Schur-Convexity for a Mean of Two Variables with Three Parameters

Chun-Ru Fu ${ }^{\text {a }}$, Dongsheng Wang ${ }^{\text {b }}$, Huan-Nan Shi ${ }^{\text {c }}$
${ }^{a}$ Beijing Union University Applied college of science and technology, Beijing 102200, China
${ }^{b}$ Basic courses department, Beijing Vocational College of Electronic Technology, Beijing 100026, China
${ }^{c}$ Basic Teaching Department, Teacher's College of Beijing Union University, Beijing 100011, China

Abstract

Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for a mean of two variables with three parameters are investigated, and some mean value inequalities of two variables are established.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on the real number field by \mathbb{R}^{n}.

$$
\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0, i=1, \ldots, n\right\},
$$

In particular, \mathbb{R}^{1} and \mathbb{R}_{+}^{1} denoted by \mathbb{R} and \mathbb{R}_{+}respectively.
In 2009, Kuang [1]defined a mean of two variables with three parameters as follows:

$$
\begin{equation*}
K\left(\omega_{1}, \omega_{2}, p ; a, b\right)=\left[\frac{\omega_{1} A\left(a^{p}, b^{p}\right)+\omega_{2} G\left(a^{p}, b^{p}\right)}{\omega_{1}+\omega_{2}}\right]^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

where $A(a, b)=\frac{a+b}{2}$ and $G(a, b)=\sqrt{a b}$ respectively is the arithmetic mean and geometric mean of two positive numbers a and b, parameters $p \neq 0, \omega_{1}, \omega_{2} \geq 0$ with $\omega_{1}+\omega_{2} \neq 0$.

For simplicity, sometimes we will be $K\left(\omega_{1}, \omega_{2}, p ; a, b\right)$ for $K\left(\omega_{1}, \omega_{2}, p\right)$ or $K(a, b)$.
In particular,

$$
K\left(1, \frac{\omega}{2}, 1\right)=\frac{a+\omega \sqrt{a b}+b}{\omega+2}
$$

is the generalized Heron mean, which was introduced by Janous [2] in 2001.

[^0]$$
K\left(1, \frac{\omega}{2}, p\right)=\frac{a^{p}+\omega(a b)^{p / 2}+b^{p}}{\omega+2}
$$
is the generalized Heron mean with parameter.
In recent years, the study on the properties of the mean with two variables by using theory of majorization is unusually active (see references [10-35]).

In this paper, Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity of $K\left(\omega_{1}, \omega_{2}, p\right)$ are discussed. As consequences, some interesting inequalities are obtained.

Our main results are as follows:
Theorem 1.1. (i) When $\omega_{1} \omega_{2} \neq 0$, if $p \geq 2$ and $p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \geq 0$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-convex with $(a, b) \in \mathbb{R}_{+}^{2} ;$ if $1 \leq p<2$ and $p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \leq 0$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$; if $p<1$, then $K\left(\omega_{1}, w \omega_{2}, p\right)$ is Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$.
(ii) When $\omega_{1}=0, \omega_{2} \neq 0, K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$.
(iii) When $\omega_{1} \neq 0, \omega_{2}=0$, if $p \geq 2$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is the Schur-convex with $(a, b) \in \mathbb{R}_{+}^{2}$; if $p<2$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is the Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$.

Theorem 1.2. If $p \geq 0$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-geometrically convex with $(a, b) \in \mathbb{R}_{+}^{2}$. If $p<0$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-geometrically concave with $(a, b) \in \mathbb{R}_{+}^{2}$.

Theorem 1.3. If $p \geq-1$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-harmonically convex with $(a, b) \in \mathbb{R}_{+}^{2}$. If $-2<p<-1$ and $\omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right) \geq 0$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-harmonically convex with $(a, b) \in \mathbb{R}_{+}^{2}$. If $p \leq-2$ and $\omega_{1}\left(\frac{p}{2}+1\right)+\omega_{2}=0$, then $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-harmonically concave with $(a, b) \in \mathbb{R}_{+}^{2}$.

2. Definitions and Lemmas

We need the following definitions and lemmas.
Definition $2.1([3,4])$. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) \mathbf{x} is said to be majorized by \mathbf{y} (in symbols $\mathbf{x}<\mathbf{y}$) if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k=1,2, \ldots, n-1$ and $\sum_{i=1}^{n} x_{i}=$ $\sum_{i=1}^{n} y_{i}$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of \mathbf{x} and \mathbf{y} in a descending order.
(ii) $\Omega \subset \mathbb{R}^{n}$ is called a convex set if $\left(\alpha x_{1}+\beta y_{1}, \ldots, \alpha x_{n}+\beta y_{n}\right) \in \Omega$ for any \mathbf{x} and $\mathbf{y} \in \Omega$, where α and $\beta \in[0,1]$ with $\alpha+\beta=1$.
(iii) let $\Omega \subset \mathbb{R}^{n}, \varphi: \Omega \rightarrow \mathbb{R}$ is said to be a Schur-convex function on Ω if $\mathbf{x}<\mathbf{y}$ on Ω implies $\varphi(\mathbf{x}) \leq \varphi(\mathbf{y})$. φ is said to be a Schur-concave function on Ω if and only if $-\varphi$ is Schur-convex function.

