ′ − a)

=

∫ 2r

0

nL(t, f − a, f ′ − a) − nL(0, f − a, f ′ − a)
t

dt + nL(0, f − a, f ′ − a) log(2r)

≥

∫ 2r

r

nL(t, f − a, f ′ − a)
t

dt ≥ nL(r, f − a, f ′ − a)/2.

Clearly, ρ(D(F,G)) < 1 in Theorem A. One would like the exceptional set D( f − a, f ′ − a) to be as large
as possible, such as ρ(D(F,G)) = 1. The present paper is devoted to considering the size of exceptional set
in Theorem A. By adapting the concept of convergence type (see e.g. [13, Hayman, p.17]), we prove the
following theorem.

Main Theorem. Let f be an entire function of finite order, let a be a small function of f , and let G =
D( f − a, f ′ − a). If∫ +∞

0

n(t,G)
t2 dt < ∞, (3)
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then, f ′ − a = Azk Π1
Π2

( f − a), where A is a nonzero constant, k is an integer, and

Πi =
∑
av∈Gi

(1 −
z
av

), (i = 1, 2)

is a infinite product with set Gi ⊂ G (i = 1, 2).

Remark 1. It is mentioned that the infinite product Πi converges to an entire function since the condition
(3). It turns out that G = D( f − a, f ′ − a) can be as large as a set of order 1 convergence type. So, Main
theorem is a generalization of Theorem A in some sense. In particular, if f − a and f ′ − a have the same
zeros with same multiplicities (CM), then D( f − a, f ′ − a) = ∅. So, the main result yields f ′ − a = c( f − a),
where c is a nonzero constant. Thus, it also confirms that Brück conjecture holds if f is of finite order.

For the proof of Main theorem, we need two propositions of infinite products (see in Section 2), which
have their own rights.

2. Two propositions of infinite products

Before giving the propositions, we firstly introduce the following notation.

Definition 3. Let m(H) (resp. λ(H)) denotes the linear measure (resp. the logarithmic measure) of a set H.
By XH(t), we denote the characteristic function of H. Then, the upper and the lower logarithmic density of
H are defined

log densH = lim sup
r→+∞

∫ r

1 (XH(t))/tdt

log r
, log densH = lim inf

r→+∞

∫ r

1 (XH(t))/tdt

log r
.

Now, we show the proposition 1 as follows.

Proposition 1. Let G be a set of nonzero points satisfying
∫ +∞

0
n(t,G)
tp+1 dt < ∞ with an integer p ≥ 1, and let

E(z, p − 1) = (1 − z)ez+ z2
2 +···+ zp−1

p−1 . Then the infinite product

Π(z) =
∏
z∈G

E(
z
av
, p − 1)

is an entire function. Furthermore, for |z| = r large enough and arbitrary ε > 0,

(1) we have,
log |Π(z)| ≤ εrp.

(2) there exists a set E with arbitrary small upper logarithmic density log densE such that

log |Π(z)| ≥ −εrp,

holds for all |z| = r < E.

Remark 2. It is well known that one important result concerning infinite products is the Hadamard’ factor-
ization [26, Theorem 2.7]. It states that if f is a meromophic function of finite order, then it has representation
as f (z) = zk Π1

Π2
eQ, where k is an integer, Q is a polynomial, and Πi is a infinite product, which is also called the

canonical product of the zeros or poles of f . This can be regarded as a generalization of the Fundamental
Theorem of Algebra. So, Proposition 1 may contribute to the estimate of the infinite products in Hadamard’
factorization.
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Based on Proposition 1, we below consider a differential equation which concerns a certain infinite
product.

Proposition 2. Let f be an entire function, let a be a small function of f and the order ρ(a) be finite, and let
Q be a nonconstant polynomial. Suppose that Π1, Π2 are two infinite products defined as in Proposition 1
with p ≤ deg Q = m. If f satisfies the following differential equation

f ′ − a
f − a

=
Π1

Π2
eQ, (4)

then the order of f is infinite.

