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Abstract. We put forth the concept of hyper BL-algebras which is a generalization of BL-algebras. We give
some non-trivial examples and properties of hyper BL-algebras. Moreover, we introduce weak filters and
weak deductive systems of hyper BL-algebras and study the relationships between them. Then we state and
prove some theorems about weak filters and weak deductive systems. In particular, we define the concept
of regular compatible congruence on hyper BL-algebras and construct the quotient structure in hyper
BL-algebras. Finally, we discuss the conditions in which a quotient hyper BL-algebra is an MV-algebra.

1. Introduction

Residuated lattices, introduced by Ward and Dilworth [28], are a common structure among algebras
associated with substructure logic. The main examples of residuated lattices are MV-algebras introduced
by Chang [8] and BL-algebras [16]. BL-algebras were introduced in the 1990s by Hájek as the equivalent
algebraic semantics for its basic fuzzy logic. Moreover, MV-algebras can be seen as a particular BL-algebras
which satisfies x−− = x.

The hyper structure theory (called also multialgebra) was introduced in 1934 by F. Marty [23] at the
8th congress of Scandinavian Mathematicians. Nowadays, hyperstructures have a lot of applications in
several domains of mathematics and computer science. In [26] Mittas et al. applied the hyperstructures
to lattices and introduced the concepts of hyperlattice and superlattice. Many authors studied different
aspects of semihypergroups, for instance, Bonansinga and Corsini [6], Corsini [7], Davvaz [11], Davvaz
and Poursalavati [12]. Borzooei et al. [4] introduced and studied hyper K-algebras and Ghorbani et
al.[15], applied the hyperstructures to MV-algebras named hyper MV-algebras which are a generalization
of MV-algebras. Rasouli and Davvaz, [27], considered their results and studied homomorphisms, dual
homomorphisms, strong homomorphisms and fundamental relations on hyper MV-algebras and gave
some results about the connections between hyper MV-algebras and fundamental MV-algebras. Moreover,
Jun et al. [23, 24] introduced some new types of deductive systems on hyper MV-algebras and investigated
their relations. Omid Zahiri et al.[32] applied the the hyperstructures to residuated lattices and introduced
the concept of hyper residuated lattices. They defined the concept of regular compatible congruence on
hyper residuated lattices and construct the quotient structure in hyper residuated lattices. Also, they stated
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and proved some theorem with appropriate results such as the isomorphism theorems. A. Karimi Feizabadi
et al.[13] studied fundamental relations in universal hyperalgebras. We have already done some work on
hyper structure, for instance, in [17, 18, 29]. In particular, in [30, 31] we introduced the concepts of states,
measures, state operators and state-morphism operators on hyper BCK-algebras.

At present, hyper MV-algebras and hyper residuated lattices have been introduced and studied. But
research papers about hyper BL-algebras have not been proposed. Hence, as a bridge of from hyper MV-
algebras to hyper residuated lattices, it is meaningful to construct hyper BL-algebras as a generalization of
the concept of BL-algebras. By the way, the divisibility and the prelinearity are basic differences between
residuated lattices and BL-algebras. How to choose the axiom corresponding to divisibility in the axiomatic
system of hyper BL-algebras is a key problem.

This paper is organized as follows: in Section 2, we recall some basic notions and some results of
some hyperstructures. In Section 3, we reasonably design the axiomatic system of hyper BL-algebras,
give some non-trivial examples and discuss some basic properties. Section 4, we introduce and prove
some propositions about weak filters and weak deductive systems on hyper BL-algebras. In section 5, we
construct the quotient structures in hyper BL-algebras and we get some results on the quotient structures.

2. Preliminaries

Let H be a non-empty set with a binary hyperoperation ”◦”. For any two subsets A and B of H, denote
the set

⋃
a∈A,b∈B a ◦ b by A ◦ B . We use x ◦ y instead of x ◦ {y}, {x} ◦ y, or {x} ◦ {y}.

First, we recall some definitions and properties about residuated lattices.

Definition 2.1. [16] An algebra (L,∧,∨,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a BL − al1ebra if it satisfies the
following conditions:

(1) (L,∧,∨, 0, 1) is a bounded lattice,
(2) (L,�, 1) is a commutative monoid,
(3) x � y ≤ z if and only if x ≤ y→ z,
(4) x ∧ y = x � (x→ y),
(5) (x→ y) ∨ (y→ x) = 1, for all x, y, z ∈ L.

Proposition 2.2. [16] Let A be a BL-algebra. For all x, y, z ∈ A, the following are valid:
(1) x ⊗ (x→ y) ≤ y,
(2) x ≤ y→ (x ⊗ y),
(3) x ≤ y ⇐⇒ x→ y = 1,
(4) x→ (y→ z) = (x ⊗ y)→ z = y→ (x→ z),
(5) x ≤ y implies z→ x ≤ z→ y, y→ z ≤ x→ z and x ⊗ z ≤ y ⊗ z,
(6) y ≤ (y→ x)→ x,
(7) (x→ y) ⊗ (y→ z) ≤ x→ z,
(8) y→ x ≤ (z→ y)→ (z→ x),
(9) x→ y ≤ (y→ z)→ (x→ z),
(10) x ∨ y = ((x→ y)→ y) ∧ ((y→ x)→ x),
(11) x ≤ y implies y− ≤ x−,
(12) 1→ x = x, x→ x = 1, x→ 1 = 1,
(13) x ≤ y→ x, or equivalently, x→ (y→ x) = 1,
(14) ((x→ y)→ y)→ y = x→ y,
(15) x→ y ≤ (x ⊗ z)→ (y ⊗ z),
(16) x→ y ≤ (x ∧ z)→ (y ∧ z), x→ y ≤ (x ∨ z)→ (y ∨ z),
(17) x ⊗ x− = 0,
where x− = x→ 0.
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Definition 2.3. [26] A super lattice is a partially ordered set (S,≤) endowed with two binary hyperoperations ∨ and
∧ satisfying the following properties: for all a, b, c ∈ S,

(SL1) a ∈ (a ∨ a) ∩ (a ∧ a),
(SL2) a ∨ b = b ∨ a, a ∧ b = b ∧ a,
(SL3) (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c),
(SL4) a ∈ ((a ∨ b) ∧ a) ∩ ((a ∧ b) ∨ a),
(SL5) a ≤ b implies b ∈ a ∨ b and a ∈ a ∧ b,
(SL6) if a ∈ a ∧ b or b ∈ a ∨ b then a ≤ b.

Definition 2.4. [6] Let A be a set, � be a binary hyperoperation on A and 1 ∈ A. (A,�, 1) is called a commutative
semihypergroup with 1 as an identity if it satisfies the following properties: for all x, y, z ∈ A,

(CSHG1) x � (y � z) = (x � y) � z,
(CSHG2) x � y = y � x,
(CSHG3) x ∈ 1 � x.
Moreover if a ∈ A such that |a � x| = 1 for all x ∈ A, we call a a scalar element of A, simply a scalar of A.

