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Abstract. We give the system of Laguerre-Freud equations for the recurrence coefficients βn, γn+1,n ≥ 0 of
orthogonal polynomials with respect to a Hq-semiclassical form (linear functional) of class one. The system
is solved in the case when βn = tn−1 − tn and γn+1 = −t2

n with tn , 0,n ≥ 0 and t−1 = 0. There are essentially
three canonical cases.

1. Introduction and preliminary results

Let L to be a lowering operator, that is, a linear operator that decreases in one unit the degree of a
polynomial and such that L(1) = 0. Among such lowering operators, we mention the derivative operator
D, the difference operator Dw and the Hahn operator Hq. The concept of L-semiclassical orthogonal
polynomials {Sn}n≥0 of class s ≥ 0 were extensively studied by Maroni and coworkers for L ∈ {D,Dw,Hq}

through the following distributional equation satisfied by the regular form v (linear functional) associated
with a such sequence:

L (Φv) + Ψv = 0 ,

where Φ is a monic polynomial and Ψ a polynomial with deg Ψ ≥ 1. For L ∈ {D,Dw,Hq}, L-semiclassical
of class zero are usually called L-classical and are completely described in [1, 8, 13]. For L ∈ {D,Dw}, the
system satisfied by the coefficients of the recurrence relation of L-semiclassical orthogonal sequences of class
one are established in [2, 10]. So, the aim of this paper is twofold. First, to establish the Laguerre-Freud
equations corresponding to L-semiclassical orthogonal sequences of class one in the general case when
L = Hq. Secondly, to solve the system in a special nonsymmetrical case (since the symmetric case is treated
in [5]). Indeed, we exhaustively describe the family of Hq-semiclassical sequences {Sn}n≥0 of class s = 1,
verifying the following three-term recurrence relation:

Sn+2(x) =
(
x − (tn − tn+1)

)
Sn+1(x) + t2

nSn(x) , n ≥ 0 ,
S1(x) = x + t0 , S0(x) = 1 ,

with tn , 0 , n ≥ 0. This family have been the subject of some works: for instance, Maroni [14, 15]
characterized such sequences by a particular quadratic decomposition and by a perturbation of a symmetric
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form. see also [7, 11].
The structure of the manuscript is as follows. The first section is devoted to the preliminary results and

notations used in the sequel. In the second section, the system of Laguerre-Freud equations is built. In the
third section, first we give some properties of the sequence {Sn}n≥0. Specially, we focus our attention on the
case when it is Hq-semiclassical of class one. Second, using these proprieties and the system, we obtain all
the sequences which we look for. Finally, we show that there are essentially three canonical cases.

Let P be the vector space of polynomials with complex coefficients and let P′ be its dual. The elements
of P′ will be called either form or linear functional. We denote by

〈
v, f

〉
the action of v ∈ P′ on f ∈ P. For

n ≥ 0, (v)n = 〈v, xn
〉 are the moments of v. In particular a form v is called symmetric if all of its moments of

odd order are zero [3].
We define in the space P′ the derivative v′ of the form v by

〈
v′, f

〉
:= −

〈
v, f ′

〉
, the left multiplication by a

polynomial hv by
〈
hv, f

〉
:=

〈
v, h f

〉
, the shifted form hav, by

〈
hav, f

〉
:=

〈
v, ha f

〉
=

〈
v, f (ax)

〉
, the Dirac form at

origin δ0 by
〈
δ0, f

〉
:= f (0) and the inverse multiplication by a polynomial of degree one (x − c)−1, through〈

(x − c)−1v, f
〉

:=
〈
v, θc f

〉
with

(
θc f

)
(x) :=

f (x) − f (c)
x − c

, f ∈ P, c ∈ C.

.
Let us recall that a form v is said to be regular (quasi-definite) if there exists a sequence {Sn}n≥0 of

polynomials with deg Sn = n, n ≥ 0, such that

〈v,SnSm〉 = rnδn,m , rn , 0, n ≥ 0 . (1)

We can always assume that each Sn is monic, i.e. Sn(x) = xn+ lower degree terms. Then the sequence {Sn}n≥0
is said to be orthogonal with respect to v (monic orthogonal polynomial sequence (MOPS) in short). It is a
very well-known fact that the sequence {Sn}n≥0 satisfies a three-term recurrence relation (see, for instance,
the monograph by Chihara [3])

Sn+2(x) = (x − βn+1)Sn+1(x) − γn+1Sn(x) , n ≥ 0 ,
S1(x) = x − β0 , S0(x) = 1 ,

(2)

with
(
βn, γn+1

)
∈ C × (C − {0}) , n ≥ 0. By convention we set γ0 = (v)0.

The form v is said to be normalized if (v)0 = 1. In this paper, we suppose that any form will be normalized.
Let us introduce the q−derivative operator [6]

(Hq f )(x) =
f (qx) − f (x)

(q − 1)x
, x , 0 ,

(
Hq f

)
(0) = f

′

(0) , f ∈ P , q ∈ C̃ ,

where C̃ := C −
(
{0}

⋃(⋃
n≥0

{z ∈ C , zn = 1}
))
. When q −→ 1, we meet again the derivative D.

By duality, we can define Hq from P′ to P′ such that〈
Hqv, f

〉
= −

〈
v,Hq f

〉
, f ∈ P , v ∈ P′ .

In particular, this yields (Hqv)n = −[n]q(v)n−1 ,n ≥ 0 with (v)−1 = 0 and [n]q := qn
−1

q−1 , n ≥ 0 .

For v ∈ P′ and f , 1 ∈ P, we have the following results [5, 8, 9]

Hq( f v) = (hq−1 f )Hqv + q−1(Hq−1 f )v , (3)

Hq( f1)(x) = (hq f )(x)(Hq1)(x) + 1(x)(Hq f )(x) , (4)

Hqohq−1 = q−1Hq−1 , in P . (5)
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Now, let us recall some features about the Hq-semiclassical character [5, 9].
Definition 1.1. A form v is said to be Hq-semiclassical when it is regular and there exist two polynomials Φ (monic)
and Ψ, deg(Φ) = t ≥ 0, deg(Ψ) = p ≥ 1, such that

Hq

(
Φv

)
+ Ψv = 0 . (6)

The corresponding MOPS {Sn}n≥0 is said to be Hq-semiclassical.
Proposition 1.2. The Hq-semiclassical form v satisfying (6) is said to be of class s = max(t − 2, p − 1) if and only if
the following condition is satisfied∏

c∈ZΦ

{∣∣∣qhqΨ(c) + (HqΦ)(c)
∣∣∣ +

∣∣∣〈v, (θcqoθc)Φ + qθcqΨ〉
∣∣∣} , 0 , (7)

whereZΦ is the set of roots of Φ.
The Hq-semiclassical character of a form is kept by shifting. Indeed, the shifted form ṽ = ha−1 v , a ∈ C−{0}

is also Hq-semiclassical having the same class as that v and fulfilling the equation

Hq

(
Φ̃ṽ

)
+ Ψ̃ṽ = 0 ,

where
Φ̃(x) = a−tΦ(ax) , Ψ̃(x) = a1−tΨ(ax) .

The sequence {S̃n}n≥0, where S̃n(x) = a−nSn(ax), n ≥ 0 is orthogonal with respect to ṽ. The recurrence
coefficients are given by

β̃n =
βn

a
, γ̃n+1 =

γn+1

a2 , n ≥ 0 .