Remark 3. If the differential equation (4) is extended to f ′−a
f−a = zk Π1

Π2
eQ, where k is an integer, then the

conclusion of Proposition 2 still holds.

3. The proofs of propositions and main theorem

Proof. [Proof of Proposition 1.] According to the mind in [17, Li, Theorem 1], we firstly prove (1). Let av be
the element of G, if there are any, repeated according to the multiplicities. By the assumption, one then has

∞∑
v=1

|av|
−p = p

∫ +∞

0

dn(t,G)
tp = p2

∫ +∞

0

n(t,G)
tp+1 dt < ∞. (5)

We then make use of the following result [13, p.27].

Lemma 1. If G = {av} is a sequence of nonzero complex numbers such that
∑
∞

v=1 |av|
−p converges, then

Π(z) = Πz∈GE( z
av
, p − 1) is an entire function, whose zero set is G, and satisfies the following estimate

log |Π(z)| ≤ pA(p){|z|p−1
∫
|z|

0

n(t,G)
tp dt + |z|p

∫ +∞

|z|

n(t,G)
tp+1 dt},

where A(p) is a positive fixed constant.

Note that
∫ +∞

0
n(t,G)
tp+1 dt < ∞. So, for any ε > 0, when |z| is large enough, say |z| = r ≥ r0 > 0, then∫ +∞

r
n(t,G)
tp+1 dt < ε. Therefore,

ε >

∫ 2r

r

n(t,G)
tp+1 dt ≥

n(r,G)
(2r)p+1

∫ 2r

r
1dt ≥

n(r,G)
2p+1rp ,

which implies n(r,G) ≤ 2p+1rpε. Furthermore, for |z| = r large enough, one has

log |Π(z)| ≤ pA(p){|z|p−1
∫ r0

0

n(t,G)
tp dt + |z|p−1

∫
|z|

r0

n(t,G)
tp dt + |z|p

∫ +∞

|z|

n(t,G)
tp+1 dt}

≤ pA(p){|z|p−1
∫ r0

0

n(t,G)
tp dt + |z|p−1

∫
|z|

r0

2p+1tpε
tp dt + ε|z|p}

≤ pA(p)[2p+1 + k0]ε|z|p,

where k0 is a positive constant. It is the desired result (1).
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Now, we prove (2). It follows from Proposition 1 that log M(r,Π) ≤ εrp for |z| = r large enough, where
M(r,Π) is the maximus modulus of Π on the circle |z| = r, that is M(r,Π) = max{|Π(z)| : |z| = r}. Let us
employ the Minimum Modulus Theorem of the entire function, see e.g. [1, p.362, 4.5.14].

The Minimum Modulus Theorem. Let f be holomorphic in the disc B(0, 2eR) and continuous in the closure
of the disc. Assume that f (0) = 1 and let τ be a constant such that 0 < τ < 3e

2 . Then, in the disc |z| ≤ R, and
outside a collections of closed disc D1, · · · , Dq the sum of whose radii does not exceed 4τR, we have

log | f (z)| ≥ −(2 + log
3e
2τ

) log M(2eR, f ).

Set h ≥ 0 be an integer. Note that Π(0) = 1. Then, for |z| ≤ R = 2h+1, applying the above lemma to Π, one
has,

log |Π(z)| ≥ −(2 + log
3e
2τ

) log M(2eR,Π),

outside a collections of closed disc D1, · · · , Dq the sum of whose radii does not exceed 4τR. Define the set
Yh as

Yh = {r : there exist z ∈ ∪q
j=1D j such that |z| = r}.

Then, for any 2h
≤ |z| = r ≤ 2h+1 and r < Yh, one has

log |Π(z)| ≥ −(2 + log
3e
2τ

) log M(2eR,Π) ≥ −(2 + log
3e
2τ

)ε(2e2h+1)p

≥ −(2 + log
3e
2τ

)ε(4e2h)p
≥ −(2 + log

3e
2τ

)ε(4er)p

≥ −Aεrp,

where A = (2 + log 3e
2τ )(4e)p is a fixed positive constant and independent with h and z. Then, due to the same

way of Chiang and Feng in [5], we will prove (2) below. Set

Eh = Yh ∩ [2h, 2h+1].

