z_{c}-Ideals and Prime Ideals in the Ring $\mathcal{R}_{c} L$

A.A. Estaji ${ }^{\text {a }}$, A. Karimi Feizabadi ${ }^{\text {b }}$, M. Robat Sarpoushi ${ }^{\text {a }}$
${ }^{\text {a }}$ Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
${ }^{b}$ Department of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan, Iran.

Abstract

The ring $\mathcal{R}_{c} L$ is introduced as a sub-f-ring of $\mathcal{R} L$ as a pointfree analogue to the subring $C_{c}(X)$ of $C(X)$ consisting of elements with the countable image. We introduce z_{c}-ideals in $\mathcal{R}_{c} L$ and study their properties. We prove that for any frame L, there exists a space X such that $\beta L \cong \mathfrak{D X}$ with $C_{c}(X) \cong \mathcal{R}_{c}(\mathfrak{O X}) \cong$ $\mathcal{R}_{c} \beta L \cong \mathcal{R}_{c}^{*} L$, and from this, we conclude that if $\alpha, \beta \in \mathcal{R}_{c} L,|\alpha| \leq|\beta|^{q}$ for some $q>1$, then α is a multiple of β in $\mathcal{R}_{c} L$. Also, we show that $I J=I \cap J$ whenever I and J are z_{c}-ideals. In particular, we prove that an ideal of $\mathcal{R}_{c} L$ is a z_{c}-ideal if and only if it is a z-ideals. In addition, we study the relation between z_{c}-ideals and prime ideals in $\mathcal{R}_{c} L$. Finally, we prove that $\mathcal{R}_{c} L$ is a Gelfand ring.

1. Introduction

An ideal I of a ring A is a z-ideal if whenever two elements of A are in the same set of maximal ideals and I contains one of the elements, then it also contains the other (the term "ring" means a commutative ring with identity). A study of z-ideals in rings generally has been carried by Mason in the article [25]. We refer to z-ideals as defined in [25] as " z-ideals á la Mason". This algebraic definition of z-ideal was coined in the context of rings of continuous functions by Kohls in [22] and is also in the text Rings of continuous functions by Gillman and Jerison [16]. In pointfree topology, z-ideals were introduced by Dube in [8] in terms of the cozero map. z-Ideals have been studied in the theory of abelian lattice-ordered groups [4,27] and in the context of Riesz space in [17] and [18].

This paper is mainly about the study of prime ideals and z_{c}-ideals in the ring $\mathcal{R}_{c} L$, where $\mathcal{R}_{c} L$ is the sub- f-ring of $\mathcal{R} L$ consisting of all elements which have the pointfree countable image. The ring $\mathcal{R}_{c} L$ is introduced in [21] as the pointfree version of $C_{c}(X)$, the subalgebra of $C(X)$ of all continuous functions with a countable image on a topological space X.

This paper is organized as follows. Section 2 is introductory. It is where we present relevant definitions pertaining to frames and give relevant background for the other sections. In Section 3, we introduce $z_{c^{-}}$ ideals in $\mathcal{R}_{c} L$ (see Definition 3.2) and study some properties of z_{c}-ideals. In addition, we show that $I J=I \cap J$ whenever I and J are z_{c}-ideals, just as in $C(X)$ and in $\mathcal{R} L$ (Proposition 3.14). We prove that for any frame L, there exists a space X such that $\beta L \cong \mathfrak{D X}$ with $C_{c}(X) \cong \mathcal{R}_{c}(\mathfrak{D X}) \cong \mathcal{R}_{c} \beta L \cong \mathcal{R}_{c}^{*} L$, (see Lemmas 3.16 and 3.18).

[^0]By this result, we show that if $\alpha, \beta \in \mathcal{R}_{c} L,|\alpha| \leq|\beta|^{q}$ for some $q>1$, then α is a multiple of β in $\mathcal{R}_{c} L$ (Lemma 3.19). Also, we prove that a z-ideal in $\mathcal{R}_{c} L$ is a z_{c}-ideal if and only if it is a z-ideal á la Mason (see Proposition 3.27). In Section 4, we study the relation between prime ideals and z_{c}-ideals in the ring $\mathcal{R}_{c} L$ (see Proposition 4.4). In addition, we show that $\mathcal{R}_{c} L$ is a Gelfand ring (see Corollary 4.7).

2. Preliminaries

Here, we recall some concepts and terminologies with frames, frame maps and the pointfree version of the ring of continuous real-valued functions. Our references for frames are [20,26] and our references for the ring $\mathcal{R L}$ are $[1,2]$.

A frame is a complete lattice L in which the distributive law

$$
x \wedge \bigvee s=\bigvee\{x \wedge s: s \in S\}
$$

holds for all $x \in L$ and $S \subseteq L$. We denote the top element and the bottom element of L by T_{L} and \perp_{L} respectively, dropping the decorations if L is clear from the context. The frame of open subsets of a topological space X is denoted by $\mathfrak{D X}$.

An element $p \in L$ is said to be prime if $p<T$ and $a \wedge b \leq p$ implies $a \leq p$ or $b \leq p$. An element $m \in L$ is said to be maximal (or dual atom) if $m<\mathrm{T}$ and $m \leq x \leq \mathrm{T}$ implies $m=x$ or $x=\mathrm{T}$. As it is well known, every maximal element is prime. A lattice-ordered ring A is called f-ring, if $(f \wedge g) h=f h \wedge g h$ for every $f, g \in A$ and every $0 \leq h \in A$.

Recall the contravariant functor Σ from Frm to the category Top of topological spaces which assigns to each frame L its spectrum ΣL of prime elements with $\Sigma_{a}=\{p \in \Sigma L: a \not \leq p\}(a \in L)$ as its open sets.

Let L be a frame. We say that a is rather below b, and write $a<b$, if there exists a separating element s of L with $a \wedge s=\perp$ and $s \vee b=T$. A frame L is called regular if each of its elements is a join of elements rather below it. An element a of a frame L is said to be completely below b, written $a \ll b$, if there exists a sequence $\left(c_{q}\right), q \in \mathbb{Q} \cap[0,1]$, where $c_{0}=a, c_{1}=b$, and $c_{p}<c_{q}$ whenever $p<q$. A frame L is called completely regular if each $a \in L$ is a join of elements completely below it.

A frame homomorphism (or frame map) is a map between frames which preserves finite meets, including the top element, and arbitrary joins, including the bottom element.

An ideal J of L is said to be completely regular if for each $x \in J$ there exists $y \in J$ such that $x \ll y$. The set βL of all completely regular ideals of a frame L under set inclusion is a compact completely regular frame, and $j_{L}: \beta L \rightarrow L$, defined by $j_{L}(I)=\bigvee I$, is a dense onto frame homomorphism, so that βL is a compactification of L. The compactification βL is known as the Stone-Čech compactification of the frame L. It is clear that βL is finite if and only if L is finite. The right adjoint $j_{*}: L \rightarrow \beta L$ of the surjective frame homomorphism j_{L} is denoted by r_{L}, and $r_{L}(a)=\{x \in L: x \ll a\}$ for all $a \in L$ (see $[2,3,10,26]$).

Recall from [2] (see also [1]) that the frame of reals $\mathcal{L}(\mathbb{R})$ is obtained by taking the ordered pairs (p, q) of rational numbers as generators and imposing the following relations:
(R1) $(p, q) \wedge(r, s)=(p \vee r, q \wedge s)$.
(R2) $(p, q) \vee(r, s)=(p, s)$ whenever $p \leq r<q \leq s$.
(R3) $(p, q)=\bigvee\{(r, s): p<r<s<q\}$.
$(\mathrm{R} 4) \mathrm{T}=\bigvee\{(p, q): p, q \in \mathbb{Q}\}$.
For the pairs $(p, q) \in \mathbb{Q}^{2}$, we let:

$$
\langle p, q\rangle:=\{x \in \mathbb{Q}: p<x<q\} \quad \text { and } \quad \mathbb{p}, q \mathbb{\llbracket}:=\{x \in \mathbb{R}: p<x<q\}
$$

The set $\mathcal{R L}$ of all frame homomorphisms from $\mathcal{L}(\mathbb{R})$ to L has been studied as an f-ring in [2].
Corresponding to every operation $\diamond: \mathbb{Q}^{2} \rightarrow \mathbb{Q}$ (in particular $+, ., \wedge, \vee$) we have an operation on $\mathcal{R} L$, denoted by the same symbol \diamond, defined by:

$$
\alpha \diamond \beta(p, q)=\bigvee\{\alpha(r, s) \wedge \beta(u, w):<r, s>\diamond\langle u, w\rangle \leq\langle p, q\rangle\}
$$

where $\langle r, s>\diamond<u, w>\leq<p, q>$ means that for each $r<x<s$ and $u<y<w$ we have $p<x \diamond y<q$. For any $\alpha \in \mathcal{R} L$ and $p, q \in \mathbb{Q},(-\alpha)(p, q)=\alpha(-q,-p)$ and for every $r \in \mathbb{R}$, define the constant frame map $\mathbf{r} \in \mathcal{R} L$ by $\mathbf{r}(p, q)=\mathrm{T}$, whenever $p<r<q$, and otherwise $\mathbf{r}(p, q)=\perp$. An element α of $\mathcal{R} L$ is said to be bounded if there exists $n \in \mathbb{N}$ such that $\alpha(-n, n)=\mathrm{T}$. The set of all bounded elements of $\mathcal{R} L$ is denoted by $\mathcal{R}^{*} L$ which is a sub-f-ring of $\mathcal{R} L$. In connection with the Stone-Čech compactification of a frame L, it is also well known $\mathcal{R}^{*} L \cong \mathcal{R}(\beta L)$.