The next result [5] characterizes the elements of the functional equation satisfied by any symmetric Hq-
semiclassical form.
Proposition 1.3. Let v be a symmetric Hq-semiclassical form of class s satisfying (6). The following statements hold.
(i) When s is odd then Φ is odd and Ψ is even.
(ii) When s is even then Φ is even and Ψ is odd.

2. The Laguerre-Freud equations

In this section we will establish the non-linear system satisfied by βn and γn, simply by using the
functional equation.
In the sequel we assume that {Sn}n≥0 is a Hq-semiclassical sequence of class one verifying (2) and its
corresponding form v satisfying (6) with

Φ(x) = c3x3 + c2x2 + c1x + c0 , Ψ(x) = a2x2 + a1x + a0 , |c3| + |a2| , 0 . (8)

Let us define for n ≥ 0

In,k(q) = 〈v, xkSn(x)Sn(q−1x)〉 , 0 ≤ k ≤ 2 ,
Jn,k(q) = 〈v, xkSn(x)Sn+1(q−1x)〉 , 0 ≤ k ≤ 2 ,

Kn,k(q) = 〈v, xkHq

(
Sn(ξ)Sn(q−1ξ)

)
(x)〉 , 0 ≤ k ≤ 3 ,

Ln,k(q) = 〈v, xkHq

(
Sn+1(q−1ξ)Sn(ξ)

)
(x)〉 , 0 ≤ k ≤ 3 .

(9)

Lemma 2.1. For n ≥ 0, we have the following results:

a2In,2(q) + a1In,1(q) + a0In,0(q) − c3Kn,3(q) − c2Kn,2(q) − c1Kn,1(q) − c0Kn,0(q) = 0 , (10)

a2 Jn,2(q) + a1 Jn,1(q) + a0 Jn,0(q) − c3Ln,3(q) − c2Ln,2(q) − c1Ln,1(q) − c0Ln,0(q) = 0 . (11)
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Proof. By (6), we get 〈Hq(Φv) + Ψv,Sn(x)Sn(q−1x)〉 = 0 , n ≥ 0 it is equivalent to

〈Ψv,Sn(x)Sn(q−1x)〉 − 〈Φv,Hq

(
Sn(ξ)Sn(q−1ξ)

)
(x)〉 = 0 , n ≥ 0 ,

then from (8) and (9), we can deduce (10).
We have 〈Hq(Φv) + Ψv,Sn(x)Sn+1(q−1x)〉 = 0 , n ≥ 0, then

〈Ψv,Sn(x)Sn+1(q−1x)〉 − 〈Φv,Hq

(
Sn(ξ)Sn+1(q−1ξ)

)
(x)〉 = 0 , n ≥ 0 ,

it follows (11).

In order to determine {In,k(q)}n≥0, {Jn,k(q)}n≥0, {Kn,k(q)}n≥0 and {Ln,k(q)}n≥0, we need the following results:
Lemma 2.2. We have the following formulas:

(v)1 = β0 ,

(v)2 = γ1 + β2
0 ,

(v)3 = β3
0 + (2β0 + β1)γ1 ,

(v)4 = {γ1 + γ2 + 2β2
0 + (β0 + β1)2

}γ1 + β4
0 .

Lemma 2.3. [10] Let {xn}n≥0 with xn , 0 , n ≥ 0, {yn}n≥0 two sequences and {zn}n≥0 the sequence satisfying the
recurrence relation:

zn+1 = xnzn + yn , n ≥ 0 , z0 = a ∈ C − {0}.

We have

zn+1 =

n∏
k=0

xk

(
a +

n∑
k=0

( k∏
ν=0

xν
)−1

yk

)
, n ≥ 0.

Lemma 2.4. For n ≥ 0 we have

〈v, xn+1Sn(x)〉 =
( n∑
ν=0

βν

)
〈v,S2

n〉 , (12)

〈v, xn+2Sn(x)〉 =
( n∑
ν=0

γν+1 +

n∑
ν=0

β2
ν +

n−1∑
ν=0

βν

n∑
k=ν+1

βk

)
〈v,S2

n〉 ,
−1∑
0

= 0 , (13)

〈v, xn+3Sn(x)〉 =
( n∑
ν=0

γν+1

ν+1∑
k=0

βk +

n∑
ν=0

βν

ν∑
k=0

γk+1 +

n∑
ν=0

β3
ν +

n−1∑
ν=0

βν

n∑
k=ν+1

βk

k∑
i=ν

βi

)
〈v,S2

n〉 . (14)

Proof. From the orthogonality of {Sn}n≥0 and (2), we get respectively for n ≥ 0
〈v, xn+2Sn+1(x)〉 = γn+1〈v, xn+1Sn(x)〉 + βn+1〈v,S2

n+1〉,

〈v, xn+3Sn+1(x)〉 = γn+1〈v, xn+2Sn(x)〉 + βn+1〈v, xn+2Sn+1(x)〉 + 〈v,S2
n+2〉,

and 〈v, xn+4Sn+1(x)〉 = γn+1〈v, xn+3Sn(x)〉 + βn+1〈v, xn+3Sn+1(x)〉 + 〈v, xn+3Sn+2(x)〉.
Thus, from the Lemma 2.3, we can deduce respectively (12), (13) and (14).

Lemma 2.5. We have

Sn+3(x) = xn+3 + dn+2xn+2 + en+1xn+1 + fnxn + ... , n ≥ 0 ,
S2(x) = x2 + d1x + e0 , S1(x) = x + d0 ,

(15)

with for n ≥ 0

dn = −

n∑
ν=0

βν , (16)
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en = −

n∑
ν=0

γν+1 +

n∑
ν=0

βν

n+1∑
k=ν+1

βk , (17)

fn =

n∑
ν=0

γν+1

n+2∑
k=ν+2

βk +

n∑
ν=0

βν

n+1∑
k=ν+1

γk+1 −

n∑
ν=0

βν

n+1∑
k=ν+1

βk

n+2∑
i=k+1

βi . (18)

Proof. The relations (16) and (17) are well known (see [3]).
According to the orthogonality of {Sn}n≥0 with respect to v, by the relation (15) it follows that

fn〈v, xnSn(x)〉 = −〈v, xn+3Sn(x)〉 − dn+2〈v, xn+2Sn(x)〉 − en+1〈v, xn+1Sn(x)〉 , n ≥ 0 ,

then using (12) − (14) and (16) − (17), we obtain (18).

