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Perturbation Bounds for the Metric Projection of a Point onto a Linear
Manifold in Reflexive Strictly Convex Banach Spaces

Jianbing Caoa, Hongwei Jiaoa

aDempartment of Mathematics, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China

Abstract. In this paper, by using some recent perturbation bounds for the Moore–Penrose metric gener-
alized inverse, we present some results on the perturbation analysis for projecting a point onto a linear
manifold in reflexive strictly convex Banach spaces. The main results have two parts, part one covers
consistent operator equations and part two covers the general so-called ill posed operator equations.

1. Introduction

Let X and Y be Banach spaces. Let B(X,Y) be the Banach space consisting of all bounded linear operators
from X to Y. For A ∈ B(X,Y), let N(A) (resp. R(A)) denote the kernel (resp. range) of A. Consider the
following problem for projecting a point onto a linear manifold: For the given A ∈ B(X,Y) withR(A) closed,
b ∈ Y and p ∈ X, find a vector x∗ ∈ X satisfying

‖p − x∗‖ = inf
x∈S
‖p − x‖

subject to S = {x ∈ X : ‖Ax − b‖ = inf
z∈X
‖Az − b‖}.

(1.1)

The collection of all vectors x ∈ X satisfying the constraint in (1.1) will be called the feasible set and
its elements will be called feasible solutions of (1.1). Solving the problem (1.1) is important in many
applications. For example, when p = 0, then the problem (1.1) is just the usual minimal norm least squares
problem; if b = 0, then the problem (1.1) is that of projecting the vector p to the null space N(A), which
is a key step in the interior-point projective algorithm for linear programming initiated with Karmarkar’s
pioneering work [12]. When X and Y are finite dimensional vector spaces or infinite dimensional Hilbert
spaces, it is well-known that the unique optimal solution x∗ to the problem (1.1) exists and unique, indeed,
x∗ = A†b + (I − A†A)p, where A† is the Moore–Penrose orthogonal projection generalized inverse of A.

Now, we give A (resp. b and p) a small perturbation δA (resp. δb and δp). Put Ā = A + δA, b̄ = b + δb and
p̄ = p + δp. Then the problem (1.1) is perturbed to the following:

‖p̄ − y∗‖ = inf ‖p̄ − y‖

subject to S̃ = {x ∈ X : ‖Āy − b̄‖ = inf
z∈X
‖Āz − b̄‖}. (1.2)
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Obviously, if Ā† exists, then the problem (1.2) also has a unique optimal solution y∗ = Ā†b̄ + (I − A†A)p̄).
When X and Y are finite dimensional vector spaces or infinite dimensional Hilbert spaces, the problem (1.1)
and its perturbation problem (1.2) have been considered by many authors in the literature (see [3, 6, 7, 18]).
In their paper [21], by using the so-called stable perturbation [4] of operators (i.e., R(Ā) ∩N(A+) = {0}), the
authors first got the following important perturbation results of the Moore–Penrose orthogonal projection
generalized inverse in Hilbert spaces. More precisely, let A ∈ B(X,Y) with R(A) closed, suppose that
‖A†‖‖δA‖ < 1 and R(Ā) ∩N(A†) = {0}, then, the authors proved that (see [21, Proposition 7]) Ā† exists and

‖Ā† − A†‖ ≤
1 +
√

5
2

‖A†‖2‖δA‖
1 − ‖A†‖‖δA‖

. (1.3)

The perturbation bound (1.3) above has many applications, especially in solving problem (1.1) and
its perturbation problem (1.2). As a consequence, they obtained (see [21, Proposition 8]) the following
perturbation estimate for problems (1.1) and (1.2):

‖y∗ − x∗‖
‖x∗‖

≤
κ

1 − κεA

(
εA +

‖b − Ax∗‖
‖A‖‖x∗‖

κεA +
‖b‖
‖A‖‖x∗‖

εb

)
+
‖p − x∗‖
‖x∗‖

κεA +
‖p‖
‖x∗‖

εp,

(1.4)

where εb =
‖δb‖
‖b‖

, εA =
‖δA‖
‖A‖

, εp =
‖δp‖
‖p‖

and κ = ‖A‖A†‖ be the condition number of A.