The cozero map is the map coz : $\mathcal{R} L \rightarrow L$, defined by

$$
\operatorname{coz}(\alpha)=\bigvee\{\alpha(p, 0) \vee \alpha(0, q): p, q \in \mathbb{Q}\}
$$

A cozero element of L is an element of the form $\operatorname{coz}(\alpha)$ for some $\alpha \in \mathcal{R} L$ (see [2]). The cozero part of L, is denoted by CozL. It is well known that L is completely regular if and only if $\operatorname{coz}(L)$ generates L. For $A \subseteq \mathcal{R L}$, let $\operatorname{Coz}[A]=\{\operatorname{coz}(\alpha): \alpha \in A\}$ and for $A \subseteq \operatorname{CozL}$, we write $\operatorname{Coz}{ }^{\leftarrow}[A]$ to designate the family maps $\{\alpha \in \mathcal{R} L: \operatorname{coz}(\alpha) \in A\}$. An ideal I of $\mathcal{R L}$ is a z-ideal if, for any $\alpha \in \mathcal{R} L$ and $\beta \in I, \operatorname{coz}(\alpha)=\operatorname{coz}(\beta)$ implies $\alpha \in I$ (for more details, see [6-8, 11, 13]).

Here we recall some notations from [12]. Let $a \in L$ and $\alpha \in \mathcal{R} L$. The sets $\{r \in \mathbb{Q}: \alpha(-, r) \leq a\}$ and $\{s \in \mathbb{Q}: \alpha(s,-) \leq a\}$ are denoted by $L(a, \alpha)$ and $U(a, \alpha)$, respectively. For $a \neq \mathrm{T}$ it is obvious that for each $r \in L(a, \alpha)$ and $s \in U(a, \alpha), r \leq s$. In fact, we have that if $p \in \Sigma L$ and $\alpha \in \mathcal{R} L$, then $(L(p, \alpha), U(p, \alpha))$ is a Dedekind cut for a real number which is denoted by $\widetilde{p}(\alpha)$ (see [12]). Throughout this paper, for every $\alpha \in \mathcal{R L}$, we define $\alpha[p]=\widetilde{p}(\alpha)$ where p is a prime element of L (see [13]).

It is well known that the homomorphism $\tau: \mathcal{L}(\mathbb{R}) \rightarrow \mathfrak{O} \mathbb{R}$ taking (p, q) to $\rrbracket p, q \llbracket$ is an isomorphism (see [2, Proposition 2]). Now, we recall some concepts and results from [21] that we need to establish the principal results of our paper.

Definition 2.1. [21] For any $\alpha \in \mathcal{R L}$, we say that α has the pointfree countable image if there exists $\mathbb{S} \subseteq \mathbb{R}$ such that
(1) $|\mathbb{S}| \leq \boldsymbol{N}_{0}$
(2) $\tau(u) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}$ implies $\alpha(u) \leq \alpha(v)$, for every $u, v \in \mathcal{L}(\mathbb{R})$ (denoted by $\alpha \leq \mathbb{S}$ and say α is an overlap of \mathbb{S}).

Lemma 2.2. [21] For any $\alpha \in \mathcal{R L}$ and any $\mathbb{S} \subseteq \mathbb{R}$, the following statements are equivalent:
(1) $\alpha \hookrightarrow \mathrm{S}$.
(2) $\tau(u) \cap \mathbb{S}=\tau(v) \cap \mathbb{S}$ implies $\alpha(u)=\alpha(v)$, for any $u, v \in \mathcal{L}(\mathbb{R})$.
(3) $\tau(p, q) \cap \mathbb{S}=\tau(v) \cap \mathbb{S}$ implies $\alpha(p, q)=\alpha(v)$, for any $v \in \mathcal{L}(\mathbb{R})$ and any $p, q \in \mathbb{Q}$.
(4) $\tau(p, q) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}$ implies $\alpha(p, q) \leq \alpha(v)$, for any $v \in \mathcal{L}(\mathbb{R})$ and any $p, q \in \mathbb{Q}$.

Definition 2.3. [21] For every frame L, we put

$$
\mathcal{R}_{c} L:=\{\alpha \in \mathcal{R} L: \alpha \text { has the pointfree countable image }\} .
$$

Corollary 2.4. [21] For any completely regular frame L, the set $\mathcal{R}_{c} L$ is a sub-f-ring of $\mathcal{R L}$.

3. z_{c}-Ideals in $\mathcal{R}_{c} L$

Throughout this paper, all frames are assumed to be completely regular. We recall the notation z-ideal of a ring A as was introduced by Mason in [25]. We refer to z-ideals as defined in [25] as " z-ideals á la Mason".

Denoted by $\operatorname{Max}(A)$ the set of all maximal ideals of a ring A. For $a \in A$ and $S \subseteq A$, let

$$
\mathfrak{M}(a)=\{M \in \operatorname{Max}(A): a \in M\} \quad \text { and } \quad \mathfrak{M}(S)=\{M \in \operatorname{Max}(A): M \supseteq S\} .
$$

Definition 3.1. An ideal I of a ring A is a z-ideal á la Mason if whenever $\mathfrak{M}(a) \supseteq \mathfrak{M}(b)$ and $b \in I$, then $a \in I$.
In [8, Corollary 3.8], Dube shows that an ideal of $\mathcal{R L}$ is a z-ideal if and only if it is a z-ideal á la Mason. Here we introduce and study z_{c}-ideals in $\mathcal{R}_{c} L$. We begin by below definition.

Definition 3.2. An ideal I in $\mathcal{R}_{c} L$ is called a z_{c}-ideal if, for every $\alpha \in \mathcal{R}_{c} L$ and $\beta \in I, \operatorname{coz}(\alpha)=\operatorname{coz}(\beta)$ implies $\alpha \in I$.
Remark 3.3. It is evident that for a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of z_{c}-ideals of $\mathcal{R}_{c} L, \bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a z_{c}-ideal.
Recall from [9] that for each $a \in L$ with $a<T$, the subset M_{a} of $\mathcal{R} L$ is defined by

$$
\mathbf{M}_{a}=\{\alpha \in \mathcal{R} L: \operatorname{coz}(\alpha) \leq a\} .
$$

They are distinct for distinct points. By [14, Lemma 4.2], if p is a prime element of L, then

$$
\mathbf{M}_{p}=\{\alpha \in \mathcal{R} L: \alpha[p]=0\} .
$$

Definition 3.4. For every $a \in L$, we let $\mathbf{M}_{a}^{c}:=\left\{\alpha \in \mathcal{R}_{c} L: \operatorname{coz}(\alpha) \leq a\right\}$.
Proposition 3.5. The following statements are equivalent for an ideal I of $\mathcal{R}_{c} L$.
(1) I is a z_{c}-ideal.
(2) For any $\alpha, \beta \in \mathcal{R}_{c} L, \alpha \in I$ and $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$ imply $\beta \in I$.
(3) $I=\bigcup\left\{\mathbf{M}_{\operatorname{coz}(\alpha)}^{c}: \alpha \in I\right\}$.

Proof. (1) \Rightarrow (2). Assume $\alpha \in I$ and $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$. Then

$$
\operatorname{coz}(\beta)=\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta)=\operatorname{coz}(\alpha \beta)
$$

Since $\alpha \beta \in I$, by statement (1), we infer that $\beta \in I$.
(2) \Rightarrow (3). Clearly $I \subseteq \bigcup\left\{\mathbf{M}_{\mathrm{coz}(\alpha)}^{c}: \alpha \in I\right\}$, because for every $\gamma \in \mathcal{R}_{c} L, \gamma \in \mathbf{M}_{\mathrm{coz}(\gamma)}^{c}$. To see the inverse inclusion, let $\alpha \in I$ and consider $\beta \in \mathbf{M}_{\operatorname{coz}(\alpha)}^{c}$. This means $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$, so that, by (2), $\beta \in I$. Therefore $\mathbf{M}_{\operatorname{coz}(\alpha)}^{c} \subseteq I$, and hence the desired inclusion.
(3) \Rightarrow (1). Let $\alpha \in I$ and $\beta \in \mathcal{R}_{c} L$ with $\operatorname{coz}(\alpha)=\operatorname{coz}(\beta)$. Then $\beta \in \mathbf{M}_{\operatorname{coz}(\beta)}^{c}=\mathbf{M}_{\operatorname{coz}(\alpha)}^{c} \subseteq I$, and hence (1) follows.

