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Available at: http://www.pmf.ni.ac.rs/filomat

Order-Lipschitz Mappings Restricted with Linear Bounded Mappings
in Normed Vector Spaces without Normalities of Involving Cones via

Methods of Upper and Lower Solutions

Shujun Jianga, Zhilong Lib,c,d

aDepartment of Mathematics, Jiangxi University of Finance and Economics, 330013 Nanchang, China
bSchool of Statistics, Jiangxi University of Finance and Economics, 330013 Nanchang, China

cSchool of Mathematics and Statistics, Shanghai University of Engineering Science, 201620 Shanghai, China
dResearch Center of Applied Statistics, Jiangxi University of Finance and Economics, 330013 Nanchang, China

Abstract. In this paper, without assuming the normalities of cones, we prove some new fixed point
theorems of order-Lipschitz mappings restricted with linear bounded mappings in normed vector space in
the framework of w-convergence via the method of upper and lower solutions. It is worth mentioning that
the unique existence result of fixed points in this paper, presents a characterization of Picard-completeness
of order-Lipschitz mappings.

1. Introduction

Let P be cone of a normed vector space (E, ‖ · ‖), D ⊂ E and � the partial order on E introduced by
P. Recall that a mapping T : D → E is called an order-Lipschitz mapping restricted with linear bounded
mappings if there exist linear bounded mappings A,B : P→ P such that

−B(x − y) � Tx − Ty � A(x − y), ∀ x, y ∈ D, y � x. (1)

The research on fixed points of order-Lipschitz mappings was initiated by Krasnoselskii and Zabreiko [1].
Assuming that P is a normal solid cone of a Banach space E, Krasnoselskii and Zabreiko [1] investigated
the unique existence result of fixed points for order-Lipschitz mappings restricted with linear bounded
mappings provided that A = B and ‖A‖ < 1, which was then improved by Zhang and Sun [2] to the case
that the spectral radius r(A) < 1. Without assuming the solidness of P, Sun [3] studied fixed points of
order-Lipschitz mappings restricted with nonnegative real numbers via the method of upper and lower
solutions.

Note that in [1-3], it is necessarily assumed that the cone is normal. Recently, without assuming the
normality of the cone, Jiang and Li [4] proved the following fixed point result of order-Lipschitz mappings

2010 Mathematics Subject Classification. 06A07; 47H10
Keywords. Fixed point theorem, order-Lipschitz mapping, Picard-complete, non-normal cone, method of upper and lower solutions
Received: 17 June 2016; Revised: 18 July 2016; Accepted: 09 August 2017
Communicated by Ljubomir Ćirić
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restricted with vectors in Banach algebras in the framework of w-convergence.

Theorem 1 ([4, Theorem 3]) Let P be a solid cone of a Banach algebra (E, ‖ · ‖), u0, v0 ∈ E with u0 � v0 and
T : D = [u0, v0] → E an order-Lipschitz mapping restricted with vectors A ∈ P and B = θ. Assume that
u0 � Tu0,Tv0 � v0 (i.e., u0 and v0 are a pair of lower and upper solutions of T), r(A) < 1 and T is Picard-complete at
u0 and v0. Then T has a unique fixed point u∗ ∈ [u0, v0], and for each x0 ∈ [u0, v0], xn

w
→ u∗, where {xn} = O(T, x0)

and O(T, x0) denotes the Picard iteration sequence of T at x0 (i.e., xn = Tnx0 for each n).

In this paper, we shall consider fixed point theory of order-Lipschitiz mappings restricted with linear
bounded mappings in normed vector spaces (instead of, Banach spaces [1,2] and Banach algebras [3]) with
non-normal cones. We first prove some fixed point theorems under the assumption that the order-Lipschitz
mapping T has only a lower solution or an upper solution. Furthermore, we investigate the unique existence
of fixed points in the case that T has a pair of lower and upper solutions. It is worth mentioning that the
unique existence result of fixed points in this paper, presents a characterization of Picard-completeness of
order-Lipschitz mappings (see Proposition 2). In addition, we present a suitable example which shows the
usability of our theorems.