Over the years, generalizations of the perturbation bound (1.3) have been considered in many papers
(see [5, 9, 13, 19]). In recent years, by using the so-called the Moore–Penrose metric generalized inverse [16],
certain results on extending the perturbation bound (1.3) to operators on Banach spaces are also considered
by many authors (see [8, 14]). Motivated by some results in Hilbert spaces, and based on our recent
perturbation results of the Moore–Penrose metric generalized inverse [2], in this paper, we will make a
further study on the problem (1.1) and its perturbation problem (1.2) in reflexive and strictly convex Banach
spaces, as a consequence, we present certain extensions of the perturbation bound (1.4). Some particular
cases and applications will be also considered.

2. Preliminaries

In this section, we recall some concepts and basic results will be used in this paper. We first present the
definition of set-valued metric projection.

Definition 2.1 ([15]). Let M ⊂ X be a subset. The set-valued mapping PM : X→M defined by

PM(x) = {s ∈M | ‖x − s‖ = dist(x,M)}, ∀x ∈ X

is called the set-valued metric projection, where dist(x,M) = infz∈X ‖x − z‖.

For M ⊂ X, if PM(x) is nonempty and contains at most a singleton for each x ∈ X, then M is called
a Chebyshev set. We denote by πM any selection for the set-valued mapping PM, i.e., any single-valued
mapping πM : D(πM) → M with the property that πM(x) ∈ PM(x) for any x ∈ D(πM), where D(πM) = {x ∈
X : PM(x) , ∅}. For the particular case, when M is a Chebyshev set, the mapping πM is called the metric
projector from X onto M.

Remark 2.2 ([15]). It is well-known that if X is reflexive and strictly convex Banach space, then every closed convex
subset in X is a Chebyshev set, and the metric projector is just the linear orthogonal projector in Hilbert space.

We need the following important properties of the metric projection.

Lemma 2.3 ([15]). Let X be a Banach space and L be a Chebyshev subspace of X. Then the metric projection πL is
quasi-additive on L. Moreover, ‖x − πL(x)‖ ≤ ‖x‖ for any x ∈ X, i.e., ‖πL‖ ≤ 2.
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Definition 2.4. Let M ⊂ X be a subset and let A : X → Y be a mapping. Then we call A is quasi-additive on M if
A satisfies

A(x + z) = A(x) + A(z), ∀ x ∈ X, ∀ z ∈M.

If A is quasi-additive on R(A), then we will simply say A is a quasi-linear operator. In general, quasi-linear operator
is not a linear operator.

Now, we present the definition of the Moore–Penrose metric generalized inverse.

Definition 2.5 ([16]). Let A ∈ B(X,Y). Suppose that N(A) and R(A) are Chebyshev subspaces of X and Y,
respectively. If there exists a bounded homogeneous operator AM : Y→ X such that:

(1) AAMA = A; (2) AMAAM = AM;

(3) AMA = IX − πN(A); (4) AAM = πR(A).

Then AM is called the Moore–Penrose metric generalized inverse of A, where πN(A) and πR(A) are the metric projectors
ontoN(A) and R(A), respectively.

When X and Y are Hilbert spaces, then from Definition 2.5, we see obviously that the Moore–Penrose
metric generalized inverse AM of A is indeed the Moore–Penrose orthogonal projection generalized inverse
A† of A under usual sense. It is well-known that the theory of the Moore–Penrose metric generalized
inverses has its genetic in the context of the so-called ill-posed linear problems. Please see [16, 17] for
more information about the Moore–Penrose metric generalized inverses and related knowledge. Here we
only need the following result which characterizes the existence of the Moore–Penrose metric generalized
inverse in a reflexive and strictly convex Banach space.

