Order-Lipschitz Mappings Restricted with Linear Bounded Mappings in Normed Vector Spaces without Normalities of Involving Cones via Methods of Upper and Lower Solutions

Shujun Jiang ${ }^{\text {a }}$, Zhilong Li ${ }^{\text {b,c,d }}$
${ }^{a}$ Department of Mathematics, Jiangxi University of Finance and Economics, 330013 Nanchang, China
${ }^{b}$ School of Statistics, Jiangxi University of Finance and Economics, 330013 Nanchang, China
${ }^{c}$ School of Mathematics and Statistics, Shanghai University of Engineering Science, 201620 Shanghai, China
${ }^{d}$ Research Center of Applied Statistics, Jiangxi University of Finance and Economics, 330013 Nanchang, China

Abstract

In this paper, without assuming the normalities of cones, we prove some new fixed point theorems of order-Lipschitz mappings restricted with linear bounded mappings in normed vector space in the framework of w-convergence via the method of upper and lower solutions. It is worth mentioning that the unique existence result of fixed points in this paper, presents a characterization of Picard-completeness of order-Lipschitz mappings.

1. Introduction

Let P be cone of a normed vector space $(E,\|\cdot\|), D \subset E$ and \leq the partial order on E introduced by P. Recall that a mapping $T: D \rightarrow E$ is called an order-Lipschitz mapping restricted with linear bounded mappings if there exist linear bounded mappings $A, B: P \rightarrow P$ such that

$$
\begin{equation*}
-B(x-y) \leq T x-T y \leq A(x-y), \forall x, y \in D, y \leq x \tag{1}
\end{equation*}
$$

The research on fixed points of order-Lipschitz mappings was initiated by Krasnoselskii and Zabreiko [1]. Assuming that P is a normal solid cone of a Banach space E, Krasnoselskii and Zabreiko [1] investigated the unique existence result of fixed points for order-Lipschitz mappings restricted with linear bounded mappings provided that $A=B$ and $\|A\|<1$, which was then improved by Zhang and Sun [2] to the case that the spectral radius $r(A)<1$. Without assuming the solidness of P, Sun [3] studied fixed points of order-Lipschitz mappings restricted with nonnegative real numbers via the method of upper and lower solutions.

Note that in [1-3], it is necessarily assumed that the cone is normal. Recently, without assuming the normality of the cone, Jiang and Li [4] proved the following fixed point result of order-Lipschitz mappings

[^0]restricted with vectors in Banach algebras in the framework of w-convergence.
Theorem 1 ([4, Theorem 3]) Let P be a solid cone of a Banach algebra $(E,\|\cdot\|), u_{0}, v_{0} \in E$ with $u_{0} \leq v_{0}$ and $T: D=\left[u_{0}, v_{0}\right] \rightarrow E$ an order-Lipschitz mapping restricted with vectors $A \in P$ and $B=\theta$. Assume that $u_{0} \leq T u_{0}, T v_{0} \leq v_{0}$ (i.e., u_{0} and v_{0} are a pair of lower and upper solutions of T), $r(A)<1$ and T is Picard-complete at u_{0} and v_{0}. Then T has a unique fixed point $u^{*} \in\left[u_{0}, v_{0}\right]$, and for each $x_{0} \in\left[u_{0}, v_{0}\right], x_{n} \xrightarrow{w} u^{*}$, where $\left\{x_{n}\right\}=O\left(T, x_{0}\right)$ and $O\left(T, x_{0}\right)$ denotes the Picard iteration sequence of T at x_{0} (i.e., $x_{n}=T^{n} x_{0}$ for each n).

In this paper, we shall consider fixed point theory of order-Lipschitiz mappings restricted with linear bounded mappings in normed vector spaces (instead of, Banach spaces [1,2] and Banach algebras [3]) with non-normal cones. We first prove some fixed point theorems under the assumption that the order-Lipschitz mapping T has only a lower solution or an upper solution. Furthermore, we investigate the unique existence of fixed points in the case that T has a pair of lower and upper solutions. It is worth mentioning that the unique existence result of fixed points in this paper, presents a characterization of Picard-completeness of order-Lipschitz mappings (see Proposition 2). In addition, we present a suitable example which shows the usability of our theorems.

2. Preliminaries

Let P be a cone of a normed vector space $(E,\|\cdot\|)$. A cone P induces partial order \leq on E by $x \leq y \Leftrightarrow y-x \in P$ for each $x, y \in X$. In this case, E is called an ordered normed vector space. For each $u_{0}, v_{0} \in E$ with $u_{0} \leq v_{0}$, and set $\left[u_{0}, v_{0}\right]=\left\{u \in E: u_{0} \leq u \leq v_{0}\right\},\left[u_{0},+\infty\right)=\left\{x \in E: u_{0} \leq x\right\}$ and $\left(-\infty, v_{0}\right]=\left\{x \in E: x \leq v_{0}\right\}$. A cone P is solid [5] if int $P \neq \varnothing$, where int P denotes the interior of P. For each $x, y \in E$ with $y-x \in \operatorname{int} P$, we write $x \ll y$. A cone P of a normed vector space E is normal [5] if there is a positive number N such that $x, y \in E$ and $\theta \leq x \leq y$ implies that $\|x\| \leq N\|y\|$, and the minimal N is called a normal constant of P. Note that a cone P of a normed vector space E is non-normal if and only if there exist $\left\{u_{n}\right\},\left\{v_{n}\right\} \subset P$ such that $u_{n}+v_{n} \xrightarrow{\|\cdot\|} \theta \Rightarrow u_{n} \xrightarrow{\|\cdot\|} \theta$. Consequently, if P is non-normal then the sandwich theorem in the sense of norm-convergence does not hold. While, it has been shown in [6] that the sandwich theorem in the sense of w-convergence still holds even if P is non-normal.