Example 2.5. Let (L,≤) be a ∧−semilattice with the least element 0 and the largest element 1. Define the binary
hyperoperations ∨̄ on L as follows: a∨̄b = {c|a ≤ c, b ≤ c}, a∧̄b = {a ∧ b} for all a, b ∈ L. Then (L, ∨̄, ∧̄) is a bounded
super lattice.

Proposition 2.6. [26] Let (L,≤) be a partially ordered set with the least element 0 and the largest element 1. Define
the binary hyperoperations ∨ and ∧ on L as follows: a ∨ b = {c|a ≤ c, b ≤ c} and a ∧ b = {c|c ≤ a, c ≤ b}, for all
a, b ∈ L. Then (L,∨,∧) is a bounded super lattice.

Definition 2.7. [32] Let (P,≤) be a partially ordered set and γ be an equivalence relation on P. Then γ is called
regular if the set P/γ = {[x]|x ∈ P} can be ordered in such a way that the natural map π : P→ P/γ is order preserving.

Definition 2.8. [32] Let γ be a regular equivalence relation on partially ordered set (P,≤).
(1) By a γ-fence we shall mean an ordered subset of P having the following diagram (Figure 1), where ai ≤ bi+1

and three vertical lines indicate the equivalence modulo γ. We often denote this γ-fence by 〈a1, bn〉γ, and say that a
γ-fence 〈a1, bn〉γ joins a1 to bn.

(2) By a γ-crown we shall mean an ordered subset of P having the following diagram (Figure 2), where ai ≤

bi+1, an ≤ b1 and three vertical lines indicate the equivalence modulo γ. We often denote this -crown by 〈〈a1, bn〉〉γ.
(3) A γ-crown 〈〈a1, bn〉〉γ is called γ-closed, when aiγb j, for all i, j ∈ {1, 2, ...,n}.
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Theorem 2.9. [5] Let γ be an equivalence relation on ordered set (P,≤) and ≤γ be the relation on P/γ = {[x] | x ∈ P}
defined by [x] ≤γ [y] if and only if there is a γ− f ence that joins x to y. Then the following statements are equivalent:

(1) ≤γ is an order on P/γ,
(2) γ is regular,
(3) every γ − crown is γ − closed.

Definition 2.10. [32] By a hyper residuated lattice we mean a nonempty set L endowed with four binary hyperoper-
ations ∨,∧,�,→ and two constants 0 and 1 satisfying the following conditions:

(HRL1) (L;∨,∧, 0, 1) is a bounded super lattice,
(HRL2) (L;�, 1) is commutative semihypergroup with 1 as an identity,
(HRL3) a � c� b if and only if c� a→ b,

where A� B means that there exist a ∈ A and b ∈ B such that a ≤ b, for all nonempty subsets A and B of L.

Definition 2.11. [15] A hyper MV-algebra is a nonempty set M endowed with a hyper-operation ⊕ , a unary
operation * and a constant 0 satisfying the following axioms:

(a1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,
(a2) x ⊕ y = y ⊕ x,
(a3) (x∗)∗ = x,
(a4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,
(a5) 0∗ ∈ x ⊕ 0∗,
(a6) 0∗ ∈ x ⊕ x∗,
(a7) x� y, y� x⇒ x = y,
for all x, y, z ∈M, where x� y is defined by 0∗ ∈ x∗ ⊕ y.

For every subsets A and B of M, we define A� B⇔ (∃a ∈ A)(∃b ∈ B)(a� b), A ⊕ B =
⋃

a∈A,b∈B a ⊕ b. We
also define 0∗ = 1 and A∗ = {a∗|a ∈ A}.

3. Hyper BL-algebras

In this section, we will introduce the notion of hyper BL-algebras, and study some properties of it.

Definition 3.1. By a hyper BL-algebra we mean a nonempty set L endowed with four binary hyperoperations
∨,∧,�,→ and two constants 0 and 1 satisfying the following conditions:

(HBL1) (L,∨,∧, 0, 1) is a bounded super lattice,
(HBL2) (L,�, 1) is commutative semihypergroup with 1 as an identity,
(HBL3) a � c� b if and only if c� a→ b,
(HBL4) x ∧ y� x � (x→ y),
(HBL5) 1 ∈ (x→ y) ∨ (y→ x),

where A� B means that there exist a ∈ A and b ∈ B such that a ≤ b, for all nonempty subsets A and B of L.

Proposition 3.2. (1) Let (L,∨,∧,�,→, 0, 1) be a BL-algebra. We define x◦̄y = {x ◦ y}, for any ◦ ∈ {∨,∧,�,→}.
Then (L, ∨̄, ∧̄, �̄, →̄, 0, 1) is a hyper BL-algebra.

(2) Let (L,∨,∧,�,→, 0, 1) be a hyper BL-algebra satisfying that four binary hyperoperations ∨,∧,�,→ are all
binary operations. Then L is a BL-algebra.

(3) Any hyper BL-algebra is a hyper residuated lattice.

Proof. (1) Straightforward.
(2) Let L be a hyper BL-algebra satisfying that all binary hyperoperations are binary operations. Then by

(HBL1-3), we have L is a residuated lattice. It follows from (1) and (5) of Proposition 2.2 that x� (x→ y) ≤ y
and x � (x→ y) ≤ x � 1 = x and thus x � (x→ y) ≤ x ∧ y. By (HBL4), we get x ∧ y� x � (x→ y) and hence
x ∧ y = x � (x→ y). It follows from (HBL5) that (x→ y) ∨ (y→ x) = 1.

(3) Straightforward.
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Remark 3.3. (1) From Proposition 3.2(1) we have that any BL-algebra can be seen as a hyper BL-algebra. And from
Proposition 3.2(2), we know that the notion of hyper BL-algebras is a generalization of the notion of BL-algebras.

(2) From Proposition 3.2(3), we know that any hyper BL-algebra is a hyper residuated lattice. When all hyper-
operations of a hyper BL-algebra L are binary operations, then L is a residuated lattice. Since in every residuated
lattice, x � (x → y) ≤ x ∧ y holds. By (HBL4) we can get x � (x → y) = x ∧ y in L. Combining (HBL5) we get
that L is a BL-algebra. By the way when we choose (HBL4) as one of the axioms of hyper BL-algebras, we can find
many examples for hyper BL-algebra. Based on the above two points we choose (HBL4) as one of the axioms of hyper
BL-algebras, instead of x ∧ y = x � (x→ y).

Proposition 3.4. Let (L,∨,∧) be a bounded super lattice given in Example 2.5. Moreover define a � b = a ∧ b and
a→ b = {c|a ∧ c ≤ b}. Then (L,∨,∧,�,→, 0, 1) is a hyper BL-algebra.