2. Preliminaries

Let P be a cone of a normed vector space (E, ‖·‖). A cone P induces partial order�on E by x � y⇔ y−x ∈ P
for each x, y ∈ X. In this case, E is called an ordered normed vector space. For each u0, v0 ∈ E with u0 � v0,
and set [u0, v0] = {u ∈ E : u0 � u � v0}, [u0,+∞) = {x ∈ E : u0 � x} and (−∞, v0] = {x ∈ E : x � v0}. A
cone P is solid [5] if intP , Ø, where intP denotes the interior of P. For each x, y ∈ E with y − x ∈ intP,
we write x � y. A cone P of a normed vector space E is normal [5] if there is a positive number N such
that x, y ∈ E and θ � x � y implies that ‖x‖ ≤ N‖y‖, and the minimal N is called a normal constant of P.
Note that a cone P of a normed vector space E is non-normal if and only if there exist {un}, {vn} ⊂ P such

that un + vn
‖·‖

→ θ ; un
‖·‖

→ θ. Consequently, if P is non-normal then the sandwich theorem in the sense of
norm-convergence does not hold. While, it has been shown in [6] that the sandwich theorem in the sense
of w-convergence still holds even if P is non-normal.

Let P be a solid cone of a normed vector space E. A sequence {xn} ⊂ E is w-convergent [6] if for each
ε ∈ intP, there exist a positive integer n0 and x ∈ E such that x − ε � xn � x + ε for each n ≥ n0 (denote
xn

w
→ x and x is called a w-limit of {xn}). A sequence {xn} ⊂ E is w-Cauchy [4] if for each ε ∈ intP, there exists

a positive integer n0 such that −ε � xn − xm � ε for each m,n ≥ n0, i.e., xn − xm
w
→ θ(m,n → ∞). A subset

D ⊂ E is w-closed [4] if for each {xn} ⊂ D, xn
w
→ x implies x ∈ D.

Lemma 1 ([4,6]) Let P be a solid cone of a normed vector space (E, ‖ · ‖) and u0, v0 ∈ E with u0 � v0. Then
(i) each sequence {xn} ⊂ E has a unique w-limit;
(ii) the partial order intervals [u0, v0], [u0,+∞) and (−∞, v0] are w-closed;
(iii) for each {xn}, {yn}, {zn} ⊂ E with xn � yn � zn for each n, xn

w
→ z and zn

w
→ z imply yn

w
→ z, where z ∈ E.

Lemma 2 ([6]) Let P be a solid cone of a normed vector space (E, ‖ · ‖) and xn ⊂ E. Then xn
‖·‖

→ x implies xn
w
→ x.

Moreover, if P is normal then xn
w
→ x⇔ xn

‖·‖

→ x.

Let P be a solid cone of a normed vector space E, D ⊂ E, x0 ∈ D and T : E → E. If the Picard iteration
sequence O(T, x0) is w-convergent provided that it is w-Cauchy, then T is said to be Picard-complete at x0.
If T is Picard-complete at each x ∈ D then it is said to be Picard-complete on D.

Remark 1 It is clear that if O(T, x0) is w-convergent then T is certainly Picard-complete at x0. In particular
when P is a normal cone of a Banach space E, each mapping T : E→ E is Picard-complete on E by Lemma
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2.

Let (E, ‖ · ‖) be a normed vector space, {xn} ⊂ E and D ⊂ E. If xn � xm or xm � xn for each m , n then
{xn} is said to be comparable. If there exists some c > 0 such that ‖xn‖ ≤ c for each n then {xn} is said to be
bounded. For each mapping T : D→ E, set

TB−C−D = {x ∈ D : O(T, x) is bounded and comparable}.

Proposition 1 For each α > 1 and each a, b ≥ 0 with a ≤ b, we have

bα − aα ≤ 2k0 bα(b
α

2k0 − a
α

2k0 ), (2)

where k0 = min{k ∈N+ : α
2k ≤ 1} andN+ denotes the set of all positive integers.