Proposition 2.6 ([17, Corollary 2.1]). Let X, Y be reflexive strictly convex Banach Spaces, let A ∈ B(X,Y) with
R(A) is closed. Then there exists a unique Moore–Penrose metric generalized inverse AMof A.

In our recent paper [2], mainly based on Proposition 2.6, by using the concept of quasi-additivity and
the so-called generalized Neumman lemma [5], we have obtained the following perturbation results of the
Moore–Penrose metric generalized inverse in reflexive and strictly convex Banach spaces.

Lemma 2.7 ([2, Theorem 3.3]). Let X, Y be reflexive strictly convex Banach spaces, let A, δA ∈ B(X,Y) with R(A)
closed. Put Ā = A+δA. Suppose that there exist two constants λ1, λ2 ∈ (−1, 1) such that ‖δAx‖ ≤ λ1‖Ax‖+λ2‖Āx‖,
then

(1) AM exists andN(Ā) = N(A).

In addition, if AM is quasi-additive on R(A), then
(2) ĀM exists. Moreover,

1 − λ2

1 + λ1

1
‖A‖
≤ ‖ĀM

‖ ≤
1 + λ2

1 − λ1
‖AM
‖,

‖ĀM
− AM

‖ ≤ ‖AM
‖‖πR(Ā) − πR(A)‖ +

1 + λ2

1 − λ1
‖AM
‖

2
‖δA‖. (2.1)

We should indicate that the error estimate formula (2.1) is not presented in [2, Theorem 3.3]. But, under
our assumption, we can obtain this estimate easily. In fact, since N(Ā) = N(A), we have ĀMĀ = AMA, and
then

‖ĀM
− AM

‖ = ‖ĀMĀĀM
− AMAAM

‖ = ‖AMAĀM
− AMAAM

‖

= ‖AMĀĀM
− AMAAM

− AMδAĀM
‖

≤ ‖AMĀĀM
− AMAAM

‖ + ‖AMδAĀM
‖

≤ ‖AM
‖‖πR(Ā) − πR(A)‖ +

1 + λ2

1 − λ1
‖AM
‖

2
‖δA‖.

The perturbed bounds obtained in Lemma 2.7 will be used in the following section.
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3. Main Results

Unless stated otherwise, in the remainder of this paper, for convenience, we always assume that X and
Y are reflexive and strictly convex Banach spaces. Similar as in Hilbert spaces, we can prove the following
existence and uniqueness result for the problem (1.1).

Lemma 3.1. Suppose that R(A) ⊂ Y is closed, then, the unique optimal solution to the problem (1.1) exists, and can
be expressed as

x∗ = AMb + πN(A)p.

Proof. Since X, Y are reflexive strictly convex Banach spaces and R(A) is closed, it follows from [20,
Proposition 2.3.7] that the problem (1.1) has solutions. Moreover, from Definition 2.5, we see that the
feasible solution x to (1.1) can be expressed as AMb + πN(A)u for any vector u ∈ X, and then from Remark
2.2, we know that the optimal solution to (1.1) exists and uniquely. Using Definition 2.5 again, we see that
x∗ = AMb + πN(A)p.

In the remainder of this paper, the optimal solutions to (1.1) and (1.2) will be denoted by x∗ and y∗,

respectively. For convenience, in this section, we always let εb =
‖δb‖
‖b‖

, εA =
‖δA‖
‖A‖

, and κ = ‖A‖AM
‖. Firstly,

we assume that both linear operator equations Ax = b and Āy = b̄ are consistent, that is, assume that
b ∈ R(A) and b̄ ∈ R(Ā). We always assume that x , 0 whenever ‖x‖ appears in the denominator.

