Busemann-Petty Problem for the i-th Radial Blaschke-Minkowski Homomorphisms

Weidong Wang ${ }^{\text {a,b }}$, Heping Chen ${ }^{\text {a }}$, Yuanyuan Zhang ${ }^{\text {a,b }}$
${ }^{a}$ Department of Mathematics, China Three Gorges University, Yichang, China
${ }^{b}$ Three Gorges Mathematical Research Center, China Three Gorges University, Yicang, China

Abstract

Schuster introduced the notion of radial Blaschke-Minkowski homomorphism and considered its Busemann-Petty problem. In this paper, we further study the Busemann-Petty problem for the radial Blaschke-Minkowski homomorphisms and give the affirmative and negative forms of Busemann-Petty problem for the i-th radial Blaschke-Minkowski homomorphisms.

1. Introduction

The setting for this paper is Euclidean n-space \mathbb{R}^{n}. Let S^{n-1} denote the unit sphere in \mathbb{R}^{n}. For the n-dimensional volume of body K, we write $V(K)$.

If K is a compact star shaped (about the origin) set in \mathbb{R}^{n}, then its radial function, $\rho_{K}=\rho(K, \cdot): \mathbb{R}^{n} \backslash\{0\} \rightarrow$ $[0, \infty)$, is defined by (see [5])

$$
\rho(K, x)=\max \{\lambda \geq 0: \lambda x \in K\}, \quad x \in \mathbb{R}^{n} \backslash\{0\} .
$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. The set of star bodies (about the origin) in \mathbb{R}^{n} will be denoted by \mathcal{S}_{o}^{n}, for the set of all origin-symmetric star bodies we write $\mathcal{S}_{o s}^{n}$.

Intersection bodies were first appeared in a paper by Busemann (see [2]) and were explicitly defined and named by Lutwak (see [19]). In 1988, Lutwak defined the notion of intersection bodies as follows: For $K \in \mathcal{S}_{o}^{n}$, the intersection body, $I K$, of K is a star body whose radial function in the direction $u \in S^{n-1}$ is equal to the $(n-1)$-dimensional volume of the section of K by u^{\perp}, the hyperplane orthogonal to u, i.e. for all $u \in S^{n-1}$,

$$
\rho(I K, u)=V_{n-1}\left(K \cap u^{\perp}\right) .
$$

Further, Lutwak ([19]) showed the following Busemann-Petty problem by intersection bodies:
Problem 1.1 (Busemann-Petty problem). For $K, L \in \mathcal{S}_{o}^{n}$, is there the implication

$$
I K \subseteq I L \Rightarrow V(K) \leq V(L) ?
$$

[^0]For the Problem 1.1, Lutwak ([19]) gave an affirmative answer if K is restricted to the class of intersection bodies and two negative answers if K is not origin-symmetric or L is not an intersection body.
Remark 1.1 If $K, L \in \mathcal{S}_{o s}^{n}$, then Problem 1.1 is called the symmetric Busemann-Petty problem. Gardner ([4]) and Zhang ([28]) showed that the symmetric Busemann-Petty problem has an affirmative answer for $n \leq 4$ and a negative answer for $n \geq 5$.

Intersection bodies have been becoming the centered notion in the dual Brunn-Minkowski theory (see e.g. [4-14, 19, 24-27]). Based on the properties of intersection bodies, Schuster ([20]) introduced the radial Blaschke-Minkowski homomorphism which is a more general intersection operator as follows:
Definition 1.A. A map $\Psi: \mathcal{S}_{o}^{n} \rightarrow \mathcal{S}_{o}^{n}$ is called a radial Blaschke-Minkowski homomorphism if it satisfies the following conditions:
(1) Ψ is continuous;
(2) For all $K, L \in \mathcal{S}_{o}^{n}, \Psi\left({\widetilde{+_{+}}}_{n-1} L\right)=\Psi \widetilde{++} \Psi L$, i.e. ΨK is radial Blaschke-Minkowski sum;
(3) $\Psi(\vartheta K)=\vartheta \Psi K$ for all $K \in \mathcal{S}_{o}^{n}$ and all $\vartheta \in S O(n)$.

Here $\widetilde{\Psi}_{n-1}$ and $\widetilde{+}$ denote L_{n-1} and L_{1} radial Minkowski addition, respectively; and $S O(n)$ is the group of rotations in n dimension,

Meanwhile, Schuster ([20]) showed that the radial Blaschke-Minkowski homomorphism satisfies the geometric inequalities such as Aleksandrov-Fenchel, Minkowski and Brunn-Minkowski type inequalities. In particular, Schuster ([20]) proved the following fact:
Theorem 1.A. A map $\Psi: \mathcal{S}_{o}^{n} \rightarrow \mathcal{S}_{o}^{n}$ is a radial Blaschke-Minkowski homomorphism if and only if there is a non-negative measure $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$ such that for $K \in \mathcal{S}_{o}^{n}, \rho(\Psi K, \cdot)$ is the convolution of $\rho(K, \cdot)^{n-1}$ and μ, i.e.,

$$
\begin{equation*}
\rho(\Psi K, \cdot)=\rho(K, \cdot)^{n-1} * \mu . \tag{1.1}
\end{equation*}
$$

Here \widehat{e} denotes the pole point of S^{n-1} and $\mathcal{M}\left(S^{n-1}, \widehat{e}\right)$ denotes the signed finite Borel measure space on S^{n-1} (see [20]).