Lemma 2.6. We have

In,0(q) = q−n
〈v,S2

n〉 , n ≥ 0 , (19)

In,1(q) = q−n
{
βn + (1 − q)

n−1∑
ν=0

βν
}
〈v,S2

n〉 , n ≥ 0 , (20)

I0,2(q) = γ1 + β2
0 , (21)

In,2(q) = q−n
{
β2

n + γn + γn+1 + (1 − q)
[
(1 + q)

n−2∑
ν=0

γν+1 + βn

n−1∑
ν=0

βν

+(1 − q)
n−2∑
ν=0

βν+1

ν∑
k=0

βk +

n−1∑
ν=0

β2
ν

]}
〈v,S2

n〉 , n ≥ 1 ,

(22)

Jn,0(q) = q−n−1(1 − q)
( n∑
ν=0

βν
)
〈v,S2

n〉 , n ≥ 0 , (23)

Jn,1(q) = q−n−1
{
γn+1 + (1 − q)

[
(1 + q)

n−1∑
ν=0

γν+1 +

n∑
ν=0

β2
ν

+(1 − q)
n−1∑
ν=0

βν+1

ν∑
k=0

βk

]}
〈v,S2

n〉 , n ≥ 0 ,

(24)

Jn,2(q) = q−n−1
{
(βn + βn+1)γn+1 + (1 − q)

[ n∑
k=0

β3
k + (1 − q)

n−1∑
k=0

βk+1

k∑
ν=0

β2
ν

+(1 − q)
n−1∑
k=0

β2
k+1

k∑
ν=0

βν +

n∑
k=0

γk+1

k∑
ν=0

βν +

n−1∑
k=0

γk+1

(
(2 + q)βk+1

+(1 + q)βk

)
+ (1 − q)2

n−1∑
k=0

βk+1

k−1∑
ν=0

βν+1

ν∑
i=0

βi + (1 − q2)
n−1∑
k=0

βk+1

k−1∑
ν=0

γν+1

−q2
n−1∑
k=0

γk+1

k−1∑
ν=0

βν
]}
〈v,S2

n〉 , n ≥ 0 ,

(25)

Kn,0(q) = 0 , n ≥ 0 , (26)

Kn,1(q) = (q−n + 1)[n]q〈v,S2
n〉 , n ≥ 0 , (27)

Kn,2(q) =
{
(1 + q−n)[n]qβn + (qn−1 + q−n)

n−1∑
k=0

βk

}
〈v,S2

n〉 , n ≥ 0 , (28)
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K0,3(q) = 0 , (29)

Kn,3(q) =
{
(q−n + 1)[n]q(γn + γn+1) + (1 + q)(q−n + qn−2)

n−2∑
ν=0

γν+1

+q−n[2n]qβ2
n + (q−n + qn−1)

(
βn

n−1∑
ν=0

βν +

n−1∑
ν=0

β2
ν

)
+(q − 1)(qn−2

− q−n)
n−2∑
ν=0

βν

n−1∑
k=ν+1

βk

}
〈v,S2

n〉 , n ≥ 1 ,

(30)

Ln,0(q) = q−n−1[n + 1]q〈v,S2
n〉 , n ≥ 0 , (31)

Ln,1(q) = q−n−1
( n∑
ν=0

βν
)
〈v,S2

n〉 , n ≥ 0 , (32)

L0,2(q) = q−1(β2
0 + γ1) , (33)

Ln,2(q) = q−n−1
{
[2n + 1]qγn+1 + (1 + q)

n−1∑
ν=0

γν+1 +

n∑
ν=0

β2
ν

+(1 − q)
n−1∑
ν=0

βν+1

ν∑
k=0

βk

}
〈v,S2

n〉 , n ≥ 1 ,

(34)

L0,3(q) = q−1
(
γ1(β1 + 2β0) + β3

0

)
, (35)

Ln,3(q) = q−n−1
{
γn+1

(
[2n + 1]qβn+1 + [2n]qβn + (1 + q2n)

n∑
ν=0

βν
)

+(q + 2)
n−1∑
ν=0

γν+1(βν+1 + βν) +

n∑
ν=0

β3
ν + (1 − q2)

( n−2∑
ν=0

βν

n−1∑
k=ν+1

γk+1

+

n−2∑
ν=0

γν+1

n∑
k=ν+2

βk

)
+ (1 − q)2

n−2∑
ν=0

βν

n−1∑
k=ν+1

βk

n∑
i=k+1

βi

+(1 − q)
( n−1∑
ν=0

β2
ν+1

ν∑
k=0

βk +

n−1∑
ν=0

βν+1

ν∑
k=0

β2
k

)}
〈v,S2

n〉 , n ≥ 1 .

(36)

Proof. From the orthogonality of {Sn}n≥0, we can deduce (19). We have I0,1(q) = (v)1. Thus, from the Lemma
2.2, we get

I0,1(q) = β0 . (37)

For n ≥ 0, by (2) we have

In+1,1(q) = 〈v, {Sn+2(x) + βn+1Sn+1(x) + γn+1Sn(x)}Sn+1(q−1x)〉 .

By the orthogonality of {Sn}n≥0, we can deduce that

In+1,1(q) = q−n−1βn+1〈v,S2
n+1〉 + γn+1 Jn,0(q) , n ≥ 0 . (38)

On other hand from (2) and the orthogonality of {Sn}n≥0, we have

Jn,0(q) = q−1In,1(q) − q−nβn〈v,S2
n〉 , n ≥ 0 .

By virtue of the last equation, (38) can be written

In+1,1(q) = q−1γn+1In,1(q) + q−n(q−1βn+1 − βn)〈v,S2
n+1〉 , n ≥ 0 .
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Consequently, from the Lemma 2.3 and (37), we can deduce (20).
We remark that by (20) and (38), we obtain (23).
We have I0,2(q) = (v)2, from Lemma 2.2, we obtain (21).
For n ≥ 0, by (2), we can write

In+1,2(q) = 〈v, x{Sn+2(x) + βn+1Sn+1(x) + γn+1Sn(x)}Sn+1(q−1x)〉 , n ≥ 0 .

Taking the orthogonality of {Sn}n≥0 into account, we obtain

In+1,2(q) = q−n−1
〈v,S2

n+2〉 + βn+1In+1,1(q) + γn+1 Jn,1(q) , n ≥ 0 . (39)

We can write J0,1(q) = q−1(v)2 − β0(v)1, by the Lemma 2.2, we obtain

J0,1(q) = q−1
{γ1 + (1 − q)β2

0} . (40)

Making n = 0 in (39), by (20) and (40), it follows that

I1,2(q) = q−1γ1{γ1 + γ2 + β2
1 + (1 − q)β0(β0 + β1)} . (41)

When n ≥ 1, by (2) and the orthogonality of {Sn}n≥0, we get

Jn,1(q) = q−1In,2(q) − βnIn,1(q) − q1−nγn〈v,S2
n〉 .

From (20), we can deduce that

Jn,1(q) = q−1In,2(q) − q−n
{qγn + β2

n + (1 − q)βn

n−1∑
ν=0

βν}〈v,S2
n〉 , n ≥ 1 . (42)

By virtue of (42), (39) becomes

In+1,2(q) = q−1γn+1In,1(q) + q−n−1
{γn+2 + β2

n+1 − q2γn − qβ2
n

+(1 − q)βn+1

n∑
ν=0

βν − q(1 − q)βn

n−1∑
ν=0

βν}〈v,S2
n+1〉 , n ≥ 1 .

Using (41) and the Lemma 2.3, we can deduce (22).
We can remark that by the relation (22), (40) and (42), we have (24).
We have J0,2(q) = q−1(v)3 − β0(v)2, from Lemma 2.2, we get

J0,2(q) = q−1
{(β0 + β1)γ1 + (1 − q)β0(γ1 + β2

0)} . (43)

When n ≥ 0, from (2) we have

Jn+1,2(q) =
〈
v, x{Sn+2(x) + βn+1Sn+1(x) + γn+1Sn(x)}{(q−1x − βn+1)Sn+1(q−1x)

−γn+1Sn(q−1x)}
〉
.