Let P be a solid cone of a normed vector space E. A sequence $\left\{x_{n}\right\} \subset E$ is w-convergent [6] if for each $\epsilon \in \operatorname{int} P$, there exist a positive integer n_{0} and $x \in E$ such that $x-\epsilon \ll x_{n} \ll x+\epsilon$ for each $n \geq n_{0}$ (denote $x_{n} \xrightarrow{w} x$ and x is called a w-limit of $\left\{x_{n}\right\}$). A sequence $\left\{x_{n}\right\} \subset E$ is w-Cauchy [4] if for each $\epsilon \in \operatorname{int} P$, there exists a positive integer n_{0} such that $-\epsilon \ll x_{n}-x_{m} \ll \epsilon$ for each $m, n \geq n_{0}$, i.e., $x_{n}-x_{m} \xrightarrow{w} \theta(m, n \rightarrow \infty)$. A subset $D \subset E$ is w-closed [4] if for each $\left\{x_{n}\right\} \subset D, x_{n} \xrightarrow{w} x$ implies $x \in D$.

Lemma $1([4,6])$ Let P be a solid cone of a normed vector space $(E,\|\cdot\|)$ and $u_{0}, v_{0} \in E$ with $u_{0} \leq v_{0}$. Then
(i) each sequence $\left\{x_{n}\right\} \subset E$ has a unique w-limit;
(ii) the partial order intervals $\left[u_{0}, v_{0}\right],\left[u_{0},+\infty\right)$ and $\left(-\infty, v_{0}\right]$ are w-closed;
(iii) for each $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\} \subset E$ with $x_{n} \leq y_{n} \leq z_{n}$ for each $n, x_{n} \xrightarrow{w} z$ and $z_{n} \xrightarrow{w}$ z imply $y_{n} \xrightarrow{w} z$, where $z \in E$.

Lemma 2 ([6]) Let P be a solid cone of a normed vector space $(E,\|\cdot\|)$ and $x_{n} \subset E$. Then $x_{n} \xrightarrow{\|\cdot\|} x$ implies $x_{n} \xrightarrow{w} x$. Moreover, if P is normal then $x_{n} \xrightarrow{w} x \Leftrightarrow x_{n} \xrightarrow{\|\cdot\|} x$.

Let P be a solid cone of a normed vector space $E, D \subset E, x_{0} \in D$ and $T: E \rightarrow E$. If the Picard iteration sequence $O\left(T, x_{0}\right)$ is w-convergent provided that it is w-Cauchy, then T is said to be Picard-complete at x_{0}. If T is Picard-complete at each $x \in D$ then it is said to be Picard-complete on D.

Remark 1 It is clear that if $O\left(T, x_{0}\right)$ is w-convergent then T is certainly Picard-complete at x_{0}. In particular when P is a normal cone of a Banach space E, each mapping $T: E \rightarrow E$ is Picard-complete on E by Lemma
2.

Let $(E,\|\cdot\|)$ be a normed vector space, $\left\{x_{n}\right\} \subset E$ and $D \subset E$. If $x_{n} \leq x_{m}$ or $x_{m} \leq x_{n}$ for each $m \neq n$ then $\left\{x_{n}\right\}$ is said to be comparable. If there exists some $c>0$ such that $\left\|x_{n}\right\| \leq c$ for each n then $\left\{x_{n}\right\}$ is said to be bounded. For each mapping $T: D \rightarrow E$, set

$$
T_{B-C-D}=\{x \in D: O(T, x) \text { is bounded and comparable }\}
$$

Proposition 1 For each $\alpha>1$ and each $a, b \geq 0$ with $a \leq b$, we have

$$
\begin{equation*}
b^{\alpha}-a^{\alpha} \leq 2^{k_{0}} b^{\alpha}\left(b^{\frac{\alpha}{2_{0}}}-a^{\frac{\alpha}{2^{k_{0}}}}\right) \tag{2}
\end{equation*}
$$

where $k_{0}=\min \left\{k \in \mathbb{N}_{+}: \frac{\alpha}{2^{k}} \leq 1\right\}$ and \mathbb{N}_{+}denotes the set of all positive integers.