According to (1.1), Schuster ([20]) defined the mixed radial Blaschke-Minkowski homomorphisms as follows:
Definition 1.B. Let $\Psi: S_{o}^{n} \rightarrow \mathcal{S}_{o}^{n}$ be a radial Blaschke-Minkowski homomorphism with non-negative generating measure $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$, defined a mixed operator $\Psi: \mathcal{S}_{o}^{n} \times \cdots \times \mathcal{S}_{o}^{n} \rightarrow \mathcal{S}_{o}^{n}$ by

$$
\begin{equation*}
\rho\left(\Psi\left(K_{1}, \cdots, K_{n-1}\right), \cdot\right)=\rho\left(K_{1}, \cdot\right) \cdots \rho\left(K_{n-1}, \cdot\right) * \mu \tag{1.2}
\end{equation*}
$$

The body $\Psi\left(K_{1}, \cdots, K_{n-1}\right)$ is called the mixed radial Blaschke-Minkowski homomorphism of $K_{1}, \cdots, K_{n-1} \in \mathcal{S}_{o}^{n}$.
If $K_{1}=\cdots=K_{n-i-1}=K, K_{n-i}=\cdots=K_{n-1}=L$, then write

$$
\Psi_{i}(K, L)=\Psi(\underbrace{K, \cdots, K}_{n-i-1}, \underbrace{L, \cdots, L}_{i})(i=0,1, \cdots, n-2),
$$

which is called the mixed radial Blaschke-Minkowski homomorphism of K and L. If $L=B$ (B denotes the unit ball centered at the origin in \mathbb{R}^{n}), we call $\Psi_{i} K=\Psi_{i}(K, B)$ the i-th radial Blaschke-Minkowski homomorphism of K. Obviously, by (1.2) and notice $\rho(B, \cdot)=1$, we know that for $i=0,1, \cdots, n-2$, $\rho\left(\Psi_{i} K, \cdot\right)=\rho(K, \cdot)^{n-i-1} * \mu$.

If we let i be real, then (1.1) can be extended to the following definition.
Definition 1.1. For $K \in \mathcal{S}_{o}^{n}, 0 \leq i<n-1$, the i-th radial Blaschke-Minkowski homomorphism, $\Psi_{i} K$, of K is given by

$$
\begin{equation*}
\rho\left(\Psi_{i} K, \cdot\right)=\rho(K, \cdot)^{n-i-1} * \mu, \tag{1.3}
\end{equation*}
$$

where $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$.
From (1.3), we have that for $c>0$,

$$
\begin{equation*}
\Psi_{i}(c K)=c^{n-i-1} \Psi_{i} K \tag{1.4}
\end{equation*}
$$

In 2008, Schuster ([21]) considered the following Busemann-Petty problem for the radial BlaschkeMinkowski homomorphisms.

Problem 1.2. Let $\Psi: \mathcal{S}_{o}^{n} \rightarrow \mathcal{S}_{o}^{n}$ be a radial Blaschke-Minkowski homomorphism. For $K, L \in \mathcal{S}_{o}^{n}$, is there the implication

$$
\Psi K \subseteq \Psi L \Rightarrow V(K) \leq V(L) ?
$$

Obviously, Problem 1.2 is a more general Busemann-Petty problem than Problem 1.1. For the Problem 1.2, Schuster ([21]) gave the following affirmative and negative answers, respectively.

Theorem 1.B. Let $\Psi: \mathcal{S}_{o}^{n} \rightarrow \mathcal{S}_{o}^{n}$ be a radial Blaschke-Minkowski homomorphism. If $K \in \Psi \mathcal{S}_{o}^{n}$ and $L \in \mathcal{S}_{o}^{n}$, then

$$
\Psi K \subseteq \Psi L \Rightarrow V(K) \leq V(L)
$$

and $V(K)=V(L)$ if and only if $K=L$. Here $\Psi \mathcal{S}_{o}^{n}$ denotes the range of Ψ.
Theorem 1.C. Suppose that $\mathcal{S}_{o s}^{n} \subseteq \mathcal{S}_{o}^{n}(\Psi), L \in \mathcal{S}_{o s}^{n}, \rho(L, \cdot) \in \mathcal{H}^{n}$ and $\rho(L, \cdot)>0$ (i.e., L is polynomial). If $L \notin \Psi \mathcal{S}_{o}^{n}$, then there exists $K \in \mathcal{S}_{o s}^{n}$, such that

$$
\Psi K \subset \Psi L
$$

But

$$
V(K)>V(L)
$$

Here \mathcal{H}^{n} denotes the space of all finite sums of spherical harmonic of dimension n.
In 2011, Wang, Liu and He ([22]) extended the radial Blaschke-Minkowski homomorphisms to L_{p} space. In recent years, a lot of important results for the radial Blaschke-Minkowski homomorphisms and their L_{p} analogies were obtained (see e.g. [1, 3, 15-17, 21-23, 29-33]).