Definition $2.2([5,6])$. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}$.
(i) $\Omega \subset \mathbb{R}_{+}^{n}$ is called a geometrically convex set if $\left(x_{1}^{\alpha} y_{1}^{\beta}, \ldots, x_{n}^{\alpha} y_{n}^{\beta}\right) \in \Omega$ for any \mathbf{x} and $\mathbf{y} \in \Omega$, where α and $\beta \in[0,1]$ with $\alpha+\beta=1$.
(ii) let $\Omega \subset \mathbb{R}_{+}^{n}, \varphi: \Omega \rightarrow \mathbb{R}_{+}$is said to be a Schur-geometrically convex function on Ω if $\left(\ln x_{1}, \ldots, \ln x_{n}\right)<$ $\left(\ln y_{1}, \ldots, \ln y_{n}\right)$ on Ω implies $\varphi(\mathbf{x}) \leq \varphi(\mathbf{y}) . \varphi$ is said to be a Schur-geometrically concave function on Ω if and only if $-\varphi$ is Schur-geometrically convex function.

Definition 2.3 ($[7,8]$). Let $\Omega \subset \mathbb{R}_{+}^{n}$.
(i) A set Ω is said to be a harmonically convex set if $\frac{x y}{\lambda x+(1-\lambda) y} \in \Omega$ for every $x, y \in \Omega$ and $\lambda \in[0,1]$, where $x y=\sum_{i=1}^{n} x_{i} y_{i}$ and $\frac{1}{x}=\left(\frac{1}{x_{1}}, \cdots, \frac{1}{x_{n}}\right)$.
(ii) A function $\varphi: \Omega \rightarrow \mathbb{R}_{+}$is said to be a Schur harmonically convex function on Ω if $\frac{1}{x}<\frac{1}{y}$ implies $\varphi(x) \leq \varphi(y)$. A function φ is said to be a Schur harmonically concave function on Ω if and only if $-\varphi$ is a Schur harmonically convex function.

Lemma 2.4 ($[3,4]$). Let $\Omega \subset \mathbb{R}^{n}$ is convex set, and has a nonempty interior set Ω^{0}. Let $\varphi: \Omega \rightarrow \mathbb{R}$ is continuous on Ω and differentiable in Ω^{0}. Then φ is the Schur - convex (Schur - concave) function, if and only if it is symmetric on Ω and if

$$
\left(x_{1}-x_{2}\right)\left(\frac{\partial \varphi}{\partial x_{1}}-\frac{\partial \varphi}{\partial x_{2}}\right) \geq 0(\leq 0)
$$

holds for any $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \Omega^{0}$.
Lemma $2.5([5,6])$. Let $\Omega \subset \mathbb{R}_{+}^{n}$ be a symmetric geometrically convex set with a nonempty interior Ω^{0}. Let $\varphi: \Omega \rightarrow \mathbb{R}_{+}$be continuous on Ω and differentiable on Ω^{0}. Then φ is a Schur geometrically convex (Schur geometrically concave) function if and only if φ is symmetric on Ω and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(x_{1} \frac{\partial \varphi}{\partial x_{1}}-x_{2} \frac{\partial \varphi}{\partial x_{2}}\right) \geq 0 \quad(\leq 0) \tag{2}
\end{equation*}
$$

holds for any $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \Omega^{0}$.
Lemma 2.6 ($[7,8]$). Let $\Omega \subset \mathbb{R}_{+}^{n}$ be a symmetric harmonically convex set with a nonempty interior Ω^{0}. Let $\varphi: \Omega \rightarrow \mathbb{R}_{+}$be continuous on Ω and differentiable on Ω^{0}. Then φ is a Schur harmonically convex (Schur harmonically concave) function if and only if φ is symmetric on Ω and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(x_{1}^{2} \frac{\partial \varphi}{\partial x_{1}}-x_{2}^{2} \frac{\partial \varphi}{\partial x_{2}}\right) \geq 0 \quad(\leq 0) \tag{3}
\end{equation*}
$$

holds for any $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \Omega^{0}$.
Lemma 2.7 ([9]). Let $a \leq b, u(t)=t b+(1-t) a, v(t)=t a+(1-t) b$. If $\frac{1}{2} \leq t_{2} \leq t_{1} \leq 1$ or $0 \leq t_{1} \leq t_{2} \leq \frac{1}{2}$, then

$$
\begin{equation*}
\left(u\left(t_{2}\right), v\left(t_{2}\right)\right)<\left(u\left(t_{1}\right), v\left(t_{1}\right)\right)<(a, b) \tag{4}
\end{equation*}
$$