Remark 3.6. Recall from [1] that if $\alpha \in \mathcal{R L}$ be a unit element of $\mathcal{R L}$ and we define $\beta \in \mathcal{R L}$ by $\beta(p, q)=$ $\alpha\left(\tau^{-1}\left(\left\{\frac{1}{x}: x \in \tau(p, q), x \neq 0\right\}\right)\right)$, then $\beta=\alpha^{-1}$.

Lemma 3.7. Let α be a unit element of $\mathcal{R L}$. If $\alpha \in \mathcal{R}_{c} L$, then $\alpha^{-1} \in \mathcal{R}_{c} L$.
Proof. Since $\alpha \in \mathcal{R}_{c} L$, we infer from Definitions 2.1 and 2.3 that there is a countable subset $\mathbb{S} \subseteq \mathbb{R}$ such that $\alpha \triangleleft \mathbb{S}$. Put $\mathbb{S}^{1}:=\left\{\frac{1}{s}: s \in \mathbb{S}, s \neq 0\right\}$. We claim that $\alpha^{-1} \triangleleft \mathbb{S}^{1}$. To do this, suppose that $(p, q), u \in \mathcal{L}(\mathbb{R})$ and $\tau(p, q) \cap \mathbb{S}^{1}=\tau(u) \cap \mathbb{S}^{1}$. Since

$$
\left\{\frac{1}{s}: s \in \tau(p, q), s \neq 0\right\} \cap \mathbb{S}=\left\{\frac{1}{s}: s \in \tau(u), s \neq 0\right\} \cap \mathbb{S},
$$

we conclude from Remark 3.6 and Lemma 2.2 that

$$
\begin{aligned}
\alpha^{-1}(p, q) & =\alpha\left(\tau^{-1}\left(\left\{\frac{1}{s}: s \in \tau(p, q), s \neq 0\right\}\right)\right) \\
& =\alpha\left(\tau^{-1}\left(\left\{\frac{1}{s}: s \in \tau(u), s \neq 0\right\}\right)\right) \\
& =\alpha^{-1}(u) .
\end{aligned}
$$

Hence, by Lemma 2.2 and Definition 2.3, $\alpha^{-1} \boldsymbol{\leftarrow} \mathbb{S}^{1}$, which shows that $\alpha^{-1} \in \mathcal{R}_{c} L$.
Lemma 3.8. Every maximal ideal of $\mathcal{R}_{c} L$, is a z_{c}-ideal.

Proof. Let I be a maximal ideal of $\mathcal{R}_{c} L$ and $\gamma \in \mathcal{R}_{c} L$ be an element with $\operatorname{coz}(\beta)=\operatorname{coz}(\gamma)$, where $\beta \in I$. It suffices to show that $\gamma \in I$. Suppose that $\gamma \notin I$. Since I is maximal, we infer that there exist $\alpha \in \mathcal{R}_{c} L$ and $\psi \in I$ such that $\mathbf{1}=\psi+\alpha \gamma$. So

$$
\begin{aligned}
\top & =\operatorname{coz}(\psi+\alpha \gamma) \\
& \leq \operatorname{coz}(\psi) \vee(\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\gamma)) \\
& \leq(\operatorname{coz}(\psi) \vee \operatorname{coz}(\alpha)) \wedge(\operatorname{coz}(\psi) \vee \operatorname{coz}(\gamma)) \\
& \leq \operatorname{coz}(\psi) \vee \operatorname{coz}(\gamma) \\
& =\operatorname{coz}(\psi) \vee \operatorname{coz}(\beta) .
\end{aligned}
$$

Therefore $\operatorname{coz}(\psi) \vee \operatorname{coz}(\beta)=\mathrm{T}$, thus $\operatorname{coz}\left(\psi^{2}+\beta^{2}\right)=\mathrm{T}$. So, by Lemma 3.7, $\psi^{2}+\beta^{2}$ is invertible in $\mathcal{R}_{c} L$ which is a contradiction. Hence $\gamma \in I$ and the proof is complete.

Proposition 3.9. For any ideal I in $\mathcal{R}_{c} L, A n n_{\mathcal{R}_{c} L}(I)$ is a z_{c}-ideal.
Proof. Let $\alpha \in \mathcal{R}_{c} L, \beta \in A n n_{\mathcal{R}_{L} L}(I)$ and $\operatorname{coz}(\alpha) \leq \operatorname{coz}(\beta)$. Thus

$$
\begin{aligned}
\beta \gamma=0 & \Rightarrow \operatorname{coz}(\beta) \wedge \operatorname{coz}(\gamma)=\perp \\
& \Rightarrow \operatorname{coz}(\alpha) \wedge \operatorname{coz}(\gamma)=\perp \\
& \Rightarrow \operatorname{coz}(\alpha \gamma)=\perp \\
& \Rightarrow \alpha \gamma=0
\end{aligned}
$$

for every $\gamma \in I$. Therefore $\alpha \in A n n_{\mathcal{R}_{c} L}(I)$.
Remark 3.10. Let I be a z_{c}-ideal and $\alpha, \beta \in \mathcal{R}_{c} L$. If $\alpha^{2}+\beta^{2} \in I$, then $\alpha, \beta \in I$. For we have

$$
\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta)=\operatorname{coz}\left(\alpha^{2}+\beta^{2}\right)
$$

Since I is a z_{c}-ideal, we conclude that $\alpha, \beta \in I$.
Definition 3.11. Let L be a frame. We define:

$$
\operatorname{Coz}_{c}[L]:=\left\{\operatorname{coz}(\alpha): \alpha \in \mathcal{R}_{c} L\right\} .
$$

Proposition 3.12. The following statements hold for any frame L.
(1) If I is a proper ideal of $\mathcal{R}_{c} L$, then $\mathrm{Coz}_{c}[I]$ is a proper ideal of $\mathrm{Coz}_{c}[L]$.
(2) If I is a proper ideal of $\mathrm{Coz}_{c}[L]$, then $\mathrm{Coz}_{c}^{\leftarrow}[I]$ is a proper ideal of $\mathcal{R}_{c} L$.
(3) If M is a maximal ideal of $\mathcal{R}_{c} L$, then $\mathrm{Coz}_{c}[M]$ is a maximal ideal of $\mathrm{Coz}_{c}[L]$.
(4) If M is a maximal ideal of $\mathrm{Coz}_{c}[L]$, then $\mathrm{Coz}_{c}^{\leftarrow}[M]$ is a maximal ideal of $\mathcal{R}_{c} L$.

Proof. (1). Let I be a proper ideal of $\mathcal{R}_{c} L$ and $\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \in \operatorname{Coz}_{c}[I]$. Then

$$
\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta)=\operatorname{coz}\left(\alpha^{2}+\beta^{2}\right) \in \operatorname{Coz}_{c}[I]
$$

Thus $\operatorname{Coz}_{c}[I]$ is directed. Now, assume $\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \in \operatorname{Coz}_{c}[I]$ and $\operatorname{coz}(\alpha) \leq \operatorname{coz}(\beta)$. Then

$$
\operatorname{coz}(\alpha)=\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta)=\operatorname{coz}(\alpha \beta) \in \operatorname{Coz}_{c}[I] .
$$

Therefore $\mathrm{Coz}_{c}[I]$ is a downset and so $\mathrm{Coz}_{c}[I]$ is an ideal of $\mathrm{Coz}_{c}[L]$. If $\mathrm{Coz}_{c}[I]$ is not proper, there is $\gamma \in I$ such that $\operatorname{coz}(\gamma)=\mathrm{T}$. Thus $\gamma \in I$ is invertible, that is a contradiction.
(2). Consider $\alpha, \beta \in \operatorname{Coz}_{c}^{\leftarrow}[I]$, then $\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \in I$. Since I is an ideal of $\operatorname{Coz}_{c}[L]$, we have $\operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta) \in$ I. Therefore $\operatorname{coz}(\alpha+\beta) \leq \operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta) \in I$ implies that $\operatorname{coz}(\alpha+\beta) \in I$. So $\alpha+\beta \in \operatorname{Coz}_{c}^{\leftarrow}[I]$. Now, assume $\alpha \in \operatorname{Coz}_{c}^{\leftarrow}[I]$ and $\gamma \in \mathcal{R}_{c} L$. Then, $\operatorname{coz}(\alpha) \in I$ and $\operatorname{coz}(\gamma) \in \operatorname{Coz}_{c} L$. Also

$$
\operatorname{coz}(\alpha) \geq \operatorname{coz}(\alpha) \wedge \operatorname{coz}(\gamma)=\operatorname{coz}(\alpha \gamma)
$$

