Filomat 32:19 (2018), 6741–6752 https://doi.org/10.2298/FIL1819741E



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# $z_c$ -Ideals and Prime Ideals in the Ring $\mathcal{R}_c L$

## A.A. Estaji<sup>a</sup>, A. Karimi Feizabadi<sup>b</sup>, M. Robat Sarpoushi<sup>a</sup>

<sup>a</sup> Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran. <sup>b</sup>Department of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan, Iran.

**Abstract.** The ring  $\mathcal{R}_c L$  is introduced as a sub-*f*-ring of  $\mathcal{R}L$  as a pointfree analogue to the subring  $C_c(X)$  of C(X) consisting of elements with the countable image. We introduce  $z_c$ -ideals in  $\mathcal{R}_c L$  and study their properties. We prove that for any frame *L*, there exists a space *X* such that  $\beta L \cong \mathfrak{D}X$  with  $C_c(X) \cong \mathcal{R}_c(\mathfrak{D}X) \cong \mathcal{R}_c\beta L \cong \mathcal{R}_c^*L$ , and from this, we conclude that if  $\alpha, \beta \in \mathcal{R}_c L, |\alpha| \le |\beta|^q$  for some q > 1, then  $\alpha$  is a multiple of  $\beta$  in  $\mathcal{R}_c L$ . Also, we show that  $IJ = I \cap J$  whenever *I* and *J* are  $z_c$ -ideals. In particular, we prove that an ideal of  $\mathcal{R}_c L$  is a  $z_c$ -ideal if and only if it is a *z*-ideals. In addition, we study the relation between  $z_c$ -ideals and prime ideals in  $\mathcal{R}_c L$ . Finally, we prove that  $\mathcal{R}_c L$  is a Gelfand ring.

#### 1. Introduction

An ideal *I* of a ring *A* is a *z-ideal* if whenever two elements of *A* are in the same set of maximal ideals and *I* contains one of the elements, then it also contains the other (the term "ring" means a commutative ring with identity). A study of *z*-ideals in rings generally has been carried by Mason in the article [25]. We refer to *z*-ideals as defined in [25] as "*z*-ideals á la Mason". This algebraic definition of *z*-ideal was coined in the context of rings of continuous functions by Kohls in [22] and is also in the text *Rings of continuous functions* by Gillman and Jerison [16]. In pointfree topology, *z*-ideals were introduced by Dube in [8] in terms of the cozero map. *z*-Ideals have been studied in the theory of abelian lattice-ordered groups [4, 27] and in the context of Riesz space in [17] and [18].

This paper is mainly about the study of prime ideals and  $z_c$ -ideals in the ring  $\mathcal{R}_c L$ , where  $\mathcal{R}_c L$  is the sub-*f*-ring of  $\mathcal{R}L$  consisting of all elements which have the pointfree countable image. The ring  $\mathcal{R}_c L$  is introduced in [21] as the pointfree version of  $C_c(X)$ , the subalgebra of C(X) of all continuous functions with a countable image on a topological space *X*.

This paper is organized as follows. Section 2 is introductory. It is where we present relevant definitions pertaining to frames and give relevant background for the other sections. In Section 3, we introduce  $z_c$ -ideals in  $\mathcal{R}_c L$  (see Definition 3.2) and study some properties of  $z_c$ -ideals. In addition, we show that  $IJ = I \cap J$  whenever I and J are  $z_c$ -ideals, just as in C(X) and in  $\mathcal{R}L$  (Proposition 3.14). We prove that for any frame L, there exists a space X such that  $\beta L \cong \mathfrak{D}X$  with  $C_c(X) \cong \mathcal{R}_c(\mathfrak{D}X) \cong \mathcal{R}_c \beta L \cong \mathcal{R}_c^* L$ , (see Lemmas 3.16 and 3.18).

Keywords. Frame, Ring of real-valued continuous functions, Cozero element, z-Ideal, zc-Ideal, Prime ideal, f-ring

Received: 08 February 2017; Revised: 19 April 2017; Accepted: 16 May 2017

Communicated by Marko Petković

<sup>2010</sup> Mathematics Subject Classification. 06D22, 13A15, 54C05, 54C30

Corresponding author: A. A. Estaji

Research supported by Hakim Sabzevari University

Email addresses: aaestaji@hsu.ac.ir (A.A. Estaji), akarimi@gorganiau.ac.ir (A. Karimi Feizabadi), M.sarpooshi@yahoo.com (M. Robat Sarpoushi)

By this result, we show that if  $\alpha, \beta \in \mathcal{R}_c L$ ,  $|\alpha| \leq |\beta|^q$  for some q > 1, then  $\alpha$  is a multiple of  $\beta$  in  $\mathcal{R}_c L$  (Lemma 3.19). Also, we prove that a *z*-ideal in  $\mathcal{R}_c L$  is a  $z_c$ -ideal if and only if it is a *z*-ideal  $\dot{\alpha}$  la Mason (see Proposition 3.27). In Section 4, we study the relation between prime ideals and  $z_c$ -ideals in the ring  $\mathcal{R}_c L$  (see Proposition 4.4). In addition, we show that  $\mathcal{R}_c L$  is a Gelfand ring (see Corollary 4.7).

### 2. Preliminaries

Here, we recall some concepts and terminologies with frames, frame maps and the pointfree version of the ring of continuous real-valued functions. Our references for frames are [20, 26] and our references for the ring  $\mathcal{R}L$  are [1, 2].

A *frame* is a complete lattice *L* in which the distributive law

$$x \land \bigvee S = \bigvee \{x \land s : s \in S\}$$

holds for all  $x \in L$  and  $S \subseteq L$ . We denote the top element and the bottom element of L by  $\top_L$  and  $\bot_L$  respectively, dropping the decorations if L is clear from the context. The frame of open subsets of a topological space X is denoted by  $\mathfrak{D}X$ .

An element  $p \in L$  is said to be *prime* if  $p < \top$  and  $a \land b \le p$  implies  $a \le p$  or  $b \le p$ . An element  $m \in L$  is said to be *maximal* (*or dual atom*) if  $m < \top$  and  $m \le x \le \top$  implies m = x or  $x = \top$ . As it is well known, every maximal element is prime. A lattice-ordered ring A is called f-ring, if  $(f \land g)h = fh \land gh$  for every  $f, g \in A$  and every  $0 \le h \in A$ .

Recall the contravariant *functor*  $\Sigma$  from **Frm** to the category **Top** of topological spaces which assigns to each frame *L* its *spectrum*  $\Sigma L$  of prime elements with  $\Sigma_a = \{p \in \Sigma L : a \nleq p\}$  ( $a \in L$ ) as its open sets.

Let *L* be a frame. We say that *a* is *rather below b*, and write a < b, if there exists a *separating element s* of *L* with  $a \land s = \bot$  and  $s \lor b = \top$ . A frame *L* is called *regular* if each of its elements is a join of elements rather below it. An element *a* of a frame *L* is said to be *completely below b*, written a < d, if there exists a sequence  $(c_q), q \in \mathbb{Q} \cap [0, 1]$ , where  $c_0 = a, c_1 = b$ , and  $c_p < c_q$  whenever p < q. A frame *L* is called *completely regular* if each  $a \in L$  is a join of elements completely below it.

A *frame homomorphism* (*or frame map*) is a map between frames which preserves finite meets, including the top element, and arbitrary joins, including the bottom element.

An ideal *J* of *L* is said to be completely regular if for each  $x \in J$  there exists  $y \in J$  such that  $x \ll y$ . The set  $\beta L$  of all completely regular ideals of a frame *L* under set inclusion is a compact completely regular frame, and  $j_L : \beta L \to L$ , defined by  $j_L(I) = \bigvee I$ , is a dense onto frame homomorphism, so that  $\beta L$  is a compactification of *L*. The compactification  $\beta L$  is known as the *Stone-Čech compactification* of the frame *L*. It is clear that  $\beta L$  is finite if and only if *L* is finite. The right adjoint  $j_* : L \to \beta L$  of the surjective frame homomorphism  $j_L$  is denoted by  $r_L$ , and  $r_L(a) = \{x \in L : x \ll a\}$  for all  $a \in L$  (see [2, 3, 10, 26]).

Recall from [2] (see also [1]) that the frame of reals  $\mathcal{L}(\mathbb{R})$  is obtained by taking the ordered pairs (*p*,*q*) of rational numbers as generators and imposing the following relations:

 $\begin{array}{l} (\text{R1}) \ (p,q) \land (r,s) = (p \lor r,q \land s). \\ (\text{R2}) \ (p,q) \lor (r,s) = (p,s) \text{ whenever } p \le r < q \le s. \\ (\text{R3}) \ (p,q) = \bigvee \{(r,s) : p < r < s < q\}. \\ (\text{R4}) \ \top = \bigvee \{(p,q) : p,q \in \mathbb{Q}\}. \\ \text{For the pairs } (p,q) \in \mathbb{Q}^2, \text{ we let:} \end{array}$ 

$$\langle p, q \rangle := \{ x \in \mathbb{Q} : p < x < q \}$$
 and  $[]p, q[] := \{ x \in \mathbb{R} : p < x < q \}.$ 

The set  $\mathcal{R}L$  of all frame homomorphisms from  $\mathcal{L}(\mathbb{R})$  to *L* has been studied as an *f*-ring in [2].