Proof. Direct calculation that

$$
\begin{aligned}
b^{\alpha}-a^{\alpha} & =\left(b^{\frac{\alpha}{2}}+a^{\frac{\alpha}{2}}\right)\left(b^{\frac{\alpha}{2}}-a^{\frac{\alpha}{2}}\right) \\
& =\left(b^{\frac{\alpha}{2}}+a^{\frac{\alpha}{2}}\right)\left(b^{\frac{\alpha}{4}}+a^{\frac{\alpha}{4}}\right)\left(b^{\frac{\alpha}{4}}-a^{\frac{\alpha}{4}}\right) \\
& =\left(b^{\frac{\alpha}{2}}+a^{\frac{\alpha}{2}}\right)\left(b^{\frac{\alpha}{4}}+a^{\frac{\alpha}{4}}\right) \cdots\left(b^{\frac{\alpha}{k_{0}}}+a^{\frac{\alpha}{k_{0}}}\right)\left(b^{\frac{\alpha}{2^{k_{0}}}}-a^{\frac{\alpha}{2^{k_{0}}}}\right) \\
& \leq 2^{k_{0}} b^{\frac{\alpha}{2}} b^{\frac{\alpha}{4}} \cdots b^{\frac{\alpha}{k_{0}}}\left(b^{\frac{\alpha}{2^{k_{0}}}}-a^{\frac{\alpha}{2^{k_{0}}}}\right)=2^{k_{0}} b^{\frac{\alpha}{2}+\frac{\alpha}{4}+\cdots+\frac{\alpha}{2^{k_{0}}}}\left(b^{\frac{\alpha}{2^{k_{0}}}}-a^{\frac{\alpha}{2^{k_{0}}}}\right) \\
& \leq 2^{k_{0}} b^{\alpha}\left(b^{\frac{\alpha}{k_{0}}}-a^{\frac{\frac{\alpha}{k_{0}}}{}}\right) .
\end{aligned}
$$

The following example will show that there exists some mapping $T: D \rightarrow E$ such that it is Picardcomplete on D.

Example 1 Let $E=C_{\mathbb{R}}^{1}[0,1]$ be endowed with the norm $\|x\|=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and $P=\{x \in E: x(t) \geq 0, \forall t \in[0,1]\}$, where $\|x\|_{\infty}=\max _{t \in[0,1]} x(t)$ for each $x \in C_{\mathbb{R}}[0,1]$. Then $(E,\|\cdot\|)$ is a Banach space and P is a non-normal solid cone [5]. Let $(T x)(t)=\int_{0}^{t} x^{\alpha}(s) d s$ for each $x \in E$ and each $t \in[0,1]$, where $\alpha>1$.

Let $x_{0}(t) \equiv 1$ and $\left\{x_{n}\right\}=O\left(T, x_{0}\right)$. Clearly, $T: P \rightarrow P$ is a nondecreasing mapping and $\left(T x_{0}\right)(t)=$ $\int_{0}^{t} x_{0}^{\alpha}(s) d s=t \leq 1=x_{0}(t)$ for each $t \in[0,1]$, and so $\left\{x_{n}\right\}$ is comparable. By induction, for each $t \in[0,1]$ and $n \geq 2$ we have

$$
\begin{aligned}
x_{n}(t) & =\left(T^{n} x_{0}\right)(t)=\int_{0}^{t} x_{n-1}^{\alpha}(s) d s \\
& =\frac{t^{1+\alpha+\alpha^{2}+\cdots+\alpha^{n-1}}}{(1+\alpha)^{\alpha^{n-2}}\left(1+\alpha+\alpha^{2}\right)^{\alpha^{n-3}} \cdots\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{n-1}\right)} \\
& \leq 1
\end{aligned}
$$

and so

$$
\left\|x_{n}\right\|=\left\|x_{n}\right\|_{\infty}+\left\|x_{n}^{\prime}\right\|_{\infty}=\left\|x_{n}\right\|_{\infty}+\left\|x_{n-1}^{\alpha}\right\|_{\infty} \leq 2
$$

which together with $\left\|T x_{0}\right\|=2$ implies that $\left\{x_{n}\right\}$ is bounded. This shows $T_{B-C-P} \neq \varnothing$.
For each $x_{0} \in T_{B-C-P}$, set $\left\{x_{n}\right\}=O\left(T, x_{0}\right)$. Then $\left\{x_{n}\right\} \subset P$ since $T(P) \subset P$, and there exists $c>0$ such that $\left\|x_{n}\right\| \leq c$ for each n. For each $\varepsilon>0$, there exists $\epsilon \in \operatorname{intP}$ such that $\|\epsilon\|<\min \left\{\frac{\varepsilon}{2},\left(\frac{\varepsilon}{2^{k_{0}+1} c^{c}}\right)^{\frac{k^{k} 0}{\alpha}}\right\}$, where k_{0} is the one given in Proposition 1. Suppose that $\left\{x_{n}\right\}$ is w-Cauchy, then there exists a positive integer n_{0} such that $-\epsilon \ll x_{n}-x_{m} \ll \epsilon$ for each $m>n \geq n_{0}$, i.e., $-\epsilon(t) \leq x_{n}(t)-x_{m}(t) \leq \epsilon(t)$ for each $t \in[0,1]$. Thus we have
$\left\|x_{n}-x_{m}\right\|_{\infty}=\max _{t \in[0,1]}\left|x_{n}(t)-x_{m}(t)\right| \leq \max _{t \in[0,1]}|\epsilon(t)|=\|\epsilon\|_{\infty} \leq\|\epsilon\|<\min \left\{\frac{\varepsilon}{2},\left(\frac{\varepsilon}{2^{2_{0}+1} c^{a}}\right)^{\frac{2^{k_{0}}}{\alpha}}\right\}$ for each $m, n \geq n_{0}$. Since $\left\{x_{n}\right\}$ is comparable, we have from $\left\{x_{n}\right\} \subset P$ and $0<\frac{\alpha}{2^{k_{0}}} \leq 1$ that $0 \leq\left|x_{m}^{\frac{\alpha}{2_{0}}}(t)-x_{n}^{\frac{\alpha}{2_{0}}}(t)\right| \leq \left\lvert\, x_{m}(t)-x_{n}(t) 2^{\frac{\alpha}{k_{0}}}\right.$ for each $m>n$ and each $t \in[0,1]$. Thus it follows from (2) and $\left(T x_{n}\right)^{\prime}(t)=x_{n-1}^{\alpha}(t)$ that, for each $m>n \geq n_{0}+1$,