Thus, $\operatorname{coz}(\alpha \gamma) \in I$ and so, $\alpha \gamma \in \operatorname{Coz}_{c}^{\leftarrow}[I]$. If $\operatorname{Coz}_{c}^{\leftarrow}[I]$ is not proper, there is an invertible element $\beta \in \mathcal{R}_{c} L$ such that $\beta \in \operatorname{Coz}_{c}^{\leftarrow}[I]$. Therefore $T=\operatorname{coz}(\beta) \in I$, which is a contradiction.
(3). Let M be a maximal ideal of $\mathcal{R}_{c} L$ and J be a proper ideal of $\operatorname{Coz}_{c}[L]$ such that $\operatorname{Coz}_{c}[M] \subseteq J$. Since M is maximal, we conclude from Lemma 3.8 that $M=\operatorname{Coz}_{c}^{\leftarrow}[\operatorname{Coz}[M]]$. Now

$$
M=\operatorname{Coz}_{c}^{\leftarrow}\left[\operatorname{Coz}_{c}[M]\right] \subseteq \operatorname{Coz}_{c}^{\leftarrow}[J] \subseteq \operatorname{Coz}_{c}[L]
$$

Since M is maximal, we infer that $M=\operatorname{Coz}_{c}^{\leftarrow}[J]$, so $\operatorname{Coz}_{c}[M]=J$.
(4). Assume $\alpha \notin \operatorname{Coz}_{c}^{\leftarrow}[M]$. Then $\operatorname{coz}(\alpha) \notin M$, and so there is $b \in M$ such that $\operatorname{coz}(\alpha) \vee b=T$. Since M is an ideal of $\operatorname{Coz}_{c}[L]$, we can choose $\gamma \in \mathcal{R}_{c} L$ such that $\operatorname{coz}(\gamma)=b$. Then

$$
\top=\operatorname{coz}(\alpha) \vee b=\operatorname{coz}(\alpha) \vee \operatorname{coz}(\gamma)=\operatorname{coz}\left(\alpha^{2}\right) \vee \operatorname{coz}\left(\gamma^{2}\right)=\operatorname{coz}\left(\alpha^{2}+\gamma^{2}\right)
$$

which implies that $\alpha^{2}+\gamma^{2}$ is invertible in $\mathcal{R}_{c} L$, by Lemma 3.7. Therefore for every $\alpha \in \mathcal{R}_{c} L \backslash \operatorname{Coz}_{c}^{\leftarrow}[M]$, the ideal $\left\langle\alpha, \operatorname{Coz}_{c}^{\leftarrow}[M]>\right.$ is not a proper ideal of $\mathcal{R}_{c} L$. Hence $\operatorname{Coz}_{c}^{\leftarrow}[M]$ is a maximal ideal of $\mathcal{R}_{c} L$.

In [24], Mason shows that if I and J are z-ideals, then $I J$ is a z-ideal precisely when $I J=I \cap J$. In $\mathcal{R} L$, just as in $C(X)$, the product of two z-ideals is always a z-ideal. We study this result in $\mathcal{R}_{c} L$ as we show next. To do this, we utilize the following lemma.

Lemma 3.13. Let $\alpha \in \mathcal{R L}$ and $\rho_{3}: \mathcal{L}(\mathbb{R}) \rightarrow \mathcal{L}(\mathbb{R})$ by $\rho_{3}(p, q)=\left(p^{3}, q^{3}\right)$. Then
(1) $\rho_{3} \in \mathcal{R}(\mathcal{L}(\mathbb{R}))$.
(2) $\rho_{3}^{3}=i d_{\mathcal{L}(\mathbb{R})}$.
(3) $\left(\alpha \circ \rho_{3}\right)^{3}=\alpha$.
(4) $\operatorname{coz}\left(\alpha \circ \rho_{3}\right)=\operatorname{coz}(\alpha)$.
(5) If $\alpha \in \mathcal{R}_{c} L$, then $\alpha \circ \rho_{3} \in \mathcal{R}_{c} L$.

Proof. (1). We check the conditions (R1)-(R4).
(R1). Let $(p, q),(r, s) \in \mathcal{L}(\mathbb{R})$. Then

$$
\begin{aligned}
\rho_{3}(p, q) \wedge \rho_{3}(r, s) & =\left(p^{3}, q^{3}\right) \wedge\left(r^{3}, s^{3}\right) \\
& =\left(\max \left\{p^{3}, r^{3}\right\}, \min \left\{q^{3}, s^{3}\right\}\right) \\
& =\left((\max \{p, r\})^{3},(\min \{q, s\})^{3}\right) \\
& =\rho_{3}(p \vee r, q \wedge s) .
\end{aligned}
$$

(R2). Assume $p \leq r<q \leq s \in \mathbb{Q}$. Then

$$
\rho_{3}(p, q) \vee \rho_{3}(r, s)=\left(p^{3}, q^{3}\right) \vee\left(r^{3}, s^{3}\right)=\left(p^{3}, s^{3}\right)=\rho_{3}(p, s),
$$

because $p^{3} \leq r^{3}<q^{3} \leq s^{3}$.
(R3). We trivially have

$$
\begin{aligned}
\bigvee\left\{\rho_{3}(r, s): p<r<s<q\right\} & =\bigvee\left\{\left(r^{3}, s^{3}\right): p<r<s<q\right\} \\
& =\bigvee\left\{\left(r^{3}, s^{3}\right): p^{3}<r^{3}<s^{3}<q^{3}\right\} \\
& =\left(p^{3}, q^{3}\right) \\
& =\rho_{3}(p, q) .
\end{aligned}
$$

(R4). We have

$$
\bigvee\left\{\rho_{3}(p, q): p, q \in \mathbb{Q}\right\}=\bigvee\left\{\left(p^{3}, q^{3}\right): p, q \in \mathbb{Q}\right\}=\mathrm{T}
$$

Thus ρ_{3} is a frame map, so $\rho_{3} \in \mathcal{R}(\mathcal{L}(\mathbb{R}))$.
(2). Consider $(p, q) \in \mathcal{L}(\mathbb{R})$, then

$$
\begin{aligned}
\rho_{3}^{3}(p, q) & =\bigvee\left\{\rho_{3}\left(r_{1}, s_{1}\right) \wedge \rho_{3}\left(r_{2}, s_{2}\right) \wedge \rho_{3}\left(r_{3}, s_{3}\right):<r_{1}, s_{1}>.<r_{2}, s_{2}>.<r_{3}, s_{3}>\subseteq<p, q>\right\} \\
& \geq(p, q)
\end{aligned}
$$

Thus $\rho_{3}^{3}=i d_{\mathcal{L}(\mathbb{R})}$ by regularity of L.
(3). Let $(p, q) \in \mathcal{L}(\mathbb{R})$. Then, we conclude from (2) that

$$
\left(\alpha \circ \rho_{3}\right)^{3}(p, q)=\alpha \circ \rho_{3}^{3}(p, q)=\alpha \circ \operatorname{id}(p, q)=\alpha(p, q)
$$

Hence, $\left(\alpha \circ \rho_{3}\right)^{3}=\alpha$.
(4). First, we note that

$$
\operatorname{coz}\left(\rho_{3}\right)=\rho_{3}(-, 0) \vee \rho_{3}(0,-)=(-, 0) \vee(0,-)
$$

Also, we infer from (3) that $\alpha^{1 / 3}=\alpha \circ \rho_{3}$. Therefore

$$
\operatorname{coz}\left(\alpha^{1 / 3}\right)=\operatorname{coz}\left(\alpha \circ \rho_{3}\right)=\alpha\left(\operatorname{coz}\left(\rho_{3}\right)\right)=\alpha((-, 0) \vee(0,-))=\operatorname{coz}(\alpha)
$$

(5). Let $\alpha \in \mathcal{R}_{c} L$. Then, by Definitions 2.1 and 2.3 , there is a countable subset $\mathbb{S} \subseteq \mathbb{R}$ such that $\alpha \triangleleft \mathbb{S}$. Put $\mathbb{S}_{0}=\{\sqrt[3]{s}: s \in \mathbb{S}\}$. We show that $\alpha \circ \rho_{3} \triangleleft \mathbb{S}_{0}$. Assume $(p, q), u \in \mathcal{L}(\mathbb{R})$ with $u=\bigvee_{i \in I}\left(a_{i}, b_{i}\right)$ and $\tau(p, q) \cap \mathbb{S}_{0}=\tau(u) \cap \mathbb{S}_{0}$. Since $\tau\left(p^{3}, q^{3}\right) \cap \mathbb{S}=\tau\left(\bigvee\left(a_{i}^{3}, b_{i}^{3}\right)\right) \cap \mathbb{S}$, we conclude from Lemma 2.2 that $\alpha\left(p^{3}, q^{3}\right)=\alpha\left(\bigvee\left(a_{i}^{3}, b_{i}^{3}\right)\right)$, which follows that $\alpha \circ \rho_{3}(p, q)=\alpha \circ \rho_{3}(u)$. Thus, by Lemma 2.2, $\alpha \circ \rho_{3} \measuredangle \mathbb{S}_{0}$. Hence $\alpha \circ \rho_{3} \in \mathcal{R}_{c} L$ and the proof is complete.