· ·

Corresponding to every operation  $\diamond : \mathbb{Q}^2 \to \mathbb{Q}$  (in particular +, .,  $\land$ ,  $\lor$ ) we have an operation on  $\mathcal{R}L$ , denoted by the same symbol  $\diamond$ , defined by:

$$\alpha \diamond \beta(p,q) = \bigvee \{ \alpha(r,s) \land \beta(u,w) :< r,s > \diamond < u, w \ge < p,q > \},$$

where  $\langle r, s \rangle \diamond \langle u, w \rangle \leq \langle p, q \rangle$  means that for each  $r \langle x \rangle s$  and  $u \langle y \rangle w$  we have  $p \langle x \rangle y \langle q$ . For any  $\alpha \in \mathcal{R}L$  and  $p, q \in \mathbb{Q}$ ,  $(-\alpha)(p,q) = \alpha(-q, -p)$  and for every  $r \in \mathbb{R}$ , define the constant frame map  $\mathbf{r} \in \mathcal{R}L$ by  $\mathbf{r}(p,q) = \top$ , whenever  $p \langle r \rangle q$ , and otherwise  $\mathbf{r}(p,q) = \bot$ . An element  $\alpha$  of  $\mathcal{R}L$  is said to be bounded if there exists  $n \in \mathbb{N}$  such that  $\alpha(-n, n) = \top$ . The set of all bounded elements of  $\mathcal{R}L$  is denoted by  $\mathcal{R}^*L$  which is a sub-*f*-ring of  $\mathcal{R}L$ . In connection with the Stone-Čech compactification of a frame *L*, it is also well known  $\mathcal{R}^*L \cong \mathcal{R}(\beta L)$ .

The *cozero map* is the map  $coz : \mathcal{R}L \to L$ , defined by

$$\operatorname{coz}(\alpha) = \bigvee \{ \alpha(p,0) \lor \alpha(0,q) : p,q \in \mathbb{Q} \}.$$

A *cozero element* of *L* is an element of the form  $coz(\alpha)$  for some  $\alpha \in \mathcal{R}L$  (see [2]). The cozero part of *L*, is denoted by *CozL*. It is well known that *L* is completely regular if and only if coz(L) generates *L*. For  $A \subseteq \mathcal{R}L$ , let  $Coz[A] = \{coz(\alpha) : \alpha \in A\}$  and for  $A \subseteq CozL$ , we write  $Coz^{\leftarrow}[A]$  to designate the family maps  $\{\alpha \in \mathcal{R}L : coz(\alpha) \in A\}$ . An ideal *I* of  $\mathcal{R}L$  is a *z*-ideal if, for any  $\alpha \in \mathcal{R}L$  and  $\beta \in I$ ,  $coz(\alpha) = coz(\beta)$  implies  $\alpha \in I$  (for more details, see [6–8, 11, 13]).

Here we recall some notations from [12]. Let  $a \in L$  and  $\alpha \in \mathcal{R}L$ . The sets  $\{r \in \mathbb{Q} : \alpha(-,r) \leq a\}$  and  $\{s \in \mathbb{Q} : \alpha(s, -) \leq a\}$  are denoted by  $L(a, \alpha)$  and  $U(a, \alpha)$ , respectively. For  $a \neq \top$  it is obvious that for each  $r \in L(a, \alpha)$  and  $s \in U(a, \alpha)$ ,  $r \leq s$ . In fact, we have that if  $p \in \Sigma L$  and  $\alpha \in \mathcal{R}L$ , then  $(L(p, \alpha), U(p, \alpha))$  is a Dedekind cut for a real number which is denoted by  $\tilde{p}(\alpha)$  (see [12]). Throughout this paper, for every  $\alpha \in \mathcal{R}L$ , we define  $\alpha[p] = \tilde{p}(\alpha)$  where *p* is a prime element of *L* (see [13]).

It is well known that the homomorphism  $\tau : \mathcal{L}(\mathbb{R}) \to \mathbb{OR}$  taking (p, q) to ]]p, q[] is an isomorphism (see [2, Proposition 2]). Now, we recall some concepts and results from [21] that we need to establish the principal results of our paper.

**Definition 2.1.** [21] For any  $\alpha \in \mathcal{R}L$ , we say that  $\alpha$  has the pointfree countable image if there exists  $\mathbb{S} \subseteq \mathbb{R}$  such that

(1)  $|S| \leq \aleph_0$ 

(2)  $\tau(u) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}$  implies  $\alpha(u) \leq \alpha(v)$ , for every  $u, v \in \mathcal{L}(\mathbb{R})$  (denoted by  $\alpha \triangleleft \mathbb{S}$  and say  $\alpha$  is an overlap of  $\mathbb{S}$ ).

**Lemma 2.2.** [21] For any  $\alpha \in \mathcal{R}L$  and any  $\mathbb{S} \subseteq \mathbb{R}$ , the following statements are equivalent:

(1) α ◄ \$.

(2)  $\tau(u) \cap \mathbb{S} = \tau(v) \cap \mathbb{S}$  implies  $\alpha(u) = \alpha(v)$ , for any  $u, v \in \mathcal{L}(\mathbb{R})$ .

(3)  $\tau(p,q) \cap \mathbb{S} = \tau(v) \cap \mathbb{S}$  implies  $\alpha(p,q) = \alpha(v)$ , for any  $v \in \mathcal{L}(\mathbb{R})$  and any  $p,q \in \mathbb{Q}$ .

(4)  $\tau(p,q) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}$  implies  $\alpha(p,q) \leq \alpha(v)$ , for any  $v \in \mathcal{L}(\mathbb{R})$  and any  $p,q \in \mathbb{Q}$ .

Definition 2.3. [21] For every frame L, we put

 $\mathcal{R}_{c}L := \{ \alpha \in \mathcal{R}L : \alpha \text{ has the pointfree countable image} \}.$ 

**Corollary 2.4.** [21] For any completely regular frame L, the set  $\mathcal{R}_cL$  is a sub-f-ring of  $\mathcal{R}L$ .

#### 3. $z_c$ -Ideals in $\mathcal{R}_c L$

Throughout this paper, all frames are assumed to be completely regular. We recall the notation *z*-ideal of a ring *A* as was introduced by Mason in [25]. We refer to *z*-ideals as defined in [25] as "*z*-ideals á la Mason".

Denoted by Max(*A*) the set of all maximal ideals of a ring *A*. For  $a \in A$  and  $S \subseteq A$ , let

 $\mathfrak{M}(a) = \{M \in Max(A) : a \in M\}$  and  $\mathfrak{M}(S) = \{M \in Max(A) : M \supseteq S\}.$ 

**Definition 3.1.** An ideal I of a ring A is a z-ideal  $\dot{a}$  la Mason if whenever  $\mathfrak{M}(a) \supseteq \mathfrak{M}(b)$  and  $b \in I$ , then  $a \in I$ .

In [8, Corollary 3.8], Dube shows that an ideal of  $\mathcal{R}L$  is a *z*-ideal if and only if it is a *z*-ideal á la Mason. Here we introduce and study  $z_c$ -ideals in  $\mathcal{R}_c L$ . We begin by below definition.

**Definition 3.2.** An ideal I in  $\mathcal{R}_c L$  is called a  $z_c$ -ideal if, for every  $\alpha \in \mathcal{R}_c L$  and  $\beta \in I$ ,  $\operatorname{coz}(\alpha) = \operatorname{coz}(\beta)$  implies  $\alpha \in I$ .

**Remark 3.3.** It is evident that for a family  $\{I_{\lambda}\}_{\lambda \in \Lambda}$  of  $z_c$ -ideals of  $\mathcal{R}_c L$ ,  $\bigcap_{\lambda \in \Lambda} I_{\lambda}$  is a  $z_c$ -ideal.

Recall from [9] that for each  $a \in L$  with  $a < \top$ , the subset  $M_a$  of  $\mathcal{R}L$  is defined by

$$\mathbf{M}_a = \{ \alpha \in \mathcal{R}L : \operatorname{coz}(\alpha) \le a \}$$

They are distinct for distinct points. By [14, Lemma 4.2], if *p* is a prime element of *L*, then

$$\mathbf{M}_{p} = \{ \alpha \in \mathcal{R}L : \alpha[p] = 0 \}.$$

**Definition 3.4.** For every  $a \in L$ , we let  $\mathbf{M}_a^c := \{ \alpha \in \mathcal{R}_c L : \operatorname{coz}(\alpha) \leq a \}$ .