Proof. Direct calculation that

bα − aα =(b
α
2 + a

α
2 )(b

α
2 − a

α
2 )

=(b
α
2 + a

α
2 )(b

α
4 + a

α
4 )(b

α
4 − a

α
4 )

=(b
α
2 + a

α
2 )(b

α
4 + a

α
4 ) · · · (b

α

2k0 + a
α

2k0 )(b
α

2k0 − a
α

2k0 )

≤2k0 b
α
2 b

α
4 · · · b

α

2k0 (b
α

2k0 − a
α

2k0 ) = 2k0 b
α
2 + α

4 +···+ α

2k0 (b
α

2k0 − a
α

2k0 )

≤2k0 bα(b
α

2k0 − a
α

2k0 ).

The following example will show that there exists some mapping T : D → E such that it is Picard-
complete on D.

Example 1 Let E = C1
R

[0, 1] be endowed with the norm ‖x‖ = ‖x‖∞+‖x′‖∞ and P = {x ∈ E : x(t) ≥ 0,∀ t ∈ [0, 1]},
where ‖x‖∞ = max

t∈[0,1]
x(t) for each x ∈ CR[0, 1]. Then (E, ‖ · ‖) is a Banach space and P is a non-normal solid

cone [5]. Let (Tx)(t) =
∫ t

0 xα(s)ds for each x ∈ E and each t ∈ [0, 1], where α > 1.
Let x0(t) ≡ 1 and {xn} = O(T, x0). Clearly, T : P → P is a nondecreasing mapping and (Tx0)(t) =∫ t

0 xα0 (s)ds = t ≤ 1 = x0(t) for each t ∈ [0, 1], and so {xn} is comparable. By induction, for each t ∈ [0, 1] and
n ≥ 2 we have

xn(t) = (Tnx0)(t) =

∫ t

0
xαn−1(s)ds

=
t1+α+α2+···+αn−1

(1 + α)αn−2 (1 + α + α2)αn−3
· · · (1 + α + α2 + · · · + αn−1)

≤ 1,

and so
‖xn‖ = ‖xn‖∞ + ‖x′n‖∞ = ‖xn‖∞ + ‖xαn−1‖∞ ≤ 2,

which together with ‖Tx0‖ = 2 implies that {xn} is bounded. This shows TB−C−P , Ø.
For each x0 ∈ TB−C−P, set {xn} = O(T, x0). Then {xn} ⊂ P since T(P) ⊂ P, and there exists c > 0 such that

‖xn‖ ≤ c for each n. For each ε > 0, there exists ε ∈ intP such that ‖ε‖ < min{ ε2 , (
ε

2k0+1cα
)

2k0
α }, where k0 is the

one given in Proposition 1. Suppose that {xn} is w-Cauchy, then there exists a positive integer n0 such that
−ε � xn − xm � ε for each m > n ≥ n0, i.e., −ε(t) ≤ xn(t) − xm(t) ≤ ε(t) for each t ∈ [0, 1]. Thus we have
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‖xn − xm‖∞ = max
t∈[0,1]

|xn(t) − xm(t)| ≤ max
t∈[0,1]

|ε(t)| = ‖ε‖∞ ≤ ‖ε‖ < min{ ε2 , (
ε

2k0+1cα
)

2k0
α } for each m,n ≥ n0. Since {xn}

is comparable, we have from {xn} ⊂ P and 0 < α
2k0
≤ 1 that 0 ≤ |x

α

2k0
m (t) − x

α

2k0
n (t)| ≤ |xm(t) − xn(t)|

α

2k0 for each
m > n and each t ∈ [0, 1]. Thus it follows from (2) and (Txn)′(t) = xαn−1(t) that, for each m > n ≥ n0 + 1,