Proposition 3.14. If P and Q are z_{c}-ideals in $\mathcal{R}_{c} L$, then $P Q=P \cap Q$.
Proof. Since $P Q \subseteq P \cap Q$ always holds, we show the reverse inclusion. Let $\alpha \in P \cap Q$. Suppose that ρ_{3} be the same in Lemma 3.13. Then, by Lemma 3.13(3,5), we have $\alpha^{1 / 3} \in \mathcal{R}_{c} L$ and $\alpha^{1 / 3} \alpha^{1 / 3} \in \mathcal{R}_{c} L$. Also, $\alpha=\left(\alpha^{1 / 3}\right)^{3}=\alpha^{1 / 3} \alpha^{2 / 3}$ and $\operatorname{coz}(\alpha)=\operatorname{coz}\left(\alpha^{1 / 3}\right)$. Now, since $\alpha \in P \cap Q$ and P, Q are z_{c}-ideals, we infer that $\alpha^{1 / 3} \in P$ and $\alpha^{1 / 3} \in Q$ Hence, $\left(\alpha^{1 / 3}\right)^{2} \in Q$. Therefore $\alpha=\alpha^{1 / 3}\left(\alpha^{1 / 3}\right)^{2} \in P Q$ and proof is complete.

Remark 3.15. By [2, Proposition 4], we know that the map

$$
\begin{aligned}
\theta: \operatorname{Frm}(\mathcal{L}(\mathbb{R}), \mathfrak{D X)} & \longrightarrow \operatorname{Top}(X, \mathbb{R}) \\
\varphi & \longmapsto \widetilde{\varphi}
\end{aligned}
$$

such that $p<\widetilde{\varphi}(x)<q$ if and only $x \in \varphi(p, q)$ is an isomorphism (also, see [5]).
Lemma 3.16. For any space $X, \mathcal{R}_{c}(\mathfrak{O X}) \cong C_{c}(X)$.
Proof. Define

$$
\begin{aligned}
\left.\theta\right|_{\mathcal{R}_{c}(\mathfrak{O X})}: \mathcal{R}_{c}(\mathfrak{D X)} & \longrightarrow C_{c}(X) \\
\varphi & \longmapsto \widetilde{\varphi}
\end{aligned}
$$

such that $p<\widetilde{\varphi}(x)<q$ if and only $x \in \varphi(p, q)$.
Consider $\varphi \in \mathcal{R}_{c}(Ð X)$. Then, by Definitions 2.1 and 2.3 , there is a countable subset $\mathbb{S} \subseteq \mathbb{R}$ such that $\varphi \longleftarrow \mathbb{S}$. We claim that $\operatorname{Im} \widetilde{\varphi} \subseteq \mathbb{S}$. Suppose that $\operatorname{Im} \widetilde{\varphi} \nsubseteq \mathbb{S}$ and $y \in \operatorname{Im} \widetilde{\varphi} \backslash \mathbb{S}$. So there is an element $x \in X$ such that $y=\widetilde{\varphi}(x)$. Since τ is an isomorphism, there is an element $v \in \mathcal{L}(\mathbb{R})$ such that $\tau(v)=\mathbb{R} \backslash\{y\}$ and also $\tau\left(\top_{\mathcal{L}(\mathbb{R})}\right)=\mathbb{R}$. Now, by Definition 2.1, $\tau(v) \cap \mathbb{S}=\tau\left(\top_{\mathcal{L}(\mathbb{R})}\right) \cap \mathbb{S}$, it follows that

$$
\varphi(v)=\varphi\left(\top_{\mathcal{L}(\mathbb{R})}\right)=\varphi(\mathbb{R})=T_{\mathfrak{D X}}=X
$$

Thus $x \in X=\varphi(v)$. Therefore $\widetilde{\varphi}(x) \in \mathbb{R} \backslash\{y\}$, which is a contradiction with $\widetilde{\varphi}(x)=y$. Thus $\operatorname{Im} \widetilde{\varphi} \subseteq \mathbb{S}$, which follows that $\theta(\varphi) \in C_{c}(X)$.

Now, we show that $\left.\theta\right|_{\mathcal{R}_{c}(\mathfrak{D X})}$ is onto. Suppose that $f \in C_{c}(X)$. Then $\operatorname{Imf}:=\mathbb{S}$ is a countable subset of \mathbb{R}. By Remark 3.15, θ is onto implies that there is $\varphi \in \mathcal{R}(\mathfrak{O X})$ such that $\theta(\varphi)=f$. We claim that $\varphi \in \mathcal{R}_{c}(\mathfrak{O X})$. Assume $(a, b), v \in \mathcal{L}(\mathbb{R})$ with $v=\bigvee_{\lambda \in \Lambda}\left(a_{\lambda}, b_{\lambda}\right)$ and $\tau(a, b) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}$. Therefore,

$$
\begin{aligned}
x \in \varphi(a, b) & \Rightarrow a<f(x)<b \\
& \Rightarrow f(x) \in \tau(a, b) \cap \mathbb{S} \\
& \Rightarrow f(x) \in \tau(v) \cap \mathbb{S} .
\end{aligned}
$$

Since $\tau(v)$ is an open subset of \mathbb{R}, there is $p, q \in \mathbb{Q}$ such that

$$
f(x) \in \tau(p, q) \cap \mathbb{S} \subseteq \tau(v) \cap \mathbb{S}
$$

and hence $x \in \varphi(p, q) \leq \varphi(v)$. Thus $x \in \varphi(v)$, so $\varphi(a, b) \subseteq \varphi(v)$. Now, by Lemma 2.2 and Definition 2.3,

Remark 3.17. Recall from [9] that we denote by t_{L} the ring isomorphism

$$
\mathrm{t}_{L}: \mathcal{R} \beta L \rightarrow \mathcal{R}^{*} L \quad \text { given by } \quad \mathrm{t}_{L}(\alpha)=j_{L}(\alpha)
$$

the inverse of which we will denote by $\varphi \mapsto \varphi^{\beta}$. It is also important to note that $\bigvee \alpha^{\beta}(p, q)=\alpha(p, q)$, for all $p, q \in \mathbb{Q}$.

Lemma 3.18. For any frame $L, \mathcal{R}_{c}^{*} L \cong \mathcal{R}_{c} \beta L$, where $\mathcal{R}_{c}^{*} L=\mathcal{R}_{c} L \cap \mathcal{R}^{*} L$
Proof. We define

$$
\begin{aligned}
\mathrm{t}_{L}{\mid \mathcal{R}_{c} \beta L}: \mathcal{R}_{c} \beta L & \longrightarrow \mathcal{R}_{c}^{*} L \\
\alpha & \longmapsto j_{L} \circ \alpha
\end{aligned}
$$

Consider $\alpha \in \mathcal{R}_{c} \beta L$. So, by Definitions 2.1 and 2.3, there is a countable subset $\mathbb{S} \subseteq \mathbb{R}$ such that $\alpha \triangleleft \mathbb{S}$. Assume $(p, q), v \in \mathcal{L}(\mathbb{R})$, and $\tau(p, q) \cap \mathbb{S}=\tau(v) \cap \mathbb{S}$. Then we conclude from Lemma 2.2 that

$$
\begin{aligned}
\alpha(p, q)=\alpha(v) & \Rightarrow j_{L} \circ \alpha(p, q)=j_{L} \circ \alpha(v) \\
& \left.\Rightarrow \mathrm{t}_{L}\right|_{\mathcal{R}_{c} \beta L}(\alpha)(p, q)=\left.\mathrm{t}_{L}\right|_{\mathcal{R}_{c} \beta L}(\alpha)(v)
\end{aligned}
$$

Thus, by Lemma 2.2, $\mathrm{t}_{L}(\alpha) \triangleleft \mathbb{S}$.
Now, suppose that $\alpha \in \mathcal{R}_{c}^{*} L$. Then there is a countable subset $\mathbb{S} \subseteq \mathbb{R}$ such that $\alpha<\mathbb{S}$. Let $(p, q), v \in \mathcal{L}(\mathbb{R})$ and $\tau(p, q) \cap \mathbb{S}=\tau(v) \cap \mathbb{S}$. Then we conclude from Lemma 2.2 that

$$
\begin{aligned}
\alpha(p, q)=\alpha(v) & \Rightarrow \vee \alpha^{\beta}(p, q)=\bigvee \alpha^{\beta}(v) \\
& \Rightarrow \alpha^{\beta}(p, q)=\alpha^{\beta}(v) . \quad \text { (since } \beta L \text { is compact) }
\end{aligned}
$$

Therefore $\alpha^{\beta}=\left.\mathrm{t}_{L}^{-1}\right|_{\mathcal{R}_{c} \beta L}(\alpha) \in \mathcal{R}_{c} \beta L$. Hence $\mathrm{t}_{L}\left(\alpha^{\beta}\right)=\bigvee \alpha^{\beta}=\alpha$, which shows that $\left.\mathrm{t}_{L}\right|_{\mathcal{R}_{c} \beta L}$ is onto. Consequently, by Remark 3.17, $\left.\mathrm{t}_{L}\right|_{\mathcal{R}_{c} \beta L}$ is an isomorphism.