By the orthogonality of {Sn}n≥0, we can deduce that for n ≥ 0

Jn+1,2(q) = q−1γn+1 Jn,2(q) + q−1βn+1In+1,2(q) − β2
n+1In+1,1(q) − γ2

n+1In,1(q)
−βn+1γn+1 Jn,1(q) − q−n−1βn+1(qγn+1 + γn+2)〈v,S2

n+2〉

+q−1
〈v, x2Sn+2(x)Sn+1(q−1x)〉 .

(44)

Taking into account (2), we obtain

q−1xSn+1(q−1x) = Sn+2(q−1x) + βn+1Sn+1(q−1x) + γn+1Sn(q−1x) , n ≥ 0 .
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Then, from the last equation and (44), we get

Jn+1,2(q) = q−1γn+1 Jn,2(q) + q−1βn+1In+1,2(q) + In+2,1(q) − β2
n+1In+1,1(q)

−γ2
n+1In,1(q) − βn+1γn+1 Jn,1(q) − q−nβn+1γn+1〈v,S2

n+1〉 , n ≥ 0 .

Consequently, from the Lemma 2.3, (20), (22), (24) and (43), we can deduce (25).
The relation (26) can be obtained directly from the definition of Kn,0(q).
When k ≥ 1, n ≥ 0, we have

Kn,k(q) = 〈v, xk Sn(x)Sn(qx) − Sn(x)Sn(q−1x)
(q − 1)x

〉

=
1

q − 1
〈v, xk−1Sn(x)Sn(qx)〉 −

1
q − 1

〈v, xk−1Sn(x)Sn(q−1x)〉

=
1

q − 1
In,k−1(q) −

1
q − 1

In,k−1(q−1) .

Which give Kn,k(q), 1 ≤ k ≤ 3 from (19) − (22).
On the other hand, we have

Ln,0(q) = 〈v,
Sn+1(x)Sn(qx) − Sn(x)Sn+1(q−1x)

(q − 1)x
〉

= 〈v,Sn+1(x)
Sn(qx) − Sn(x)

(q − 1)x
〉 + 〈v,Sn(x)

Sn+1(x) − Sn+1(x)
(q − 1)x

〉

= qn+1[n + 1]q〈v,S2
n〉 ,

Ln,1(q) =
1

q − 1
〈v,Sn+1(x)Sn(qx)〉 −

1
q − 1

〈v,Sn(x)Sn+1(q−1x)〉

= −
1

q − 1
Jn,0(q) ,

Ln,2(q) =
1

q − 1
〈v, xSn+1(x)Sn(qx)〉 −

1
q − 1

〈v, xSn(x)Sn+1(q−1x)〉

=
qn

q − 1
〈v,S2

n〉 −
1

q − 1
Jn,1(q) ,

Ln,3(q) =
1

q − 1
〈v, x2Sn+1(x)Sn(qx)〉 −

1
q − 1

〈v, x2Sn(x)Sn+1(q−1x)〉

=
1

q − 1
〈v, x2Sn+1(x)Sn(qx)〉 −

1
q − 1

Jn,2(q) .

But, from (2) we have

〈v, x2Sn+1(x)Sn(qx)〉 = 〈v, x{Sn+2(x) + βn+1Sn+1(x) + γn+1Sn(x)}Sn(qx)〉
= 〈v, xSn+2(x)Sn(qx)〉 + βn+1〈v, xSn+1(x)Sn(qx)〉 + γn+1〈v, xSn(x)Sn(qx)〉
= qnβn+1γn+1〈v,S2

n〉 + γn+1In,1(q) ,
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which implies

Ln,3(q) =
qn

q − 1
βn+1γn+1〈v,S2

n〉 +
1

q − 1
γn+1In,1(q) −

1
q − 1

Jn,2(q) .

Hence, we can deduce the desired results (31) − (36) from (20) and (23) − (25).

The following is the main result of this section.
Proposition 2.7. We have the following system

a2γ1 = −Ψ(β0) , (45)

(
a2 − [2n]qc3

)
(γn + γn+1) − (1 + q)(1 + q2n−2)c3

n−2∑
ν=0

γν+1 = −Ψ(βn)

+(1 + q2n−1)
n−1∑
ν=0

(
θβnΦ

)
(βν) + (1 − q)

{
(1 − q2n−2)c3

n−2∑
ν=0

βν

n−1∑
k=ν+1

βk

−(1 + q)a2

n−2∑
ν=0

γν+1 − (1 − q)a2

n−2∑
ν=0

βν+1

ν∑
k=0

βk −

n−1∑
ν=0

βν
(
θβnΨ

)
(βν)

}
+
(
[2n]q − (1 + q2n−1)n

)
c3β2

n +
(
[2n]q − (1 + q2n−1)n

)
(c2βn + c1) , n ≥ 1 ,

(46)

Ξnγn+1 − (1 + q)c2

n−1∑
ν=0

γν+1 − (q + 2)c3

n−1∑
ν=0

γν+1(βν + βν+1) =

n∑
ν=0

Φ(βν)

+(1 − q)
{
c2

n−1∑
ν=0

βν+1

ν∑
k=0

βk + (1 + q)c3

n−2∑
ν=0

βν

n−1∑
k=ν+1

γk+1

+(1 + q)c3

n−2∑
ν=0

γν+1

n∑
k=ν+2

βk + (1 − q)c3

n−2∑
ν=0

βν

n−1∑
k=ν+1

βk

n∑
i=k+1

βi + c3

n−1∑
ν=0

β2
ν+1

ν∑
k=0

βk

+c3

n−1∑
ν=0

βν+1

ν∑
k=0

β2
k −

n∑
ν=0

βνΨ(βν) − (1 + q)a1

n−1∑
ν=0

γν+1 − (1 − q)a1

n−1∑
ν=0

βν

ν∑
k=0

βk

−a2

n−1∑
ν=0

βν+1γν+1 − (1 + q)a2

n−1∑
ν=0

γν+1(βν + βν+1) − a2

n∑
ν=0

γν+1

ν∑
k=0

βk

−(1 − q)a2

n−1∑
ν=0

βν+1

ν∑
k=0

β2
k − (1 − q)a2

n−1∑
ν=0

β2
ν+1

ν∑
k=0

βk − (1 − q2)a2

n−1∑
ν=0

βν+1

ν−1∑
k=0

γk+1

+q2a2

n−1∑
ν=0

γν+1

ν−1∑
k=0

βk − (1 − q)2a2

n−1∑
ν=0

βν+1

ν−1∑
k=0

βk+1

k∑
i=0

βi

}
+
(
[n + 1]q − n − 1

)
c0 , n ≥ 0 ,

−2∑
0

= 0 ,

(47)

with for n ≥ 0

Ξn = (a2 − [2n]qc3)(βn + βn+1) + a1 − q2nβn+1c3 − [2n + 1]qc2 − (1 + q2n)c3

n∑
ν=0

βν .