‖xn − xm‖ = ‖xn − xm‖∞ + ‖(xn − xm)′‖∞
= ‖xn − xm‖∞ + max

t∈[0,1]
|(xn(t) − xm(t))′|

= ‖xn − xm‖∞ + max
t∈[0,1]

|(Txn−1(t) − Txm−1(t))′|

= ‖xn − xm‖∞ + max
t∈[0,1]

|xαn−1(t) − xαm−1(t)|

≤ ‖xn − xm‖∞ + 2k0 cα max
t∈[0,1]

|x
α

2k0

n−1(t) − x
α

2k0

m−1(t)|

≤ ‖xn − xm‖∞ + 2k0 cα max
t∈[0,1]

|xn−1(t) − xm−1(t)|
α

2k0

= ‖xn − xm‖∞ + 2k0 cα‖xn−1 − xm−1‖

α

2k0
∞

<
ε
2

+
ε
2

= ε,

which implies that xn − xm
‖·‖

→ θ. Therefore, there exists x∗ ∈ P such that xn
‖·‖

→ x∗, and hence xn
w
→ x∗ by

Lemma 2. This shows that T is Picard-complete on TB−C−P.

Let P be a solid cone of a normed vector space (E, ‖ · ‖) and D ⊂ E. A mapping T : D→ E is w-continuous
at x0 ∈ D if for each {xn} ⊂ E, xn

w
→ x0 implies Txn

w
→ Tx0. If T is w-continuous at each x ∈ D then T is said

to be w-continuous on D.

Lemma 4 Let P be a solid cone of a normed vector space (E, ‖ · ‖) and A : E → E a linear bounded mapping with
A(P) ⊂ P. Then A is w-continuous on E.

Proof. Let x ∈ E and {xn} be a sequence in E such that xn
w
→ x. For each ε ∈ intP, it is clear that ε

m ∈ intP
for each m, and hence there exists nm such that − ε

m � xn − x � ε
m for each n ≥ nm. Note that A is a linear

mapping with A(P) ⊂ P, then −Aε
m � Axn − Ax � Aε

m for each n ≥ nm. It is clear that Aε
m
‖·‖

→ θ(m→∞) since A
is a bounded mapping, and hence Aε

m
w
→ θ(m→ ∞) by Lemma 2. Moreover, by (iii) of Lemma 1 we obtain

Axn − Ax w
→ θ, i.e., A is continuous at x.

3. Main results

We first state and prove some existence results of fixed points of order-Lipschitz mappings in normed
vector spaces without assumption of the normality of the cone.

Theorem 2 Let P be a solid cone of a normed vector space (E, ‖ · ‖), u0 ∈ E and T : D = [u0,+∞) → E an
order-Lipschitz mapping restricted with linear bounded mappings A : P → P and B = θ̂, where θ̂ denotes the zero
mapping. Assume that u0 � Tu0, r(A) < 1 and T is Picard-complete at u0. Then T has a fixed point u∗ ∈ [u0,+∞).
Moreover, let u ∈ [u0,+∞) be a fixed point of T such that it is comparable to u∗ (i.e., u � u∗ or u∗ � u), then u = u∗.

Proof. Since A : P → P is a linear bounded mapping with r(A) < 1, the inverse of I − A exists, denote it by
(I − A)−1. Moreover by Neumann’s formula,

(I − A)−1 =

∞∑
n=0

An = I + A + A2 + · · · + An + · · · , (3)
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which implies that (I − A)−1 : P → P is a linear bounded mapping. It follows from r(A) < 1 and Gelfand’s
formula that there exist a positive integer n0 and β ∈ (r(A), 1) such that

‖An
‖ ≤ βn, ∀ n ≥ n0. (4)

Set {un} = O(T,u0). Note that (1) holds for D = [u0,+∞), then B = θ̂ implies that T is nondecreasing on
[u0,+∞). Thus by u0 � Tu0,

u0 � u1 � u2 � · · · � un � un+1, ∀ n. (5)

Moreover by (1),
θ � un+1 − un � A(un − un−1) � · · · � An(u1 − u0), ∀ n,

and so by (3),

θ � um − un =

m−1∑
i=n

(ui+1 − ui) �
m−1∑
i=n

Ai(u1 − u0)

= An
m−n−1∑

i=0

Ai(u1 − u0) � An(I − A)−1(u1 − u0), ∀ m > n.