Then, ∫
Eh

1dt ≤
∫

Yh

1dt ≤ 4τ2h+1.

Set E = ∪∞h=0Eh ∩ (1,∞). Then, we have for all z satisfying |z| = r < E ∪ [0, 1], that

log |Π(z)| ≥ −Aεrp.

For any r > 1, there exists nonnegative integer h such that 2h
≤ r ≤ 2h+1. Then,∫

E∩[1,r]

1
t

dt ≤
∫

E∩[1,2h+1]

1
t

dt =

h∑
j=0

∫
E j

1
t

dt

≤

h∑
j=0

1
2 j+1

4τ2 j+1
≤ 4τ(h + 1) ≤ 4τ

log r
log 2

+ 4τ.

Therefore,

δ(E) = log dens E = lim sup
r→+∞

∫
E∩[1,r]

1
t dt

log r
≤

4τ
log 2

.

Note that 0 < τ < 3e
2 . This is the desired result (2).
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Now, we turn to the proof of Proposition 2.

Proof. [Proof of Proposition 2.] Suppose that the order of f is finite. Below, we will derive a contradiction.
Rewrite (4) as

f ′

f −
a
f

1 − a
f

Π2

Π1
= eQ. (6)

By the Wiman-Valiron theory (see e.g. [14, 20]), there exists a subset E1 ∈ (1,+∞) with finite logarithmic
measure, and for some points zr = reiθ satisfying |zr| = r < E1, M(r, f ) = | f (zr)| and

f ′(zr)
f (zr)

=
v(r, f )

r
(1 + o(1))

as r→∞, where v(r, f ) denotes the central index of the function f . Here, recall a result of Wang and Yi, (see
e.g. [23, Lemma 5]).

Lemma 2. Let f be a nonconstant entire function of finite order. Suppose that a is a nonzero small function
of f . Then, there exists a set E5 ⊂ (1, ∞) satisfying log densE5 = 1, such that

log+ M(r, a)
log+ M(r, f )

→ 0,
M(r, a)
M(r, f )

→ 0,

holds for |z| = r ∈ E5, r→∞.

Let us turn back to the proof of Proposition 2. By Lemma 2, there exists a set E ∈ (1,+∞) satisfying
log densE = 1, such that

log+ M(r, a)
log+ M(r, f )

→ 0,
M(r, a)
M(r, f )

→ 0, (7)

holds for |z| = r ∈ E, as r→∞. Taking the principle branch of the logarithm of Eq (6) yields

log

f ′

f −
a
f

1 − a
f

Π2

Π1
= log eQ = Q + i2kπ = ReQ + i(IMQ + 2kπ), (8)

where k is an integer depending on IMQ such that IMQ + 2kπ ∈ (−π, π]. Furthermore, one has by (8) that

|ReQ| = | log |

f ′

f −
a
f

1 − a
f

Π2

Π1
|| ≤ | log |

f ′

f −
a
f

1 − a
f
|| + | log |

Π2

Π1
||. (9)

By Proposition 1, for any positive ε and r large enough, there exists measure set E2 with arbitrary small
log densE2 such that

e−εrm
≤ e−εrp

≤ |
Π2

Π1
(z)| ≤ eεrp

≤ eεrm
, (10)

holds for |z| = r < E2.

Here, we employ two results to handle this proposition, the first one is due to Wang and Laine [25,
Lemma 2.4], the latter one is due to Gundersen [9, Corollary 2].
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Lemma 3. Let f be an entire function of finite order ρ, and f (reiθr ) = M(r, f ) for every r. Given ζ > 0 and
0 < C(ρ, ζ) < 1, there exist a constant 0 < l0 < 1 and a set Eζ ⊂ [0,∞] of lower logarithmic density greater
than 1 − ζ such that

e−5πM(r, f )1−C(ρ,ζ)
≤ | f (reiθ)|

for all r ∈ Eζ large enough and all θ such that |θ − θr| ≤ l0.