**Proposition 3.5.** The following statements are equivalent for an ideal I of  $\mathcal{R}_c L$ .

- (1) I is a  $z_c$ -ideal.
- (2) For any  $\alpha, \beta \in \mathcal{R}_c L$ ,  $\alpha \in I$  and  $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$  imply  $\beta \in I$ .
- (3)  $I = \bigcup \{ \mathbf{M}_{\operatorname{coz}(\alpha)}^c : \alpha \in I \}.$

*Proof.* (1)  $\Rightarrow$  (2). Assume  $\alpha \in I$  and  $coz(\beta) \leq coz(\alpha)$ . Then

$$coz(\beta) = coz(\alpha) \wedge coz(\beta) = coz(\alpha\beta).$$

Since  $\alpha\beta \in I$ , by statement (1), we infer that  $\beta \in I$ .

(2)  $\Rightarrow$  (3). Clearly  $I \subseteq \bigcup \{\mathbf{M}_{\operatorname{coz}(\alpha)}^c : \alpha \in I\}$ , because for every  $\gamma \in \mathcal{R}_c L$ ,  $\gamma \in \mathbf{M}_{\operatorname{coz}(\gamma)}^c$ . To see the inverse inclusion, let  $\alpha \in I$  and consider  $\beta \in \mathbf{M}_{\operatorname{coz}(\alpha)}^c$ . This means  $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$ , so that, by (2),  $\beta \in I$ . Therefore  $\mathbf{M}_{\operatorname{coz}(\alpha)}^c \subseteq I$ , and hence the desired inclusion.

(3)  $\Rightarrow$  (1). Let  $\alpha \in I$  and  $\beta \in \mathcal{R}_c L$  with  $\operatorname{coz}(\alpha) = \operatorname{coz}(\beta)$ . Then  $\beta \in \mathbf{M}^c_{\operatorname{coz}(\beta)} = \mathbf{M}^c_{\operatorname{coz}(\alpha)} \subseteq I$ , and hence (1) follows.  $\Box$ 

**Remark 3.6.** Recall from [1] that if  $\alpha \in \mathcal{R}L$  be a unit element of  $\mathcal{R}L$  and we define  $\beta \in \mathcal{R}L$  by  $\beta(p,q) = \alpha(\tau^{-1}(\{\frac{1}{x} : x \in \tau(p,q), x \neq 0\}))$ , then  $\beta = \alpha^{-1}$ .

**Lemma 3.7.** Let  $\alpha$  be a unit element of  $\mathcal{R}L$ . If  $\alpha \in \mathcal{R}_c L$ , then  $\alpha^{-1} \in \mathcal{R}_c L$ .

*Proof.* Since  $\alpha \in \mathcal{R}_c L$ , we infer from Definitions 2.1 and 2.3 that there is a countable subset  $\mathbb{S} \subseteq \mathbb{R}$  such that  $\alpha \blacktriangleleft \mathbb{S}$ . Put  $\mathbb{S}^1 := \{\frac{1}{s} : s \in \mathbb{S}, s \neq 0\}$ . We claim that  $\alpha^{-1} \blacktriangleleft \mathbb{S}^1$ . To do this, suppose that  $(p,q), u \in \mathcal{L}(\mathbb{R})$  and  $\tau(p,q) \cap \mathbb{S}^1 = \tau(u) \cap \mathbb{S}^1$ . Since

$$\{\frac{1}{s}:s\in\tau(p,q)\,,\,s\neq0\}\cap \mathbb{S}=\{\frac{1}{s}:s\in\tau(u)\,,\,s\neq0\}\cap\mathbb{S},$$

we conclude from Remark 3.6 and Lemma 2.2 that

$$\begin{aligned} \alpha^{-1}(p,q) &= \alpha(\tau^{-1}(\{\frac{1}{s}:s\in\tau(p,q)\,,\,s\neq0\})) \\ &= \alpha(\tau^{-1}(\{\frac{1}{s}:s\in\tau(u)\,,\,s\neq0\})) \\ &= \alpha^{-1}(u). \end{aligned}$$

Hence, by Lemma 2.2 and Definition 2.3,  $\alpha^{-1} \triangleleft \mathbb{S}^1$ , which shows that  $\alpha^{-1} \in \mathcal{R}_c L$ .  $\Box$ 

**Lemma 3.8.** Every maximal ideal of  $\mathcal{R}_c L$ , is a  $z_c$ -ideal.

*Proof.* Let *I* be a maximal ideal of  $\mathcal{R}_c L$  and  $\gamma \in \mathcal{R}_c L$  be an element with  $\operatorname{coz}(\beta) = \operatorname{coz}(\gamma)$ , where  $\beta \in I$ . It suffices to show that  $\gamma \in I$ . Suppose that  $\gamma \notin I$ . Since *I* is maximal, we infer that there exist  $\alpha \in \mathcal{R}_c L$  and  $\psi \in I$  such that  $\mathbf{1} = \psi + \alpha \gamma$ . So

$$\Gamma = \operatorname{coz}(\psi + \alpha \gamma) 
\leq \operatorname{coz}(\psi) \lor (\operatorname{coz}(\alpha) \land \operatorname{coz}(\gamma)) 
\leq (\operatorname{coz}(\psi) \lor \operatorname{coz}(\alpha)) \land (\operatorname{coz}(\psi) \lor \operatorname{coz}(\gamma)) 
\leq \operatorname{coz}(\psi) \lor \operatorname{coz}(\gamma) 
= \operatorname{coz}(\psi) \lor \operatorname{coz}(\beta).$$

Therefore  $coz(\psi) \lor coz(\beta) = \top$ , thus  $coz(\psi^2 + \beta^2) = \top$ . So, by Lemma 3.7,  $\psi^2 + \beta^2$  is invertible in  $\mathcal{R}_c L$  which is a contradiction. Hence  $\gamma \in I$  and the proof is complete.  $\Box$ 

**Proposition 3.9.** For any ideal I in  $\mathcal{R}_cL$ ,  $Ann_{\mathcal{R}_cL}(I)$  is a  $z_c$ -ideal.

*Proof.* Let  $\alpha \in \mathcal{R}_c L$ ,  $\beta \in Ann_{\mathcal{R},L}(I)$  and  $coz(\alpha) \leq coz(\beta)$ . Thus

$$\beta \gamma = 0 \qquad \Rightarrow \quad \cos(\beta) \wedge \cos(\gamma) = \bot$$
$$\Rightarrow \quad \cos(\alpha) \wedge \cos(\gamma) = \bot$$
$$\Rightarrow \quad \cos(\alpha\gamma) = \bot$$
$$\Rightarrow \quad \alpha\gamma = 0,$$

for every  $\gamma \in I$ . Therefore  $\alpha \in Ann_{\mathcal{R},L}(I)$ .  $\Box$ 

**Remark 3.10.** Let *I* be a  $z_c$ -ideal and  $\alpha, \beta \in \mathcal{R}_c L$ . If  $\alpha^2 + \beta^2 \in I$ , then  $\alpha, \beta \in I$ . For we have

 $coz(\alpha), coz(\beta) \le coz(\alpha) \lor coz(\beta) = coz(\alpha^2 + \beta^2).$ 

Since *I* is a  $z_c$ -ideal, we conclude that  $\alpha, \beta \in I$ .

**Definition 3.11.** *Let L be a frame. We define:* 

$$\operatorname{Coz}_{c}[L] := {\operatorname{coz}(\alpha) : \alpha \in \mathcal{R}_{c}L}.$$

**Proposition 3.12.** The following statements hold for any frame L.

(1) If I is a proper ideal of  $\mathcal{R}_c L$ , then  $\operatorname{Coz}_c[I]$  is a proper ideal of  $\operatorname{Coz}_c[L]$ .

(2) If I is a proper ideal of  $\operatorname{Coz}_{c}[L]$ , then  $\operatorname{Coz}_{c}^{\leftarrow}[I]$  is a proper ideal of  $\mathcal{R}_{c}L$ .

(3) If M is a maximal ideal of  $\mathcal{R}_c L$ , then  $\operatorname{Coz}_c[M]$  is a maximal ideal of  $\operatorname{Coz}_c[L]$ .

(4) If M is a maximal ideal of  $\text{Coz}_c[L]$ , then  $\text{Coz}_c^{\leftarrow}[M]$  is a maximal ideal of  $\mathcal{R}_c L$ .

*Proof.* (1). Let *I* be a proper ideal of  $\mathcal{R}_c L$  and  $\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \in \operatorname{Coz}_c[I]$ . Then

$$\cos(\alpha), \cos(\beta) \le \cos(\alpha) \lor \cos(\beta) = \cos(\alpha^2 + \beta^2) \in \operatorname{Coz}_c[I].$$

Thus  $\text{Coz}_{c}[I]$  is directed. Now, assume  $\text{coz}(\alpha), \text{coz}(\beta) \in \text{Coz}_{c}[I]$  and  $\text{coz}(\alpha) \leq \text{coz}(\beta)$ . Then

$$coz(\alpha) = coz(\alpha) \land coz(\beta) = coz(\alpha\beta) \in Coz_c[I].$$

Therefore  $\text{Coz}_c[I]$  is a downset and so  $\text{Coz}_c[I]$  is an ideal of  $\text{Coz}_c[L]$ . If  $\text{Coz}_c[I]$  is not proper, there is  $\gamma \in I$  such that  $\text{coz}(\gamma) = \top$ . Thus  $\gamma \in I$  is invertible, that is a contradiction.