Lemma 2.8. Let

$$
f(x)=\omega_{1}(p+1) x^{\frac{p}{2}+1}+\omega_{2}\left(\frac{p}{2}+1\right) x-\omega_{2} \frac{p}{2}, x \in[1, \infty)
$$

where $\omega_{1}, \omega_{2} \geq 0, \omega_{1}^{2}+\omega_{2}^{2} \neq 0$.

$$
\text { If }-2<p<-1 \text { and } \omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right) \geq 0, \text { then } f(x) \geq 0, \text { if } p \leq-2 \text { and } \omega_{1}(p+1)+\omega_{2}=0, \text { then } f(x) \leq 0
$$

Proof. If $-2<p<-1$ and $\omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right) \geq 0$, then

$$
\begin{aligned}
g(x): & =\omega_{1}(p+1) x^{\frac{p}{2}+1}+\omega_{2}\left(\frac{p}{2}+1\right) x \\
& \geq \omega_{1}(p+1) x^{\frac{p}{2}+1}+\omega_{2}\left(\frac{p}{2}+1\right) x^{\frac{p}{2}+1} \\
& =x^{\frac{p}{2}+1}\left[\omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right)\right] \\
& \geq 0
\end{aligned}
$$

and then $f(x)=g(x)-\omega_{2} \frac{p}{2} \geq 0$.
If $p \leq-2$ and $\omega_{1}(p+1)+\omega_{2}=0$, then

$$
f^{\prime}(x)=\omega_{1}(p+1)\left(\frac{p}{2}+1\right) x^{\frac{p}{2}}+\omega_{2}\left(\frac{p}{2}+1\right)
$$

and

$$
f^{\prime \prime}(x)=\omega_{1} \frac{p}{2}(p+1)\left(\frac{p}{2}+1\right) x^{\frac{p}{2}-1} \leq 0
$$

so $f^{\prime}(x)$ is decreasing, but

$$
f^{\prime}(1)=\omega_{1}(p+1)\left(\frac{p}{2}+1\right)+\omega_{2}\left(\frac{p}{2}+1\right)=\left(\frac{p}{2}+1\right)\left[\omega_{1}(p+1)+\omega_{2}\right]=0
$$

then $f^{\prime}(x) \leq 0$, so $f(x)$ is decreasing, furthermore

$$
f(1)=\omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right)-\omega_{2} \frac{p}{2}=\omega_{1}(p+1)+\omega_{2}=0
$$

thus $f(x) \leq 0$.

3. Proofs of Main results

From the definition of $K\left(\omega_{1}, \omega_{2}, p\right)$, we have

$$
K\left(\omega_{1}, \omega_{2}, p\right)=\left(\frac{\omega_{1} \frac{a^{p}+b^{p}}{2}+\omega_{2} a^{\frac{p}{2}} b^{\frac{p}{2}}}{\omega_{1}+\omega_{2}}\right)^{\frac{1}{p}} .
$$

It is clear that $K\left(\omega_{1}, \omega_{2}, p\right)$ is symmetric with $(a, b) \in \mathbb{R}_{+}^{2}$.
Write

$$
m(a, b):=\left[\frac{\omega_{1}\left(a^{p}+b^{p}\right)+2 \omega_{2} a^{\frac{p}{2}} b^{\frac{p}{2}}}{2\left(\omega_{1}+\omega_{2}\right)}\right]^{\frac{1}{p}-1} .
$$

Proof. [Proof of Theorem 1.1] (i) When $\omega_{1} \omega_{2} \neq 0$,

$$
\begin{aligned}
& \frac{\partial K}{\partial a}=m(a, b)\left(\frac{\omega_{1} a^{p-1}+\omega_{2} a^{\frac{p}{2}-1} b^{\frac{p}{2}}}{\omega_{1}+\omega_{2}}\right) \\
& \frac{\partial K}{\partial b}=m(a, b)\left(\frac{\omega_{1} b^{p-1}+\omega_{2} a^{\frac{p}{2}} b^{\frac{p}{2}-1}}{\omega_{1}+\omega_{2}}\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
\Delta_{1}: & =(a-b)\left(\frac{\partial K}{\partial a}-\frac{\partial K}{\partial b}\right) \\
& =\frac{a-b}{2\left(\omega_{1}+\omega_{2}\right)} m(a, b)\left[\omega_{1}\left(a^{p-1}-b^{p-1}\right)-\omega_{2}(a-b) a^{\frac{p}{2}-1} b^{\frac{p}{2}-1}\right] .
\end{aligned}
$$