We shall study the relation between z_{c}-ideal and prime ideal minimal over an ideal. For this, we recall that in $[16,1 \mathrm{D}]$ the following results play a useful role in the context of $C(X)$. It is shown that the pointfree version of this results is also true (see [19]). The following results are the counterpart for $\mathcal{R}_{c} L$.

Lemma 3.19. Let $\alpha, \beta \in \mathcal{R}_{c} L$. If $|\alpha| \leq|\beta|^{q}$ for some $q>1$, then α is a multiple of β. In particular, if $|\alpha| \leq|\beta|$, then whenever α^{q} is defined for every $q>1, \alpha^{q}$ is a multiple of β.

Proof. Multiply by $\frac{1}{1+|\alpha|} \cdot\left(\frac{1}{1+|\beta|}\right)^{q}$ both sides of the stated inequality to obtain

$$
\frac{\alpha}{1+|\alpha|} \cdot\left(\frac{1}{1+|\beta|}\right)^{q} \leq \frac{1}{1+|\alpha|} \cdot\left(\frac{|\beta|}{1+|\beta|}\right)^{q} .
$$

Since of each of the factors in this inequality is in $\mathcal{R}_{c}^{*} L$, and by Corollaries 3.16 and $3.18, \mathcal{R}_{c}^{*} L$ is isomorphic to a $C_{c}(X)$ via an f-ring isomorphism, we deduce from [15, Corollary 2.5], that $\frac{\alpha}{1+|\alpha|}$ is a multiple of $\frac{|\beta|}{1+|\beta|}$. This implies α is a multiple of β, as desired.

Proposition 3.20. Let Q be an ideal of $\mathcal{R}_{c} L$, and $\alpha \in \mathcal{R}_{c} L$. If $\mathbf{M}_{\operatorname{coz}(\alpha)}^{c} \subseteq \sqrt{Q}$, then $\mathbf{M}_{\operatorname{coz}(\alpha)}^{c} \subseteq Q$.
Proof. Let $\beta \in \mathbf{M}_{\mathrm{coz}(\alpha)}^{c} \subseteq \sqrt{Q}$. Without loss of generality, we assume that $|\beta| \leq 1$. We define $\gamma=\Sigma_{n=1}^{\infty} 2^{-n} \cdot \beta^{\frac{1}{n}}$. Hence

$$
\begin{aligned}
\operatorname{coz}(\gamma) & =\bigvee_{n} \operatorname{coz}\left(2^{-n} \cdot \beta^{\frac{1}{n}}\right) \\
& =\bigvee_{n}\left(\operatorname{coz}\left(2^{-n}\right) \wedge \operatorname{coz}\left(\beta^{\frac{1}{n}}\right)\right) \\
& =\bigvee_{n} \operatorname{coz}\left(\beta^{\frac{1}{n}}\right) \\
& =\operatorname{coz}(\beta)
\end{aligned}
$$

Since $\operatorname{coz}(\gamma)=\operatorname{coz}(\beta)$ and $\mathbf{M}_{\operatorname{coz}(\alpha)}^{c}$ is a z_{c}-ideal, then $\gamma \in \mathbf{M}_{\operatorname{coz}(\alpha)}^{c}$. Hence $\gamma \in \sqrt{Q}$ and hence there is $m \in \mathbb{N}$ such that $\gamma^{m} \in Q$. Furthermore, since $2^{-n} . \beta^{\frac{1}{n}} \leq \gamma$, for every $n \in \mathbb{N}$, we have $2^{-2 m} . \beta^{\frac{1}{2 m}} \leq \gamma$ which implies that $\left(2^{-2 m} \cdot \beta^{\frac{1}{m m}}\right)^{m} \leq \gamma^{m}$ and hence $2^{-2 m^{2}} \cdot \beta^{\frac{1}{2}} \leq \gamma^{m}$. Therefore, by Lemma 3.19, there exists $\tau \in \mathcal{R}_{c} L$ such that $\beta=\tau . \gamma^{m}$. This shows that $\beta \in Q$, and hence $\mathbf{M}_{\mathrm{coz}(\alpha)}^{c} \subseteq Q$.

Corollary 3.21. An ideal of $\mathcal{R}_{c} L$ is a z_{c}-ideal if and only if its radical is a z_{c}-ideal.
Proof. (\Rightarrow) : It is evident.
(\Leftarrow) : Let Q be an ideal of $\mathcal{R}_{c} L$. Suppose that for $\alpha, \beta \in \mathcal{R}_{c} L, \alpha \in Q$ and $\operatorname{coz}(\alpha)=\operatorname{coz}(\beta)$. Since \sqrt{Q} is a z_{c}-ideal, $\beta \in \sqrt{Q}$. By Proposition 3.20, $\mathbf{M}_{\mathrm{coz}(\beta)}^{c} \subseteq \sqrt{Q}$ and hence $\mathbf{M}_{\mathrm{coz}(\beta)}^{c} \subseteq Q$. Since $\beta \in \mathbf{M}_{\mathrm{coz}(\beta)}^{c} \subseteq Q$, it implies that $\beta \in Q$. Therefore Q is a z_{c}-ideal.

Corollary 3.22. Let Q be an ideal of $\mathcal{R}_{c} L$. Then Q is $a z_{c}$-ideal if and only if every prime ideal minimal over it is a z_{c}-ideal.

Proof. Suppose every prime ideal minimal over Q is a z_{c}-ideal. Then, by Corollary 3.21, it is sufficient to show that \sqrt{Q} is a z_{c}-ideal. We know that \sqrt{Q} is the intersection of prime ideals minimal over Q. Hence \sqrt{Q} is an intersection of z_{c}-ideals, thus it is a z_{c}-ideal.

Conversely, let Q be a z_{c}-ideal and $P \in \operatorname{Min}(Q)$. Consider $\alpha, \beta \in \mathcal{R}_{c} L$ with $\operatorname{coz}(\alpha)=\operatorname{coz}(\beta), \alpha \in P$ and $\beta \notin P$. We put

$$
S=\left(\mathcal{R}_{c} L \backslash P\right) \bigcup\left\{\gamma \alpha^{n}: \gamma \in \mathcal{R}_{c} L \backslash P, n \in \mathbb{N}\right\}
$$

It is clear that S is a multiplicatively closed set of $\mathcal{R}_{c} L$. If $\varphi \in S \cap Q$, then there are $n \in \mathbb{N}$ and $\gamma \in \mathcal{R}_{c} L \backslash P$ such that $\varphi=\gamma \alpha^{n} \in Q \subseteq P$. We have

$$
\operatorname{coz}(\varphi)=\operatorname{coz}\left(\gamma \alpha^{n}\right)=\operatorname{coz}(\gamma) \wedge \operatorname{coz}(\alpha)=\operatorname{coz}(\gamma) \wedge \operatorname{coz}(\beta)=\operatorname{coz}(\gamma \beta)
$$

From Q is a z_{c}-ideal and $\varphi \in Q$, we conclude that $\gamma \beta \in Q \subseteq P$, which follows that $\gamma \in P$ or $\beta \in P$. That is a contradiction. Therefore $S \cap Q=\emptyset$. By [28, Theorem 3.44], there exists a prime ideal $P^{\prime} \in \mathcal{R}_{c} L$ such that $S \cap P^{\prime}=\emptyset$ and $Q \subseteq P^{\prime}$. Now, if $\varphi \in P^{\prime}$, then $\varphi \notin S$, it implies that $\varphi \in P$. Thus $Q \subseteq P^{\prime} \subseteq P$ and since $P \in \operatorname{Min}(Q)$, we infer that $P^{\prime}=P$. We have $\alpha \in P=P^{\prime}$ and $\alpha \in S$, and so $\alpha \in P^{\prime}$ and $\alpha \notin P^{\prime}$, which is a contradiction.

Now, we discuss on the z_{c}-ideals of $\mathcal{R}_{c} L$ and contraction of z-ideals of $\mathcal{R} L$.