(2). Consider  $\alpha, \beta \in \operatorname{Coz}_c^{\leftarrow}[I]$ , then  $\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \in I$ . Since *I* is an ideal of  $\operatorname{Coz}_c[L]$ , we have  $\operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta) \in I$ . I. Therefore  $\operatorname{coz}(\alpha + \beta) \leq \operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta) \in I$  implies that  $\operatorname{coz}(\alpha + \beta) \in I$ . So  $\alpha + \beta \in \operatorname{Coz}_c^{\leftarrow}[I]$ . Now, assume  $\alpha \in \operatorname{Coz}_c^{\leftarrow}[I]$  and  $\gamma \in \mathcal{R}_c L$ . Then,  $\operatorname{coz}(\alpha) \in I$  and  $\operatorname{coz}(\gamma) \in \operatorname{Coz}_c L$ . Also

$$\cos(\alpha) \ge \cos(\alpha) \land \cos(\gamma) = \cos(\alpha\gamma).$$

Thus,  $coz(\alpha\gamma) \in I$  and so,  $\alpha\gamma \in Coz_c^{\leftarrow}[I]$ . If  $Coz_c^{\leftarrow}[I]$  is not proper, there is an invertible element  $\beta \in \mathcal{R}_c L$  such that  $\beta \in Coz_c^{\leftarrow}[I]$ . Therefore  $\top = coz(\beta) \in I$ , which is a contradiction.

(3). Let *M* be a maximal ideal of  $\mathcal{R}_c L$  and *J* be a proper ideal of  $\operatorname{Coz}_c[L]$  such that  $\operatorname{Coz}_c[M] \subseteq J$ . Since *M* is maximal, we conclude from Lemma 3.8 that  $M = \operatorname{Coz}_c^{\leftarrow}[\operatorname{Coz}[M]]$ . Now

$$M = \operatorname{Coz}_{c}^{\leftarrow}[\operatorname{Coz}_{c}[M]] \subseteq \operatorname{Coz}_{c}^{\leftarrow}[J] \subseteq \operatorname{Coz}_{c}[L]$$

Since *M* is maximal, we infer that  $M = \text{Coz}_{c}^{\leftarrow}[J]$ , so  $\text{Coz}_{c}[M] = J$ .

(4). Assume  $\alpha \notin \operatorname{Coz}_c^{\leftarrow}[M]$ . Then  $\operatorname{coz}(\alpha) \notin M$ , and so there is  $b \in M$  such that  $\operatorname{coz}(\alpha) \lor b = \top$ . Since *M* is an ideal of  $\operatorname{Coz}_c[L]$ , we can choose  $\gamma \in \mathcal{R}_c L$  such that  $\operatorname{coz}(\gamma) = b$ . Then

$$\top = \cos(\alpha) \lor b = \cos(\alpha) \lor \cos(\gamma) = \cos(\alpha^2) \lor \cos(\gamma^2) = \cos(\alpha^2 + \gamma^2),$$

which implies that  $\alpha^2 + \gamma^2$  is invertible in  $\mathcal{R}_c L$ , by Lemma 3.7. Therefore for every  $\alpha \in \mathcal{R}_c L \setminus \operatorname{Coz}_c^{\leftarrow}[M]$ , the ideal  $< \alpha, \operatorname{Coz}_c^{\leftarrow}[M] >$  is not a proper ideal of  $\mathcal{R}_c L$ . Hence  $\operatorname{Coz}_c^{\leftarrow}[M]$  is a maximal ideal of  $\mathcal{R}_c L$ .  $\Box$ 

In [24], Mason shows that if *I* and *J* are *z*-ideals, then *IJ* is a *z*-ideal precisely when  $IJ = I \cap J$ . In  $\mathcal{R}L$ , just as in C(X), the product of two *z*-ideals is always a *z*-ideal. We study this result in  $\mathcal{R}_c L$  as we show next. To do this, we utilize the following lemma.

**Lemma 3.13.** Let  $\alpha \in \mathcal{R}L$  and  $\rho_3 : \mathcal{L}(\mathbb{R}) \to \mathcal{L}(\mathbb{R})$  by  $\rho_3(p,q) = (p^3, q^3)$ . Then

(1)  $\rho_3 \in \mathcal{R}(\mathcal{L}(\mathbb{R})).$ 

(2)  $\rho_3^3 = id_{\mathcal{L}(\mathbb{R})}$ .

(3)  $(\alpha \circ \rho_3)^3 = \alpha$ .

- (4)  $\cos(\alpha \circ \rho_3) = \cos(\alpha)$ .
- (5) If  $\alpha \in \mathcal{R}_c L$ , then  $\alpha \circ \rho_3 \in \mathcal{R}_c L$ .

*Proof.* (1). We check the conditions (R1)-(R4).

(R1). Let  $(p,q), (r,s) \in \mathcal{L}(\mathbb{R})$ . Then

$$\rho_{3}(p,q) \land \rho_{3}(r,s) = (p^{3},q^{3}) \land (r^{3},s^{3})$$
  
= (max{p<sup>3</sup>,r<sup>3</sup>}, min{q<sup>3</sup>,s<sup>3</sup>})  
= ((max{p,r})<sup>3</sup>, (min{q,s})<sup>3</sup>)  
=  $\rho_{3}(p \lor r,q \land s).$ 

(R2). Assume  $p \le r < q \le s \in \mathbb{Q}$ . Then

$$\rho_3(p,q) \lor \rho_3(r,s) = (p^3,q^3) \lor (r^3,s^3) = (p^3,s^3) = \rho_3(p,s),$$

because  $p^3 \le r^3 < q^3 \le s^3$ .

(R3). We trivially have

$$\begin{split} & \bigvee \{ \rho_3(r,s) : p < r < s < q \} &= & \bigvee \{ (r^3,s^3) : p < r < s < q \} \\ &= & \bigcup \{ (r^3,s^3) : p^3 < r^3 < s^3 < q^3 \} \\ &= & (p^3,q^3) \\ &= & \rho_3(p,q). \end{split}$$

(R4). We have

$$\bigvee \{\rho_3(p,q): p,q \in \mathbb{Q}\} = \bigvee \{(p^3,q^3): p,q \in \mathbb{Q}\} = \top.$$

Thus  $\rho_3$  is a frame map, so  $\rho_3 \in \mathcal{R}(\mathcal{L}(\mathbb{R}))$ .

(2). Consider  $(p,q) \in \mathcal{L}(\mathbb{R})$ , then

$$\rho_3^3(p,q) = \bigvee \{ \rho_3(r_1,s_1) \land \rho_3(r_2,s_2) \land \rho_3(r_3,s_3) : < r_1, s_1 > . < r_2, s_2 > . < r_3, s_3 > \subseteq < p,q > \} \\ \ge (p,q).$$

Thus  $\rho_3^3 = id_{\mathcal{L}(\mathbb{R})}$  by regularity of *L*.

(3). Let  $(p,q) \in \mathcal{L}(\mathbb{R})$ . Then, we conclude from (2) that

$$(\alpha \circ \rho_3)^3(p,q) = \alpha \circ \rho_3^3(p,q) = \alpha \circ id(p,q) = \alpha(p,q).$$

Hence,  $(\alpha \circ \rho_3)^3 = \alpha$ .