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\| & =\left\|x_{n}-x_{m}\right\|_{\infty}+\left\|\left(x_{n}-x_{m}\right)^{\prime}\right\|_{\infty} \\
& =\left\|x_{n}-x_{m}\right\|_{\infty}+\max _{t \in[0,1]}\left|\left(x_{n}(t)-x_{m}(t)\right)^{\prime}\right| \\
& =\left\|x_{n}-x_{m}\right\|_{\infty}+\max _{t \in[0,1]}\left|\left(T x_{n-1}(t)-T x_{m-1}(t)\right)^{\prime}\right| \\
& =\left\|x_{n}-x_{m}\right\|_{\infty}+\max _{t \in[0,1]}\left|x_{n-1}^{\alpha}(t)-x_{m-1}^{\alpha}(t)\right| \\
& \leq\left\|x_{n}-x_{m}\right\|_{\infty}+2^{k_{0}} c^{\alpha} \max _{t \in[0,1]}\left|x_{n-1}^{\frac{\alpha}{2_{0}}}(t)-x_{m-1}^{\frac{\alpha}{2^{k_{0}}}}(t)\right| \\
& \leq\left\|x_{n}-x_{m}\right\|_{\infty}+2^{k_{0}} c^{\alpha} \max _{t \in[0,1]}\left|x_{n-1}(t)-x_{m-1}(t)\right|^{\frac{\alpha}{2^{k_{0}}}} \\
& =\left\|x_{n}-x_{m}\right\|_{\infty}+2^{k_{0}} c^{\alpha}\left\|x_{n-1}-x_{m-1}\right\|_{\infty}^{\frac{\alpha}{k_{0}}} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

which implies that $x_{n}-x_{m} \xrightarrow{\|\cdot\|} \theta$. Therefore, there exists $x^{*} \in P$ such that $x_{n} \xrightarrow{\|\cdot\|} x^{*}$, and hence $x_{n} \xrightarrow{w} x^{*}$ by Lemma 2. This shows that T is Picard-complete on T_{B-C-P}.

Let P be a solid cone of a normed vector space $(E,\|\cdot\|)$ and $D \subset E$. A mapping $T: D \rightarrow E$ is w-continuous at $x_{0} \in D$ if for each $\left\{x_{n}\right\} \subset E, x_{n} \xrightarrow{w} x_{0}$ implies $T x_{n} \xrightarrow{w} T x_{0}$. If T is w-continuous at each $x \in D$ then T is said to be w-continuous on D.

Lemma 4 Let P be a solid cone of a normed vector space $(E,\|\cdot\|)$ and $A: E \rightarrow E$ a linear bounded mapping with $A(P) \subset P$. Then A is w-continuous on E.

Proof. Let $x \in E$ and $\left\{x_{n}\right\}$ be a sequence in E such that $x_{n} \xrightarrow{w} x$. For each $\epsilon \in \operatorname{int} P$, it is clear that $\frac{\epsilon}{m} \in \operatorname{int} P$ for each m, and hence there exists n_{m} such that $-\frac{\epsilon}{m} \ll x_{n}-x \ll \frac{\epsilon}{m}$ for each $n \geq n_{m}$. Note that A is a linear mapping with $A(P) \subset P$, then $-\frac{A \epsilon}{m} \leq A x_{n}-A x \leq \frac{A \epsilon}{m}$ for each $n \geq n_{m}$. It is clear that $\frac{A \epsilon}{m} \xrightarrow{\|\cdot\|} \theta(m \rightarrow \infty)$ since A is a bounded mapping, and hence $\frac{A \epsilon}{m} \xrightarrow{w} \theta(m \rightarrow \infty)$ by Lemma 2. Moreover, by (iii) of Lemma 1 we obtain $A x_{n}-A x \xrightarrow{w} \theta$, i.e., A is continuous at x.

3. Main results

We first state and prove some existence results of fixed points of order-Lipschitz mappings in normed vector spaces without assumption of the normality of the cone.

Theorem 2 Let P be a solid cone of a normed vector space $(E,\|\cdot\|), u_{0} \in E$ and $T: D=\left[u_{0},+\infty\right) \rightarrow E$ an order-Lipschitz mapping restricted with linear bounded mappings $A: P \rightarrow P$ and $B=\hat{\theta}$, where $\hat{\theta}$ denotes the zero mapping. Assume that $u_{0} \leq T u_{0}, r(A)<1$ and T is Picard-complete at u_{0}. Then T has a fixed point $u^{*} \in\left[u_{0},+\infty\right)$. Moreover, let $u \in\left[u_{0},+\infty\right)$ be a fixed point of T such that it is comparable to $u^{*}\left(i . e ., u \leq u^{*}\right.$ or $u^{*} \leq u$), then $u=u^{*}$.