Proof. Making n = 0 in (10) and taking the relations (19) − (21) and (26) − (29) into account, we can deduce
(45).
Let n ≥ 1, by virtue of the relations (19) − (21), (26) − (28) and (30), the equation (10) becomes(
a2 − [2n]qc3

)
(γn + γn+1) − (1 + q)(1 + q2n−2)c3

n−2∑
ν=0

γν+1 = −a2β
2
n − a1βn − a0 + [2n]qc3β

2
n
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+ (1 + q2n−1)c3

n−1∑
ν=0

βν(βn + βν) + [2n]qc2βn + (1 + q2n−1)c2

n−1∑
ν=0

βν

+ ([2n]qc1 + (1 − q){(q2n−2
− 1)c3

n−2∑
ν=0

βν

n−1∑
k=ν+1

βk − (1 + q)a2

n−2∑
ν=0

γν+1

− a2

n−1∑
ν=0

βν(βn + βν) − (1 − q)a2

n−2∑
ν=0

βν+1

ν∑
k=0

βk − a1

n−1∑
ν=0

βν}.

But,
(
θβnΦ

)
(βν) = c3(β2

n + βnβν + β2
ν) + c2(βn + βν) + c1 and

(
θβnΨ

)
(βν) = a2(βn + βν) + a1.

Then, we can deduce (46).
Let n = 0 in (11), by virtue of (23) − (25), (31) − (33) and (35), we get (47) for n = 0.

Where n ≥ 1, on account of (23) − (25), (31) − (32), (34) and (36), (11) becomes

{(a2 − [2n]qc3)(βn + βn+1) + a1 − q2n−1βn+1c3 − [2n + 1]qc2 − (1 + q2n)c3

n∑
ν=0

βν}γn+1

− (1 + q)c2

n−1∑
ν=0

γν+1 − (q + 2)c3

n−1∑
ν=0

γν+1(βν + βν+1) = c3

n∑
ν=0

β3
ν + c2

n∑
ν=0

β2
ν + c1

n∑
ν=0

βν

+ qn[n + 1]q−1 c0 + (1 − q){c2

n∑
ν=1

βν

ν−1∑
k=0

βk + (1 + q)c3

n−2∑
ν=0

βν

n−1∑
k=ν+1

γk+1

+ (1 + q)c3

n−2∑
ν=0

γν+1

n∑
k=ν+2

βk + (1 − q)c3

n−2∑
ν=0

βν

n−1∑
k=ν+1

βk

n∑
i=k+1

βi + c3

n−1∑
ν=0

β2
ν+1

ν∑
k=0

βk

+ c3

n−1∑
ν=0

βν+1

ν∑
k=0

β2
k − a0

n∑
ν=0

βν − (1 + q)a1

n−1∑
ν=0

γν+1 − a1

n∑
ν=0

β2
ν − (1 − q)a1

n−1∑
ν=0

βν

ν∑
k=0

βk

− a2

n−1∑
ν=0

βν+1γν+1 − (1 + q)a2

n−1∑
ν=0

γν+1(βν + βν+1) − a2

n∑
ν=0

β3
ν − a2

n∑
ν=0

γν+1

ν∑
k=0

βk

− (1 − q)a2

n−1∑
ν=0

βν+1

ν∑
k=0

β2
k − (1 − q)a2

n−1∑
ν=0

β2
ν+1

ν∑
k=0

βk − (1 − q2)a2

n−1∑
ν=0

βν+1

ν−1∑
k=0

γk+1

− q2a2

n−1∑
ν=0

γν+1

ν−1∑
k=0

βk − (1 − q)2a2

n−1∑
ν=0

βν+1

ν−1∑
k=0

βk+1

k∑
i=0

βi}.

Here, we can deduce (47) for n ≥ 1.

Remark 1. If q→ 1 in (45) − (47), we obtain the result given in [2].

3. Hq-semiclassical forms of class one: specially case

From now on, let v be a Hq-semiclassical form of class sv = 1 satisfying (6) and its corresponding MOPS
{Sn}n≥0 fulfils

Sn+2(x) =
(
x − (tn − tn+1)

)
Sn+1(x) + t2

nSn(x) , n ≥ 0 ,
S1(x) = x + t0 , S0(x) = 1 ,

(48)

with tn , 0 , n ≥ 0.
The next Lemma will play an important role in the sequel.
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Lemma 3.1. [15] The following statements are equivalents:
(a) The MOPS {Sn}n≥0 satisfying (48).
(b) (v)2n+2 = 0 , n ≥ 0 and the form xv is regular.
(c) There exists a regular symmetric form u such that v = (v)1x−1u + δ0.
Remark 2. The form v is quasi-antisymmetric (i.e (v)2n+2 = 0,n ≥ 0). For more information about these
forms see [12, 15].

3.1. Class and functional equation of the form u = (v)−1
1 xv

In the sequel our aim is to characterize the structure of the polynomial elements of the functional
equation (6) satisfied by the form v which its corresponding MOPS {Sn}n≥0 fulfils (48). This is possible
through the study of the Hq-semiclassical character of the symmetric form u define by

λu = xv , λ = (v)1 , 0 .

Consequently, according to [4], the form u is regular if and only if

Sn(0) , 0 , n ≥ 0 .

Now, multiplying equation (6) by q−2x2 and on account of (3), we obtain

Hq(Eu) + Fu = 0 , (49)

with

E(x) = xΦ(x) , F(x) = q−2xΨ(x) − q−1(1 + q−1)Φ(x) . (50)

Theorem 3.2. The form u is Hq-semiclassical of class su satisfying

Hq(Ẽu) + F̃u = 0 . (51)

Moreover,
(a) If Φ(0) , 0, then

Ẽ(x) = E(x) , F̃(x) = F(x) ,

and su = 2.
(b) If Φ(0) = 0 and Ψ(0) , 0, then

Ẽ(x) = Φ(x) , F̃(x) = q−1
(
Ψ − (θ0Φ)

)
(x) ,

and su = 1.
(c) If Φ(0) = 0 and Ψ(0) = 0, then

Ẽ(x) = (θ0Φ)(x) , F̃(x) = (θ0Ψ)(x) ,

and su = 0.
For the proof, we need the following lemma.

Lemma 3.3. (i) For all root c of Φ, we have

〈u, θcq(qF + θcE)〉 =
c2

λ
〈v, θcq(qΨ + θcΦ)〉 −

cq−1

λ

(
(HqΦ) + q(hqΨ)

)
(c) , (52)(

(HqE) + q(hqF)
)
(c) = q−1c

(
(HqΦ) + q(hqΨ)

)
(c) . (53)

(ii) The class of the form u depends only the root x = 0 of E.
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Proof. (i) Let c be a root of Φ. Then we can write

E(x) = x(x − c)(θcΦ)(x) . (54)

Using the definition of the operator θc, it is easy to prove that, for f , 1 ∈ P, we have(
θc( f1)

)
(x) =

(
θc f

)
(x)1(x) + f (c)

(
θc1

)
(x) . (55)

From (50) and (54), we have

〈u, θcqθcE〉 =
1
λ
〈xv, θcq

(
(ξ)Φc

)
(x)〉 .