Proposition 3.23. An ideal J in $\mathcal{R}_{c} L$ is a z_{c}-ideal if and only if it is a contraction of a z-ideal in $\mathcal{R} L$.
Proof. Suppose that J is a z_{c}-ideal of $\mathcal{R}_{c} L$. Put

$$
I=\{\alpha \in \mathcal{R} L: \operatorname{coz}(\alpha) \leq \operatorname{coz}(\beta), \text { for some } \beta \in J\}
$$

Clearly, I is a z-ideal in $\mathcal{R} L$ and $J \subseteq I^{c}$. On the other hand, if $\alpha \in I^{c}$, there exists $\beta \in J$ with $\operatorname{coz}(\alpha) \leq \operatorname{coz}(\beta)$. Since J is z_{c}-ideal, we conclude that $\alpha \in J$, as desired.

Conversely, let $J=I^{c}$, where I is a z-ideal in $\mathcal{R} L$. Then J is clearly a z_{c}-ideal in $\mathcal{R}_{c} L$.
Corollary 3.24. An ideal P in $\mathcal{R}_{c} L$ is a prime z_{c}-ideal if and only if it is a contraction of a prime z-ideal in $\mathcal{R L}$.
Proof. Let P be a prime z_{c}-ideal in $\mathcal{R}_{c} L$. Consider $S=\mathcal{R}_{c} L \backslash P$ as a multiplicatively closed set in $\mathcal{R} L$. By Proposition 3.23, P is a contraction of a z-ideal in $\mathcal{R L}, I$ say. Clearly, $I \cap S=\emptyset$, so there is a prime ideal $Q \in \mathcal{R} L$ minimal over I with $Q \cap S=\emptyset$. Now, from [25] we have that Q is a z-ideal in $\mathcal{R} L$. It is evident that $P=I^{c} \subseteq Q^{c} \subseteq P$. Therefore $P=Q^{c}$, as desired. The converse is evident.

Corollary 3.25. Every maximal ideal N of $\mathcal{R}_{c} L$ is a contraction of a maximal ideal in $\mathcal{R} L$.
Proof. Let N be a maximal ideal in $\mathcal{R}_{c} L$. By Lemma 3.8, N is a z_{c}-ideal. Hence, from Proposition 3.23, we infer that $N=I^{c}$, where I is a z-ideal in $\mathcal{R L}$. But there is a maximal ideal M in $\mathcal{R L}$ containing I. Therefore $N=I^{c} \subseteq M^{c}$ implies that $N=M^{c}$ and we are done.

We shall see the relation between z_{c}-ideals in $\mathcal{R}_{c} L$ and z-ideal á la Mason.
For $\alpha \in \mathcal{R}_{c} L$, we put $\mathfrak{M}_{c}(\alpha):=\left\{M \in \operatorname{Max}\left(\mathcal{R}_{c} L\right): \alpha \in M\right\}$.
Lemma 3.26. For $\alpha, \beta \in \mathcal{R}_{c} L$, the following statements are equivalent:
(1) $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$.
(2) $\mathbf{M}_{\mathrm{coz}(\beta)}^{c} \subseteq \mathbf{M}_{\mathrm{coz}(\alpha)}^{c}$.
(3) $\mathfrak{M}_{c}(\alpha) \subseteq \mathfrak{M}_{c}(\beta)$.

Proof. (1) \Rightarrow (2). It is evident.
$(2) \Rightarrow(3)$. Suppose that $M \in \mathfrak{M}_{c}(\alpha)$. Then, by Proposition $3.12, \operatorname{Coz}_{c}[M]$ is a maximal ideal of $\mathrm{Coz}_{c}[L]$ such that $\operatorname{coz}(\alpha) \in \operatorname{Coz}_{c}[M]$. By hypothesis, $\operatorname{coz}(\beta) \in \operatorname{Coz}[M]$. So, by Proposition 3.12, $\beta \in \operatorname{Coz}_{c}^{\leftarrow}\left[\operatorname{Coz}_{c}[M]\right]=M$. Thus $M \in \mathfrak{M}_{c}(\beta)$. Hence $\mathfrak{M}_{c}(\alpha) \subseteq \mathfrak{M}_{c}(\beta)$.
$(3) \Rightarrow(1)$. By Corollary 3.25 , we have

$$
\mathfrak{M}_{c}(\alpha)=\left\{M^{c}: M \in \mathfrak{M}(\alpha)\right\} \text { and } \mathfrak{M}_{c}(\beta)=\left\{M^{c}: M \in \mathfrak{M}(\beta)\right\} .
$$

Suppose that $M \in \mathfrak{M}(\alpha)$. Then, by (3), we have $M^{c} \in \mathfrak{M}_{c}(\alpha) \subseteq \mathfrak{M}_{c}(\beta)$, which follows that $M \in \mathfrak{M}(\beta)$. Thus $\mathfrak{M}(\alpha) \subseteq \mathfrak{M}(\beta)$, and so $\beta \in \bigcap \mathfrak{M}(\beta) \subseteq \bigcap \mathfrak{M}(\alpha)$. Now, from [8, Lemma 3.7] and [23, Lemma 3.1], we have $\beta \in \bigcap \mathfrak{M}(\alpha)=\{\varphi \in \mathcal{R} L: \operatorname{coz}(\varphi) \leq \operatorname{coz}(\alpha)\}$. Therefore $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$.

Proposition 3.27. An ideal I in $\mathcal{R}_{c} L$ is a z_{c}-ideal if and only if it is a z-ideal á la Mason.
Proof. Let I be a z_{c}-ideal and suppose that $\alpha, \beta \in \mathcal{R}_{c} L$ such that $\mathfrak{M}(\alpha) \subseteq \mathfrak{M}(\beta)$ and $\alpha \in I$. Since $\mathfrak{M}_{c}(\alpha) \subseteq \mathfrak{M}_{c}(\beta)$, we conclude by Lemma 3.26 that $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$, which follows that $\beta \in I$, because I is a z_{c}-ideal. Therefore I is a z-ideal á la Mason.

Conversely, let I be a z-ideal á la Mason. Suppose that $\operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$ and $\alpha \in I$. Then, by Lemma 3.26, $\mathfrak{M}_{c}(\alpha) \subseteq \mathfrak{M}_{c}(\beta)$, which follows that $\mathfrak{M}(\alpha) \subseteq \mathfrak{M}(\beta)$. Therefore, we have $\beta \in I$ because I is a z-ideal á la Mason.

4. The relation between z_{c}-ideals and prime ideals

In this section, we study the relation between prime ideals and z_{c}-ideals in the ring $\mathcal{R}_{c} L$. We begin by some evident instances.

Lemma 4.1. Let I be a proper ideal and P be a prime ideal in $\mathcal{R}_{c} L$. If $I \cap P$ is a z_{c}-ideal and $I \nsubseteq P$, then P is a z_{c}-ideal.
Proof. Let $\operatorname{coz}(\alpha)=\operatorname{coz}(\beta)$ where $\alpha \in P$ and $\beta \in \mathcal{R}_{c} L$. Since $I \nsubseteq P$, there is $\gamma \in I \backslash P$. But $\operatorname{coz}(\alpha \gamma)=\operatorname{coz}(\beta \gamma)$ and $\alpha \gamma \in P \cap I$. Since $P \cap I$ is a z_{c}-ideal, it follows that $\beta \gamma \in P \cap I$. So $\beta \gamma \in P$, we infer that $\beta \in P$ (since P is a prime ideal). Hence P is a z_{c}-ideal.

Corollary 4.2. Let I be an ideal and P be a prime ideal in $\mathcal{R}_{c} L$ such that $P \cap I$ is a z_{c}-ideal. Then I or P is a z_{c}-ideal.
Proof. If $I \nsubseteq P$, then we conclude from Lemma 4.1 that P is a z_{c}-ideal. If $I \subseteq P$, then we have $I \cap P=I$. Hence, by assumptions, I is a z_{c}-ideal.

Corollary 4.3. Let P and Q be two prime ideals in $\mathcal{R}_{c} L$ that are not in a chain. If $P \cap Q$ is a z_{c}-ideal, then either P or Q are z_{c}-ideals.

Proof. Let $\operatorname{coz}(\alpha)=\operatorname{coz}(\beta)$ where $\alpha \in P$ and $\beta \in \mathcal{R}_{c} L$. As P and Q are not the chain, so $Q \nsubseteq P$ and $P \nsubseteq Q$. Since $Q \nsubseteq P$, there is $\gamma \in Q \backslash P$. But $\operatorname{coz}(\alpha \gamma)=\operatorname{coz}(\beta \gamma), \alpha \gamma \in P \cap Q$. Since $P \cap Q$ is a z_{c}-ideal, it follows that $\beta \gamma \in P \cap Q$. So $\beta \gamma \in P$, we infer that $\beta \in P$ (since P is prime). Hence P is a z_{c}-ideal. Similarly to prove that Q is a z_{c}-ideal.