Proof. Since $A: P \rightarrow P$ is a linear bounded mapping with $r(A)<1$, the inverse of $I-A$ exists, denote it by $(I-A)^{-1}$. Moreover by Neumann's formula,

$$
\begin{equation*}
(I-A)^{-1}=\sum_{n=0}^{\infty} A^{n}=I+A+A^{2}+\cdots+A^{n}+\cdots \tag{3}
\end{equation*}
$$

which implies that $(I-A)^{-1}: P \rightarrow P$ is a linear bounded mapping. It follows from $r(A)<1$ and Gelfand's formula that there exist a positive integer n_{0} and $\beta \in(r(A), 1)$ such that

$$
\begin{equation*}
\left\|A^{n}\right\| \leq \beta^{n}, \forall n \geq n_{0} . \tag{4}
\end{equation*}
$$

Set $\left\{u_{n}\right\}=O\left(T, u_{0}\right)$. Note that (1) holds for $D=\left[u_{0},+\infty\right)$, then $B=\hat{\theta}$ implies that T is nondecreasing on $\left[u_{0},+\infty\right)$. Thus by $u_{0} \leq T u_{0}$,

$$
\begin{equation*}
u_{0} \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n} \leq u_{n+1}, \forall n \tag{5}
\end{equation*}
$$

Moreover by (1),

$$
\theta \leq u_{n+1}-u_{n} \leq A\left(u_{n}-u_{n-1}\right) \leq \cdots \leq A^{n}\left(u_{1}-u_{0}\right), \forall n,
$$

and so by (3),

$$
\begin{aligned}
\theta & \leq u_{m}-u_{n}=\sum_{i=n}^{m-1}\left(u_{i+1}-u_{i}\right) \leq \sum_{i=n}^{m-1} A^{i}\left(u_{1}-u_{0}\right) \\
& =A^{n} \sum_{i=0}^{m-n-1} A^{i}\left(u_{1}-u_{0}\right) \leq A^{n}(I-A)^{-1}\left(u_{1}-u_{0}\right), \forall m>n .
\end{aligned}
$$

It follows from (4) that $A^{n}(I-A)^{-1}\left(u_{1}-u_{0}\right) \xrightarrow{\|\cdot\|} \theta$ since $\left\|A^{n}(I-A)^{-1}\left(u_{1}-u_{0}\right)\right\| \leq\left\|A^{n}\right\|\left\|(I-A)^{-1}\left(u_{1}-u_{0}\right)\right\| \leq$ $\beta^{n}\left\|(I-A)^{-1}\left(u_{1}-u_{0}\right)\right\|$ for each $n \geq n_{0}$, and hence by Lemma 2,

$$
A^{n}(I-A)^{-1}\left(u_{1}-u_{0}\right) \xrightarrow{w} \theta,
$$

which together with (4) and (iii) of Lemma 1 implies that

$$
\begin{equation*}
u_{m}-u_{n} \xrightarrow{w} \theta(m>n \rightarrow \infty) \tag{6}
\end{equation*}
$$

i.e., $\left\{u_{n}\right\}$ is a w-Cauchy sequence. Since T is Picard-complete at u_{0}, there exists $u^{*} \in E$ such that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u^{*} . \tag{7}
\end{equation*}
$$

Note that $u_{m} \in\left[u_{n},+\infty\right)$ for each $m \geq n$ by (5), then by (ii) of Lemma 1 ,

$$
\begin{equation*}
u_{n} \leq u^{*}, \forall n \tag{8}
\end{equation*}
$$

Moreover by the nondecreasing property of T on $\left[u_{0},+\infty\right)$,

$$
\begin{equation*}
u_{n+1} \leq T u^{*}, \forall n \tag{9}
\end{equation*}
$$

which together with (7) and (ii) of Lemma 1 implies that

$$
\begin{equation*}
u^{*} \leq T u^{*} . \tag{10}
\end{equation*}
$$

Thus it follows from (5), (8) and (9) that

$$
\begin{equation*}
\theta \leq T u^{*}-u_{n+1}=T u^{*}-T u_{n} \leq A\left(u^{*}-u_{n}\right), \forall n . \tag{11}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (11), by (7), (iii) of Lemma 1 and Lemma 3, we obtain $u_{n+1} \xrightarrow{w} T u^{*}$. Moreover by (i) of Lemma 1, we get $u^{*}=T u^{*}$. Let $u^{*} \in\left[u_{0},+\infty\right)$ be another fixed point of T such that it is comparable to u^{*}. We may assume that $u^{*} \leq x^{*}$ (the proof of the other case $x \leq u^{*}$ is similar). Then by (5), we get $\theta \leq x^{*}-u^{*}=T^{n} x^{*}-T^{n} u^{*} \leq A^{n}\left(u-u^{*}\right)$ for each n. This together with (4), (iii) of Lemma 1 and Lemma 2 implies $x^{*}=u^{*}$.