Proof. (HBL1) and (HBL5) follow from Example 2.5. It is clear that (HBL2) hold. Now we prove that (HBL3)
holds. Let a� c ≤ b. Then c ∈ a→ b and hence c� a→ b. Conversely let c� a→ b. Then there is c1 ∈ a→ b
such that c ≤ c1. Therefore a ∧ c ≤ a ∧ c1 ≤ b. This shows that a ∧ c ≤ b, or a � c ≤ b. Finally we prove that
(HBL4) holds. Let x, y ∈ L and c = x∧ y. Then c ≤ x, y and hence x∧ c ≤ y. Thus c ∈ x→ y. This shows that
c = x � c ∈ x � (x→ y). Therefore x ∧ y ⊆ x � (x→ y). This shows that (HBL4) holds.

Example 3.5. let L = [0, 1], we define the binary hyperoperations as a∧̄b = min{a, b}, a∨̄b = {x ∈ L | a ≤ x, b ≤ x},
for all a, b ∈ L. Then (L, ∨̄, ∧̄) is a bounded super lattice. Moreover define a�̄b = a∧̄b and a→̄b = {c|a∧ c ≤ b}, for all
a, b ∈ L. Then (L, ∨̄, ∧̄, �̄, →̄, 0, 1) is a hyper BL-algebra.

Example 3.6. Let L = {0, a, b, c, 1} and (L,≤) be a partially ordered set such that 0 < a < b < c < 1. Define the
binary hyperoperations ∨ and ∧ by x∨ y = {u | x ≤ u, y ≤ u} and x∧ y = {u | u ≤ x,u ≤ y} for all x, y ∈ L. Then by
Proposition 2.6, (L,∨,∧, 0, 1) is a bounded super lattice. Moreover define � by

x � y =


{0}, i f x = 0 or y = 0;
{y}, i f x = 1;
{x}, i f y = 1;
(x ∧ y) \ {0}, i f x, y ∈ L \ {0, 1}.

Now, consider the following table:

→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {0} {b,1} {b,1} {c,1} {1}
b {0} {b,c} {b,1} {b,1} {1}
c {0} {a,c} {b,c} {c,1} {1}
1 {0} {a} {b} {c} {1}

It is easy to verify that (L,∨,∧,�,→, 0, 1) is a hyper BL-algebra.

Example 3.7. Let ({0, a, b, c, 1},≤) be a partially ordered set such that 0 < a < b < c < 1. Consider the following
tables:

∨ 0 a b c 1
0 {0, a, c, 1} {a, c, 1} {b, c, 1} {c, 1} {1}
a {a, c, 1} {a, c, 1} {b, c, 1} {c, 1} {1}
b {b, c, 1} {b, c, 1} {b, c, 1} {c, 1} {1}
c {c, 1} {c, 1} {c, 1} {c,1} {1}
1 {1} {1} {1} {1} {1}

∧ 0 a b c 1
0 {0} {0} {0} {0} {0}
a {0} {a, 0} {a, 0} {a, 0} {a, 0}
b {0} {a, 0} {b, 0} {a, b, 0} {a, b, 0}
c {0} {a, 0} {a, b, 0} {a, c, 0} {a, c, 0}
1 {0} {a, 0} {a, b, 0} {a, c, 0} {0, 1, a, c}
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→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {a, c, 1} {a, 1} {b,1} {c, 1} {1}
b {b, c, 1} {b, 1} {b, 1} {c, 1} {1}
c {c, 1} {c,1} {c,1} {c,1} {1}
1 {1, c} {1, c} {1, c} {1, c} {1}

Let � = ∧. It is easy to verify that (L;∨,∧,�,→, 0, 1) is a hyper BL-algebra.

Example 3.8. Let L = {0, a, b, c, 1} and (L,≤) be a partially ordered set such that 0 < c < a < b < 1. Define the
binary hyperoperations ∨,∧,� on L as follows: x ∨ y = {z | x ≤ z, y ≤ z} and x � y = x ∧ y = {z | z ≤ x, z ≤ y}, for
all x, y ∈ L. Now, let→ be a hyperoperation on L defined by the following table.

→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {0, 1} {1} {1} {c, 1} {1}
b {0, 1} {a, b, 1} {1} {c, 1} {1}
c {1} {1} {1} {1} {1}
1 {0, 1} {a, b, 1} {b, 1} {1, c} {1}

It is easy to check that (L,∨,∧,�,→, 0, 1) is a hyper residuated lattice([32]). We also can check that it is a hyper
BL-algebra.

In the following we give some basic properties of hyper BL-algebras.

Proposition 3.9. In any hyper BL-algebra (L,∧,∨,�,→, 0, 1), the following properties hold: for any x, y, z ∈ L and
for any non-empty subsets A,B,C of L,

(1) 1� A implies 1 ∈ A, A� 0 implies 0 ∈ A;
(2) A � B� C if and only if A� B→ C;
(3) A� x� B implies A� B. If A ∩ B , ∅, then A� B and B� A,
(4) x � (x→ y)� y, x� y→ (x � y),
(5) x� (x→ y)→ y, A� (A→ B)→ B;
(6) x→ y� ((x→ y)→ y)→ y;
(7) x ≤ y implies 1 ∈ x → y, and if 1 is a scalar element of L, the converse holds. Moreover, A � B implies

1 ∈ A→ B;
(8) 1 ∈ x→ x, 1 ∈ x→ 1, and 1 ∈ 0→ x;
(9) if 1 is a scalar element, for all x ∈ L, x ∈ 1→ x and x is the greatest element of 1→ x.
(10) (x � y)→ z� x→ (y→ z),

(x � y)→ z� y→ (x→ z);
(11) x→ (y→ z)� (x � y)→ z,

y→ (x→ z)� (x � y)→ z,
(12) x→ (y→ z)� y→ (x→ z)
(13) x ≤ y implies x � z� y � z, z→ x� z→ y, and y→ z� x→ z,
(14) x ≤ y implies y− � x−, where x− = x→ 0;
(15) x � y� x, x � y� y. Particularly, 0 ∈ x � 0;
(16) x� y→ x, 1 ∈ x→ (y→ x);
(17) y� (x→ y)→ y, B� (A→ B)→ B;
(18) 0 ∈ x � x−;
(19) x� x−−;
(20) x ≤ y and x ≤ z imply x� y ∧ z,

y ≤ x and z ≤ x imply y ∨ z� x;
(21) x ∧ y� x, x� x ∨ y, A ∧ B� A, A� A ∨ B;
(22) x→ (x ∧ y)� x→ y;
(23) x� y− ⇔ 0 ∈ x � y.
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Proof. (1) If 1� A, then 1 ≤ a, for some a ∈ A whence 1 = a ∈ A. If A� 0, then a ≤ 0, for some a ∈ A whence
0 = a ∈ A.

(2) Let A � B→ C. Then there are a ∈ A, b ∈ B, and c ∈ C such that a � b→ c. Therefore a � b � c for
a ∈ A, b ∈ B, and c ∈ C. This means A � B � C. Conversely let A � B � C. Then a � b � c for a ∈ A, b ∈ B,
and c ∈ C. Therefore a� b→ c. It follows that A� B→ C.