The main goal of this paper is to study the Busemann-Petty problem for the i-th radial BlaschkeMinkowski homomorphisms. First, we give an affirmative answer of the Busemann-Petty problem for the i-th radial Blaschke-Minkowski homomorphisms.
Theorem 1.1. Let $K, L \in \mathcal{S}_{o}^{n}, 0 \leq i<n-1$ and Ψ_{i} be the i-th radial Blaschke-Minkowski homomorphism. If $K \in \Psi_{i} \mathcal{S}_{o}^{n}$, then

$$
\Psi_{i} K \subseteq \Psi_{i} L \Rightarrow \widetilde{W}_{i}(K) \leq \widetilde{W}_{i}(L)
$$

And $\widetilde{W}_{i}(K)=\widetilde{W}_{i}(L)$ if and only if $K=L$. Here $\widetilde{W}_{i}(K)$ denotes the dual quermassintegrals of $K \in \mathcal{S}_{o}^{n}$.
Obviously, the case $i=0$ of Theorem 1.1 yields Theorem 1.B.
Next, the following negative forms of the Busemann-Petty problem for the i-th radial Blaschke-Minkowski homomorphisms are given:
Theorem 1.2. Suppose that $\mathcal{S}_{o s}^{n} \subseteq \mathcal{S}_{o}^{n}\left(\Psi_{i}\right)(0 \leq i<n-1), L \in \mathcal{S}_{o s}^{n}, \rho(L, \cdot) \in \mathcal{H}^{n}$ and $\rho(L, \cdot)>0$ (i.e., L is polynomial). If $L \notin \Psi_{i} \mathcal{S}_{o}^{n}$, then there exists $K \in \mathcal{S}_{o s}^{n}$ such that

$$
\Psi_{i} K \subset \Psi_{i} L
$$

But

$$
\widetilde{W}_{i}(K)>\widetilde{W}_{i}(L)
$$

Here $\mathcal{S}_{o}^{n}\left(\Psi_{i}\right)$ denotes the injective set of Ψ_{i}.
Clearly, taking $i=0$ in Theorem 1.2, we immediately get Theorem 1.C.
Theorem 1.3. Let $K, L \in \mathcal{S}_{o}^{n}, 0 \leq i<n-1$ and Ψ_{i} be an even i-th radial Blaschke-Minkowski homomorphism. If $K \notin \mathcal{S}_{o s}^{n}$, then there exists $L \in \mathcal{S}_{o}^{n}$, such that

$$
\Psi_{i} K \subset \Psi_{i} L
$$

But

$$
\widetilde{W}_{i}(K)>\widetilde{W}_{i}(L)
$$

Let $i=0$ in Theorem 1.3, we get a new negative form of the Busemann-Petty problem for the radial Blaschke-Minkowski homomorphisms.
Corollary 1.1. Let $K, L \in \mathcal{S}_{o}^{n}$ and Ψ be an even radial Blaschke-Minkowski homomorphism. If $K \notin \mathcal{S}_{o s}^{n}$, then there exists $L \in \mathcal{S}_{o}^{n}$, such that

$$
\Psi K \subset \Psi L
$$

But

$$
V(K)>V(L) .
$$

The proofs of Theorems 1.1-1.3 are completed in Section 3.

2. Background Materials

2.1. i-th radial Blaschke combinations and general i-th radial Blaschke bodies

For $K, L \in \mathcal{S}_{o}^{n}, \lambda, \mu \geq 0$ (not both 0), the radial Minkowski combination, $\lambda \widetilde{K+\mu L} \in \mathcal{S}_{o}^{n}$, of K and L is defined by (see [5])

$$
\rho(\lambda K \widetilde{+} \mu L, \cdot)=\lambda \rho(K, \cdot)+\mu \rho(L, \cdot) .
$$

For $K, L \in \mathcal{S}_{o}^{n}, \lambda, \mu \geq 0$ (not both 0), the radial Blaschke combination, $\lambda \cdot \widehat{K+\mu} \mu \in \mathcal{S}_{o}^{n}$, of K and L is defined by (see [5])

$$
\rho(\lambda \cdot \widehat{K+} \mu \cdot L, \cdot)^{n-1}=\lambda \rho(K, \cdot)^{n-1}+\mu \rho(L, \cdot)^{n-1} .
$$

From the definitions of above two combinations, we easily see $\lambda \cdot \widehat{K+} \mu \cdot L=\lambda K \widetilde{+}_{n-1} \mu L$.
Now, in order to prove our results, we will extend the radial Blaschke combinations to the following i-th radial Blaschke combinations.

For $K, L \in \mathcal{S}_{o}^{n}, 0 \leq i<n-1$ and $\lambda, \mu \geq 0($ not both 0$)$, the i-th radial Blaschke combination, $\lambda \cdot \widehat{K+}{ }_{i} \mu \cdot L \in \mathcal{S}_{o}^{n}$, of K and L is defined by

$$
\begin{equation*}
\rho\left(\lambda \cdot \widehat{K+}{ }_{i} \mu \cdot L, \cdot\right)^{n-i-1}=\lambda \rho(K, \cdot)^{n-i-1}+\mu \rho(L, \cdot)^{n-i-1} . \tag{2.1}
\end{equation*}
$$