Taking f (x) = x and 1(x) = Φc(x) in (55), we obtain

〈xv, θcq

(
ξΦc

)
(x)〉 = c2q2

〈v, θcqθcΦ〉 + c(1 + q)〈v,Φc〉 + 〈v,Φ〉 − cq(HqΦ)(c) ,

since x = (x − c) + c = (x − cq) + cq. Therefore,

〈u, θcqθcE〉 =
c2q2

λ
〈v, θcqθcΦ〉 +

(1 + q)c
λ
〈v,Φc〉 +

1
λ
〈v,Φ〉 −

cq
λ

(HqΦ)(c) . (56)

Proceeding as in (56), we can easily prove that

〈u, qθcqF〉 =
c2q
λ 〈v, θcqΨ〉 +

1
λ 〈v, (q

−1x + c)Ψ〉 − (1 + q) c
λ 〈v, θcqΦ〉

−
1+q−1

λ 〈v,Φ〉 −
c
λ (hqΨ)(c) +

1+q−1

λ (hqΦ)(c) .
(57)

Adding (56) and (57), we get

〈u, θcq(θcE + qF)〉 = c2

λ 〈v, q
2θcqθcΦ + θcqΨ〉 +

(1+q)c
λ 〈v, (θc − θcq)Φ〉

+ 1
λ {−cq(HqΦ)(c) + (1 + q−1)(hqΦ)(c)} − c

λ (hqΨ)(c)

+ 1
λ 〈v,−q−1Φ(x) + (q−1x + c)Ψ(x)〉 .

This yields (52), since
(hqΦ)(c) = (q − 1)c(HqΦ)(c), (θc − θcq)Φ = −(q − 1)cθcqθcΦ, and
〈v,−q−1Φ(x) + (q−1x + c)Ψ(x)〉 = 〈Hq(Φv) + Ψv, q−1x + c〉 = 0.
Next, it is easy to find (53) from (50).

(ii) Let c be a root of E such that c , 0. According to (50) we get Φ(c) = 0. We suppose
(
q(hqF)+(HqE)

)
(c) = 0.

According to (53), we obtain (
(HqΦ) + q(hqΨ)

)
(c) = 0 ,

and

〈u, θcq(θcE + qF)〉 =
c2

λ
〈v, θcq(θcΦ + qΨ)〉 , 0 ,

since v is Hq-semi-classical and so satisfies (7). Therefore, equation (49) is not simplified by x−c for c , 0.

Proof. (of Theorem 3.2) We may write
(
(HqE) + q(hqF)

)
(0) = −q−1Φ(0).

(a) If Φ(0) , 0, then
(
(HqE) + q(hqF)

)
(0) , 0. Thus, equation (51) cannot be simplified and so the form u is of

class
su = max

(
deg(E) − 2,deg(F) − 1

)
= max

(
deg(Φ) − 1,deg(Ψ)

)
.

Hence, su = 2.
(b) If Φ(0) = 0, then
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(HqE) + q(hqF)

)
(0) = 0 and 〈u, θ0(θ0E + qF)〉 = 0,

according to (52) and (53). So, equation (51) can be simplified by the polynomial x and becomes

Hq(Ẽu) + F̃u = 0 , (58)

where

Ẽ(x) = Φ(x) , F̃(x) = q−1
(
Ψ − θ0Φ

)
(x) . (59)

It is easy to see that (58) is not simplified, since from (59), we have
(
(HqẼ) + q(hqF̃)

)
(0) = Ψ(0) , 0. Therefore

su = 1.
(c) If Φ(0) = 0 and Ψ(0) = 0, then (

(HqẼ) + q(hqF̃)
)
(0) = 0 .

A simple calculation gives 〈u, θ0(θ0Ẽ + qF̃)〉 = 1
λ 〈v,Ψ〉 = 0. So, (58) is simplified by the polynomial x and it

becomes

Hq(Ĕu) + F̆u = 0 , (60)

where

Ĕ(x) = (θ0Φ)(x) , F̆(x) = (θ0Ψ)(x) . (61)

If 0 is a root of θ0Φ, then
(
(HqΦ) + q(hqΨ)

)
(0) = 0. Assuming that

(
(HqĔ) + q(hqF̆)

)
(0) = 0.

A simple calculation gives from (61) 〈u, θ0(θ0Ĕ + qF̆)〉 = 1
λ 〈v, θ0(θ0Φ + qΨ)〉 , 0, since v is a Hq-semiclassical

and it satisfies (7). Hence, equation (60) is not simplified and so, su = 0.

3.2. Structure of the polynomials Φ and Ψ

Let us spilt up each polynomial form Φ, Ψ, θ0Φ and θ0Ψ according to its odd and even parts that is to
say

Φ(x) = Φe(x2) + xΦo(x2) , Ψ(x) = Ψe(x2) + xΨo(x2) ,
(θ0Φ)(x) = Φe

1(x2) + xΦo
1(x2) , (θ0Ψ)(x) = Ψe

1(x2) + xΨo
1(x2) .

(62)

Proposition 3.4. If v be a Hq-semiclassical form of class one satisfying (6) and {Sn}n≥0 be its corresponding MOPS
fulfilling (48), then

Φe = 0 , Ψo = 0 . (63)

Proof. Writing
Ẽ(x) = Ẽe(x) + xẼo(x) , F̃(x) = F̃e(x) + xF̃o(x) .

We have to examine the following situations:
(a) Φ(0) , 0. According to (62) and from the expression of polynomials Ẽ and F̃ given in Theorem 3.2, we
get

Ẽe(x) = xΦo(x) , Ẽo(x) = Φe(x) ,
F̃e(x) = q−2xΨo(x) − q−1(1 + q−1)Φe(x) , F̃o(x) = q−2Ψe(x) − q−1(1 + q−1)Φo(x) .

Then, Ẽo = F̃e = 0, from Proposition 1.3, since su = 2. This gives (63).
In the other cases, we are going to proceed with the same techniques.
(b) Φ(0) = 0 and Ψ(0) , 0. Similar as above,

Ẽe(x) = Φe(x) , Ẽo(x) = Φo(x) ,
F̃e(x) = q−1Ψe(x) − q−1Φe

1(x) , F̃o(x) = q−1Ψo(x) − q−1Φo
1(x) .
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If su = 1, then Ẽe = F̃o = 0. This leads to result (63), since Φ(x) = x(θ0Φ)(x).
(c) Φ(0) = 0 and Ψ(0) = 0. In this case, we obtain

Ẽe(x) = Φe
1(x) , Ẽo(x) = Φo

1(x) ,
F̃e(x) = Ψe

1(x) , F̃o(x) = Ψo
1(x) .

Since u is of even class, Ẽo = F̃e = 0. This gives the desired result (63), since Ψ(x) = x(θ0Ψ)(x).

Theorem 3.5. If v is a Hq-semiclassical form of class one satisfying (6) and {Sn}n≥0 be its corresponding MOPS
fulfilling (48), then

Φ(x) = x , Ψ(x) = a2x2 , a2 , 0 , (64)

or

Φ(x) = x3 + c1x , Ψ(x) = a2x2 , a2c1 , 0 . (65)

Proof. We have to consider four cases:
A. deg(Φ) = 0. We have Φe(x) = 1 and Φo(x) = 0. From Proposition 3.4, we get Φe(x) = 0 which yields a
contradiction.
B. deg(Φ) = 1. In this case, we have c1 = 1, c2 = c3 = 0 and a2 , 0. Then, we obtain Φe(x) = c0, Φo(x) = 1,
Ψe(x) = a2x + a0 and Ψo(x) = a1. Following Proposition 3.4, three situations to establish.