In analogy to Theorem 2, we have the following fixed point result.
Theorem 3 Let P be a solid cone of a normed vector space $(E,\|\cdot\|), v_{0} \in E$ and $T: D=\left(-\infty, v_{0}\right] \rightarrow E$ an orderLipschitz mapping restricted with linear bounded mappings $A: P \rightarrow P$ and $B=\hat{\theta}$. Assume that $T v_{0} \leq v_{0}, r(A)<1$ and T is Picard-complete at v_{0}. Then T has a fixed point $u^{*} \in\left(-\infty, v_{0}\right]$. Moreover, let $v \in\left(-\infty, v_{0}\right]$ be a fixed point of T such that it is comparable to v^{*}, then $v=v^{*}$.

Proof. Note that (1) holds for $D=\left(-\infty, v_{0}\right]$, then $B=\hat{\theta}$ implies that T is nondecreasing on $\left(-\infty, v_{0}\right]$. Set $\left\{v_{n}\right\}=O\left(T, v_{0}\right)$, from $T v_{0} \leq v_{0}$ we get

$$
\begin{equation*}
v_{n+1} \leq v_{n} \leq \cdots \leq v_{1} \leq v_{0}, \forall n \tag{12}
\end{equation*}
$$

In analogy to the proof of Theorem 2, by (1), (3) and (12), we get

$$
\begin{aligned}
\theta & \leq v_{n}-v_{m}=\sum_{i=n}^{m-1}\left(v_{i}-u_{i+1}\right) \leq \sum_{i=n}^{m-1} A^{i}\left(v_{0}-v_{1}\right) \\
& =A^{n} \sum_{i=0}^{m-n-1} A^{i}\left(v_{0}-v_{1}\right) \leq A^{n}(I-A)^{-1}\left(v_{0}-v_{1}\right), \forall m>n
\end{aligned}
$$

which together with (4), (iii) of Lemma 1 and Lemma 3 implies that

$$
\begin{equation*}
v_{n}-v_{m} \xrightarrow{w} \theta(m>n \rightarrow \infty) \tag{13}
\end{equation*}
$$

Thus by the Picard-completeness of T at v_{0}, there exists $v^{*} \in E$ such that

$$
\begin{equation*}
v_{n} \xrightarrow{w} v^{*} \tag{14}
\end{equation*}
$$

In analogy to (8)-(10), by (12) and (ii) of Lemma 1 we get

$$
\begin{equation*}
T v^{*} \leq v^{*} \leq v_{n}, \forall n . \tag{15}
\end{equation*}
$$

Thus by (12) and (15), we get

$$
\begin{equation*}
\theta \leq v_{n+1}-T v^{*}=T v_{n}-T v^{*} \leq A\left(v_{n}-v^{*}\right), \forall n \tag{16}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (16), by (iii) of Lemma 1 and Lemma 3, we obtain $v_{n+1} \xrightarrow{w} T v^{*}$. Moreover by (i) of Lemma 1 , we get $u^{*}=T u^{*}$. The rest proof is totally similar to that of Theorem 2, we omit it here.

In the case that T has a pair of lower and upper solutions, we obtain the unique existence theorem of fixed points as follows.

Theorem 4 Let P be a solid cone of a normed vector space $(E,\|\cdot\|), u_{0}, v_{0} \in E$ with $u_{0} \leq v_{0}$ and $T: D=\left[u_{0}, v_{0}\right] \rightarrow E$ an order-Lipschitz mapping restricted with linear bounded mappings $A: P \rightarrow P$ and $B=\hat{\theta}$. Assume that $u_{0} \leq T u_{0}, T v_{0} \leq v_{0}, r(A)<1$ and T is Picard-complete at u_{0} and v_{0}. Then T has a unique fixed point $u^{*} \in\left[u_{0}, v_{0}\right]$, and for each $x_{0} \in\left[u_{0}, v_{0}\right], x_{n} \xrightarrow{w} u^{*}$, where $\left\{x_{n}\right\}=O\left(T, x_{0}\right)$.

Proof. The existence of fixed points immediately follows from Theorems 2 and 3. Thus it suffices to show the uniqueness of fixed point. Following the proof of Theorems 2 and 3, we know that $T:\left[u_{0}, v_{0}\right] \rightarrow\left[u_{0}, v_{0}\right]$ is nondecreasing, and

$$
\begin{equation*}
u_{0} \leq u_{1} \leq \cdots \leq u_{n} \leq \cdots \leq v_{n} \leq \cdots \leq v_{1} \leq v_{0}, \forall n . \tag{17}
\end{equation*}
$$

By (1) and (17),

$$
\begin{equation*}
\theta \leq v_{n+1}-u_{n+1} \leq A\left(v_{n}-u_{n}\right), \forall n \tag{18}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (18), by (7), (14), (iii) of Lemma 1 and Lemma 3, we obtain $u^{*}=v^{*}$.
For each $x_{0} \in\left[u_{0}, v_{0}\right]$, set $\left\{x_{n}\right\}=O\left(T, x_{0}\right)$. By the nondecreasing property of T on $\left[u_{0}, v_{0}\right]$,

$$
\begin{equation*}
u_{n} \leq x_{n} \leq v_{n} \tag{19}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (19), by $u^{*}=v^{*},(7),(14)$ and (iii) of Lemma 1, we get

$$
\begin{equation*}
x_{n} \xrightarrow{w} u^{*} . \tag{20}
\end{equation*}
$$

Let $x^{*} \in\left[u_{0}, v_{0}\right]$ be another fixed point of T. Set $\left\{y_{n}\right\}=O\left(T, x^{*}\right)$, then $y_{n} \equiv x^{*}$ and hence $y_{n} \xrightarrow{w} x^{*}$. On the other hand, in analogy to (20) we obtain $y_{n} \xrightarrow{w} u^{*}$. Thus by (i) of Lemma 1, we have $x^{*}=u^{*}$. This shows that u^{*} is the unique fixed point of T.