Taking $i=0$ in (2.1), then $\lambda \cdot \widehat{+_{0}} \mu \cdot L$ is the radial Blaschke combination $\lambda \cdot \widehat{K+} \mu \cdot L$.
If for $\tau \in[-1,1]$, let

$$
\begin{equation*}
\lambda=f_{1}(\tau)=\frac{(1+\tau)^{2}}{2\left(1+\tau^{2}\right)^{2}}, \quad \mu=f_{2}(\tau)=\frac{(1-\tau)^{2}}{2\left(1+\tau^{2}\right)} \tag{2.2}
\end{equation*}
$$

and $L=-K$ in (2.1), then we write

$$
\begin{equation*}
\widehat{\nabla}_{i}^{\tau} K=f_{1}(\tau) \cdot \widehat{+_{i}} f_{2}(\tau) \cdot(-K) \tag{2.3}
\end{equation*}
$$

and called $\widehat{\nabla}_{i}^{\tau} K$ the general i-th radial Blaschke body of K. From (2.2) and (2.3), we easily see that $\widehat{\nabla}_{i}^{1} K=K$, $\widehat{\nabla}_{i}^{-1} K=-K$ and

$$
\begin{equation*}
\widehat{\nabla}_{i}^{0} K=\frac{1}{2} \cdot K \widehat{+} \frac{1}{2} \cdot(-K) \tag{2.4}
\end{equation*}
$$

For the general i-th radial Blaschke bodies, by (2.2) we know that $f_{1}(\tau)+f_{2}(\tau)=1$. Hence, if $K \in \mathcal{S}_{o s}^{n}$, then $\widehat{\nabla}_{i}^{\tau} K \in \mathcal{S}_{o s}^{n}$. If $K \notin \mathcal{S}_{o s}^{n}$, then we have the following fact.
Theorem 2.1. For $K, L \in \mathcal{S}_{o}^{n}, 0 \leq i<n-1$. If $K \notin \mathcal{S}_{o s}^{n}$, then for $\tau \in[-1,1]$,

$$
\begin{equation*}
\widehat{\nabla}_{i}^{\tau} K \in \mathcal{S}_{o s}^{n} \Leftrightarrow \tau=0 . \tag{2.5}
\end{equation*}
$$

Proof. If $\tau=0$, by (2.4) we immediately get $\widehat{\nabla}_{i}^{\tau} K \in \mathcal{S}_{o s}^{n}$.
Conversely, since $\rho_{M}(-u)=\rho_{-M}(u)$ for any $M \in \mathcal{S}_{o}^{n}$ and $u \in S^{n-1}$, thus if $\widehat{\nabla}_{i}^{\tau} K \in \mathcal{S}_{o s}^{n}$, i.e., $\widehat{\nabla}_{i}^{\tau} K=-\widehat{\nabla}_{i}^{\tau} K$, then for all $u \in S^{n-1}$,

$$
\rho_{\widehat{\nabla}_{i}^{K} K}^{n-i-1}(u)=\rho_{-\widehat{\nabla}_{i}^{\tau} K}^{n-i-1}(u)=\rho_{\widehat{\nabla}_{i}^{\tau} K}^{n-i-1}(-u),
$$

by (2.3) we have

$$
\rho_{f_{1}(\tau) \cdot K \widehat{+}_{i} f_{2}(\tau) \cdot(-K)}^{n-i-1}(u)=\rho_{f_{1}(\tau) \cdot \widehat{+_{i}} f_{2}(\tau) \cdot(-K)}^{n-i-1}(-u) .
$$

This together with (2.1) yields

$$
f_{1}(\tau) \rho_{K}^{n-i-1}(u)+f_{2}(\tau) \rho_{-K}^{n-i-1}(u)=f_{1}(\tau) \rho_{K}^{n-i-1}(-u)+f_{2}(\tau) \rho_{-K}^{n-i-1}(-u),
$$

i.e.,

$$
f_{1}(\tau) \rho_{K}^{n-i-1}(u)+f_{2}(\tau) \rho_{-K}^{n-i-1}(u)=f_{1}(\tau) \rho_{-K}^{n-i-1}(u)+f_{2}(\tau) \rho_{K}^{n-i-1}(u),
$$

thus

$$
\left[f_{1}(\tau)-f_{2}(\tau)\right]\left[\rho_{K}^{n-i-1}(u)-\rho_{-K}^{n-i-1}(u)\right]=0 .
$$

Since $K \notin \mathcal{S}_{o s}^{n}$ implies $\rho_{K}^{n-i-1}(u)-\rho_{-K}^{n-i-1}(u) \neq 0$, thus we obtain

$$
f_{1}(\tau)-f_{2}(\tau)=0
$$

This and (2.2) give $\tau=0$.

2.2. Dual mixed quermassintegrals

In 1975, Lutwak ([18]) introduced the dual mixed volumes as follows: For $K_{1}, \cdots, K_{n} \in \mathcal{S}_{o}^{n}$, the dual mixed volume $\widetilde{V}\left(K_{1}, \cdots, K_{n}\right)$ is defined by

$$
\begin{equation*}
\widetilde{V}\left(K_{1}, K_{2}, \cdots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \rho_{K_{1}}(u) \rho_{K_{2}}(u) \cdots \rho_{K_{n}}(u) d u \tag{2.6}
\end{equation*}
$$