Without loss of generality, we may assume that $a \geq b$, then $z:=\frac{a}{b} \geq 1$, and then

$$
\Delta_{1}=\frac{a-b}{2\left(\omega_{1}+\omega_{2}\right)} m(a, b) b^{p-1} f(z)
$$

where

$$
\begin{aligned}
f(z) & =\omega_{1}\left(z^{p-1}-1\right)-\omega_{2}(z-1) z^{\frac{p}{2}-1}, \quad z \geq 1 . \\
f^{\prime}(z) & =\omega_{1}(p-1) z^{p-2}-\omega_{2} z^{\frac{p}{2}-1}-\omega_{2}\left(\frac{p}{2}-1\right)(z-1) z^{\frac{p}{2}-2} \\
& =z^{\frac{p}{2}-2}\left[\omega_{1}(p-1) z^{\frac{p}{2}}-\omega_{2} \frac{p}{2} z+\omega_{2}\left(\frac{p}{2}-1\right)\right] .
\end{aligned}
$$

If $p \geq 2$ and $p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \geq 0$, then

$$
\omega_{1}(p-1) z^{\frac{p}{2}}-\omega_{2} \frac{p}{2} z=z\left[\omega_{1}(p-1) z^{\frac{p}{2}-1}-\omega_{2} \frac{p}{2}\right] \geq z\left[\omega_{1}(p-1)-\omega_{2} \frac{p}{2}\right]
$$

Notice that

$$
\omega_{1}(p-1)-\omega_{2} \frac{p}{2} \geq 0 \Leftrightarrow p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \geq 0
$$

we have $f^{\prime}(z) \geq 0$, for $z \in[1, \infty)$, but $f(1)=0$, so $f(z) \geq 0$, further $\Delta_{1} \geq 0$. By Lemma 1 , it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-convex with $(a, b) \in \mathbb{R}_{+}^{2}$.

If $1 \leq p<2$ and $p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \leq 0$, then

$$
\omega_{1}(p-1) z^{\frac{p}{2}}-\omega_{2} \frac{p}{2} z=z\left[\omega_{1}(p-1) z^{\frac{p}{2}-1}-\omega_{2} \frac{p}{2}\right] \leq z\left[\omega_{1}(p-1)-\omega_{2} \frac{p}{2}\right]
$$

Notice that

$$
\omega_{1}(p-1)-\omega_{2} \frac{p}{2} \geq 0 \Leftrightarrow p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \leq 0
$$

we have $f^{\prime}(z) \leq 0$, for $z \in[1, \infty)$, but $f(1)=0$, so $f(z) \leq 0$, further $\Delta_{1} \leq 0$. By Lemma 2.4, it follows that $K\left(w_{1}, w_{2}, p\right)$ is Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$.

If $p<1$, then

$$
f(z)=\omega_{1}\left(z^{p-1}-1\right)-\omega_{2}(z-1) z^{\frac{p}{2}-1} \leq \omega_{1}(1-1)-\omega_{2}(z-1) z^{\frac{p}{2}-1} \leq 0
$$

and then $\Delta_{1} \leq 0$. By Lemma 2.4, it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$.
(ii) When $\omega_{1}=0, \omega_{2} \neq 0, K\left(\omega_{1}, \omega_{2}, p\right)=\sqrt{a b}$, then

$$
\Delta_{1}:=(a-b)\left(\frac{\partial K}{\partial a}-\frac{\partial K}{\partial b}\right)=-\frac{1}{2} \frac{(a-b)^{2}}{\sqrt{a b}} \leq 0
$$

By Lemma 2.4, it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$.
(iii) When $\omega_{1} \neq 0, \omega_{2}=0, K\left(w_{1}, w_{2}, p\right)=\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}}$, then

$$
\Delta_{1}:=(a-b)\left(\frac{\partial K}{\partial a}-\frac{\partial K}{\partial b}\right)=\frac{1}{2}(a-b)\left(a^{p}+b^{p}\right)^{\frac{1}{p}-1}\left(a^{p-1}+b^{p-1}\right)
$$

If $p \geq 2$, then $a-b$ and $a^{p-1}-b^{p-1}$ has the same sign, so $\Delta_{1} \geq 0$. By Lemma 2.4, it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-convex with $(a, b) \in \mathbb{R}_{+}^{2}$. If $p<2$, then $a-b$ and $a^{p-1}-b^{p-1}$ has the opposite sign, so $\Delta_{1} \leq 0$. By Lemma 2.4, it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-concave with $(a, b) \in \mathbb{R}_{+}^{2}$.