(4). First, we note that

$$coz(\rho_3) = \rho_3(-, 0) \lor \rho_3(0, -) = (-, 0) \lor (0, -).$$

Also, we infer from (3) that  $\alpha^{1/3} = \alpha \circ \rho_3$ . Therefore

$$\cos(\alpha^{1/3}) = \cos(\alpha \circ \rho_3) = \alpha(\cos(\rho_3)) = \alpha((-,0) \lor (0,-)) = \cos(\alpha).$$

(5). Let  $\alpha \in \mathcal{R}_c L$ . Then, by Definitions 2.1 and 2.3, there is a countable subset  $\mathbb{S} \subseteq \mathbb{R}$  such that  $\alpha < \mathbb{S}$ . Put  $\mathbb{S}_0 = \{\sqrt[3]{s} : s \in \mathbb{S}\}$ . We show that  $\alpha \circ \rho_3 < \mathbb{S}_0$ . Assume  $(p,q), u \in \mathcal{L}(\mathbb{R})$  with  $u = \bigvee_{i \in I}(a_i, b_i)$  and  $\tau(p,q) \cap \mathbb{S}_0 = \tau(u) \cap \mathbb{S}_0$ . Since  $\tau(p^3, q^3) \cap \mathbb{S} = \tau(\bigvee(a_i^3, b_i^3)) \cap \mathbb{S}$ , we conclude from Lemma 2.2 that  $\alpha(p^3, q^3) = \alpha(\bigvee(a_i^3, b_i^3))$ , which follows that  $\alpha \circ \rho_3(p,q) = \alpha \circ \rho_3(u)$ . Thus, by Lemma 2.2,  $\alpha \circ \rho_3 < \mathbb{S}_0$ . Hence  $\alpha \circ \rho_3 \in \mathcal{R}_c L$  and the proof is complete.  $\Box$ 

**Proposition 3.14.** *If P* and *Q* are  $z_c$ -ideals in  $\mathcal{R}_c L$ , then  $PQ = P \cap Q$ .

*Proof.* Since  $PQ \subseteq P \cap Q$  always holds, we show the reverse inclusion. Let  $\alpha \in P \cap Q$ . Suppose that  $\rho_3$  be the same in Lemma 3.13. Then, by Lemma 3.13(3,5), we have  $\alpha^{1/3} \in \mathcal{R}_c L$  and  $\alpha^{1/3} \alpha^{1/3} \in \mathcal{R}_c L$ . Also,  $\alpha = (\alpha^{1/3})^3 = \alpha^{1/3} \alpha^{2/3}$  and  $\operatorname{coz}(\alpha) = \operatorname{coz}(\alpha^{1/3})$ . Now, since  $\alpha \in P \cap Q$  and P, Q are  $z_c$ -ideals, we infer that  $\alpha^{1/3} \in P$  and  $\alpha^{1/3} \in Q$  Hence,  $(\alpha^{1/3})^2 \in Q$ . Therefore  $\alpha = \alpha^{1/3} (\alpha^{1/3})^2 \in PQ$  and proof is complete.  $\Box$ 

Remark 3.15. By [2, Proposition 4], we know that the map

$$\begin{array}{rcl} \theta: \, \mathbf{Frm}(\mathcal{L}(\mathbb{R}), \mathfrak{D}X) & \longrightarrow & \mathbf{Top}(X, \mathbb{R}) \\ \varphi & \longmapsto & \widetilde{\varphi} \end{array}$$

such that  $p < \tilde{\varphi}(x) < q$  if and only  $x \in \varphi(p, q)$  is an isomorphism (also, see [5]).

**Lemma 3.16.** For any space X,  $\mathcal{R}_c(\mathfrak{O}X) \cong C_c(X)$ .

Proof. Define

$$\begin{array}{rcl} \theta|_{\mathcal{R}_{c}(\mathfrak{D}X)}:\mathcal{R}_{c}(\mathfrak{D}X) &\longrightarrow & C_{c}(X) \\ \varphi &\longmapsto & \widetilde{\varphi} \end{array}$$

such that  $p < \widetilde{\varphi}(x) < q$  if and only  $x \in \varphi(p, q)$ .

Consider  $\varphi \in \mathcal{R}_c(\mathfrak{D}X)$ . Then, by Definitions 2.1 and 2.3, there is a countable subset  $\mathbb{S} \subseteq \mathbb{R}$  such that  $\varphi \triangleleft \mathbb{S}$ . We claim that  $Im\widetilde{\varphi} \subseteq \mathbb{S}$ . Suppose that  $Im\widetilde{\varphi} \not\subseteq \mathbb{S}$  and  $y \in Im\widetilde{\varphi} \setminus \mathbb{S}$ . So there is an element  $x \in X$  such that  $y = \widetilde{\varphi}(x)$ . Since  $\tau$  is an isomorphism, there is an element  $v \in \mathcal{L}(\mathbb{R})$  such that  $\tau(v) = \mathbb{R} \setminus \{y\}$  and also  $\tau(\top_{\mathcal{L}(\mathbb{R})}) = \mathbb{R}$ . Now, by Definition 2.1,  $\tau(v) \cap \mathbb{S} = \tau(\top_{\mathcal{L}(\mathbb{R})}) \cap \mathbb{S}$ , it follows that

$$\varphi(v) = \varphi(\top_{\mathcal{L}(\mathbb{R})}) = \varphi(\mathbb{R}) = \top_{\mathfrak{D}X} = X.$$

Thus  $x \in X = \varphi(v)$ . Therefore  $\widetilde{\varphi}(x) \in \mathbb{R} \setminus \{y\}$ , which is a contradiction with  $\widetilde{\varphi}(x) = y$ . Thus  $Im\widetilde{\varphi} \subseteq S$ , which follows that  $\theta(\varphi) \in C_c(X)$ .

Now, we show that  $\theta|_{\mathcal{R}_c(\mathfrak{D}X)}$  is onto. Suppose that  $f \in C_c(X)$ . Then  $Imf := \mathbb{S}$  is a countable subset of  $\mathbb{R}$ . By Remark 3.15,  $\theta$  is onto implies that there is  $\varphi \in \mathcal{R}(\mathfrak{D}X)$  such that  $\theta(\varphi) = f$ . We claim that  $\varphi \in \mathcal{R}_c(\mathfrak{D}X)$ . Assume  $(a, b), v \in \mathcal{L}(\mathbb{R})$  with  $v = \bigvee_{\lambda \in \Lambda} (a_\lambda, b_\lambda)$  and  $\tau(a, b) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}$ . Therefore,

$$\begin{aligned} x \in \varphi(a, b) &\Rightarrow a < f(x) < b \\ &\Rightarrow f(x) \in \tau(a, b) \cap \mathbb{S} \\ &\Rightarrow f(x) \in \tau(v) \cap \mathbb{S}. \end{aligned}$$

Since  $\tau(v)$  is an open subset of  $\mathbb{R}$ , there is  $p, q \in \mathbb{Q}$  such that

$$f(x) \in \tau(p,q) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}$$

and hence  $x \in \varphi(p,q) \le \varphi(v)$ . Thus  $x \in \varphi(v)$ , so  $\varphi(a,b) \subseteq \varphi(v)$ . Now, by Lemma 2.2 and Definition 2.3,  $\varphi \in \mathcal{R}_c(\mathfrak{D}X)$ . Therefore, by Remark 3.15,  $\theta|_{\mathcal{R}_c(\mathfrak{D}X)}$  is an isomorphism and hence  $\mathcal{R}_c(\mathfrak{D}X) \cong C_c(X)$ .  $\Box$ 

**Remark 3.17.** Recall from [9] that we denote by  $t_L$  the ring isomorphism

 $\mathfrak{t}_L : \mathcal{R}\beta L \to \mathcal{R}^*L$  given by  $\mathfrak{t}_L(\alpha) = j_L(\alpha)$ ,

the inverse of which we will denote by  $\varphi \mapsto \varphi^{\beta}$ . It is also important to note that  $\bigvee \alpha^{\beta}(p,q) = \alpha(p,q)$ , for all  $p, q \in \mathbb{Q}$ .

**Lemma 3.18.** For any frame L,  $\mathcal{R}_c^*L \cong \mathcal{R}_c\beta L$ , where  $\mathcal{R}_c^*L = \mathcal{R}_cL \cap \mathcal{R}^*L$ 

*Proof.* We define

$$t_L|_{\mathcal{R}_c\beta L} : \mathcal{R}_c\beta L \longrightarrow \mathcal{R}_c^*L \alpha \longmapsto j_L \circ \alpha$$

Consider  $\alpha \in \mathcal{R}_c\beta L$ . So, by Definitions 2.1 and 2.3, there is a countable subset  $\mathbb{S} \subseteq \mathbb{R}$  such that  $\alpha \blacktriangleleft \mathbb{S}$ . Assume  $(p,q), v \in \mathcal{L}(\mathbb{R})$ , and  $\tau(p,q) \cap \mathbb{S} = \tau(v) \cap \mathbb{S}$ . Then we conclude from Lemma 2.2 that

$$\begin{aligned} \alpha(p,q) &= \alpha(v) \implies j_L \circ \alpha(p,q) = j_L \circ \alpha(v) \\ &\implies \mathsf{t}_L|_{\mathcal{R}_c\beta L}(\alpha)(p,q) = \mathsf{t}_L|_{\mathcal{R}_c\beta L}(\alpha)(v) \end{aligned}$$

Thus, by Lemma 2.2,  $t_L(\alpha) \blacktriangleleft S$ .