Remark 2 It is clear that Theorem 4 is still valid in the case that E is a Banach algebra. Thus Theorem 1 is a particular case of Theorem 4 in Banach algebras with $A \in P$.

Remark 3 It follows from Theorem 4 and Remark 1 that T is Picard-complete on [u_{0}, v_{0}] provided that T is Picard complete at u_{0} and v_{0} since for each $x_{0} \in\left[u_{0}, v_{0}\right]$, the Picard iteration sequence $\left\{x_{n}\right\}$ is weakly convergent. Thus we have the following characterization of Picard-completeness of order-Lipschitz mappings.

Proposition 2 Let P be a solid cone of a normed vector space $(E,\|\cdot\|), u_{0}, v_{0} \in E$ with $u_{0} \leq v_{0}$ and $T:\left[u_{0}, v_{0}\right] \rightarrow E$ an order-Lipschitz mapping restricted with linear bounded mappings $A: P \rightarrow P$ and $B=\hat{\theta}$. Assume that $u_{0} \leq T u_{0}, T v_{0} \leq v_{0}$ and $r(A)<1$. Then the following two statements are equivalent:
(i) T is Picard-complete on $\left[u_{0}, v_{0}\right]$;
(ii) T has a unique fixed point $u^{*} \in\left[u_{0}, v_{0}\right]$, and for each $x_{0} \in\left[u_{0}, v_{0}\right]$, the Picard iteration sequence $\left\{x_{n}\right\}$ weakly converges to u^{*}.

Example 2 Let E and P be the same ones as those in Example 1. Let $u_{0}=\theta, v_{0}(t) \equiv 1$ and $(T x)(t)=\int_{0}^{t} x^{2}(s) d s$ for each $x \in E$ and each $t \in[0,1]$.

Clearly, $u_{0} \leq T u_{0},\left(T v_{0}\right)(t)=t \leq 1=v_{0}(t)$ for each $t \in[0,1]$, and $u_{n}=u_{0}$ for each n. By Example $1, T$ is Picard-complete at u_{0} and v_{0}. For each $x, y \in\left[u_{0}, v_{0}\right]$ with $y \leq x$ and each $t \in[0,1]$, we have

$$
0 \leq(T x)(t)-(T y)(t)=\int_{0}^{t}(x(s)-y(s))(x(s)+y(s)) d s \leq 2(A(x-y))(t)
$$

where $(A x)(t)=\int_{0}^{t} x(s) d$ s for each $x \in P$ and $t \in[0,1]$. For each $x \in E$ and $t \in[0,1]$, by induction we get $\left(A^{n} x\right)(t) \leq \frac{\|x\|_{\infty} t^{n}}{n!} \leq \frac{\|x\|}{n!}$, and so $\left\|A^{n} x\right\|_{\infty} \leq \frac{\|x\|}{n!}$. On the other hand, we have $\left\|\left(A^{n} x\right)^{\prime}\right\|_{\infty}=\left\|A^{n-1} x\right\|_{\infty} \leq \frac{\|x\|}{(n-1)!}$ since $\left(A^{n} x\right)^{\prime}(t)=\left(A^{n-1} x\right)(t)$. Thus $\left\|A^{n} x\right\|=\left\|A^{n} x\right\|_{\infty}+\left\|\left(A^{n} x\right)^{\prime}\right\|_{\infty} \leq \frac{\|x\|}{n!}+\frac{\|x\|}{(n-1)!}$ and $\left\|A^{n}\right\| \leq \frac{1}{n!}+\frac{1}{(n-1)!}$. By Gelfand's formula, we obtain $0 \leq r(A)=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n!}+\frac{1}{(n-1)!}} \leq \lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n!}}+\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{(n-1)!}}=0$, and hence $r(2 A)=0$. This shows that all the assumptions of Theorem 5 are satisfied, and hence T has a unique fixed point $u_{0}=\theta$.

However, none of the results in [1-4] is applicable here since the cone P is non-normal and there does not exist $A \in P$ such that (1) is satisfied.

Note that in Theorems 2-4 it is assumed that $B=\hat{\theta}$, which together with (1) implies the nondecreasing property of T. In what follows, we shall consider the case that $B \neq \hat{\theta}$.

Corollary 1 Let P be a solid cone of a normed vector space $(E,\|\cdot\|), u_{0}, v_{0} \in E$ with $u_{0} \leq v_{0}$ and $T: D=\left[u_{0}, v_{0}\right] \rightarrow E$ an order-Lipschitz mapping restricted with linear bounded mappings $A, B: P \rightarrow P$. Assume that $u_{0} \leq T u_{0}, T v_{0} \leq v_{0}$, A, B are commutative (i.e., $A B=B A$), $(I+B)$ is invertible (i.e., $(I+B)^{-1}$ exists), $r(\widetilde{A})<1$, and \widetilde{T} is Picard-complete at u_{0} and v_{0}, where $\widetilde{A}=(I+B)^{-1}(A+B)$ and $\widetilde{T}=(I+B)^{-1}(T+B)$, then T has a unique fixed point in $\left[u_{0}, v_{0}\right]$.