The proof of Theorem 1.1 is complete.
Proof. [Proof of Theorem 1.2] It is easy to see that

$$
\begin{aligned}
& a \frac{\partial K}{\partial a}=m(a, b)\left(\frac{\omega_{1} a^{p}+\omega_{2} a^{\frac{p}{2}} b^{\frac{p}{2}}}{\omega_{1}+\omega_{2}}\right) \\
& b \frac{\partial K}{\partial b}=m(a, b)\left(\frac{\omega_{1} b^{p}+\omega_{2} a^{\frac{p}{2}} b^{\frac{p}{2}}}{\omega_{1}+\omega_{2}}\right),
\end{aligned}
$$

and then

$$
\Delta_{2}:=(a-b)\left(a \frac{\partial K}{\partial a}-b \frac{\partial K}{\partial b}\right)=\frac{(a-b) m(a, b) \omega_{1}\left(a^{p}-b^{p}\right)}{2\left(\omega_{1}+\omega_{2}\right)}
$$

If $p \geq 0$, then $a-b$ and $a^{p}-b^{p}$ has the same sign, so $\Delta_{2} \geq 0$. By Lemma 2.5 , it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-geometrically convex with $(a, b) \in \mathbb{R}_{+}^{2}$. If $p<0$, then $a-b$ and $a^{p}-b^{p}$ has the opposite sign, so $\Delta_{2} \leq 0$. By Lemma 2.5, it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-geometrically concave with $(a, b) \in \mathbb{R}_{+}^{2}$.

The proof of Theorem 1.2 is complete.
Proof. [Proof of Theorem 1.3] It is easy to see that

$$
\begin{aligned}
& a^{2} \frac{\partial K}{\partial a}=\frac{m(a, b)}{2\left(\omega_{1}+\omega_{2}\right)}\left(\omega_{1} a^{p+1}+\omega_{2} a^{\frac{p}{2}+1} b^{\frac{p}{2}}\right) \\
& b^{2} \frac{\partial K}{\partial b}=\frac{m(a, b)}{2\left(\omega_{1}+\omega_{2}\right)}\left(\omega_{1} b^{p+1}+\omega_{2} a^{\frac{p}{2}} b^{\frac{p}{2}+1}\right)
\end{aligned}
$$

and then

$$
\Delta_{3}:=(a-b)\left(a^{2} \frac{\partial K}{\partial a}-b^{2} \frac{\partial K}{\partial b}\right)=\frac{m(a, b)}{2\left(\omega_{1}+\omega_{2}\right)} f(x, y)
$$

where

$$
f(a, b):=\omega_{1}(a-b)\left(a^{p+1}-b^{p+1}\right)+\omega_{2} a^{\frac{p}{2}} b^{\frac{p}{2}}(a-b)^{2} .
$$

If $p \geq-1$, then $a-b$ and $a^{p+1}-b^{p+1}$ has the same sign, so $f(a, b) \geq 0$, and then $\Delta_{3} \geq 0$. By Lemma 2.6, it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-harmonically convex with $(a, b) \in \mathbb{R}_{+}^{2}$.

Without loss of generality, we may assume that $a \geq b$, then $z:=\frac{a}{b} \geq 1$, and then

$$
f(a, b)=b^{p+2}(z-1) g(z)
$$

where

$$
\begin{aligned}
& g(z)=\omega_{1}\left(z^{p+1}-1\right)+\omega_{2} z^{\frac{p}{2}}(z-1) . \\
& g^{\prime}(z)=z^{\frac{p}{2}-1} s(z)
\end{aligned}
$$

where

$$
s(z)=\omega_{1}(p+1)\left(z^{\frac{p}{2}+1}+\omega_{2}\left(\frac{p}{2}+1\right) z-\omega_{2} \frac{p}{2} .\right.
$$

If $-2<p<-1$ and $\omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right) \geq 0$, from Lemma 2.8, it follows $s(z) \geq 0$, and then $g^{\prime}(z) \geq 0$, but $g(1)=0$, so $g(z) \geq 0$ and $f(a, b) \geq 0$. Thus $\Delta_{3} \geq 0$, by Lemma 2.6 , it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-harmonically convex with $(a, b) \in \mathbb{R}_{+}^{2}$.