(3) Straightforward.
(4) It follows from x→ y� x→ y and x � y� x � y that x � (x→ y)� y and x� y→ (x � y)
(5) Clearly by (2) and (4).
(6) Clearly by (5).
(7) Let x ≤ y. Note that x ∈ 1 � x and hence 1 � x� x. Since x ≤ y, then 1 � x� y. Thus 1� x→ y and

hence 1 ∈ x→ y. Let 1 ∈ x→ y. Then 1 � x→ y and so 1 � x � y by (HBL3). By (CSHG3), x ∈ 1 � x, and
hence x = 1 � x since 1 is scalar. Therefore x ≤ y. Moreover, let A� B. Then a ≤ b for some a ∈ A, b ∈ B and
hence 1 ∈ a→ b ⊆ A→ B.

(8) Clearly by (7).
(9) For any u ∈ 1 → x, we have u � 1 → x and so {u} = u � 1 � x. Thus u ≤ x. Since x ∈ x � 1, then

we get 1 � x � x it follows that x � 1 → x. Hence there exists u ∈ 1 → x such that x ≤ u. So x ≤ u ≤ x.
Therefore, x ∈ 1→ x and x is the greatest element of 1→ x.

(10) Let u ∈ (x� y)→ z, then u� (x� y)→ z⇔ u� (x� y)� z⇔ (u�x)� y� z⇔ u�x� y→ z⇔ u�
x→ (y→ z), so (x � y)→ z� x→ (y→ z). Moreover we have (x � y)→ z = (y � x)→ z� y→ (x→ z).

(11) Let t ∈ x → (y → z). Then there is u ∈ y → z such that t ∈ x → u. Hence we have t � x → u, and
so x � t � u. Thus x � t � y → z, and hence s � y → z for some s ∈ x � t. By (HBL3) s � y � z, for some
s ∈ x� t. Therefore (x� t)� y� z, or (x� y)� t� z. Then v� t� z for some v ∈ x� y. By (HBL3) again we
get t� v→ z, and thus t� (x � y)→ z. This shows that x→ (y→ z)� (x � y)→ z.

Similarly, we have y→ (x→ z)� (x � y)→ z.
(12) Let u ∈ x → (y → z), then u � x → (y → z) and so u � x → a, for some a ∈ y → z. Hence

u � x � a and so b ≤ a, for some b ∈ u � x. Since a ∈ y → z, then we get b � y → z and so b � y � z.
Hence (u � y) � x = (u � x) � y � z, so we get u � y � x → z. Therefore, u � y → (x → z) and so
x→ (y→ z)� y→ (x→ z).

(13) Since y� z→ (y � z) and x ≤ y, then x� z→ (y � z). Hence we get x � z� y � z.
Let u ∈ z → x, then u � z → x, so u � z � x. Since x ≤ y, then we get u � z � y and so u � z → y.

Therefore, z→ x� z→ y,
Let u ∈ y → z, then u � y → z and so then y � u → z. Since x ≤ y, we get that x � u → z. Hence we

get u� x→ z and so y→ z� x→ z.
(14) Clearly by (13).
(15) Since y ≤ 1 ∈ x → x, so x � y � x. Similarly, it follows that x � y � y. Particularly, x � 0 � 0, so

0 ∈ x � 0.
(16) Since x � y� x, we get x� y→ x, then by (7) 1 ∈ x→ (y→ x).
(17) Since y � (x→ y)� y, we get y� (x→ y)→ y, and B� (A→ B)→ B;
(18) Since x− � x−, we have x � x− � 0, then 0 ∈ x � x−.
(19) By (18), since 0 ∈ x � x−, we have x � x− � 0, then x� x−−.
(20) Let x ≤ y and x ≤ z. Then x ∈ x ∧ y and x ∈ x ∧ z by (SL5). Thus x ∈ (x ∧ y) ∧ z = x ∧ (y ∧ z). This

shows that there is a ∈ y ∧ z such that x ∈ x ∧ a. It follows from (SL6) that x ≤ a. Hence x� y ∧ z. Similarly
we can prove that y ≤ x and z ≤ x imply y ∨ z� x.

(21) From the properties of super lattices, it is known that x∧ y� x and x� x∨ y. Then since a∧ b� a
for any a ∈ A, b ∈ B, we have A ∧ B� A. Similarly, a� a ∨ b, for any a ∈ A, b ∈ B, implies A� A ∨ B.

(22) Clearly by (13) and (21).
(23) Note that x� y− = y→ 0⇔ x � y� 0⇔ 0 ∈ x � y.

4. Hyper filters on hyper BL-algebras

In the section we set up the theory of filters on hyper BL-algebras.
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Definition 4.1. A non-empty subset F of a hyper BL-algebra L satisfying
(F) x 6 y and x ∈ F imply y ∈ F,
is called
(1) an h-filter of L if it satisfies (HF): x � y ⊆ F for all x, y ∈ F,
(2) a weak h-filter of L if it satisfies (WHF): F� x � y for all x, y ∈ F.

Definition 4.2. Let D be a non-empty subset of a hyper BL-algebra L satisfying:
(DS) 1 ∈ D,
(WDS) x ∈ D and D� x→ y imply y ∈ D.

Then D is called a weak h-deductive system.

Example 4.3. (1) Consider the hyper BL-algebra L given in Example 3.7. Let F = {b, c, 1}. Then F is a weak h-filter
of L but F is not a weak h-deductive system since b ∈ F,F� b→ a but a < F.

(2) Consider the hyper BL-algebra L given in Example 3.6. Let D = {1}. Then D is a weak h-deductive system of
L.

Remark 4.4. It is easy to see that any h-filter of a hyper BL-algebra L is a weak h-filter of L. Moreover 1 ∈ F for any
(weak) h-filter of L.

Proposition 4.5. Let L be a hyper BL-algebra, then
(1) every weak h-deductive system satisfies (F);
(2) if D is a non-empty subset of L containing 1, then D is a weak h-deductive system of L if and only if D satisfies

the following condition:
(D) (x→ y) ∩D , ∅ and x ∈ D imply y ∈ D,
(3) every weak h-deductive system is a weak h-filter,
(4) {1} is a weak h-filter of L,
(5) if 1 is scalar, then {1} is a weak h-deductive system of L.

Proof. (1) Let F be a weak h-deductive system of L, x ≤ y and x ∈ F for x, y ∈ L. Then by Proposition 3.9(7),
1 ∈ x→ y, and so F� x→ y. Now, from (WDS) it follows that y ∈ F. Thus, (F) holds.

(2) (⇒) Let D be a weak h-deductive system of L. Then 1 ∈ D by (DS). Let (x → y) ∩ D , ∅ and x ∈ D.
Then there is a ∈ (x→ y) ∩D and so D� x→ y. By (WDS) we have y ∈ D.