Lemma 4. Let f be a transcendental meromorphic function of finite order ρ, and let ε > 0 be a given
constant. Then there exists a set H ⊂ (1,∞] with finite logarithmic measure, such that for all z satisfying
|z| < H ∪ [0, 1] and for all k, j, 0 ≤ j < k, we have

|
f (k)(z)
f ( j)(z)

| ≤ |z|(k− j)(ρ−1+ε).

Note that logarithmic density of E, E1, E2, Eζ, H. Then the upper logarithmic density of the set
E ∩ Eζ ≥ 1 − ζ, since

log dens(E ∩ Eζ) ≥ log densE + log densEζ − log dens(E ∪ Eζ) ≥ 1 − ζ.

Obviously, the upper logarithmic density E ∩ Eζ\(E1 ∪ E2 ∪ H) is more than 1 − ζ − µ, where µ is a small
enough positive number, since the logarithmic density of E2 is small enough. Note that ζ and µ can be
chosen small enough, so the upper logarithmic density E ∩ Eζ\(E1 ∪ E2 ∪H) is close to 1.

We assume that Q(z) = amzm + · · ·+ a1z + a0 with am = αeiβ , 0. Now, we split the proof into two cases as
follows.

Case 1. ρ( f ) > 1.

Note that ρ( f ) = lim sup
r→+∞

log v(r, f )
log r > 1 and the upper logarithmic density of the set E ∩ Eζ\(E1 ∪ E2 ∪ H)

is close to 1. Then, there exists a sequence {rn} ∈ E ∩ Eζ\(E1 ∪ E2 ∪ H) such that v(rn, f )
rn
→ ∞ as rn → ∞. Set

f (zrn ) = M(rn, f ). Then, one gets f ′(zrn )
f (zrn ) −

a(zrn )
f (zrn ) =

v(rn, f )
rn

(1 + o(1)).

Assume zrn = rneiθn with rn → ∞ and θn → θ0 ∈ [0, 2π]. Then Re(amzm
rn

) = Re(αrm
n ei(β+mθn)) =

αrm
n cos(β + mθn). Next, we consider two subcases.

Subcase 1.1. cos(β + mθ0) , 0.

Then, for n large enough, there exists a positive constant A > 0 such that

|Re(Q(zrn )| = (1 + o(1))|Re(amzm
rn

)| ≥ Arm
n .

Together with (9) and (10), one gives

| log |

f ′

f −
a
f

1 − a
f

(zrn )|| ≥ |Re(Q(zrn )| − | log |
Π2

Π1
||(zrn ) ≥ Arm

n − εrp
n ≥ (A − ε)rm

n . (11)

On the other hand,

| log |(
f ′

f
−

a
f

)(zrn )|| = log
v(rn, f )

rn
+ O(1).

Combining this and (11) yields

(A − ε)rm
n ≤ log

v(rn, f )
rn

+ O(1).
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Taking the logarithm of both side of the above inequality yields

m log rn ≤ log log v(rn, f ) + log log rn + O(1),

which implies that the order of f is infinite, a contradiction.

Subcase 1.2. cos(β + mθ0) = 0.

Below, we introduce a method of Wang in [24] to handle this subcase. In view of cos(β + mθ) . 0,
without loss of generality, we assume that

cos(β + mθ) > 0, θ ∈ (θ0, θ0 +
π
m

).

Note that θn → θ0. Then, as n large enough, |θn −θ0| ≤ l0 < π
m . Choose now θ∗n such that l0/2 ≤ θ∗n −θn ≤ l0.