If $K_{1}=\cdots=K_{n-i-1}=K, K_{n-i}=\cdots=K_{n-1}=B$ and $K_{n}=L$ in (2.6), then we write $\widetilde{W}_{i}(K, L)=$ $\widetilde{V}(\underbrace{K, \cdots, K}_{n-i-1}, \underbrace{B, \cdots, B}_{i}, L)(i=0,1, \cdots, n-2)$. If let i be real, then $\widetilde{W}_{i}(K, L)$ is called the dual mixed quermassintegrals whose representation is that for $K, L \in \mathcal{S}_{o}^{n}$ and $i \in \mathbb{R}$,

$$
\begin{equation*}
\widetilde{W}_{i}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n-i-1}(u) \rho_{L}(u) d u . \tag{2.7}
\end{equation*}
$$

If we let $K=L$ in (2.7), then it just is the dual quermassintegrals, $\widetilde{W}_{i}(K)$, of $K \in \mathcal{S}_{o}^{n}$ denoted by

$$
\begin{equation*}
\widetilde{W}_{i}(K)=\widetilde{W}_{i}(K, K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n-i}(u) d u . \tag{2.8}
\end{equation*}
$$

Further let $i=0$ in (2.8), then we have the following polar coordinate formula for the volume of a body K:

$$
V(K)=\widetilde{W}_{0}(K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(u) d u
$$

For the above dual mixed quermassintegrals, the corresponding the Minkowski inequality is stated that (see [20]): If $K, L \in S_{o}^{n}$ and $0 \leq i<n-1$, then

$$
\begin{equation*}
\widetilde{W}_{i}(K, L) \leq \widetilde{W}_{i}(K)^{\frac{n-i-1}{n-i}} \widetilde{W}_{i}(L)^{\frac{1}{n-i}} \tag{2.9}
\end{equation*}
$$

with equality if and only if K and L are dilatate.

3. Busemann-Petty Problem for the \boldsymbol{i}-th Radial Blaschke-Minkowski Homomorphisms

This section is mainly devoted to prove Theorems 1.1, 1.2 and 1.3. We begin by proving the following lemma.
Lemma 3.1. If $M, N \in \mathcal{S}_{o}^{n}, 0 \leq i, j<n-1$, then

$$
\begin{equation*}
\widetilde{W}_{j}\left(M, \Psi_{i} N\right)=\widetilde{W}_{i}\left(N, \Psi_{j} M\right) . \tag{3.1}
\end{equation*}
$$

Proof. According to (1.3) and (2.7), we obtain that if $0 \leq i, j<n-1$, then

$$
\begin{aligned}
\widetilde{W}_{j}\left(M, \Psi_{i} N\right) & =\frac{1}{n} \int_{S^{n-1}} \rho_{M}^{n-j-1}(u) \rho_{\Psi_{i} N}(u) d u \\
& =\frac{1}{n} \int_{S^{n-1}} \rho_{M}^{n-j-1}(u) \rho_{N}^{n-i-1}(u) * \mu d u \\
& =\frac{1}{n} \int_{S^{n-1}} \rho_{N}^{n-i-1}(u) \rho_{M}^{n-j-1}(u) * \mu d u \\
& =\frac{1}{n} \int_{S^{n-1}} \rho_{N}^{n-i-1}(u) \rho_{\Psi_{j} M}(u) d u \\
& =\widetilde{W}_{i}\left(N, \Psi_{j} M\right) .
\end{aligned}
$$

Proof of Theorem 1.1. Since $\Psi_{i} K \subseteq \Psi_{i} L(0 \leq i<n-1)$, thus using (2.7) we know for any $M \in S_{o}^{n}$ and $0 \leq j<n-1$,

$$
\widetilde{W}_{j}\left(M, \Psi_{i} K\right) \leq \widetilde{W}_{j}\left(M, \Psi_{i} L\right)
$$

This together with (3.1) yields

$$
\widetilde{W}_{i}\left(K, \Psi_{j} M\right) \leq \widetilde{W}_{i}\left(L, \Psi_{j} M\right)
$$

Because of $K \in \Psi_{i} \mathcal{S}_{o}^{n}$, taking $\Psi_{j} M=K$, then by (2.8) and inequality (2.9) we obtain

$$
\widetilde{W}_{i}(K) \leq \widetilde{W}_{i}(L, K) \leq \widetilde{W}_{i}(L)^{\frac{n-i-1}{n-i}} \widetilde{W}_{i}(K)^{\frac{1}{n-i}},
$$

i.e.,

$$
\widetilde{W}_{i}(K) \leq \widetilde{W}_{i}(L)
$$

According to the equality condition of inequality (2.9), we see that $\widetilde{W}_{i}(K)=\widetilde{W}_{i}(L)$ if and only if K and L are dilatate. From this, let $K=c L(c>0)$ and together with $\widetilde{W}_{i}(K)=\widetilde{W}_{i}(L)$, we obtain $c=1$. Therefore, $\widetilde{W}_{i}(K)=\widetilde{W}_{i}(L)$ if and only if $K=L$ in Theorem 1.1.