Now, suppose that  $\alpha \in \mathcal{R}_c^*L$ . Then there is a countable subset  $\mathbb{S} \subseteq \mathbb{R}$  such that  $\alpha \blacktriangleleft \mathbb{S}$ . Let  $(p,q), v \in \mathcal{L}(\mathbb{R})$  and  $\tau(p,q) \cap \mathbb{S} = \tau(v) \cap \mathbb{S}$ . Then we conclude from Lemma 2.2 that

$$\begin{array}{ll} \alpha(p,q) = \alpha(v) & \Rightarrow & \bigvee \alpha^{\beta}(p,q) = \bigvee \alpha^{\beta}(v) \\ & \Rightarrow & \alpha^{\beta}(p,q) = \alpha^{\beta}(v). \end{array} \quad (\text{since } \beta L \text{ is compact}) \end{array}$$

Therefore  $\alpha^{\beta} = t_{L}^{-1}|_{\mathcal{R}_{c}\beta L}(\alpha) \in \mathcal{R}_{c}\beta L$ . Hence  $t_{L}(\alpha^{\beta}) = \bigvee \alpha^{\beta} = \alpha$ , which shows that  $t_{L}|_{\mathcal{R}_{c}\beta L}$  is onto. Consequently, by Remark 3.17,  $t_{L}|_{\mathcal{R}_{c}\beta L}$  is an isomorphism.  $\Box$ 

We shall study the relation between  $z_c$ -ideal and prime ideal minimal over an ideal. For this, we recall that in [16, 1D] the following results play a useful role in the context of C(X). It is shown that the pointfree version of this results is also true (see [19]). The following results are the counterpart for  $\mathcal{R}_c L$ .

**Lemma 3.19.** Let  $\alpha, \beta \in \mathcal{R}_c L$ . If  $|\alpha| \le |\beta|^q$  for some q > 1, then  $\alpha$  is a multiple of  $\beta$ . In particular, if  $|\alpha| \le |\beta|$ , then whenever  $\alpha^q$  is defined for every q > 1,  $\alpha^q$  is a multiple of  $\beta$ .

*Proof.* Multiply by  $\frac{1}{1+|\alpha|} \cdot \left(\frac{1}{1+|\beta|}\right)^q$  both sides of the stated inequality to obtain

$$\frac{\alpha}{1+|\alpha|} \cdot \left(\frac{1}{1+|\beta|}\right)^q \leq \frac{1}{1+|\alpha|} \cdot \left(\frac{|\beta|}{1+|\beta|}\right)^q.$$

Since of each of the factors in this inequality is in  $\mathcal{R}_c^*L$ , and by Corollaries 3.16 and 3.18,  $\mathcal{R}_c^*L$  is isomorphic to a  $C_c(X)$  via an *f*-ring isomorphism, we deduce from [15, Corollary 2.5], that  $\frac{\alpha}{1+|\alpha|}$  is a multiple of  $\frac{|\beta|}{1+|\beta|}$ . This implies  $\alpha$  is a multiple of  $\beta$ , as desired.  $\Box$ 

**Proposition 3.20.** Let Q be an ideal of  $\mathcal{R}_c L$ , and  $\alpha \in \mathcal{R}_c L$ . If  $\mathbf{M}_{coz(\alpha)}^c \subseteq \sqrt{Q}$ , then  $\mathbf{M}_{coz(\alpha)}^c \subseteq Q$ .

*Proof.* Let  $\beta \in \mathbf{M}_{coz(\alpha)}^{c} \subseteq \sqrt{Q}$ . Without loss of generality, we assume that  $|\beta| \leq 1$ . We define  $\gamma = \sum_{n=1}^{\infty} 2^{-n} \cdot \beta^{\frac{1}{n}}$ . Hence

$$\begin{aligned} \operatorname{coz}(\gamma) &= \bigvee_{n} \operatorname{coz}(2^{-n}.\beta^{\frac{1}{n}}) \\ &= \bigvee_{n} (\operatorname{coz}(2^{-n}) \wedge \operatorname{coz}(\beta^{\frac{1}{n}})) \\ &= \bigvee_{n} \operatorname{coz}(\beta^{\frac{1}{n}}) \\ &= \operatorname{coz}(\beta). \end{aligned}$$

Since  $coz(\gamma) = coz(\beta)$  and  $\mathbf{M}_{coz(\alpha)}^c$  is a  $z_c$ -ideal, then  $\gamma \in \mathbf{M}_{coz(\alpha)}^c$ . Hence  $\gamma \in \sqrt{Q}$  and hence there is  $m \in \mathbb{N}$  such that  $\gamma^m \in Q$ . Furthermore, since  $2^{-n} \cdot \beta^{\frac{1}{n}} \leq \gamma$ , for every  $n \in \mathbb{N}$ , we have  $2^{-2m} \cdot \beta^{\frac{1}{2m}} \leq \gamma$  which implies that  $(2^{-2m} \cdot \beta^{\frac{1}{2m}})^m \leq \gamma^m$  and hence  $2^{-2m^2} \cdot \beta^{\frac{1}{2}} \leq \gamma^m$ . Therefore, by Lemma 3.19, there exists  $\tau \in \mathcal{R}_c L$  such that  $\beta = \tau \cdot \gamma^m$ . This shows that  $\beta \in Q$ , and hence  $\mathbf{M}_{coz(\alpha)}^c \subseteq Q$ .  $\Box$ 

**Corollary 3.21.** An ideal of  $\mathcal{R}_c L$  is a  $z_c$ -ideal if and only if its radical is a  $z_c$ -ideal.

*Proof.*  $(\Rightarrow)$  : It is evident.

(⇐) : Let *Q* be an ideal of  $\mathcal{R}_c L$ . Suppose that for  $\alpha, \beta \in \mathcal{R}_c L$ ,  $\alpha \in Q$  and  $\operatorname{coz}(\alpha) = \operatorname{coz}(\beta)$ . Since  $\sqrt{Q}$  is a  $z_c$ -ideal,  $\beta \in \sqrt{Q}$ . By Proposition 3.20,  $\mathbf{M}^c_{\operatorname{coz}(\beta)} \subseteq \sqrt{Q}$  and hence  $\mathbf{M}^c_{\operatorname{coz}(\beta)} \subseteq Q$ . Since  $\beta \in \mathbf{M}^c_{\operatorname{coz}(\beta)} \subseteq Q$ , it implies that  $\beta \in Q$ . Therefore *Q* is a  $z_c$ -ideal.  $\Box$ 

**Corollary 3.22.** Let Q be an ideal of  $\mathcal{R}_c L$ . Then Q is a  $z_c$ -ideal if and only if every prime ideal minimal over it is a  $z_c$ -ideal.

*Proof.* Suppose every prime ideal minimal over Q is a  $z_c$ -ideal. Then, by Corollary 3.21, it is sufficient to show that  $\sqrt{Q}$  is a  $z_c$ -ideal. We know that  $\sqrt{Q}$  is the intersection of prime ideals minimal over Q. Hence  $\sqrt{Q}$  is an intersection of  $z_c$ -ideals, thus it is a  $z_c$ -ideal.

Conversely, let *Q* be a *z<sub>c</sub>*-ideal and *P*  $\in$  *Min*(*Q*). Consider  $\alpha, \beta \in \mathcal{R}_c L$  with  $coz(\alpha) = coz(\beta), \alpha \in P$  and  $\beta \notin P$ . We put

$$S = (\mathcal{R}_c L \setminus P) \bigcup \{ \gamma \alpha^n : \gamma \in \mathcal{R}_c L \setminus P \ , \ n \in \mathbb{N} \}.$$

It is clear that *S* is a multiplicatively closed set of  $\mathcal{R}_c L$ . If  $\varphi \in S \cap Q$ , then there are  $n \in \mathbb{N}$  and  $\gamma \in \mathcal{R}_c L \setminus P$  such that  $\varphi = \gamma \alpha^n \in Q \subseteq P$ . We have

$$\cos(\varphi) = \cos(\gamma \alpha^n) = \cos(\gamma) \wedge \cos(\alpha) = \cos(\gamma) \wedge \cos(\beta) = \cos(\gamma \beta).$$

From *Q* is a  $z_c$ -ideal and  $\varphi \in Q$ , we conclude that  $\gamma \beta \in Q \subseteq P$ , which follows that  $\gamma \in P$  or  $\beta \in P$ . That is a contradiction. Therefore  $S \cap Q = \emptyset$ . By [28, Theorem 3.44], there exists a prime ideal  $P' \in \mathcal{R}_c L$  such that  $S \cap P' = \emptyset$  and  $Q \subseteq P'$ . Now, if  $\varphi \in P'$ , then  $\varphi \notin S$ , it implies that  $\varphi \in P$ . Thus  $Q \subseteq P' \subseteq P$  and since  $P \in Min(Q)$ , we infer that P' = P. We have  $\alpha \in P = P'$  and  $\alpha \in S$ , and so  $\alpha \in P'$  and  $\alpha \notin P'$ , which is a contradiction.  $\Box$ 

Now, we discuss on the  $z_c$ -ideals of  $\mathcal{R}_c L$  and contraction of z-ideals of  $\mathcal{R} L$ .

6749

**Proposition 3.23.** An ideal J in  $\mathcal{R}_c L$  is a  $z_c$ -ideal if and only if it is a contraction of a z-ideal in  $\mathcal{R}_L$ .