B1. Φ(0) , 0, then c0 = 0 and a1 = 0 which yields a contradiction.
B2. Φ(0) = 0 and Ψ(0) , 0, here c0 = 0 and a1 = 0. Thus, a0 = 0 since from (6), we have 〈Hq(Φv)+Ψv, 1〉 = 0,

which yields a contradiction.
B3. Φ(0) = 0 and Ψ(0) = 0, then Φo

1(x) = 0 and a1 = 0. This gives (64).
C. deg(Φ) = 2. We have c2 = 1, c3 = 0 and a2 , 0. Then, we obtain Φe(x) = x + c0 and Φo(x) = c1. By virtue
of Proposition 3.4, such assumptions lead us to a contradiction.
D. deg(Φ) = 3. In this case, we get Φe(x) = c2x + c0, Φo(x) = x + c1, Ψe(x) = a2x + a0 and Ψo(x) = a1, because
1 ≤ deg(Ψ) ≤ 2. We have to examine three subcases:

D1. Φ(0) , 0, then c2 = c0 = 0 and a1 = 0, which yields a contradiction.
D2. Φ(0) = 0 and Ψ(0) , 0, here c2 = c0 = 0 and a1 = 0. Thus, a0 = 0 since from (6), we have

〈Hq(Φv) + Ψv, 1〉 = 0,which yields a contradiction.
D3. Φ(0) = 0 and Ψ(0) = 0, thus c2 = 0 and a1 = 0.
Now, we assume that c1 = 0. Then, from (6) we have (a2 − [n + 1]q)(v)2n+3 = 0, n ≥ 0. So, after a certain

rang the Hankel determinants [12] associated with v are equal to zero, by following v is not regular. This
leads to result (65).

3.3. Recurrence coefficients of {Sn}n≥0

First, let us recall the following standard material needed to the sequel [3]

(a; q)0 = 1 , (a; q)n =

n∏
ν=1

(1 − aqν−1) , n ≥ 1 .

Second, we assume that {Sn}n≥0 be a Hq-semiclassical sequence of class sv = 1 satisfying (48). By virtue of
the Theorem 3.5, it follows that v satisfying (6) with

Φ(x) = c3x3 + c1x , Ψ(x) = a2x2 . (66)

Proposition 3.6. The sequence {tn}n≥0 is define by

t2n = t0Λn(c3, c1) , t2n+1 = t−1
0 Ωn(c3, c1) , (67)
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where

Λn(c3, c1) =


qn (q2;q2)n

(q;q2)n
, i f (c3, c1) = (0, 1) ,

qn (q2;q2)n(w−1;q2)n(q−1w−1;q4)n

(q;q2)n(q−1w−1;q2)n(qw−1;q4)n
, i f c3 = 1 , c1w , 0 ,

(q2;q2)n

q2n(q;q2)n
, i f c3 = 1 , w = 0 , c1 , 0 ,

Ωn(c3, c1) =


−qn (q3;q2)n

a2(q2;q2)n
, i f (c3, c1) = (0, 1) ,

−w−1c1qn(q − 1) (q3;q2)n(qw−1;q2)n(qw−1;q4)n

(1−w−1q4n+1)(q2;q2)n(w−1;q2)n(q3w−1;q4)n
, i f c3 = 1 , c1w , 0 ,

c1(q − 1) (q3;q2)n

q2n+1(q2;q2)n
, i f c3 = 1 , w = 0 , c1 , 0 ,

with
w = (q − 1)a2 + 1 .

Proof. Taking into account (48) and (66), the system (45) − (47) becomes for n ≥ 0

(q + 1){(1 + q2n−2)c3 + (q − 1)a2}

n−1∑
ν=0

tνtν+1 + q(q + 1){[2n − 3]qc3 − a2}tntn−1 − [2n]qc1 = 0 , (68)

(q2
− 1){c3 + (q − 1)a2}

n−1∑
ν=0

tνtν+1 − {[2n + 1]qc3 − a2}tntn+1 + q3
{[2n − 3]qc3 − a2}tntn−1 + c1 = 0 . (69)

Subtracting identities (68) and (69) after multiplying respectively by q2 and q + 1, we obtain

{(1 + q2n)c3 + (q − 1)a2}

n∑
ν=0

tνtν+1 + q{[2n − 1]qc3 − a2}tntn+1 − [n + 1]q2 c1 = 0 , n ≥ 0 .

Equivalently,

{[2n + 1]qc3 − a2}Tn − q{[2n − 1]qc3 − a2}Tn−1 = [n + 1]q2 c1 , n ≥ 0 , (70)

where

Tn =

n∑
ν=0

tνtν+1 , n ≥ 0 . (71)

So, we get from (70)

{[2n + 1]qc3 − a2}Tn = c1

n∑
k=0

qn−k[k + 1]q2 , n ≥ 0 .

Hence,

Tn =
[n + 1]q[n + 2]qc1

(q + 1){[2n + 1]qc3 − a2}
, n ≥ 0 . (72)

Now, from (71), we have

t2nt2n+1 = T2n − T2n−1 , t2n+1t2n+2 = T2n+1 − T2n , n ≥ 0 , T−1 = 0 .

Then, from (72) we obtain for n ≥ 0

t2nt2n+1 = q2n [2n+1]q{[2n−1]qc3−a2}c1

{[4n−1]qc3−a2}{[4n+1]qc3−a2}
,

t2n+1t2n+2 = q2n+1 [2n+2]q{[2n]qc3−a2}c1

{[4n+1]qc3−a2}{[4n+3]qc3−a2}
.

(73)
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This leads to
t2n+2

t2n
= q

[2n + 2]q{[2n]qc3 − a2}{[4n − 1]qc3 − a2}

[2n + 1]q{[4n + 3]qc3 − a2}{[2n − 1]qc3 − a2}
.

Here,
t2n+2 = t0Λn+1(c3, c1) , n ≥ 0 .

On account of (73) and the above equation, we have

t2n+1 = qn [2n + 1]q{[2n − 1]qc3 − a2}c1

t0{[4n − 1]qc3 − a2}{[4n + 1]qc3 − a2}Λn(c3, c1)
, n ≥ 0 .

Hence the desired result (67).

3.4. The canonical cases
Before quoting the different canonical situations, let us proceed to the general transformation.

{S̃n(x) = a−nSn(ax)}n≥0 MOPS satisfies (48) with t̃n = a−1tn , n ≥ 0 .

Then, the form ṽ = ha−1 v fulfils

Hq(a−tΦ(ax)ṽ) + a1−tΨ(ax)ṽ = 0 , t = deg(Φ) . (74)

Any so-called canonical case will be denoted by t̃n, ṽ.
Theorem 3.7. The following canonical cases arise:
(a) When Φ(x) = x, we have

t̃2n = −λqn (q2;q2)n

(q;q2)n
, n ≥ 0 ,

t̃2n+1 = qn (q3;q2)n

2λ(q2;q2)n
, n ≥ 0 ,

Hq(xṽ) + 2x2ṽ = 0 .

(75)

(b) When Φ(x) = x3 + c1x, c1 , 0, we have the following canonical cases
(i) 1 + (q − 1)a2 , 0

t̃2n = −λqn (q2;q2)n(b2q2;q2)n(b2q;q4)n

(q;q2)n(b2q;q2)n(b2q3;q4)n
, n ≥ 0 ,

t̃2n+1 = −b2qn+2(q − 1) (q3;q2)n(b2q3;q2)n(b2q3;q4)n

λ(1−b2q4n+3)(q2;q2)n(b2q2;q2)n(b2q5;q4)n
, n ≥ 0 ,

Hq

(
(x3
− x)ṽ

)
−

b2q2
−1

b2q2(q−1) x
2ṽ = 0 ,

b2
− 1 , 0 .