It follows from (4) that An(I − A)−1(u1 − u0)
‖·‖

→ θ since ‖An(I − A)−1(u1 − u0)‖ ≤ ‖An
‖‖(I − A)−1(u1 − u0)‖ ≤

βn
‖(I − A)−1(u1 − u0)‖ for each n ≥ n0, and hence by Lemma 2,

An(I − A)−1(u1 − u0) w
→ θ,

which together with (4) and (iii) of Lemma 1 implies that

um − un
w
→ θ(m > n→∞), (6)

i.e., {un} is a w-Cauchy sequence. Since T is Picard-complete at u0, there exists u∗ ∈ E such that

un
w
→ u∗. (7)

Note that um ∈ [un,+∞) for each m ≥ n by (5), then by (ii) of Lemma 1,

un � u∗, ∀ n. (8)

Moreover by the nondecreasing property of T on [u0,+∞),

un+1 � Tu∗, ∀ n, (9)

which together with (7) and (ii) of Lemma 1 implies that

u∗ � Tu∗. (10)

Thus it follows from (5), (8) and (9) that

θ � Tu∗ − un+1 = Tu∗ − Tun � A(u∗ − un), ∀ n. (11)

Letting n → ∞ in (11), by (7), (iii) of Lemma 1 and Lemma 3, we obtain un+1
w
→ Tu∗. Moreover by (i)

of Lemma 1, we get u∗ = Tu∗. Let u∗ ∈ [u0,+∞) be another fixed point of T such that it is comparable
to u∗. We may assume that u∗ � x∗ (the proof of the other case x � u∗ is similar). Then by (5), we get
θ � x∗ − u∗ = Tnx∗ − Tnu∗ � An(u − u∗) for each n. This together with (4), (iii) of Lemma 1 and Lemma 2
implies x∗ = u∗.
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In analogy to Theorem 2, we have the following fixed point result.

Theorem 3 Let P be a solid cone of a normed vector space (E, ‖ · ‖), v0 ∈ E and T : D = (−∞, v0] → E an order-
Lipschitz mapping restricted with linear bounded mappings A : P→ P and B = θ̂. Assume that Tv0 � v0, r(A) < 1
and T is Picard-complete at v0. Then T has a fixed point u∗ ∈ (−∞, v0]. Moreover, let v ∈ (−∞, v0] be a fixed point of
T such that it is comparable to v∗, then v = v∗.

Proof. Note that (1) holds for D = (−∞, v0], then B = θ̂ implies that T is nondecreasing on (−∞, v0]. Set
{vn} = O(T, v0), from Tv0 � v0 we get

vn+1 � vn � · · · � v1 � v0, ∀ n. (12)

In analogy to the proof of Theorem 2, by (1), (3) and (12), we get

θ � vn − vm =

m−1∑
i=n

(vi − ui+1) �
m−1∑
i=n

Ai(v0 − v1)

= An
m−n−1∑

i=0

Ai(v0 − v1) � An(I − A)−1(v0 − v1), ∀ m > n,

which together with (4), (iii) of Lemma 1 and Lemma 3 implies that

vn − vm
w
→ θ(m > n→∞). (13)

Thus by the Picard-completeness of T at v0, there exists v∗ ∈ E such that

vn
w
→ v∗. (14)

In analogy to (8)-(10), by (12) and (ii) of Lemma 1 we get

Tv∗ � v∗ � vn, ∀ n. (15)

Thus by (12) and (15), we get

θ � vn+1 − Tv∗ = Tvn − Tv∗ � A(vn − v∗), ∀ n. (16)

Letting n→∞ in (16), by (iii) of Lemma 1 and Lemma 3, we obtain vn+1
w
→ Tv∗. Moreover by (i) of Lemma

1, we get u∗ = Tu∗. The rest proof is totally similar to that of Theorem 2, we omit it here.

In the case that T has a pair of lower and upper solutions, we obtain the unique existence theorem of
fixed points as follows.