Proof of Theorem 1.2. Let $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$ denote the generating measure of Ψ_{i}. Since $L \in \mathcal{S}_{o s}^{n}$ and $\rho(L, \cdot) \in \mathcal{H}^{n}$, it follows from Schuster's conclusion (see [21], the proof of Theorem 4.4) that there exists an even function $f \in \mathcal{H}^{n}$, such that

$$
\begin{equation*}
\rho(L, \cdot)=f * \mu . \tag{3.2}
\end{equation*}
$$

Here the function f must be negative, otherwise, there exists $L_{0} \in \mathcal{S}_{o}^{n}$ such that $\rho\left(L_{0}, \cdot\right)^{n-i-1}=f$. This together (1.3) with (3.2) yields

$$
\rho\left(\Psi_{i} L_{0}, \cdot\right)=\rho\left(L_{0}, \cdot\right)^{n-i-1} * \mu=f * \mu=\rho(L, \cdot),
$$

i.e., $L=\Psi_{i} L_{0}$. This and $L \notin \Psi_{i} S_{o}^{n}$ are contradictory.

From this, we can find a non-negative, even function $G \in \mathcal{H}^{n}$ and an even function $H \in \mathcal{H}^{n}$, such that

$$
\begin{equation*}
G=H * \mu \tag{3.3}
\end{equation*}
$$

Because of $L \in \mathcal{S}_{o s}^{n}$ and $\rho(L, \cdot)>0$, hence there exists $\varepsilon>0$ and $K \in \mathcal{S}_{o s}^{n}$, such that

$$
\rho(K, \cdot)^{n-i-1}=\rho(L, \cdot)^{n-i-1}-\varepsilon H,
$$

thus

$$
\rho(K, \cdot)^{n-i-1} * \mu=\rho(L, \cdot)^{n-i-1} * \mu-\varepsilon H * \mu .
$$

Therefore, by (1.3) and (3.3) we have

$$
\rho\left(\Psi_{i} K, \cdot\right)=\rho\left(\Psi_{i} L, \cdot\right)-\varepsilon G .
$$

This together $G \geq 0$ with $\varepsilon>0$ gives

$$
\Psi_{i} K \subset \Psi_{i} L
$$

But by (2.7), (2.8), (3.2) and (1.3), we obtain

$$
\begin{align*}
\widetilde{W}_{i}(L)-\widetilde{W}_{i}(K, L) & =\frac{1}{n} \int_{S^{n-1}} \rho_{L}^{n-i}(u) d u-\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n-i-1}(u) \rho_{L}(u) d u \\
& =\frac{1}{n} \int_{S^{n-1}}\left[\rho_{L}^{n-i-1}(u)-\rho_{K}^{n-i-1}(u)\right] \rho_{L}(u) d u \\
& =\frac{1}{n} \int_{S^{n-1}}\left[\rho_{L}^{n-i-1}(u)-\rho_{K}^{n-i-1}(u)\right](f * \mu) d u \\
& =\frac{1}{n} \int_{S^{n-1}}\left[\left(\rho_{L}^{n-i-1}(u) * \mu\right)-\left(\rho_{K}^{n-i-1}(u) * \mu\right)\right] f d u \\
& =\frac{1}{n} \int_{S^{n-1}}\left[\rho_{\Psi_{i} L}(u)-\rho_{\Psi_{i} K}(u)\right] f d u . \tag{3.4}
\end{align*}
$$

Notice that $\Psi_{i} K \subset \Psi_{i} L$ and $f<0$, then (3.4) gives

$$
\widetilde{W}_{i}(L)-\widetilde{W}_{i}(K, L)<0
$$

Hence, using Minkowski inequality (2.9) we have

$$
\widetilde{W}_{i}(L)<\widetilde{W}_{i}(K, L) \leq \widetilde{W}_{i}(K)^{\frac{n-i-1}{n-i}} \widetilde{W}_{i}(L)^{\frac{1}{n-i}}
$$

this and $0 \leq i<n-1$ yield

$$
\widetilde{W}_{i}(K)>\widetilde{W}_{i}(L)
$$

The proof of Theorem 1.3 needs the following lemmas.
Lemma 3.2. If $K \in \mathcal{S}_{o}^{n}, 0 \leq i<n-1$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
\widetilde{W}_{i}\left(\widehat{\nabla}_{i}^{\tau} K\right) \leq \widetilde{W}_{i}(K) \tag{3.5}
\end{equation*}
$$

with equality for $\tau \in(-1,1)$ if and only if K is origin-symmetric. For $\tau= \pm 1$, (3.5) becomes an equality.
Proof. According to (2.1) and (2.7), we have for any $Q \in \mathcal{S}_{o}^{n}$,

$$
\begin{aligned}
\widetilde{W}_{i}\left(\lambda \cdot \widehat{K+}_{i} \mu \cdot L, Q\right) & =\frac{1}{n} \int_{S^{n-1}} \rho_{\lambda \cdot K++_{i} \mu \cdot L}^{n-i-1}(u) \rho_{Q}(u) d u \\
= & \frac{\lambda}{n} \int_{S^{n-1}} \rho_{K}^{n-i-1}(u) \rho_{Q}(u) d u+\frac{\mu}{n} \int_{S^{n-1}} \rho_{L}^{n-i-1}(u) \rho_{Q}(u) d u \\
= & \lambda \widetilde{W}_{i}(K, Q)+\mu \widetilde{W}_{i}(L, Q)
\end{aligned}
$$