Then, we can assume that θ∗n → θ∗0 as n → ∞. Obviously, cos(β + mθ∗0) > 0. Furthermore, it follows from
Lemma 3 that

e−5πM(rn, f )1−C
≤ | f (z∗n)|,

with z∗n = rneiθ∗n . Considering (7), it is easy to see

log M(rn, a)
(1 − c) log M(rn, f ) − 5π

→ 0,

as n→∞, which implies

|a(z∗n)|
| f (z∗n)|

≤
M(rn, a)

e−5πM(rn, f )1−C → 0, (12)

as n→∞. Then, for n large enough, the same discussion as above yields

Re(Q(z∗n)) = (1 + o(1))Re(amQ(z∗n)m) ≥ Brm
n ,

where B is a positive constant. Then, for n large enough, we have

|

f ′

f −
a
f

1 − a
f

(z∗n)| = |eQ Π1

Π2
(z∗n))| = eRe(Q(z∗n))

|
Π1

Π2
(z∗n)| ≥ e(B−ε)rm

n . (13)

On the other hand, it follows from (12) and Lemma 4 that

|

f ′

f −
a
f

1 − a
f

(z∗n)| ≤ (1 + o(1))[|
f ′

f
(z∗n)| + |

a
f

(z∗n)|] ≤ (1 + o(1))|zn|
(ρ( f )−1+ε),

which contradicts the above estimate (13).

Case 2. ρ( f ) ≤ 1.

We claim that the order of f must be 1. Otherwise, assume that ρ( f ) < 1. Note that a is a small function
of f . Then, ρ(a) < 1 and f ′−a

f−a is of order less than 1. It contradicts the equation

f ′ − a
f − a

=
Π1

Π2
eQ,

since deg Q = m ≥ 1. So, we assume that ρ( f ) = 1 in the following discussion.
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For |zr| = r ∈ E\(E1 ∪ E2), we have, from (7), that

log+ M(r, a)
log+ M(r, f )

→ 0.

Thus, without loss of generality, we assume, for all r ∈ E\(E1 ∪ E2) and any ε > 0, that log+ M(r,a)
log+ M(r, f ) < ε. This

implies

M(r, a) < M(r, f )ε, and
M(r, a)
M(r, f )

<
1

M(r, f )1−ε . (14)

Note that ρ( f ) = lim sup
r→+∞

log v(r, f )
log r = 1. Then, for r large enough,

log v(r, f )
log r

≤ 1 + ε, and v(r, f ) ≤ r1+ε.

Now, we introduce a connection between the growth of the central index v(r, f ) and the maximus modulus
M(r, f ). It can be seen in [14, Theorems 1.9 and 1.10] or [16, p.11, Satz 4.3 and 4.4]. It is stated as:

Lemma 5. Let 1(z) =
∑
∞

n=0 anzn be an entire function, µ(r) be the maximum term, i.e. µ(r, 1) = max{|an|rn; n =
1, , 2 , · · · }, v(r, 1) be the central index, i.e. v(r, 1) = max{m : µ(r, 1) = |am|rm

}, then for r < R,

M(r, 1) < µ(r, 1){v(R, 1) +
R

R − r
}.

Then, applying Lemma 5 to the function f , one has, for r large enough and R = 2r,

M(r, f ) ≤ µ(r, f )[v(2r, f ) + 2] ≤ |av(r, f )|rv(r, f )[v(2r, f ) + 2].

Taking the principle branch of the logarithm of the above inequality shows

log M(r, f ) ≤ v(r, f ) log r + log v(2r, f ) + C

≤ v(r, f ) log r + log(2r)1+ε + C ≤ 2v(r, f ) log r,
(15)

where C is a positive number.
Note that ρ( f ) = lim sup

r→+∞

log log M(r, f )
log r = 1. So, for ε > 0, there exists a sequence {rn} ⊂ E ∩ Eζ\(E1 ∪ E2 ∪H)

(we still use the notation rn) such that

log log M(rn, f )
log rn

≥
ρ( f )
1 + ε

=
1

1 + ε
,

which leads to

log M(rn, f ) ≥ r
1

1+ε
n , and M(rn, f ) ≥ er

1
1+ε
n . (16)

By the above inequality and together with (15), one gets

2v(rn, f ) log rn ≥ log M(rn, f ) ≥ r
1

1+ε
n . (17)