(76)

(ii) a2 = −(q − 1)−1


t̃2n = −λ

(q2;q2)n

q2n(q;q2)n
, n ≥ 0 ,

t̃2n+1 = −(q − 1) (q3;q2)n

λq2n+1(q2;q2)n
, n ≥ 0 ,

Hq

(
(x3 + x)ṽ

)
− (q − 1)−1x2ṽ = 0 .

(77)

Proof. (a) In this case (67) and (74) become
t2n = t0qn (q2;q2)n

(q;q2)n
, n ≥ 0 ,

t2n+1 = −t−1
0 qn (q3;q2)n

a2(q2;q2)n
, n ≥ 0 ,

Hq

(
xv

)
+ a2x2v = 0 .
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With the choice a =
√

2a−1
2 and putting λ = −t0, we get (75).

(b) (i) In this case (67) and (74) reduce to
t2n = t0qn (q2;q2)n(w;q2)n(q−1w;q4)n

(q;q2)n(q−1w;q2)n(qw;q4)n
, n ≥ 0 ,

t2n+1 = t−1
0 − wc1qn(q − 1) (q3;q2)n(qw;q2)n(qw;q4)n

(1−wq4n+1)(q2;q2)n(w;q2)n(q3w;q4)n
, n ≥ 0 ,

Hq

(
(x3 + c1x)v

)
+ a2x2v = 0 .

The choice a =
√
−c1 and putting − b2q2

−1
b2q2(q−1) = a2, λ = −t0, we obtain (76).

(ii) In this case (67) and (74) become
t2n = t0

(q2;q2)n

q2n(q;q2)n
, n ≥ 0 ,

t2n+1 = t−1
0 c1(q − 1) (q3;q2)n

q2n+1(q2;q2)n
, n ≥ 0 ,

Hq

(
(x3 + c1x)v

)
+ a2x2v = 0 .

The choice a =
√

c1 and putting λ = −t0, we obtain (77).

Remarks 3. (i) The form defined by (76) is regular if and only if b2 , q−(n+1) , n ≥ 0.
(ii) The canonical cases (75) and (77) are studied in [9] and the corresponding linear forms have respectively
the following integral representations:

〈ṽ, f 〉 =


f (0) + P

∫ +∞

−∞

f (x)

x
(
− 2(q − 1)x2; q−2

)
∞

dx , q > 1 , f ∈ ¶ ,

f (0) + P
∫ 1

q
√

2(1−q)

−
1

q
√

2(1−q)

(
2q2(1 − q)x2; q2

)
∞

x
f (x) dx , 0 < q < 1 , f ∈ ¶ ,

〈ṽ, f 〉 = f (0) + P
∫ +∞

−∞

1

x
(
− x2; q2

)
∞

f (x) dx , 0 < q < 1 , f ∈ ¶ ,

where

P
∫ +∞

−∞

V(x)
x

dx = lim
ε→0+

( ∫ −ε

−∞

V(x)
x

dx +

∫ +∞

+ε

V(x)
x

dx
)
, (78)

with V is a locally integrable function with rapid decay and continuous at the point x = 0 and

(a; q)∞ =

+∞∏
ν=0

(1 − aqν) , |q| < 1 .

Proposition 3.8. The form ṽ define by (76) has the following integral representation

〈ṽ, f 〉 =


f (0) + P

∫ q

−q

(−q−1x; q−1)∞(q−1x; q−1)∞
x(b−1q−1x; q−1)∞(−b−1q−1x; q−1)∞

f (x) dx , q > 1 , b > 1 ,

f (0) + P
∫ b

−b

(b−1x; q)∞(−b−1x; q)∞
x(−x; q)∞(x; q)∞

f (x) dx , 0 < q < 1 , 0 < b < 1 .
(79)

Proof. From (76), we have

ṽ = λ−1xu + δ0 , (80)
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where u is symmetric Hq-classical form satisfying the q-Pearson equation [8]

Hq

(
(x2
− 1)u

)
−

b2q2
− 1

b2q2(q − 1)
xu = 0 .

This form has the following integral representation [8]

〈u, f 〉 =


K1

∫ q

−q

(−q−1x; q−1)∞(q−1x; q−1)∞
(b−1q−1x; q−1)∞(−b−1q−1x; q−1)∞

f (x) dx , q > 1 , b > 1 ,

K2

∫ b

−b

(b−1x; q)∞(−b−1x; q)∞
(−x; q)∞(x; q)∞

f (x) dx , 0 < q < 1 , 0 < b < 1 ,
(81)

with

K1 =
( ∫ q

−q

(−q−1x; q−1)∞(q−1x; q−1)∞
(b−1q−1x; q−1)∞(−b−1q−1x; q−1)∞

dx
)−1

,

K2 =
( ∫ b

−b

(b−1x; q)∞(−b−1x; q)∞
(−x; q)∞(x; q)∞

dx
)−1

.

Thus, by (80) and (81), we have

〈ṽ, f 〉 =


f (0) + λ−1K1P

∫ q

−q

(−q−1x; q−1)∞(q−1x; q−1)∞
x(b−1q−1x; q−1)∞(−b−1q−1x; q−1)∞

( f (x) − f (0)) dx , q > 1 , b > 1 ,

f (0) + λ−1K2P
∫ b

−b

(b−1x; q)∞(−b−1x; q)∞
x(−x; q)∞(x; q)∞

( f (x) − f (0)) dx , 0 < q < 1 , 0 < b < 1 .

But from (78) it easy to see that

P
∫ q

−q

(−q−1x; q−1)∞(q−1x; q−1)∞
x(b−1q−1x; q−1)∞(−b−1q−1x; q−1)∞

dx = 0 ,

and

P
∫ b

−b

(b−1x; q)∞(−b−1x; q)∞
x(−x; q)∞(x; q)∞

dx = 0 .

Therefore, with the choosing

λ =

{
K1 , q > 1 , b > 1 ,
K2 , 0 < q < 1 , 0 < b < 1 ,

we obtain the result (79).

Acknowledgment. Thanks are due to the referee for his valuable comments and useful suggestions and
for his careful reading of the manuscript.

References

[1] F. Abdelkarim and P. Maroni, The Dw-classical polynomials, Resut. Math. 32 (1997), 1-28.
[2] S. Belmehdi, On semi-classical linear functional of class s = 1. Classification and integral representations, Indag. Math. 3, (1992),

253-275.
[3] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
[4] J. Dini, Sur les formes linéaires et les polynômes orthogonaux de Laguerre-Hahn, Thèse de l’Univ. Pierre et Marie Curie, Paris,

1988.
[5] A. Ghressi and L. Khériji, The Symmetrical Hq-Semiclassical Orthogonal Polynomials of Class one, SIGMA 5 (2009), 076, 22

pages, arXiv: 0907.3851.
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[15] P. Maroni, Sur la suite de polynômes orthogonaux associée à la forme u = δc +λ(x− c)L, Period. Math. Hunger. 21 (1990) , 223-248.