*Proof.* Suppose that *J* is a  $z_c$ -ideal of  $\mathcal{R}_c L$ . Put

 $I = \{ \alpha \in \mathcal{R}L : \operatorname{coz}(\alpha) \le \operatorname{coz}(\beta), \text{ for some } \beta \in J \}.$ 

Clearly, *I* is a *z*-ideal in  $\mathcal{R}L$  and  $J \subseteq I^c$ . On the other hand, if  $\alpha \in I^c$ , there exists  $\beta \in J$  with  $coz(\alpha) \le coz(\beta)$ . Since *J* is  $z_c$ -ideal, we conclude that  $\alpha \in J$ , as desired.

Conversely, let  $J = I^c$ , where *I* is a *z*-ideal in *RL*. Then *J* is clearly a  $z_c$ -ideal in  $\mathcal{R}_c L$ .

**Corollary 3.24.** An ideal P in  $\mathcal{R}_c L$  is a prime  $z_c$ -ideal if and only if it is a contraction of a prime z-ideal in  $\mathcal{R}L$ .

*Proof.* Let *P* be a prime  $z_c$ -ideal in  $\mathcal{R}_c L$ . Consider  $S = \mathcal{R}_c L \setminus P$  as a multiplicatively closed set in  $\mathcal{R}L$ . By Proposition 3.23, *P* is a contraction of a *z*-ideal in  $\mathcal{R}L$ , *I* say. Clearly,  $I \cap S = \emptyset$ , so there is a prime ideal  $Q \in \mathcal{R}L$  minimal over *I* with  $Q \cap S = \emptyset$ . Now, from [25] we have that *Q* is a *z*-ideal in  $\mathcal{R}L$ . It is evident that  $P = I^c \subseteq Q^c \subseteq P$ . Therefore  $P = Q^c$ , as desired. The converse is evident.  $\Box$ 

**Corollary 3.25.** Every maximal ideal N of  $\mathcal{R}_c L$  is a contraction of a maximal ideal in  $\mathcal{R}L$ .

*Proof.* Let *N* be a maximal ideal in  $\mathcal{R}_c L$ . By Lemma 3.8, *N* is a  $z_c$ -ideal. Hence, from Proposition 3.23, we infer that  $N = I^c$ , where *I* is a *z*-ideal in  $\mathcal{R}L$ . But there is a maximal ideal *M* in  $\mathcal{R}L$  containing *I*. Therefore  $N = I^c \subseteq M^c$  implies that  $N = M^c$  and we are done.  $\Box$ 

We shall see the relation between  $z_c$ -ideals in  $\mathcal{R}_c L$  and z-ideal á la Mason. For  $\alpha \in \mathcal{R}_c L$ , we put  $\mathfrak{M}_c(\alpha) := \{M \in Max(\mathcal{R}_c L) : \alpha \in M\}$ .

**Lemma 3.26.** For  $\alpha, \beta \in \mathcal{R}_c L$ , the following statements are equivalent:

- (1)  $\cos(\beta) \le \cos(\alpha)$ .
- (2)  $\mathbf{M}_{\operatorname{coz}(\beta)}^{c} \subseteq \mathbf{M}_{\operatorname{coz}(\alpha)}^{c}$ .
- (3)  $\mathfrak{M}_{c}(\alpha) \subseteq \mathfrak{M}_{c}(\beta).$

*Proof.* (1)  $\Rightarrow$  (2). It is evident.

(2)  $\Rightarrow$  (3). Suppose that  $M \in \mathfrak{M}_{c}(\alpha)$ . Then, by Proposition 3.12,  $\operatorname{Coz}_{c}[M]$  is a maximal ideal of  $\operatorname{Coz}_{c}[L]$  such that  $\operatorname{coz}(\alpha) \in \operatorname{Coz}_{c}[M]$ . By hypothesis,  $\operatorname{coz}(\beta) \in \operatorname{Coz}[M]$ . So, by Proposition 3.12,  $\beta \in \operatorname{Coz}_{c}^{\leftarrow}[\operatorname{Coz}_{c}[M]] = M$ . Thus  $M \in \mathfrak{M}_{c}(\beta)$ . Hence  $\mathfrak{M}_{c}(\beta)$ .

 $(3) \Rightarrow (1)$ . By Corollary 3.25, we have

 $\mathfrak{M}_{c}(\alpha) = \{M^{c} : M \in \mathfrak{M}(\alpha)\} \text{ and } \mathfrak{M}_{c}(\beta) = \{M^{c} : M \in \mathfrak{M}(\beta)\}.$ 

Suppose that  $M \in \mathfrak{M}(\alpha)$ . Then, by (3), we have  $M^c \in \mathfrak{M}_c(\alpha) \subseteq \mathfrak{M}_c(\beta)$ , which follows that  $M \in \mathfrak{M}(\beta)$ . Thus  $\mathfrak{M}(\alpha) \subseteq \mathfrak{M}(\beta)$ , and so  $\beta \in \bigcap \mathfrak{M}(\beta) \subseteq \bigcap \mathfrak{M}(\alpha)$ . Now, from [8, Lemma 3.7] and [23, Lemma 3.1], we have  $\beta \in \bigcap \mathfrak{M}(\alpha) = \{\varphi \in \mathcal{R}L : \operatorname{coz}(\varphi) \le \operatorname{coz}(\alpha)\}$ . Therefore  $\operatorname{coz}(\beta) \le \operatorname{coz}(\alpha)$ .  $\Box$ 

**Proposition 3.27.** An ideal I in  $\mathcal{R}_c L$  is a  $z_c$ -ideal if and only if it is a z-ideal  $\dot{a}$  la Mason.

*Proof.* Let *I* be a  $z_c$ -ideal and suppose that  $\alpha, \beta \in \mathcal{R}_c L$  such that  $\mathfrak{M}(\alpha) \subseteq \mathfrak{M}(\beta)$  and  $\alpha \in I$ . Since  $\mathfrak{M}_c(\alpha) \subseteq \mathfrak{M}_c(\beta)$ , we conclude by Lemma 3.26 that  $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$ , which follows that  $\beta \in I$ , because *I* is a  $z_c$ -ideal. Therefore *I* is a *z*-ideal á la Mason.

Conversely, let *I* be a *z*-ideal á la Mason. Suppose that  $coz(\beta) \leq coz(\alpha)$  and  $\alpha \in I$ . Then, by Lemma 3.26,  $\mathfrak{M}_c(\alpha) \subseteq \mathfrak{M}_c(\beta)$ , which follows that  $\mathfrak{M}(\alpha) \subseteq \mathfrak{M}(\beta)$ . Therefore, we have  $\beta \in I$  because *I* is a *z*-ideal á la Mason.  $\Box$ 

#### 4. The relation between $z_c$ -ideals and prime ideals

In this section, we study the relation between prime ideals and  $z_c$ -ideals in the ring  $\mathcal{R}_c L$ . We begin by some evident instances.

**Lemma 4.1.** Let *I* be a proper ideal and *P* be a prime ideal in  $\mathcal{R}_c L$ . If  $I \cap P$  is a  $z_c$ -ideal and  $I \not\subseteq P$ , then *P* is a  $z_c$ -ideal.

*Proof.* Let  $coz(\alpha) = coz(\beta)$  where  $\alpha \in P$  and  $\beta \in \mathcal{R}_c L$ . Since  $I \not\subseteq P$ , there is  $\gamma \in I \setminus P$ . But  $coz(\alpha\gamma) = coz(\beta\gamma)$  and  $\alpha\gamma \in P \cap I$ . Since  $P \cap I$  is a  $z_c$ -ideal, it follows that  $\beta\gamma \in P \cap I$ . So  $\beta\gamma \in P$ , we infer that  $\beta \in P$  (since P is a prime ideal). Hence P is a  $z_c$ -ideal.  $\Box$ 

**Corollary 4.2.** Let I be an ideal and P be a prime ideal in  $\mathcal{R}_c L$  such that  $P \cap I$  is a  $z_c$ -ideal. Then I or P is a  $z_c$ -ideal.

*Proof.* If  $I \nsubseteq P$ , then we conclude from Lemma 4.1 that *P* is a  $z_c$ -ideal. If  $I \subseteq P$ , then we have  $I \cap P = I$ . Hence, by assumptions, *I* is a  $z_c$ -ideal.  $\Box$ 

**Corollary 4.3.** Let P and Q be two prime ideals in  $\mathcal{R}_cL$  that are not in a chain. If  $P \cap Q$  is a  $z_c$ -ideal, then either P or Q are  $z_c$ -ideals.