Theorem 3.2. Let A, δA ∈ B(X,Y) with R(A) closed. Assume that AM is quasi-additive on R(A) and R(δA). Put
Ā = A + δA. Suppose that b ∈ R(A) and b̄ ∈ R(Ā),

(1) If ‖AM
‖‖δA‖ < 1, then for any solution y to the problem (1.2), there is a feasible solution x to the problem (1.1)

such that

1
1 + κεA

(
‖AMδb‖

‖AMb‖ + 2‖y‖
− κεA

)
≤
‖y − x‖
‖x‖

≤
κ

1 − κεA
(εb + εA). (3.1)

(2) Suppose that there exist two constants λ1, λ2 ∈ (−1, 1) such that ‖δAx‖ ≤ λ1‖Ax‖ + λ2‖Āx‖, and ĀM is
quasi-additive on R(A). Then

‖y∗ − x∗‖
‖x∗‖

≤ κ
(
‖πR(Ā) − πR(A)‖ +

1 + λ2

1 − λ1
(κεA + εb)

)
+ 2
‖δp‖
‖x∗‖

. (3.2)

In addition, if R(Ā) = R(A), then

‖y∗ − x∗‖
‖x∗‖

≤
1 + λ2

1 − λ1
(κεA + εb)κ + 2

‖δp‖
‖x∗‖

.

Proof. (1) Let x be the metric projection of y onto the feasible set of (1.1), i.e., x = AMb + πN(A)y. Noting that
Āy = b̄ and AM is quasi-additive on R(A) and R(δA), we get

y − x = AMAy − AMb = AM(Ay − b)

= AM(Āy − b − δAy)

= AM(δb − δAy)

= AM(δb − δAx) − AMδA(y − x),

which implies that (IX + AMδA)(y − x) = AM(δb − δAx). Since ‖AM
‖‖δA‖ < 1, we know that IX + AMδA is

invertible. Hence,

y − x = (IX + AMδA)−1AM(δb − δAx).
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Now, noting that ‖A‖‖x‖ ≥ ‖Ax‖ = ‖b‖, we have

‖y − x‖
‖x‖

=
‖(IX + AMδA)−1AM(δb − δAx)‖

‖x‖

≤
1

1 − ‖AMδA‖
‖AM(δb − δAx)‖

‖x‖

≤
‖AM
‖‖A‖

1 − ‖AM‖‖δA‖
‖δb‖ + ‖δA‖‖x‖
‖A‖‖x‖

≤
κ

1 − κεA
(εb + εA),

which gives the right inequality of (3.1).
On the other hand, from Lemma 2.3, we know ‖πN(A)‖ ≤ 2, and then

‖x‖ ≤ ‖AMb‖ + ‖πN(A)y‖ ≤ ‖AMb‖ + 2‖y‖,

thus, the left one in (3.1) is from

‖y − x‖
‖x‖

≥
‖AM(δb − δAx)‖
‖IX + AMδA‖‖x‖

≥
1

1 + ‖AM‖‖δA‖
‖AMδb‖ − ‖AM

‖‖δA‖‖x‖
‖x‖

≥
1

1 + κεA

(
‖AMδb‖

‖AMb‖ + 2‖y‖
− κεA

)
.

(2) From Lemma 2.7, we know ĀM exists, then from Lemma 3.1, we have

x∗ = AMb + (IX − AMA)p, y∗ = ĀMb̄ + (IX − ĀMĀ)p̄.

Subtracting the second equality from the first equality above, we have

y∗ − x∗ = ĀMb̄ − AMb + δp − ĀMĀp̄ + AMAp. (3.3)

From Lemma 2.7 (1), we have N(Ā) = N(A), which means that ĀMĀ = AMA. Now, from (3.3), and noting
that AM and ĀM are quasi-additive on R(A), b ∈ R(A), we have

y∗ − x∗ = ĀMb̄ − AMb + δp − AMAδp
= (ĀM

− AM)b + ĀMδb + (IX − AMA)δp. (3.4)

Noting that ‖b‖ = ‖Ax∗‖ ≤ ‖A‖‖x∗‖, i.e.,
1
‖x∗‖

≤
‖A‖
‖b‖

. From Lemma 2.3, we also have ‖IX−AMA‖ = ‖πN(A)‖ ≤ 2.