(⇐) Let D be a non-empty subset of L containing 1 and satisfying (D). First we prove that D satisfies (F).
Let x ≤ y and x ∈ D. Then 1 ∈ x→ y by Proposition 3.9(7). Thus (x→ y) ∩D , ∅. Therefore y ∈ D by (D).
This means that (F) holds. Now, let x ∈ D, and D� x→ y. Then there exist d ∈ D and u ∈ x→ y such that
d ≤ u and so by (F), u ∈ D. Hence (x→ y) ∩D , ∅ and so y ∈ D. Therefore D is a weak h-deductive system
of L.

(3) Let F be a weak h-deductive system of L. Then by (1), (F) holds. Now, let x, y ∈ F. By Proposition
3.9(4), y � x → (x � y) and so y ≤ u for some u ∈ x → (x � y). Hence u ∈ F and so F � x → v for some
v ∈ x � y. Since x ∈ F, so v ∈ F and hence F� x � y.

(4) Denote F = {1}. Let x ≤ y and x ∈ F. Then x = 1 and 1 ≤ y. Therefore y = 1 and hence y ∈ F. This
shows that F satisfies (F). Moreover let x, y ∈ F. Then x = y = 1 and hence 1 ∈ x � y = 1 � 1. It follows that
F� x � y, that is (WHF).

(5) Let 1 be scalar and D = {1}. Clearly (DS) is true. Assume x ∈ D and D � x → y. Then x = 1 and
1 � x → y. Therefore 1 ∈ x → y. By Proposition 3.9(7), we have x ≤ y and hence y = 1. This shows that
y ∈ D, that is, (WDS) holds.

In general, if 1 is not a scalar element of a hyper BL-algebra L, then {1} need not be a weak h-deductive
system of L. We give the following counter example.

Example 4.6. Consider the hyper BL-algebra L given in Example 3.7, in which 1 is not a scalar element of L. Then
D = {1} is not a weak h-deductive system of L since 1 ∈ D and D� 1→ b but b < D.
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Proposition 4.7. Let {Fi | i ∈ I} be a family of non-empty subsets of a hyper BL-algebra L.
(1) If Fi is a weak h-deductive system, for all i ∈ I, then ∩Fi is a weak h-deductive system of L.
(2) Assume that {Fi | i ∈ I} be a chain, if Fi is a weak h-filter (weak h-deductive system), for all i ∈ I,then ∪Fi is a

weak h-filter (weak h-deductive system) of L

Proof. Obviously.

Recall that a weak h-filter F (weak h-deductive system D) is called proper if F , L (D , L).

Definition 4.8. Let F be a proper weak h-filter (weak h-deductive system) of a hyper BL-algebra L. Then F is said to
be maximal if F ⊆ J ⊆ L, implies F = J or J = L, for all weak h-filters (weak h-deductive systems) J of L.

Example 4.9. Consider the hyper BL-algebra L given in Example 3.6. Let D = {a, b, c, 1}. Then D is a maximal weak
h-filter and maximal weak h-deductive system of L.

Proposition 4.10. Let L be a hyper BL-algebra. Then every proper weak h-filter (weak h-deductive system) of L is
contained in a maximal weak h-filter (weak h-deductive system) of L.

Proof. Let F be a proper weak h-filter of L and S be the collection of all proper weak h-filter of L containing
F. Then F ∈ S and (S,⊆) is a poset. Let {Fi | i ∈ I} be a chain in S, Then ∪Fi is a weak h-filter of L containing
F. If 0 ∈ ∪Fi, then there exists i ∈ I such that 0 ∈ Fi, which is impossible. Hence then ∪Fi is a proper weak
h-filter of L containing F and so ∪Fi ∈ S. Hence every chain of elements of S has an upper bounded in S. By
Zorn’s lemma, S has a maximal element such as M. We shall show that M is a maximal weak h-filter of L.
Let M ⊆ J ⊆ L, for some weak h-filter J of L. If J , L, then J ∈ S. Since M is a maximal element of S we get
M = J. Therefore, M is a maximal weak h-filter of L.

Recall that a hyper BL-algebra L is called nontrivial, if L , {1}. Using Proposition 4.5 and 4.10, we have
the following corollaries.

Corollary 4.11. Every nontrivial hyper BL-algebra has a maximal weak h-filter.

Corollary 4.12. If 1 is a scalar element, every nontrivial hyper BL-algebra has a maximal weak h-deductive system.

Definition 4.13. Let (L,∨,∧,�,→, 0, 1) be a hyper BL-algebra and D be a non-empty subset of L containing 1. Then
D is called

(1) an implicative weak h-deductive system or simply IWDS if (x → (y → z)) ∩ D , ∅ and (x → y) ∩ D , ∅
imply (x→ z) ∩D , ∅, for all x, y, z ∈ L,

(2) a positive implicative weak h-deductive system or simply PIWDS if (x→ ((y→ z)→ y))∩D , ∅ and x ∈ D
imply y ∈ D for all x, y, z ∈ L.

Example 4.14. Consider the hyper BL-algebra L given in Example 3.6. Let D1 = {a, b, c, 1} and D2 = {b, c, 1}. Then
D1 is an IWDS and a PIWDS of L. Note that D2 is not a IWDS since (1→ (b→ a))∩D2 , ∅ and (1→ b)∩D2 , ∅
but (1→ a)∩D2 = ∅, and it is not a PIWDS since b ∈ D2 and (b→ ((a→ 0)→ a))∩D2 = {1}∩D2 , ∅ but a < D2.

Proposition 4.15. Let D be a non-empty subset of a hyper BL-algebra L. Then
(1) if D is a PIWDS of L and 1 is scalar, then D is a weak h-deductive system,
(2) if D is a IWDS of L and an upset, and 1 is scalar, then D is a weak h-deductive system.

Proof. (1) Assume that D is a PIWDS of L. Clearly, (DS) holds. Let (x → y) ∩ D , ∅ and x ∈ D. Then by
Proposition 3.9(9), x → y ⊆ x → (1 → y) ⊆ x → ((y → 1) → y), and so (x → ((y → 1) → y)) ∩ D , ∅.
Since x ∈ D and D is a PIWDS of L, we conclude that y ∈ D. Therefore D is a weak h-deductive system by
Proposition 4.5(2).

(2) Assume that D is a IWDS of L. Clearly, (DS) holds. Let (x → y) ∩ D , ∅ and x ∈ D. Then
(1 → (x → y)) ∩ D , ∅ and (1 → x) ∩ D , ∅ by Proposition 3.9(9). Since D is a IWDS of L, then
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(1 → y) ∩ D , ∅. Hence there is a ∈ D and a ∈ 1 → y. Thus a � 1 → y and so 1 � a � y. Since 1 is scalar,
a = 1 � a � y. Note that D is an upset, then we get y ∈ D. Therefore D satisfies (D) and so D is a weak
h-deductive system.