It is well known in the classical situation that a z-ideal of $C(X)$ is prime if and only if it contains a prime ideal (see [16, Theorem 2.9]). It is shown that the pointfree version of this result is also true (see [6]). If we apply the proof of [23, Lemma 4.8] word-for-word, we obtain the following for $\mathcal{R}_{c} L$.
Proposition 4.4. Let I be a proper z_{c}-ideal in \mathcal{R}_{c} L. The following statements are equivalent:
(1) I is a prime ideal in $\mathcal{R}_{c} L$.
(2) I contains a prime ideal in $\mathcal{R}_{c} L$.
(3) For all $\alpha, \beta \in \mathcal{R}_{c} L$, if $\alpha \beta=\mathbf{0}$, then $\alpha \in I$ or $\beta \in I$.
(4) Given $\alpha \in \mathcal{R}_{c} L$, there exists a cozero element $a \in \operatorname{Coz}_{c}[I]$ such that

$$
\alpha(0,-) \leq a \text { or } \alpha(-, 0) \leq a
$$

Corollary 4.5. Let I be a proper ideal of $\operatorname{Coz}_{c}[L]$ such that for every $\alpha, \beta \in \mathcal{R}_{c} L, \operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta)=\perp$ implies that $\operatorname{coz}(\alpha) \in I$ or $\operatorname{coz}(\beta) \in I$. Then the following statements hold:
(1) $\operatorname{Coz}_{c}^{\leftarrow}[I]$ is a prime z_{c}-ideal of $\mathcal{R}_{c} L$.
(2) I is a prime ideal of $\mathrm{Coz}_{c}[L]$.

Proof. (1). Let $\alpha, \beta \in \mathcal{R}_{c} L$ and $\alpha \beta=\mathbf{0}$. Then $\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta)=\perp$ and, by assumption, $\operatorname{coz}(\alpha) \in I \operatorname{or} \operatorname{coz}(\beta) \in I$. This means that $\alpha \in \operatorname{Coz}_{c}^{\leftarrow}[I]$ or $\beta \in \operatorname{Coz}_{c}^{\leftarrow}[I]$. Since $\operatorname{Coz}_{c}^{\leftarrow}[I]$ is a z_{c}-ideal of $\mathcal{R}_{c} L$, by Proposition 4.4, $\operatorname{Coz}_{c}^{\leftarrow}[I]$ is a prime z_{c}-ideal of $\mathcal{R}_{c} L$.
(2). Let $\alpha, \beta \in \mathcal{R}_{c} L$ and $\operatorname{coz}(\alpha \beta)=\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta) \in I$. Then $\alpha \beta \in \operatorname{Coz}_{c}^{\leftarrow}[I]$ and, by (1), $\alpha \in \operatorname{Coz}_{c}^{\leftarrow}[I]$ or $\beta \in \operatorname{Coz}_{c}^{\leftarrow}[I]$. Hence $\operatorname{coz}(\alpha) \in I$ or $\operatorname{coz}(\beta) \in I$. Thus I is a prime ideal of $\operatorname{Coz}_{c}[L]$.

In proof of Proposition 4.6, we use this fact: Let J, J^{\prime} be two ideals. If $J \cap J^{\prime}$ is prime then either $J \subseteq J^{\prime}$ or $J^{\prime} \subseteq J$. About the following proposition, we must say that it was established by Dube in [7] in the context of $\mathcal{R L}$.

Proposition 4.6. Every prime ideal of $\mathcal{R}_{c} L$ is included in a unique maximal ideal.
Proof. We know that every prime ideal is included in at least one maximal ideal. Let M and M^{\prime} be two distinct maximal ideals. Then, by Lemma 3.8 and Remark $3.3, M \cap M^{\prime}$ is a z_{c}-ideal. But it is not prime, by Proposition 4.4, $M \cap M^{\prime}$ contains no prime ideal.

A commutative ring with identity is called Gelfand ring [20] if every prime ideal is contained in a unique maximal ideal. In [7], Dube shows that $\mathcal{R L}$ is a Gelfand ring. As a result of Proposition 4.6, we have the following.

Corollary 4.7. $\mathcal{R}_{c} L$ is a Gelfand ring.

Acknowledgement

The authors thank the referees for helpful comments that have improved the readability and the quality of this paper.

References

[1] R.N. Ball, and J. Walters-Wayland, C- and C*- quotients in pointfree topology, Dissertationes Mathematicae (Rozprawy Mat.), 412 (2002) 62 pp .
[2] B. Banaschewski, The real numbers in pointfree topology, Textos de Mathematica (Serie B), 12, Departmento de Mathematica de University of Coimbra, (1997).
[3] B. Banaschewski, and M. Sioen, Ring ideals and the Stone-Čech compactification in pointfree topology, J. Pure Appl. Algebra, 214 (2010) 2159-2164.
[4] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, vol. 608, Springer-Verlag, Berlin-New York, 1977.
[5] C. H. Dowker, On Urysohn's lemma, General Topology and its Relations to Modern Analysis, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, (1967) 111-114.
[6] T. Dube, Some algebraic characterizations of F-frames, Algebra Univers., 62 (2009) 273-288.
[7] T. Dube, Some ring-theoretic properties of almost P-frames, Algebra Univers., 60 (2009) 145-162.
[8] T. Dube, Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Univers., 61 (2009) 115-138.
[9] T. Dube, Extending and contracting maximal ideals in the function rings of pointfree topology, Bull. Math. Soc. Sci. Math. Roumanie. Tome., 55 (103) 4 (2012) 365-374.
[10] T. Dube, On maps between Stone-Čech compactification induced by lattice homomorphisms, Filomat, 30 (9) (2016) $2465-2474$.
[11] T. Dube, and O. Ighedo, On z-ideals of pointfree function rings, Bull. Iran. Math. Soc., 40 (2014) 657-675.
[12] M.M. Ebrahimi, and A. Karimi Feizabadi, Pointfree prime representation of real Riesz maps, Algebra Univers. 54 (2005) 291-299.
[13] A.A. Estaji, A. Karimi, and M. Abedi, Zero sets in pointfree topology and strongly z-ideals, Bull. Iran. Math. Soc., 41 (5) (2015) 1071-1084.
[14] A.A. Estaji, A. Karimi Feizabadi, and M. Abedi, Strongly fixed ideals in $C(L)$ and compact frames, Archivum Mathematicum (BRNO) Tomus, 51 (2015) 1-12.
[15] M. Ghadermazi, O.A.S. Karamzadeh, and M. Namdari, On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova, 129 (2013) 47-69.
[16] L. Gillman, and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.
[17] C.B. Huijsmans and B. de Pagter, On z-ideals and d-ideals in Riesz spaces I, Neder. Akad. Wetensch. Indag. Math., 42 (2) (1980) 183-195.
[18] C.B. Huijsmans and B. de Pagter, On z-ideals and d-ideals in Riesz spaces II, Neder. Akad. Wetensch. Indag. Math., 42 (4) (1980) 391-408.
[19] O. Ighedo, Concerning ideals of pointfree function rings, Ph.D. Thesis, University of South Africa, 2013.
[20] P.T. Johnstone, Stone spaces, Cambridge Univ. Press, Cambridge, 1982.
[21] A. Karimi, A.A. Estaji, and M. Robat Sarpoushi, Pointfree version of Image of real-valued continuous functions, Categ. Gen. Algebr. Struct. Appl., 9 (1) (2018) 59-75.
[22] C. Kohls, Ideals in rings of continuous functions, Fund. Math., 45 (1957) 28-50.
[23] S. Kumar Acharyya, G. Bhunia, and P.P. Ghosh, Finite frames, P-frames and basically disconnected frames, Algebra Univers., 72 (2014) 209-224.
[24] G. Mason, On z-ideals and prime ideals, Ph.D. Thesis, McGill University, Montreal, P.Q., 1971.
[25] G. Mason, z-Ideals and prime ideals, Journal of Algebra, 26 (1973) 280-297.
[26] J. Picado, and A. Pultr, Frames and Locales: Topology without Points, Frontiers in Mathematics, Birkhäuser/Springer, Basel AG, Basel, 2012.
[27] W. Rump, Abelian lattice-ordered groups and a characterization of the maximal spectrum of a Prüfer domain, Journal of Pure and Applied Algebra, 218 (2014) 2204-2217.
[28] R.Y. Sharp, Steps in commutative algebra, Cambridge Univ. press., 2000.

[^0]: 2010 Mathematics Subject Classification. 06D22, 13A15, 54C05, 54C30
 Keywords. Frame, Ring of real-valued continuous functions, Cozero element, z-Ideal, z_{c}-Ideal, Prime ideal, f-ring
 Received: 08 February 2017; Revised: 19 April 2017; Accepted: 16 May 2017
 Communicated by Marko Petković
 Corresponding author: A. A. Estaji
 Research supported by Hakim Sabzevari University
 Email addresses: aaestaji@hsu.ac.ir (A.A. Estaji), akarimi@gorganiau.ac.ir (A. Karimi Feizabadi), M. sarpooshi@yahoo.com (M. Robat Sarpoushi)