Combining (14) and (16) yields

|
a(zrn )
f (zrn )

| ≤
M(rn, a)
M(rn, f )

<
1

M(rn, f )1−ε ≤
1

e(1−ε)r
1

1+ε
n

. (18)
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Still set |zrn | = rn and M(rn, f ) = f (zrn ). It follows from (17) that

|
f ′(zrn )
f (zrn )

| =
v(rn, f )

rn
(1 + o(1)) ≥

1
2

1
log rn

r
1

1+ε−1
n =

1
2

1
log rn

r
−ε
1+ε
n . (19)

By (18) and (19), one can see that | a(zrn )
f (zrn ) | = o(| f

′(zrn )
f (zrn ) |). Thus,

|
f ′(zrn )
f (zrn )

−
a(zrn )
f (zrn )

| = |
f ′(zrn )
f (zrn )

|(1 + o(1)).

A easy calculation yields

1
2

1
log rn

r
−ε
1+ε
n ≤ |

f ′(zrn )
f (zrn )

| =
v(rn, f )

rn
(1 + o(1)) ≤ rρ( f )+ε−1

n = rεn.

Furthermore,

(
−ε

1 + ε
) log rn − log log rn − log 2 = log

1
2

1
log rn

r
−ε
1+ε
n

≤ log
v(rn, f )

rn
(1 + o(1))

≤ log rεn = ε log rn,

which indicates

| log |
f ′(zrn )
f (zrn )

−
a(zrn )
f (zrn )

|| =| log
v(rn, f )

rn
(1 + o(1))|

≤max{ε log rn, |
−ε

1 + ε
| log rn + log log rn}.

(20)

Without loss of generality, still set zrn = rneiθn with rn → ∞ and θn → θ0 ∈ [0, 2π]. Then Re(amzm
rn

) =

Re(αrm
n ei(β+mθn ) = αrm

n cos(β + mθn).

Next, we also split the proof into two subcases as follows.

Subcase 2.1. cos(β + mθ0) , 0.

As above, one has for n large enough, there exists a positive constant C > 0 such that

|Re(Q(zrn )| = (1 + o(1))|Re(amzm
rn

)| ≥ Crm
n .

Together with (9) and (10), one gives

| log |

f ′

f −
a
f

1 − a
f

(zrn )|| ≥ |Re(Q(zrn )| − | log |
Π2

Π1
||(zrn ) ≥ Crm

n − εrp
≥ (C − ε)rm

n . (21)

Combining this and (20) yields

(C − ε)rm
n ≤ max{ε log rn, |

−ε
1 + ε

| log rn + log log rn},

which is impossible.

Subcase 2.2. cos(β + mθ0) = 0.

With the same argument of Subcase 1.2, one can derive a contradiction. Here, we omit the details.

Thus, we complete the proof of Proposition 2.
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Proof. [Proof of Main theorem.] Based on the propositions 1 and 2, we give the proof of the main result. In
fact, by Hadamard’ factorization [26, Theorem 2.7], one has

f ′ − a
f − a

= zk Π1

Π2
eQ,

where Q is a polynomial and k is an integer. Note that f is of finite order. Then, it follows from Proposition
2 that Q is of degree 0, say Q = A. Therefore, one gets the conclusion of Main theorem.

To conclude this paper, we give two natural further studies which are related to the main results. One is
the size of possible exceptional set G in Main theorem. We would like G to be as large as possible, such as
n(r,G) = o(r). Unfortunately, our method in the paper does not work, since (5) may not converges for p = 1.
The other one is to generalize some differential equations to those concern infinite products. For example,
the differential equation

f ′′ + A1(z)eaz + A2ebz = H,

where A1, A2, H are three entire functions with order less than 1, and a, b are two constants. It is related
to a famous differential equation question posed by Gundersen in [11]. We refer to [6, 10, 25] for some
results of the above differential equation. It is natural to generalize the above differential equation to
f ′′ + Π1(z)eaz f ′ + Π2ebz f = Π3, where the infinite product Πi is defined as in the main theorem.
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