Proposition 4.16. Let D be a non-empty subset of a hyper BL-algebra L. Then
(1) if 1 is scalar, then D is a PIWDS of L if and only if D is a weak h-deductive system such that ((x → y) →

x) ∩D , ∅ implies x ∈ D, for all x, y ∈ L;
(2) D is a IWDS of L if and only if 1 ∈ D and Dx = {u ∈ L | (x→ u) ∩D , ∅} is a weak h-deductive system of L,

for all x ∈ L.

Proof. (1) Let D be a PIWDS. Then by Proposition 4.15, D is a weak h-deductive system. Now, let ((x →
y)→ x) ∩D , ∅, then there exist u ∈ ((x→ y)→ x) ∩D, and so u ∈ 1→ u ⊆ (1→ ((x→ y)→ x)) ∩D. Since
1 ∈ D and D is a PIWDS, then we get x ∈ D.

Conversely, let D be a weak h-deductive system such that ((x → y) → x) ∩ D , ∅ implies x ∈ D, for all
x, y ∈ L. Let (x→ ((y→ z)→ y)) ∩D , ∅ and x ∈ D. Since D is a weak h-deductive system and x ∈ D, then
(y→ z)→ y)) ∩D , ∅ and so y ∈ D. Therefore D is a PIWDS.

(2) Let D be an IWDS of L and x ∈ L. By Proposition 3.9(8), 1 ∈ Dx. Now, let (a→ b)∩Dx , ∅ and a ∈ Dx,
for some a, b ∈ L. Then (x→ a)∩D , ∅ and (x→ (a→ b))∩D , ∅. Since D is a IWDS, we get (x→ b)∩D , ∅
and so b ∈ Dx. Hence Dx satisfies (D) and so Dx is a weak h-deductive system.

Conversely, let 1 ∈ D and Dx = {u ∈ L | (x→ u)∩D , ∅} be a weak h-deductive system of L, for all x ∈ L.
If (x → (y → z)) ∩ D , ∅ and (x → y) ∩ D , ∅, for x, y, z ∈ L, then y ∈ Dx and (y → z) ∩ Dx , ∅. Since Dx
is a weak h-deductive system of L, then we conclude that z ∈ Dx and so (x→ z) ∩D , ∅. Therefore, D is a
IWDS of L.

Theorem 4.17. Let D be a subset of a hyper BL-algebra L. Then the following are equivalent:
(1) D is an IWDS and a maximal weak h-deductive system of L,
(2) D is a weak h-deductive system and (x→ y) ∩D , ∅, and (y→ x) ∩D , ∅, for all x, y ∈ L −D.

Proof. (1)⇒(2) Suppose that D is an IWDS and a maximal weak h-deductive system and x, y ∈ L − D. We
get x ∈ Dx, y ∈ Dy, D ⊂ Dx ⊆ L and D ⊂ Dy ⊆ L. Moreover, by Proposition 4.16(2) we get Dx and Dy
are weak h-deductive systems of L. Hence by assumption Dx = L = Dy and so y ∈ Dx, x ∈ Dy. Therefore,
(x→ y) ∩D , ∅, and (y→ x) ∩D , ∅. Clearly D is a weak h-deductive system.

(2)⇒(1) Let D be a weak h-deductive system such that (x → y) ∩ D , ∅, and (y → x) ∩ D , ∅, for all
x, y ∈ L −D. If there exists a ∈ L such that Da is not a weak h-deductive system of L, then there are x, y ∈ L
such that (x→ y) ∩Da , ∅, x ∈ Da and {y} ∩Da = ∅. Hence (a→ x) ∩D , ∅ and (a→ u) ∩D , ∅, for some
u ∈ x→ y. But (a→ y) ∩D = ∅ and so {y} ∩D = ∅. Hence by assumption a ∈ D. Since (a→ x) ∩D , ∅ and
(a → u) ∩ D , ∅, then we get x ∈ D and u ∈ D. It follows that (x → y) ∩ D , ∅. That is, by (WDS) y ∈ D,
which is a contradiction. Hence Da is a weak h-deductive system of L, for any a ∈ L. By Proposition 4.16(2),
D is an IWDS. Now, we show that, Da is the least weak h-deductive system of L containing D ∪ {a}, for any
a ∈ L −D. Let a ∈ L −D and D′ be a weak h-deductive system of L containing D ∪ {a} and u be an arbitrary
element of Da. Then (a→ u) ∩D , ∅ and so (a→ u) ∩D′ , ∅. Since a ∈ D′, then u ∈ D′. Therefore Da ⊆ D′.
That is Da is the least weak h-deductive system of L containing D ∪ {a}. Assume that D  E ⊆ L, for some
weak h-deductive system E of L. Then there exists a ∈ E − D. It follows that Da ⊆ E. Since a ∈ L − D, by
assumption we get Da = L and so E = L. Therefore, D is a maximal weak h-deductive system of L.

5. Hyper congruences on hyper BL-algebras

Similar to S-homomorphisms on residuated lattices, we introduce S-homomorphisms on BL-algebras.
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Definition 5.1. Let (L,∨,∧,�,→, 0, 1) and (L′ ,∨′ ,∧′ ,�′ ,→′

, 0
′

, 1
′

) be two hyper BL-algebras. A function f : L→
L′ is called an S-homomorphism if it satisfies the following conditions: for all x, y ∈ L,

(1) f (x ∨ y) = f (x) ∨
′ f (y),

(2) f (x ∧ y) = f (x) ∧
′ f (y),

(3) f (x � y) = f (x) �
′ f (y),

(4) f (x→ y) = f (x)→
′ f (y),

(5) f (1) = 1
′ and f (0) = 0

′ .
Where f (A) = { f (t) | t ∈ A}.

Example 5.2. Let L be the hyper BL-algebra in Example 3.7. Let L′ = {0
′

, 1
′

} and (L′ ,≤′ ) be a partially ordered set
such that 0

′

< 1
′ . Define the binary hyperoperations ∨′ ,∧′ ,�′ and→′ by the following tables:

∨
′

0
′

1
′

0
′

{0
′

, 1
′

} {1
′

}

1
′

{1
′

} {1
′

}

∧
′

= �
′

0
′

1
′

0
′

{0
′

} {0
′

}

1
′

{0
′

} {0
′

, 1
′

}

→
′

0
′

1
′

0
′

{1
′

} {1
′

}

1
′

{1
′

} {1
′

}

It is easy to check that (L′ ,∨′ ,∧′ ,�′ ,→′

, 0
′

, 1
′

) is a hyper BL-algebra. Define f : L→ L′ by f (0) = 0
′ , f (1) = 1

′ and
f (a) = f (b) = f (c) = 1

′ . Then f is an S-homomorphism.