Now, by Lemma 2.7 (2) and (3.4),

‖y∗ − x∗‖
‖x∗‖

=
‖(ĀM

− AM)b + ĀMδb + (IX − AMA)δp‖
‖x∗‖

≤
‖A‖
‖b‖

(
‖ĀM

− AM
‖‖b‖ + ‖ĀM

‖‖δb‖
)

+ 2
‖δp‖
‖x∗‖

≤ ‖A‖‖AM
‖‖πR(Ā) − πR(A)‖ +

1 + λ2

1 − λ1
‖A‖‖AM

‖
2
‖δA‖

+
1 + λ2

1 − λ1
‖A‖‖AM

‖
‖δb‖
‖b‖

+ 2
‖δp‖
‖x∗‖

= κ
(
‖πR(Ā) − πR(A)‖ +

1 + λ2

1 − λ1
(κεA + εb)

)
+ 2
‖δp‖
‖x∗‖

.

(3.5)

Finally, if R(Ā) = R(A), then our desirable result follows from (3.5) and Lemma 2.7 (2).
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Now we consider the problems (1.1) and (1.2) for some general cases, that is, we drop the assumption
that b ∈ R(A) and b̄ ∈ R(Ā) in Theorem 3.2.

Theorem 3.3. Let A, δA ∈ B(X,Y) with R(A) closed. Assume that AM is quasi-additive on R(A) and R(δA). Put
Ā = A + δA.

(1) If ‖AM
‖‖δA‖ < 1, then for any solution y to the problem (1.2), there is a feasible solution x to the problem (1.1)

such that

‖y − x‖
‖x‖

≤
κ

1 − κεA

(
‖Ax − b‖ + 2(‖b‖ + ‖δb‖)

‖A‖‖x‖
+ 2εA

)
. (3.6)

(2) If there exist two constants λ1, λ2 ∈ (−1, 1) such that ‖δAx‖ ≤ λ1‖Ax‖ + λ2‖Āx‖, then

‖y∗ − x∗‖
‖x∗‖

≤
κ‖b‖
‖A‖‖x∗‖

(1 + λ2

1 − λ1
(1 + εb) + 1

)
+ 2
‖δp‖
‖x∗‖

. (3.7)

Proof. (1) Let x = AMb +πN(A)y. Then, we see that x is a feasible solution to the problem (1.1). Let r̃ = Āy− b̄
be the residual of y. Then, since y is an extremal solution of (1.2), we get that

‖r̃‖ = ‖Āy − b̄‖ ≤ ‖Āx − b̄‖ ≤ ‖Ax − b‖ + ‖δb − δAx‖. (3.8)

On the other hand, noting that AM is quasi-additive on R(δA) and R(A), we have

y − x = AMAy − AMb = AM(Ā − δA)y − AMb

= AMĀy − AMδAy − AMb

= AM(Āy − b̄) − AMδA(y − x) − AMδAx + AMb̄ − AMb

= AMr̃ − AMδA(y − x) − AMδAx + AMb̄ − AMb,

which implies that

(IX + AMδA)(y − x) = AMr̃ − AMδAx + AMb̄ − AMb. (3.9)

Therefore, by (3.8) and (3.9), we have

‖y − x‖
‖x‖

≤
‖(IX + AMδA)−1

‖‖AMr̃ − AMδAx + AMb̄ − AMb‖
‖x‖

≤
‖AM
‖

1 − ‖AMδA‖
‖Ax − b‖ + ‖δAx − δb‖ + ‖δA‖‖x‖ + 2‖b‖ + ‖δb‖

‖x‖

≤
‖AM
‖

1 − ‖AMδA‖
‖Ax − b‖ + 2(‖b‖ + ‖δb‖ + ‖δA‖‖x‖)

‖x‖

≤
‖AM
‖‖A‖

1 − ‖AM‖‖δA‖

(
‖Ax − b‖ + 2(‖b‖ + ‖δb‖)

‖A‖‖x‖
+ 2
‖δA‖
‖A‖

)
=

κ
1 − κεA

(
‖Ax − b‖ + 2(‖b‖ + ‖δb‖)

‖A‖‖x‖
+ 2εA

)
.