If f $p \leq-2$ and $\omega_{1}\left(\frac{p}{2}+1\right)+\omega_{2}=0$, from Lemma 2.8, it follows $s(z) \leq 0$, and then $g^{\prime}(z) \leq 0$, but $g(1)=0$, so $g(z) \leq 0$ and $f(a, b) \leq 0$. Thus $\Delta_{3} \leq 0$, by Lemma 2.6 , it follows that $K\left(\omega_{1}, \omega_{2}, p\right)$ is Schur-harmonically concave with $(a, b) \in \mathbb{R}_{+}^{2}$.

The proof of Theorem 1.3 is complete.

4. Applications

Theorem 4.1. Let $(a, b) \in \mathbb{R}_{+}^{2}, u(t)=t b+(1-t) a, v(t)=t a+(1-t) b$. Assume also that $\frac{1}{2} \leq t_{2} \leq t_{1} \leq 1$ or $0 \leq t_{1} \leq t_{2} \leq \frac{1}{2}$.

$$
\text { If } \omega_{1} \omega_{2} \neq 0, p \geq 2 \text { and } p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \geq 0, \text { then we have we have }
$$

$$
\begin{align*}
& K\left(\omega_{1}, \omega_{2}, p ; \frac{a+b}{2}, \frac{a+b}{2}\right) \leq K\left(\omega_{1}, \omega_{2}, p ; u\left(t_{2}\right), v\left(t_{2}\right)\right) \\
& \leq K\left(\omega_{1}, \omega_{2}, p ; u\left(t_{1}\right), v\left(t_{1}\right)\right) \leq K\left(\omega_{1}, \omega_{2}, p ; a, b\right) \leq G\left(\omega_{1}, \omega_{2}, p ; a+b, 0\right) . \tag{5}
\end{align*}
$$

If $\omega_{1} \omega_{2} \neq 0,1 \leq p<2$ and $p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \leq 0$, then inequalities in (5) are all reversed.

Proof. From Lemma 2.7, we have

$$
\left(\frac{a+b}{2}, \frac{a+b}{2}\right)<\left(u\left(t_{2}\right), v\left(t_{2}\right)\right)<\left(u\left(t_{1}\right), v\left(t_{1}\right)\right)<(a, b),
$$

and it is clear that $(a, b)<(a+b-\varepsilon, \varepsilon)$, where ε is enough small positive number.
If $\omega_{1} \omega_{2} \neq 0, p \geq 2$ and $p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \geq 0$, by Theorem 1 , and let $\varepsilon \rightarrow 0$, it follows that (5) are holds. If $\omega_{1} \omega_{2} \neq 0,1 \leq p<2$ and $p\left(\omega_{1}-\frac{\omega_{2}}{2}\right)-\omega_{1} \leq 0$, then inequalities in (5) are all reversed.

The proof is complete.
Theorem 4.1 enable us to obtain a large number of refined inequalities by assigning appropriate values to the parameters $\omega_{1}, \omega_{2}, p, t_{1}$ and t_{2}.

For example, putting $\omega_{1}=\omega_{2}=1$ in (5), we can get
Corollary 4.2. Let $p \geq 2$. Then for $(a, b) \in \mathbb{R}_{+}^{2}$, we have

$$
\begin{equation*}
A\left(a^{p}, b^{p}\right)+G\left(a^{p}, b^{p}\right) \geq 2(A(a, b))^{p} \tag{6}
\end{equation*}
$$

Putting $p=\frac{1}{2}, \omega_{1}=2, \omega_{2}=1$ and $t_{1}=\frac{3}{4}, t_{2}=\frac{1}{2}$ in (5), we can get
Corollary 4.3. Let $(a, b) \in \mathbb{R}_{+}^{2}$. Then

$$
\begin{equation*}
\frac{a+b}{2} \geq \frac{1}{36}[\sqrt{a+3 b}+\sqrt[4]{(a+3 b)(3 a+b)}+\sqrt{3 a+b}]^{2} \geq \frac{1}{9}(\sqrt{a}+\sqrt[4]{a b}+\sqrt{b})^{2} \tag{7}
\end{equation*}
$$

Theorem 4.4. Let $(a, b) \in \mathbb{R}_{+}^{2}$. If $p \geq 0(<0)$, we have

$$
\begin{equation*}
G(a, b) \leq(\geq) K\left(\omega_{1}, \omega_{2}, p ; a, b\right) \tag{8}
\end{equation*}
$$

Proof. Since $(\log \sqrt{a b}, \log \sqrt{a b})<(\log a, \log b)$, if $p \geq 0(<0)$, by Theorem 1.2, it follows

$$
G(a, b)=K\left(\omega_{1}, \omega_{2}, p ; \sqrt{a b}, \sqrt{a b}\right) \leq(\geq) K\left(\omega_{1}, \omega_{2}, p ; a, b\right)
$$