Proof. By $u_{0} \leq T u_{0}, T v_{0} \leq v_{0}$ and (1),

$$
\begin{aligned}
& u_{0} \leq \widetilde{T} u_{0}, \widetilde{T} v_{0} \leq v_{0} \\
& \theta \leq \widetilde{T} x-\widetilde{T} y \leq \widetilde{A}(x-y), \forall x, y \in\left[u_{0}, v_{0}\right], y \leq x
\end{aligned}
$$

Note that $r(\widetilde{A})<1$ and \widetilde{T} is Picard-complete at u_{0} and v_{0}, then by Theorem $4, \widetilde{T}$ has a unique fixed point $u^{*} \in\left[u_{0}, v_{0}\right]$. Thus we have $T u^{*}+B u^{*}=u^{*}+B u^{*}$ and so $T u^{*}=u^{*}$. Let $x \in\left[u_{0}, v_{0}\right]$ be another fixed point of T, then $T x=x$ and hence $\widetilde{T} x=x$. Moreover by the uniqueness of fixed point of \widetilde{T} in $\left[u_{0}, v_{0}\right]$, we get $x=u^{*}$. Hence u^{*} is the unique fixed point of T in $\left[u_{0}, v_{0}\right]$.

In analogy to Corollary 1, we obtain the following fixed point result corresponding to Theorems 2 and 3.

Corollary 2 Let P be a solid cone of a normed vector space $(E,\|\cdot\|), u_{0} \in E$ and $T: D=\left[u_{0},+\infty\right) \rightarrow E$ (resp. $\left.T: D=\left(-\infty, u_{0}\right] \rightarrow E\right)$ an order-Lipschitz mapping restricted with linear bounded mappings $A, B: P \rightarrow P$. Assume that $u_{0} \leq T u_{0}$ (resp. Tu $u_{0} \leq u_{0}$), A, B are commutative, $I+B$ is invertible, $r(\widetilde{A})<1$, and \widetilde{T} is Picard-complete at u_{0}. Then T has a fixed point in $\left[u_{0},+\infty\right)$ (resp. $\left.\left(-\infty, u_{0}\right]\right)$.

In particular when T is an order-Lipschitz mapping restricted with nonnegative real numbers, we have the following fixed point result by Corollary 1.

Corollary 3 Let P be a solid cone of a normed vector space $(E,\|\cdot\|), u_{0}, v_{0} \in E$ with $u_{0} \leq v_{0}$ and $T:\left[u_{0}, v_{0}\right] \rightarrow E$ an order-Lipschitz mapping restricted with nonnegative real numbers $A \in[0,1)$ and $B \in[0,+\infty)$. Assume that $u_{0} \leq T u_{0}, T v_{0} \leq v_{0}, \widetilde{T}$ is Picard-complete at u_{0} and v_{0}, where $\widetilde{T} u=\frac{T u+B u}{1+B}$ for each $u \in\left[u_{0}, v_{0}\right]$, then T has a unique fixed point $u^{*} \in\left[u_{0}, v_{0}\right]$.

Remark 4 Note that in Theorems 2-4 and Corollaries 1-3, E is not confined to a Banach space, i.e., E needs not to be complete.

References

[1] M.A. Krasnoselskii, P.P. Zabreiko, PP: Geometrical methods of nonlinear analysis, Springer-Verlag, Berlin, 1984.
[2] X. Zhang, J. Sun, Existence and uniqueness of solutions for a class of nonlinear operator equations and its applications, Acta Math. Sci. Ser. A Chin. Ed. 25(6)(2005), 846-851.
[3] J. Sun, Iterative solutions for a class of nonlinear operator equations, Chinese Journal of Engineering Mathematics 6(1989),12-17.
[4] S. Jiang, Z. Li, Fixed point theorems of order-Lipschitz mappings in Banach algebras, Fixed Point Theory Appl. (2016) Article ID 30.
[5] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg,1985.
[6] Z. Li, S. Jiang, Common fixed point theorems of contractions in partial cone metric spaces over nonnormal cones, Abstr. Appl. Anal. (2014) Article ID 653841

[^0]: 2010 Mathematics Subject Classification. 06A07; 47H10
 Keywords. Fixed point theorem, order-Lipschitz mapping, Picard-complete, non-normal cone, method of upper and lower solutions Received: 17 June 2016; Revised: 18 July 2016; Accepted: 09 August 2017
 Communicated by Ljubomir Ćirić
 Corresponding author: Zhilong Li
 Research supported by the National Natural Science Foundation of China (11561026,71462015), the Natural Science Foundation of Jiangxi Province (20142BCB23013,20143ACB21012,20151BAB201003,20151BAB201023), and the Natural Science Foundation of Jiangxi Provincial Education Department(KJLD14034,GJJ150479)

 Email addresses: jianghshujuns@sina.com (Shujun Jiang), lz1771218@sina.com (Zhilong Li)