This proves (3.6).
(2) By Lemma 3.1, we know x∗ = AMb + πN(A)p and y∗ = ĀMb̄ + πN(Ā)p̄. But, from Lemma 2.7, we have

πN(Ā) = πN(A), which implies that

y∗ − x∗ = ĀMb̄ − AMb + πN(A)δp.
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Therefore, using Lemma 2.7 (2), we have

‖y∗ − x∗‖
‖x∗‖

≤
‖ĀMb̄ − AMb + πN(A)δp‖

‖x∗‖

≤
‖ĀM
‖(‖b‖ + ‖δb‖) + ‖AM

‖||b‖ + 2‖δp‖
‖x∗‖

≤
1 + λ2

1 − λ1

‖A‖‖AM
‖(‖b‖ + ‖δb‖)
‖A‖‖x∗‖

+
‖A‖‖AM

‖‖b‖
‖A‖‖x∗‖

+ 2
‖δp‖
‖x∗‖

=
κ

‖A‖‖x∗‖

(1 + λ2

1 − λ1
(‖b‖ + ‖δb‖) + ‖b‖

)
+ 2
‖δp‖
‖x∗‖

=
κ‖b‖
‖A‖‖x∗‖

(1 + λ2

1 − λ1
(1 + εb) + 1

)
+ 2
‖δp‖
‖x∗‖

.

This completes the proof.

Remark 3.4. Under the same conditions of Theorem 3.3, if, in addition, b ∈ R(A), then

‖y − x‖
‖x‖

≤
2κ

1 − κεA
(εb + εA) .

In fact, if b ∈ R(A), then Ax = b. Moreover, in this case, (3.8) and (3.9) imply that ‖r̃‖ ≤ ‖δb − δAx‖ and

(IX + AMδA)(y − x) = AMr̃ + AM(δb − δAx). (3.10)

Thus, from (3.6) and (3.10), and noting that ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖, we can get our result.

Remark 3.5. Generally, ĀM is not a bounded linear operator, so ĀMb̄ , ĀMb+ĀMδb. But, under the same conditions
of Theorem 3.3, if, in addition, R(Ā) = R(A), and ĀM is quasi-additive on R(A), b ∈ R(A), then ĀMb̄ = ĀMb + ĀMδb
and ‖b‖ = ‖Ax∗‖ ≤ ‖A‖‖x∗‖. In this case, using Lemma 2.7, we can get a better perturbed bound as in Theorem 3.2.

As immediate consequences of the above Theorem 3.3, we have the following corollaries.

Corollary 3.6. Under the same conditions of Theorem 3.3, if, in addition, b = 0, and δb = 0, that is, the problem
(1.1) is that of projecting p to the null space of A, then

‖y∗ − x∗‖
‖x∗‖

≤ 2
‖δp‖
‖x∗‖

.

Corollary 3.7. Under the same conditions of Theorem 3.3, if, in addition, p = 0, and δp = 0, that is, the problem
(1.1) is the best approximate solution problem, then

‖y∗ − x∗‖
‖x∗‖

≤
κ‖b‖
‖A‖‖x∗‖

(1 + λ2

1 − λ1
(1 + εb) + 1

)
.

4. Concluding Remark

By using some recent perturbation results for the Moore–Penrose metric generalized inverse, the pertur-
bation analysis for the metric projection of a point onto a linear manifold in reflexive strictly convex Banach
spaces has been presented in this paper. The main results in our paper have two parts. Part one covers
consistent operator equations and part two covers the general so-called ill posed operator equations, To
our knowledge, the results here are the first one for Banach space operators up to now, and the results for
two special cases of our problem–the best approximate solution problem and the projection of a vector to
the null space of an operator are just the consequences of our general analysis.
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