The proof is complete.
For example, putting $\omega_{1}=\omega_{2}=1$ in (8), we can get
Corollary 4.5. Let $(a, b) \in \mathbb{R}_{+}^{2}$. If $p \geq 0(<0)$, then

$$
\begin{equation*}
A\left(a^{p}, b^{p}\right)+G\left(a^{p}, b^{p}\right) \leq(\geq) 2(G(a, b))^{p} \tag{9}
\end{equation*}
$$

Theorem 4.6. Let $(a, b) \in \mathbb{R}_{+}^{2}$. If $p \geq-1$ or if $-2<p<-1$ and $\omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right) \geq 0$, then

$$
\begin{equation*}
H(a, b) \leq K\left(\omega_{1}, \omega_{2}, p ; \frac{a b}{t b+(1-t) a}, \frac{a b}{t a+(1-t) b}\right) \leq K\left(\omega_{1}, \omega_{2}, p ; a, b\right) \tag{10}
\end{equation*}
$$

where $H(a, b)=\frac{2}{a^{-1}+b^{-1}}$ is the harmonic mean.
If $p \leq-2$ and $\omega_{1}\left(\frac{p}{2}+1\right)+\omega_{2}=0$, then inequalities in (10) are all reversed.
Proof. By Lemma 2.7, we have

$$
\left(\frac{a^{-1}+b^{-1}}{2}, \frac{a^{-1}+b^{-1}}{2}\right)<\left(t a^{-1}+(1-t) b^{-1}, t b^{-1}+(1-t) a^{-1}\right)<\left(a^{-1}, b^{-1}\right)
$$

If $p \geq-1$ or if $-2<p<-1$ and $\omega_{1}(p+1)+\omega_{2}\left(\frac{p}{2}+1\right) \geq 0$, then by Theorem 1.3, it follows

$$
\begin{aligned}
H(a, b) & =K\left(\omega_{1}, \omega_{2}, p ; \frac{2}{a^{-1}+b^{-1}}, \frac{2}{a^{-1}+b^{-1}}\right) \\
& \leq K\left(\omega_{1}, \omega_{2}, p ; \frac{a b}{t b+(1-t) a}, \frac{a b}{t a+(1-t) b}\right) \\
& \leq K\left(\omega_{1}, \omega_{2}, p ; a, b\right) .
\end{aligned}
$$

If $p \leq-2$ and $\omega_{1}\left(\frac{p}{2}+1\right)+\omega_{2}=0$, then inequalities in (10) are all reversed.
The proof is complete.
Putting $\omega_{1}=\omega_{2}=1$ in (10), we can get
Corollary 4.7. Let $(a, b) \in \mathbb{R}_{+}^{2}$. If $p \geq-1$ or $-\frac{4}{3}<p<-1$, then

$$
\begin{equation*}
A\left(a^{p}, b^{p}\right)+G\left(a^{p}, b^{p}\right) \geq 2(H(a, b))^{p} \tag{11}
\end{equation*}
$$

If $p=-4$, then the inequality in (11) is reversed.