Theorem 4 Let P be a solid cone of a normed vector space (E, ‖ · ‖), u0, v0 ∈ E with u0 � v0 and T : D = [u0, v0]→ E
an order-Lipschitz mapping restricted with linear bounded mappings A : P → P and B = θ̂. Assume that
u0 � Tu0,Tv0 � v0, r(A) < 1 and T is Picard-complete at u0 and v0. Then T has a unique fixed point u∗ ∈ [u0, v0],
and for each x0 ∈ [u0, v0], xn

w
→ u∗, where {xn} = O(T, x0).

Proof. The existence of fixed points immediately follows from Theorems 2 and 3. Thus it suffices to show
the uniqueness of fixed point. Following the proof of Theorems 2 and 3, we know that T : [u0, v0]→ [u0, v0]
is nondecreasing, and

u0 � u1 � · · · � un � · · · � vn � · · · � v1 � v0, ∀ n. (17)

By (1) and (17),
θ � vn+1 − un+1 � A(vn − un), ∀ n. (18)
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Letting n→∞ in (18), by (7), (14), (iii) of Lemma 1 and Lemma 3, we obtain u∗ = v∗.
For each x0 ∈ [u0, v0], set {xn} = O(T, x0). By the nondecreasing property of T on [u0, v0],

un � xn � vn. (19)

Letting n→∞ in (19), by u∗ = v∗, (7), (14) and (iii) of Lemma 1, we get

xn
w
→ u∗. (20)

Let x∗ ∈ [u0, v0] be another fixed point of T. Set {yn} = O(T, x∗), then yn ≡ x∗ and hence yn
w
→ x∗. On the

other hand, in analogy to (20) we obtain yn
w
→ u∗. Thus by (i) of Lemma 1, we have x∗ = u∗. This shows that

u∗ is the unique fixed point of T.

Remark 2 It is clear that Theorem 4 is still valid in the case that E is a Banach algebra. Thus Theorem 1 is a
particular case of Theorem 4 in Banach algebras with A ∈ P.

Remark 3 It follows from Theorem 4 and Remark 1 that T is Picard-complete on [u0, v0] provided that T is
Picard complete at u0 and v0 since for each x0 ∈ [u0, v0], the Picard iteration sequence {xn} is weakly conver-
gent. Thus we have the following characterization of Picard-completeness of order-Lipschitz mappings.

Proposition 2 Let P be a solid cone of a normed vector space (E, ‖ · ‖), u0, v0 ∈ E with u0 � v0 and T : [u0, v0]→ E
an order-Lipschitz mapping restricted with linear bounded mappings A : P → P and B = θ̂. Assume that
u0 � Tu0,Tv0 � v0 and r(A) < 1. Then the following two statements are equivalent:

(i) T is Picard-complete on [u0, v0];
(ii) T has a unique fixed point u∗ ∈ [u0, v0], and for each x0 ∈ [u0, v0], the Picard iteration sequence {xn} weakly

converges to u∗.

Example 2 Let E and P be the same ones as those in Example 1. Let u0 = θ, v0(t) ≡ 1 and (Tx)(t) =
∫ t

0 x2(s)ds
for each x ∈ E and each t ∈ [0, 1].

Clearly, u0 � Tu0, (Tv0)(t) = t ≤ 1 = v0(t) for each t ∈ [0, 1], and un = u0 for each n. By Example 1, T is
Picard-complete at u0 and v0. For each x, y ∈ [u0, v0] with y � x and each t ∈ [0, 1], we have