Example 5.3. Let L be the hyper BL-algebra in Example 3.7. Let L′ = {0
′

, e, 1′ } and (L′ ,≤′ ) be a partially ordered
set such that 0

′

< e < 1
′ . Define the binary hyperoperations ∨′ ,∧′ by x ∨′ y = {u ∈ L′ | x ≤′ u, y ≤′ u} and

x ∧′ y = {u ∈ L′ | u ≤′ x,u ≤′ y}, for all x, y ∈ L′ . It is easy to check that (L′ ,∨′ ,∧′ , 0′ , 1′ ) is a bounded super lattice.
Consider the following tables:

�
′

0
′ e 1

′

0′ {0
′

} {0
′

} {0
′

}

e {0
′

} {0
′ , e} {0

′ , e}
1
′

{0
′

} {0
′ , e} {0

′ , e, 1
′

}

→
′

0
′ e 1

′

0′ {1
′

} {1
′

} {1
′

}

e {e, 1
′

} {e, 1
′

} {1
′

}

1
′

{e, 1
′

} {e, 1
′

} {1
′

}

It is easy to check that (L′ ,∨′ ,∧′ ,�′ ,→′

, 0
′

, 1
′

) is a hyper BL-algebras. Define f : L→ L′ by f (0) = 0
′

, f (1) = 1
′ and

f (a) = f (b) = f (c) = e. Then f is an S-homomorphism.

In this section, we study hyper congruences on hyper BL-algebras. From now on, L and L′ denote two
hyper BL-algebras.

In the following we introduce the notion of regular compatible congruence relations on a hyper BL-
algebra and discuss some useful properties of these relations.

Definition 5.4. Let θ be an equivalence relation on a hyper BL-algebra L and A, B ⊆ L. Then
(i) AθB means that there exist a ∈ A and b ∈ B such that aθb,
(ii) AθB means that for all a ∈ A, there exist b ∈ B such that aθb and for all b ∈ B, there exist a ∈ A such that aθb.

Definition 5.5. An equivalence relation θ on a hyper BL-algebra L is called a congruence relation if for all x, y, z,w ∈
L, xθy and zθw imply (x ∗ z)θ(y ∗ w), where ∗ ∈ {∧,∨,�,→}.

Proposition 5.6. Let θ be a regular congruence relation on a hyper BL-algebra L. Then [1] = {x ∈ L | xθ1} is a weak
h-filter of L.

Proof. Clearly, [1] , ∅. Let x, y ∈ [1]. Since (x� y)θ(1� 1) and 1 ∈ 1� 1, then x� yθ1. Hence (x� y)∩ [1] , ∅
and so [1]� x � y. Now, let x, y ∈ L be such that x ∈ [1] and x ≤ y. Since θ is regular, then x→ [x] is order
preserving. It follows from x ≤ y ≤ 1 that [x] ≤θ [y] ≤θ [1]. Since [x] = [1], we have [x] = [y] = [1] and so
y ∈ [1]. Therefore, [1] is a weak hyper filter of L.
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Proposition 5.7. Let θ be a regular congruence relation on a hyper BL-algebra L, L/θ = {[x] | x ∈ L} and ≤θ
be the relation on L/θ defined as in Theorem 2.9. For all x, y ∈ L, define [x]�[y] = [x � y], [x]∨[y] = [x ∨ y],
[x]∧[y] = [x ∧ y] and [x] [y] = [x→ y], where [A] = {[a] | a ∈ A}, for all A ⊆ L. Then

(i) �,∨,∧, are well defined,
(ii) [x] ≤θ [y] [z] if and only if [x]�[y] ≤θ [z], where [A] ≤θ [B] if and only if [a] ≤θ [b], for some a ∈ A and

b ∈ B.

Proof. Similar to Lemma 3.8 in paper [32].

Definition 5.8. Let θ be a regular congruence relation on a hyper BL-algebra L. We say that ≤θ, ∨ and ∧ are
compatible if they satisfy the following conditions: for all x, y ∈ L,

(i) [x] ∈ [x]∨[y] if and only if [y] ≤θ [x],
(ii) [x] ∈ [x]∧[y] if and only if [x] ≤θ [y]

By a regular compatible congruence relation on L we mean a regular congruence relation on L such that
≤θ, ∨ and ∧ are compatible.

Example 5.9. Let L be the hyper BL-algebra in Example 3.7. Let θ = {(x, x) | x ∈ L} ∪ {(a, b), (b, a)}. We can check
that θ is a regular compatible congruence relation on L.

Proposition 5.10. Let θ be a regular compatible congruence relation on a hyper BL-algebra L. Then (L/θ,∨,∧,�, 
, [0], [1]) is a hyper BL-algebra.

Proof. By Proposition 3.2(3), L is a hyper residuated lattice. From Theorem 3.10 in [32], L/θ is a hyper
residuated lattice. It is only need to check (BL4) and (BL5).

For (BL4), since x ∧ y � x � (x → y), then there exist a ∈ x ∧ y and b ∈ x � (x → y) such that a ≤ b, so
[a] ≤θ [b], and so [x ∧ y]�θ [x � (x→ y)], therefore, [x]∧[y]�θ [x]�([x] [y]).

For (BL5), since 1 ∈ (x→ y)∨ (y→ x), we have [1] ∈ [(x→ y)∨ (y→ x)], and so [1] ∈ ([x] [y])∨([y] 
[x]). Therefore, (L/θ,∨,∧,�, , [0], [1]) is a hyper BL-algebra.

Example 5.11. Let L and θ be the hyper BL-algebra and the regular compatible congruence relation in Example
5.9, repectively. Therefore, by Proposition 5.10, (L/θ;∨, ∧,�, , [0], [1]) is a hyper BL-algebra. Where its hyper
operations are as follows:

∨ [0] [a] [c] [1]
[0] {[0],[a],[c],[1]} {[a],[c],[1]} {[c],[1]} {[1]}
[a] {[a],[c],[1]} {[a],[c],[1]} {[c],[1]} {[1]}
[c] {[c],[1]} {[c],[1]} {[c],[1]} {[1]}
[1] {[1]} {[1]} {[1]} {[1]}

∧ [0] [a] [c] [1]
[0] {[0]} {[0]} {[0]} {[0]}
[a] {[0]} {[a],[0]} {[a],[0]} {[a],[0]}
[c] {[0]} {[a],[0]} {[a],[c],[0]} {[a],[c],[0]}
[1] {[0]} {[a],[0]} {[a],[c],[0]} {[0],[a],[c],[1]}

 [0] [a] [c] [1]
[0] {[1]} {[1]} {[1]} {[1]}
[a] {[a],[c],[1]} {[a],[1]} {[c],[1]} {[1]}
[c] {[c],[1]} {[c],[1]} {[c],[1]} {[1]}
[1] {[c],[1]} {[c],[1]} {[c],[1]} {[1]}

And � = ∧.