*Proof.* Let  $coz(\alpha) = coz(\beta)$  where  $\alpha \in P$  and  $\beta \in \mathcal{R}_c L$ . As *P* and *Q* are not the chain, so  $Q \not\subseteq P$  and  $P \not\subseteq Q$ . Since  $Q \not\subseteq P$ , there is  $\gamma \in Q \setminus P$ . But  $coz(\alpha\gamma) = coz(\beta\gamma)$ ,  $\alpha\gamma \in P \cap Q$ . Since  $P \cap Q$  is a  $z_c$ -ideal, it follows that  $\beta\gamma \in P \cap Q$ . So  $\beta\gamma \in P$ , we infer that  $\beta \in P$  (since *P* is prime). Hence *P* is a  $z_c$ -ideal. Similarly to prove that *Q* is a  $z_c$ -ideal.  $\Box$ 

It is well known in the classical situation that a *z*-ideal of C(X) is prime if and only if it contains a prime ideal (see [16, Theorem 2.9]). It is shown that the pointfree version of this result is also true (see [6]). If we apply the proof of [23, Lemma 4.8] word-for-word, we obtain the following for  $\mathcal{R}_c L$ .

**Proposition 4.4.** Let I be a proper  $z_c$ -ideal in  $\mathcal{R}_c L$ . The following statements are equivalent:

- (1) I is a prime ideal in  $\mathcal{R}_c L$ .
- (2) I contains a prime ideal in  $\mathcal{R}_c L$ .

(3) For all  $\alpha, \beta \in \mathcal{R}_c L$ , if  $\alpha\beta = 0$ , then  $\alpha \in I$  or  $\beta \in I$ .

(4) Given  $\alpha \in \mathcal{R}_c L$ , there exists a cozero element  $a \in \operatorname{Coz}_c[I]$  such that

$$\alpha(0,-) \le a \text{ or } \alpha(-,0) \le a.$$

**Corollary 4.5.** Let I be a proper ideal of  $\text{Coz}_c[L]$  such that for every  $\alpha, \beta \in \mathcal{R}_cL$ ,  $\text{coz}(\alpha) \land \text{coz}(\beta) = \bot$  implies that  $\text{coz}(\alpha) \in I$  or  $\text{coz}(\beta) \in I$ . Then the following statements hold:

- (1)  $\operatorname{Coz}_{c}^{\leftarrow}[I]$  is a prime  $z_{c}$ -ideal of  $\mathcal{R}_{c}L$ .
- (2) *I* is a prime ideal of  $Coz_c[L]$ .

*Proof.* (1). Let  $\alpha, \beta \in \mathcal{R}_c L$  and  $\alpha\beta = 0$ . Then  $\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta) = \bot$  and, by assumption,  $\operatorname{coz}(\alpha) \in I$  or  $\operatorname{coz}(\beta) \in I$ . This means that  $\alpha \in \operatorname{Coz}_c^{\leftarrow}[I]$  or  $\beta \in \operatorname{Coz}_c^{\leftarrow}[I]$ . Since  $\operatorname{Coz}_c^{\leftarrow}[I]$  is a  $z_c$ -ideal of  $\mathcal{R}_c L$ , by Proposition 4.4,  $\operatorname{Coz}_c^{\leftarrow}[I]$  is a prime  $z_c$ -ideal of  $\mathcal{R}_c L$ .

(2). Let  $\alpha, \beta \in \mathcal{R}_c L$  and  $\operatorname{coz}(\alpha\beta) = \operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta) \in I$ . Then  $\alpha\beta \in \operatorname{Coz}_c^{\leftarrow}[I]$  and, by (1),  $\alpha \in \operatorname{Coz}_c^{\leftarrow}[I]$  or  $\beta \in \operatorname{Coz}_c^{\leftarrow}[I]$ . Hence  $\operatorname{coz}(\alpha) \in I$  or  $\operatorname{coz}(\beta) \in I$ . Thus *I* is a prime ideal of  $\operatorname{Coz}_c[L]$ .  $\Box$ 

In proof of Proposition 4.6, we use this fact: Let J, J' be two ideals. If  $J \cap J'$  is prime then either  $J \subseteq J'$  or  $J' \subseteq J$ . About the following proposition, we must say that it was established by Dube in [7] in the context of  $\mathcal{R}L$ .

**Proposition 4.6.** *Every prime ideal of*  $\mathcal{R}_{c}L$  *is included in a unique maximal ideal.* 

*Proof.* We know that every prime ideal is included in at least one maximal ideal. Let M and M' be two distinct maximal ideals. Then, by Lemma 3.8 and Remark 3.3,  $M \cap M'$  is a  $z_c$ -ideal. But it is not prime, by Proposition 4.4,  $M \cap M'$  contains no prime ideal.  $\Box$ 

A commutative ring with identity is called *Gelfand ring* [20] if every prime ideal is contained in a unique maximal ideal. In [7], Dube shows that  $\mathcal{R}L$  is a Gelfand ring. As a result of Proposition 4.6, we have the following.

**Corollary 4.7.**  $\mathcal{R}_c L$  is a Gelfand ring.

### Acknowledgement

The authors thank the referees for helpful comments that have improved the readability and the quality of this paper.

#### References

- R.N. Ball, and J. Walters-Wayland, C- and C\*- quotients in pointfree topology, Dissertationes Mathematicae (Rozprawy Mat.), 412 (2002) 62 pp.
- [2] B. Banaschewski, The real numbers in pointfree topology, Textos de Mathematica (Serie B), 12, Departmento de Mathematica de University of Coimbra, (1997).
- [3] B. Banaschewski, and M. Sioen, Ring ideals and the Stone-Čech compactification in pointfree topology, J. Pure Appl. Algebra, 214 (2010) 2159-2164.
- [4] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, vol. 608, Springer-Verlag, Berlin-New York, 1977.
- [5] C. H. Dowker, On Urysohn's lemma, General Topology and its Relations to Modern Analysis, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, (1967) 111–114.
- [6] T. Dube, Some algebraic characterizations of *F*-frames, Algebra Univers., 62 (2009) 273–288.
- [7] T. Dube, Some ring-theoretic properties of almost P-frames, Algebra Univers., 60 (2009) 145–162.
- [8] T. Dube, Concerning *P*-frames, essential *P*-frames, and strongly zero-dimensional frames, Algebra Univers., 61 (2009) 115–138.
  [9] T. Dube, Extending and contracting maximal ideals in the function rings of pointfree topology, Bull. Math. Soc. Sci. Math.
- Roumanie. Tome., 55 (103) 4 (2012) 365–374.
- [10] T. Dube, On maps between Stone-Čech compactification induced by lattice homomorphisms, Filomat, 30 (9) (2016) 2465–2474.
- [11] T. Dube, and O. Ighedo, On z-ideals of pointfree function rings, Bull. Iran. Math. Soc., 40 (2014) 657–675.
- [12] M.M. Ebrahimi, and A. Karimi Feizabadi, Pointfree prime representation of real Riesz maps, Algebra Univers. 54 (2005) 291–299.
   [13] A.A. Estaji, A. Karimi, and M. Abedi, Zero sets in pointfree topology and strongly z-ideals, Bull. Iran. Math. Soc., 41 (5) (2015) 1071–1084.
- [14] A.A. Estaji, A. Karimi Feizabadi, and M. Abedi, Strongly fixed ideals in *C*(*L*) and compact frames, Archivum Mathematicum (BRNO) Tomus, 51 (2015) 1–12.
- [15] M. Ghadermazi, O.A.S. Karamzadeh, and M. Namdari, On the functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova, 129 (2013) 47–69.
- [16] L. Gillman, and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.
- [17] C.B. Huijsmans and B. de Pagter, On z-ideals and d-ideals in Riesz spaces I, Neder. Akad. Wetensch. Indag. Math., 42 (2) (1980) 183–195.
- [18] C.B. Huijsmans and B. de Pagter, On z-ideals and d-ideals in Riesz spaces II, Neder. Akad. Wetensch. Indag. Math., 42 (4) (1980) 391–408.
- [19] O. Ighedo, Concerning ideals of pointfree function rings, Ph.D. Thesis, University of South Africa, 2013.
- [20] P.T. Johnstone, Stone spaces, Cambridge Univ. Press, Cambridge, 1982.
- [21] A. Karimi, A.A. Estaji, and M. Robat Sarpoushi, Pointfree version of Image of real-valued continuous functions, Categ. Gen. Algebr. Struct. Appl., 9 (1) (2018) 59–75.
- [22] C. Kohls, Ideals in rings of continuous functions, Fund. Math., 45 (1957) 28-50.
- [23] S. Kumar Acharyya, G. Bhunia, and P.P. Ghosh, Finite frames, P-frames and basically disconnected frames, Algebra Univers., 72 (2014) 209–224.
- [24] G. Mason, On z-ideals and prime ideals, Ph.D. Thesis, McGill University, Montreal, P.Q., 1971.
- [25] G. Mason, z-Ideals and prime ideals, Journal of Algebra, 26 (1973) 280–297.
- [26] J. Picado, and A. Pultr, Frames and Locales: Topology without Points, Frontiers in Mathematics, Birkhäuser/Springer, Basel AG, Basel, 2012.
- [27] W. Rump, Abelian lattice-ordered groups and a characterization of the maximal spectrum of a Prüfer domain, Journal of Pure and Applied Algebra, 218 (2014) 2204–2217.
- [28] R.Y. Sharp, Steps in commutative algebra, Cambridge Univ. press., 2000.