0 ≤ (Tx)(t) − (Ty)(t) =

∫ t

0
(x(s) − y(s))(x(s) + y(s))ds ≤ 2(A(x − y))(t),

where (Ax)(t) =
∫ t

0 x(s)ds for each x ∈ P and t ∈ [0, 1]. For each x ∈ E and t ∈ [0, 1], by induction we get
(Anx)(t) ≤ ‖x‖∞tn

n! ≤
‖x‖
n! , and so ‖Anx‖∞ ≤

‖x‖
n! . On the other hand, we have ‖(Anx)′‖∞ = ‖An−1x‖∞ ≤

‖x‖
(n−1)! since

(Anx)′(t) = (An−1x)(t). Thus ‖Anx‖ = ‖Anx‖∞ + ‖(Anx)′‖∞ ≤
‖x‖
n! + ‖x‖

(n−1)! and ‖An
‖ ≤

1
n! + 1

(n−1)! . By Gelfand’s

formula, we obtain 0 ≤ r(A) = lim
n→∞

n
√

1
n! + 1

(n−1)! ≤ lim
n→∞

1
n√n!

+ lim
n→∞

1
n
√

(n−1)!
= 0, and hence r(2A) = 0. This

shows that all the assumptions of Theorem 5 are satisfied, and hence T has a unique fixed point u0 = θ.
However, none of the results in [1-4] is applicable here since the cone P is non-normal and there does

not exist A ∈ P such that (1) is satisfied.

Note that in Theorems 2-4 it is assumed that B = θ̂, which together with (1) implies the nondecreasing
property of T. In what follows, we shall consider the case that B , θ̂.

Corollary 1 Let P be a solid cone of a normed vector space (E, ‖ · ‖), u0, v0 ∈ E with u0 � v0 and T : D = [u0, v0]→ E
an order-Lipschitz mapping restricted with linear bounded mappings A,B : P→ P. Assume that u0 � Tu0,Tv0 � v0,
A,B are commutative (i.e., AB = BA), (I + B) is invertible (i.e., (I + B)−1 exists), r(Ã) < 1, and T̃ is Picard-complete
at u0 and v0, where Ã = (I + B)−1(A + B) and T̃ = (I + B)−1(T + B), then T has a unique fixed point in [u0, v0].
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Proof. By u0 � Tu0,Tv0 � v0 and (1),

u0 � T̃u0, T̃v0 � v0,

θ � T̃x − T̃y � Ã(x − y), ∀ x, y ∈ [u0, v0], y � x.

Note that r(Ã) < 1 and T̃ is Picard-complete at u0 and v0, then by Theorem 4, T̃ has a unique fixed point
u∗ ∈ [u0, v0]. Thus we have Tu∗ + Bu∗ = u∗ + Bu∗ and so Tu∗ = u∗. Let x ∈ [u0, v0] be another fixed point of
T, then Tx = x and hence T̃x = x. Moreover by the uniqueness of fixed point of T̃ in [u0, v0], we get x = u∗.
Hence u∗ is the unique fixed point of T in [u0, v0].

In analogy to Corollary 1, we obtain the following fixed point result corresponding to Theorems 2 and
3.

Corollary 2 Let P be a solid cone of a normed vector space (E, ‖ · ‖), u0 ∈ E and T : D = [u0,+∞) → E (resp.
T : D = (−∞,u0]→ E) an order-Lipschitz mapping restricted with linear bounded mappingsA,B : P→ P. Assume
that u0 � Tu0 (resp. Tu0 � u0), A,B are commutative, I + B is invertible, r(Ã) < 1, and T̃ is Picard-complete at u0.
Then T has a fixed point in [u0,+∞) (resp. (−∞,u0]).

In particular when T is an order-Lipschitz mapping restricted with nonnegative real numbers, we have
the following fixed point result by Corollary 1.

Corollary 3 Let P be a solid cone of a normed vector space (E, ‖ · ‖), u0, v0 ∈ E with u0 � v0 and T : [u0, v0] → E
an order-Lipschitz mapping restricted with nonnegative real numbers A ∈ [0, 1) and B ∈ [0,+∞). Assume that
u0 � Tu0,Tv0 � v0, T̃ is Picard-complete at u0 and v0, where T̃u = Tu+Bu

1+B for each u ∈ [u0, v0], then T has a unique
fixed point u∗ ∈ [u0, v0].

Remark 4 Note that in Theorems 2-4 and Corollaries 1-3, E is not confined to a Banach space, i.e., E needs
not to be complete.
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