X. L. Xin, Y. X. Zou, J. M. Zhan / Filomat 32:19 (2018), 6675–6689 6687

Proposition 5.12. Let θ be a regular compatible congruence relation on a hyper BL-algebra L. Then
(1) [1] is an h-filter of L if and only if {[1]} is an h-filter of L/θ,
(2) if [1] is a maximal weak h-filter of L, then L/θ is simple.

Proof. Similar to Proposition 3.12 in paper [32].

Example 5.13. Let L be the hyper BL-algebra in Example 3.8. Let
θ = {(x, x) | x ∈ L} ∪ {(1, a), (a, 1), (1, b), (b, 1), (a, b), (b, a), (c, 0), (0, c)}.

We can check that θ is a regular compatible congruence relation of L and so by Proposition 5.10, (L/θ;∨,
∧,�, , [0], [1]) is a hyper BL-algebra. Since L/θ = {[0], [1]}, L/θ is simple. Moreover, F = {1, a, b, c} is a weak
h-filter of L and [1] ⊂ F ⊂ L and so [1] = {1, a, b} is not a maximal weak h-filter of L. Therefore, the converse of the
above Proposition (2) is not true.

Let L and L′ be two hyper BL-algebras and f : L→ L′ be an S-homomorphism. It is straightforward to
check that ker( f ) = {(x, y) ∈ L × L | f (x) = f (y)} is an equivalence relation on L.

Theorem 5.14. Let L and L′ be two BL-algebras, f : L→ L′ be an S-homomorphism and θ = ker( f ). If f (x) ≤ f (y)
implies there is a θ − f ence that joins x to y, for all x, y ∈ L, then

(i) θ is a regular compatible congruence relation on L and L/ker( f ) is a hyper BL-algebra.
(ii) f induces a unique S-homomorphism f : L/ker( f )→ L′ by f ([x]) = f (x), for all x ∈ L such that Im( f ) = Im( f )

and f is a S-homomorphism.

Proof. Similar to Theorem 3.14 in paper [32].

Example 5.15. If L and L′ are two BL-algebras and f : L→ L′ is a homomorphism (which could be treated as an S-
homomorphism between L and L′ ), then f (x) ≤ f (y) implies f (x) = f (x)∧ f (y) = f (x∧ y) and so the set {x, x, x∧ y, y}
forms a ker( f ) − f ence that joins x to y. Therefore, f satisfies the conditions (i) and (ii) in the above Theorem.

Example 5.16. Let L, L′ and f be two hyper BL-algebras and an S-homomorphism given in Example 5.3. Then
ker( f ) = {(x, x) | x ∈ L} ∪ {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}
and L/ker( f ) = {[0], [a], [1]}.

Assume≺= {(x, x) | x ∈ L/ker( f )}∪{([0], [a]), ([a], [1]), ([0], [1])}. Then clearly, ≺ is a partially order on L/ker( f ).
Since the map π : L→ L/ker( f ) defined by π(x) = [x] is an order preserving map, then ker( f ) is regular. We can show
that f (x) ≤ f (y) implies there exists a θ − f ence that joins x to y, for any x, y ∈ L, and so by the above proposition,
we have f : L/ker( f )→ L′ is a one to one homomorphism.

Example 5.17. Let (L1;∨1,∧1,�1,→1, 01, 11) and (L2;∨2,∧2,�2,→2, 02, 12) be two hyper BL-algebras. We define
the hyperoperations ∨,∧,�,→ on L = L1 × L2 as follows:

(x1, x2) ∨ (y1, y2) = (x1 ∨1 y1, x2 ∨2 y2),
(x1, x2) ∧ (y1, y2) = (x1 ∧1 y1, x2 ∧2 y2),
(x1, x2) � (y1, y2) = (x1 �1 y1, x2 �2 y2),
(x1, x2)→ (y1, y2) = (x1 →1 y1, x2 →2 y2),

where (A,B) = {(a, b) | a ∈ A, b ∈ B}, for all subsets A ⊆ L1 and B ⊆ L2. Then (L1 × L2,≤) satisfies (HBL1)− (HBL5)
in which the order ≤ is given by (a, b) ≤ (c, d) ⇔ a ≤1 c, b ≤2 d, for any a, c ∈ L1, b, d ∈ L2. It follows that
(L;∨,∧,�,→, 0, 1) is a hyper BL-algebra, where 1 = (11, 12) and 0 = (01, 02).

Theorem 5.18. Let L1 and L2 be two BL-algebras. If θ1 and θ2 are two regular compatible congruence relations
on L1 and L2, respectively, and θ is a relation on L = L1 × L2 defined by (a, b)θ(u, v) if and only if (a,u) ∈ θ1 and
(b, v) ∈ θ2. Then θ is a regular compatible congruence relation on L and L/θ � (L1/θ1) × (L2/θ2).

Proof. Similar to Theorem 3.20 in paper [32].
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Definition 5.19. Let θ be a regular compatible congruence relations on L. Then θ is called good if the following
conditions hold:

(1) x ∗ y ⊆ [t∗]θ, for some t∗ ∈ L, ∗ ∈ {∨,∧,�,→},
(2) (x−−)θx.

Example 5.20. Let L = ({0, e, 1} and (L,≤) be a partially ordered set such that 0 < e < 1. Define the binary
hyperoperations ∨,∧,�,→ as the following tables:

∧ 0 e 1
0 {0} {0} {0}
e {0} {e} {e}
1 {0} {e} {e, 1}

∨ 0 e 1
0 {0} {e, 1} {1}
e {e, 1} {e, 1} {1}
1 {1} {1} {1}

→ 0 e 1
0 {1} {1} {1}
e {0} {e, 1} {1}
1 {0} {e, 1} {1}

Taking � = ∧, we can check that (L,∨,∧,�,→, 0, 1) is a hyper BL-algebra. Let θ = {(x, x) | x ∈ L}∪ {(e, 1), (1, e)}.
We can check that θ is a good regular compatible congruence relation on L.

Proposition 5.21. Letθ be a good regular compatible congruence relation on a hyper BL-algebra L, then (L/θ,∨,∧,�, 
, [0], [1]) is an MV-algebra.

Proof. Sinceθ is a regular compatible congruence relation, then by Proposition 5.10, we have (L/θ,∨,∧,�, 
, [0], [1]) is a hyper BL-algebra. By the definition of good regular compatible congruence relation, we can
obtain ∨,∧,�, are binary operations. So (L/θ,∨,∧,�, , [0], [1]) is a BL-algebra. Since (x−−)θx, then we
have [x−−] = [x], and so the operation − is involutory. Therefore, we have that (L/θ,∨,∧,�, , [0], [1]) is an
MV-algebra.

Consider L and θ given in Example 5.20. Then L/θ = {[0], [1]} is an MV-algebra by the above proposition.

6. Conclusions

In this paper, we establish the theory of hyper BL-algebras which are special hyper residuated lattices.
However, the relations between hyper BL-algebras and hyper MV-algebras have not been proposed. Hence
the next work is how to find the suitable conditions on which a hyper BL-algebra is a hyper MV-algebra.
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