Using inequality (2.9) we obtain

$$
\widetilde{W}_{i}\left(\lambda \cdot K \widehat{+_{i}} \mu \cdot L, Q\right) \leq\left[\lambda \widetilde{W}_{i}(K)^{\frac{n-i-1}{n-i}}+\mu \widetilde{W}_{i}(L)^{\frac{n-i-1}{n-i}}\right] \widetilde{W}_{i}(Q)^{\frac{1}{n-i}}
$$

Let $Q=\lambda \cdot \widehat{K+{ }_{i}} \mu \cdot L$ in above inequality and together with (2.8), then

$$
\begin{equation*}
\widetilde{W}_{i}\left(\lambda \cdot \widehat{+}_{i} \mu \cdot L\right)^{\frac{n-i-1}{n-i}} \leq \lambda \widetilde{W}_{i}(K)^{\frac{n-i-1}{n-i}}+\mu \widetilde{W}_{i}(L)^{\frac{n-i-1}{n-i}} \tag{3.6}
\end{equation*}
$$

And the equality condition of inequality (2.9) implies that equality holds in (3.6) for $\lambda, \mu>0$ if and only if K and L are dilatate (if $\lambda=0$ or $\mu=0$, then (3.6) becomes an equality).

From (3.6), (2.3) and (2.2), and together $f_{1}(\tau)+f_{2}(\tau)=1$ with $\widetilde{W}_{i}(K)=\widetilde{W}_{i}(-K)$, we get that

$$
\widetilde{W}_{i}\left(\widehat{\nabla}_{i}^{\tau} K\right) \leq \widetilde{W}_{i}(K)
$$

this is just inequality (3.5).
Since $f_{1}(\tau), f_{2}(\tau)>0$ with $\tau \in(-1,1)$, from the equality condition of (3.6), we know that equality holds in (3.5) for $\tau \in(-1,1)$ if and only if K and $-K$ are dilatate, that is K is origin-symmetric.

If $\tau= \pm 1$, then by $\widehat{\nabla}_{i}^{ \pm 1} K= \pm K$ we see (3.5) becomes an equality.
Lemma 3.3. Let $\Psi_{i}(0 \leq i<n-1)$ be an even i-th radial Blaschke-Minkowski homomorphism. If $K \in \mathcal{S}_{o}^{n}$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
\Psi_{i}\left(\widehat{\nabla}_{i}^{\tau} K\right)=\Psi_{i} K \tag{3.7}
\end{equation*}
$$

Proof. Since $\Psi_{i}(0 \leq i<n-1)$ is an even i-th radial Blaschke-Minkowski homomorphism, thus for any $K \in \mathcal{S}_{o}^{n}, \Psi_{i}(-K)=\Psi_{i} K$.

From this, according to (1.3), (2.1) and (2.3), we have

$$
\begin{aligned}
\rho\left(\Psi_{i}\left(\widehat{\nabla}_{i}^{\tau} K\right)\right. & , \cdot)=\rho\left(\widehat{\nabla}_{i}^{\tau} K, \cdot\right)^{n-i-1} * \mu \\
= & {\left[f_{1}(\tau) \rho(K, \cdot \cdot)^{n-i-1}+f_{2}(\tau) \rho(-K, \cdot)^{n-i-1}\right] * \mu } \\
& =f_{1}(\tau) \rho(K, \cdot)^{n-i-1} * \mu+f_{2}(\tau) \rho(-K, \cdot)^{n-i-1} * \mu \\
& =f_{1}(\tau) \rho\left(\Psi_{i} K, \cdot\right)+f_{2}(\tau) \rho\left(\Psi_{i}(-K), \cdot\right) \\
& =f_{1}(\tau) \rho\left(\Psi_{i} K, \cdot\right)+f_{2}(\tau) \rho\left(\Psi_{i} K, \cdot\right)=\rho\left(\Psi_{i} K, \cdot\right) .
\end{aligned}
$$

This gives (3.7).
Proof of Theorem 1.3. Since $K \notin \mathcal{S}_{o s}^{n}$, thus by Lemma 3.2 we know that for $\tau \in(-1,1)$,

$$
\widetilde{W}_{i}\left(\widehat{\nabla}_{i}^{\tau} K\right)<\widetilde{W}_{i}(K)
$$

Choose $\varepsilon>0$ such that

$$
\widetilde{W}_{i}\left((1+\varepsilon) \widehat{\nabla}_{i}^{\tau} K\right)<\widetilde{W}_{i}(K)
$$

From this, let $L=(1+\varepsilon) \widehat{\nabla}_{i}^{\tau} K$, then $L \in \mathcal{S}_{o}^{n}$ (Theorem 2.1 gives that for $\tau=0, L \in \mathcal{S}_{o s}^{n}$; for $\tau \in(-1,1)$ and $\tau \neq 0$, $\left.L \in \mathcal{S}_{o}^{n} \backslash \mathcal{S}_{o s}^{n}\right)$ and $\widetilde{W}_{i}(L)<\widetilde{W}_{i}(K)$.

But by (1.4) and (3.7) we obtain

$$
\Psi_{i} L=\Psi_{i}\left((1+\varepsilon) \widehat{\nabla}_{i}^{\tau} K\right)=(1+\varepsilon)^{n-i-1} \Psi_{i}\left(\widehat{\nabla}_{i}^{\tau} K\right)=(1+\varepsilon)^{n-i-1} \Psi_{i} K \supset \Psi_{i} K .
$$

Acknowledgment

The authors like to sincerely thank the referees for very valuable and helpful comments and suggestions which made the paper more accurate and readable.

References

[1] S. Alesker, A. Bernig and F. E. Schuster, Harmonic analysis of translation invariant valuations, Geom. Funct. Anal., 10 (2011), 3: 751-773.
[2] H. Busemann, Volum in terms of concurrent cross-sections, Pacific J. Math., 3 (1953), 1: 1-12.
[3] Y. B. Feng, W. D. Wang and J. Yuan, Differences of quermass- and dual quermassintegrals of Blaschke-Minkowski and radial BlaschkeMinkowski homomorphisms, B. Belg. Math. Soc-Sim, 21 (2014), 4: 577-592.
[4] R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 342 (1994), 1: 435-445.
[5] R. J. Gardner, Geometric Tomography, Second ed., Cambridge Univ. Press, Cambridge, 2006.
[6] R. J. Gardner, A. Koldlbsky and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math., 149 (1999), 691-703.
[7] P. Goodey and W. Weil, Intersection bodies and ellipsoids, Mathematika, 42 (1995), 2: 295-304.
[8] N. J. Kalton and A. Koldlbsky, Intersection bodies and Lp spaces, Adv. Math., 196 (2005), 2: 257-275.
[9] A. Koldlbsky, Intersection bodies and the Busemann-Petty problem, C. R. Acad. Sci. Paris Ser. I Math., 325 (1997), 11: 1181-1186.
[10] A. Koldlbsky, Intersection bodies in \mathbb{R}^{4}, Adv. Math., 136 (1998), 1: 1-14.
[11] A. Koldlbsky, Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math., 120 (1998), 4: 827-840.
[12] A. Koldlbsky, Second derivative test for intersection bodies, Adv. Math., 136 (1998), 15-25.
[13] A. Koldlbsky, A functional analytic approach to intersection bodies, Geom. Funct. Anal., 10 (2000), 6: 1507-1526.
[14] G. Leng and C. Zhao Brunn-Minkowski inequality for mixed intersection bodies, J. Math. Anal. Appl., 301 (2005), 1: 115-123.
[15] Y. N. Li and W. D. Wang, Monotonicity inequalities for Lp Blaschke-Minkowski homomorphisms, J. Inequal. Appl., 2014 (2014), 131: 10 pages.
[16] L. Liu, Mixed radial Blaschke-Minkowski homomorphisms and comparison of volumes, Math. Inequal. Appl., 16 (2013), 2: 401-412.
[17] L. Liu and W. Wang, Blaschke-Minkowski homomorphisms, J. Inequal. Appl., 2013, 2013, 14 pages.
[18] E. Lutwak, Dual mixed volumes, Pacific J. Math., 58(1975), 531-538.
[19] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 531-538.
[20] F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika, 53 (2006), 211-234.
[21] F. E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math., 219 (2008), 344-368.
[22] W. Wang, L. J. Liu and B. W. He, Lp radial Blaschke-Minkowski homomorphisms, Taiwan J. Math., 15 (2011), 1183-1199.
[23] B. Wei, W. D. Wang and F. H. Lu, Inequalities for radial Blaschke-Minkowski homomorphisms, Ann. Pol. Math., 113 (2015), 3: 243-253.
[24] G. Y. Zhang, Intersection bodies and the four-dimensional Busemann-Petty problem, Duke Math. J., 71 (1993), 233-240.
[25] G. Y. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc, 345 (1994), 2: 777-801.
[26] G. Y. Zhang, Intersection bodies and the Busemann-Petty inequalities in \mathbb{R}^{4}, Ann. of Math., 140 (1994), 2: 331-346.
[27] G. Y. Zhang, Intersection bodies and polytopes, Mathematika, 46 (1999), 1: 29-34.
[28] G. Y. Zhang, A positive solution to the Busemann-Petty problem in \mathbb{R}^{4}, Ann. of Math., 149 (1999), 2: 535-543.
[29] C. J. Zhao, Radial Blaschke-Minkowski homomorphisms and volume differences, Geom. Dedicata, 154 (2011), 1: 81-91.
[30] C. J. Zhao, On radial Blaschke-Minkowski homomorphisms, Geom. Dedicata, 167 (2013), 1: 1-10.
[31] C. J. Zhao, On raidal and polar Blaschke-Minkowski homomorphisms, Proc. Amer. Math. Soc., 141 (2013), 667-676.
[32] C. J. Zhao, On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms, J. Geom. Anal., 25 (2015), 1: 1-16.
[33] Y. Zhou and W. D. Wang, Some Brunn-Minkowski type inequalities for L_{p} radial Blaschke-Minkowski homomorphisms, J. Inequal. Appl., 2016 (2016), 183: 11 pages.

[^0]: 2010 Mathematics Subject Classification. 52A20; 52A39; 52A40
 Keywords. Busemann-Petty problem; i-th radial Blaschke-Minkowski homomorphism, dual quermassintegral
 Received: 16 September 2017; Accepted: 09 October 2017
 Communicated by Mića Stanković
 Research supported by the Natural Science Foundation of China (Grant No.11371224)
 Email addresses: wdwxh722@163.com (Weidong Wang),1106921207@qq. com (Heping Chen), 150323147@qq. com (Yuanyuan Zhang)