References

[1] J.-C. Kuang, Applied Inequalities (Chang yong bu deng shi), 4rd ed., Shandong Press of Science and Technology, Jinan, China, 2010 (in Chinese).
[2] W. Janous, A note on generalized Heronian means, Mathematical Inequalities \& Applications, 4 (3) (2001), 369-375.
[3] B.-Y. Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990. (Chinese)
[4] A. M. Marshall and I. Olkin, Inequalities:theory of majorization and its application. New York : Academies Press, 1979.
[5] X.-M. Zhang,Geometrically Convex Functions. Hefei: An'hui University Press, 2004.(Chinese)
[6] C. P. Niculescu, Convexity According to the Geometric Mean, Mathematical Inequalities \& Applications, 2000, 3(2):155-167.
[7] Y.-M. Chu, G.-D. Wang and X.-H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Mathematische Nachrichten, 2011, 284 (5-6): 653-663.
[8] J.-X. Meng, Y. M. Chu and X.-M. Tang, The Schur-harmonic-convexity of dual form of the Hamy symmetric function, Matematički Vesnik, 2010, 62 (1): 37-46.
[9] H.-N. Shi, Y.-M. Jiang and W.-D. Jiang, Schur-Convexity and Schur-Geometrically Concavity of Gini Mean, Computers and Mathematics with Applications, 57 (2009) 266-274.
[10] A. Witkowski, On Schur convexity and Schur-geometrical convexity of four-parameter family of means, Math. Inequal. Appl., 2011,14 (4)897-903.
[11] J. Sndor, The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal. , 2007, 1, no. 2, 212-215.
[12] Y.-M. Chu, X.-M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, Journal of Mathematics of Kyoto University, 2008, 48(1): 229-238.
[13] Y.-M. Chu, X.-M. Zhang, The Schur geometrical convexity of the extended mean values, Journal of Convex Analysis, 2008, 15, No. 4: 869-890.
[14] W.-F. Xia, Y.-M. Chu, The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Mathematica Scientia 2011, 31B(3) :1103-1112.
[15] H.-N. Shi, B. Mihaly, S.-H. Wu, and D.-M. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl., vol.2008, Article ID 879273, 9 pages
[16] W.-F. Xia, Y.-M. Chu, The Schur multiplicative convexity of the generalized Muirhead mean, International Journal of Functional Analysis, Operator Theory and Applications, 2009, 1(1): 1-8.
[17] Y.-M. Chu, W.-F. Xia, Necessary and sufficient conditions for the Schur harmonic Convexity of the Generalized Muirhead Mean, Proceedings of A. Razmadze Mathematical Institute, Vol. 152 (2010), 19-27.
[18] Z.-H. Yang, Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homogeneous means, Abstr. Appl. Anal., Volume 2010, Article ID 830163, 16 pages doi:10.1155/2010/830163.
[19] W.-F. Xia, Y.-M. Chu, The Schur convexity of the weighted generalized logarithmic mean values according to harmonic mean, International Journal of Modern Mathematics, 4(3) (2009), 225-233.
[20] A. Witkowski, On Schur-convexity and Schur-geometric convexity of four-parameter family of means, Math. Inequal. Appl., 2011, 14 (4): 897C-903.
[21] Z.-H. Yang, Schur harmonic convexity of Gini means, International Mathematical Forum, Vol. 6, 2011, no. 16, 747-762.
[22] Z.-H. Yang, Schur power convexity of Stolarsky means, Publ. Math. Debrecen, 2012, 80 (1-2):. 43-66.
[23] F. Qi, J. Sndor, S. S. Dragomir and A. Sofo, Notes on the Schur- convexity of the extended mean values, Taiwanese J. Math., 2005, 9(3): 411-420.
[24] L. -L. FU, B.-Y. Xi and H. M. Srivastava, Schur-convexity of the generalized Heronian means involving two positive numbers, Taiwanese Journal of Mathematics, 2011, 15(6): 2721-2731.
[25] T.-Y. Zhang, A.-P. Ji, Schur-convexity of generalized Heronian mean, Communications in Computer and Information Science, 1, Volume 244, Information Computing and Applications, Part 1, Pages 25-33.
[26] W.-F. Xia, Y.-M. Chu and G.-D. Wang, Necessary and sufficient conditions for the Schur harmonic convexity or concavity of the extended mean values, Revista De La Unin Matemtica Argentina, 2010, 51(2) : 121-132.
[27] Y. Wu, F. Qi, Schur-harmonic convexity for differences of some means, Analysis 32, 1001-1008 (2012).
[28] V. Lokesha, K. M. Nagaraja, B. Naveen kumar and Y.-D. Wu, Schur convexity of Gnan mean for two variables, NNTDM 17 (2011), 4, 37-41.
[29] Y. Wu, F. Qi and H.-N. Shi, Schur-harmonic convexity for differences of some special means in two variables, J.Math. Inequal., J.Math. Inequal. , Volume 8, Number 2 (2014), 321-330.
[30] W.-M. Gong, X.-H. Shen and Y.-M. Chu, The Schur convexity for the generalized Muirhead mean, J. Math. Inequal., Volume 8, Number 4 (2014), 855-862.
[31] K. M. Nagaraja, Sudhir Kumar Sahu, Schur harmonic convexity of Stolarsky extended mean values, Scientia Magna, Vol. 9 (2013), No. 2, 18-29.
[32] V. Lokesha, B. Naveen Kumar, K. M. Nagaraja and S. Padmanabhan, Schur geometric convexity for ratio of difference of means, Journal of Scientific Research \& Reports, 3(9): 1211-1219, 2014; Article no. JSRR.2014.9.008.
[33] Y.-P. Deng, S.-H. Wu, Y.-M. Chu and D. He, The Schur convexity of the generalized Muirhead-Heronian means, Abstract and Applied Analysis, Volume 2014 (2014), Article ID 706518, 11 pages http://dx.doi.org/10.1155/2014/706518.
[34] W.-M. Gong, H. Sun and Y.-M. Chu, The Schur convexity for the generalized muirhead mean, J.Math. Inequal., Volume 8, Number 4 (2014), 855-862.
[35] H.-P. Yin, H.-N. Shi and F. Qi, On Schur mCpower convexity for ratios of some means, J.Math. Inequal., Volume 9, Number 1 (2015), 145-153.

[^0]: 2010 Mathematics Subject Classification. Primary 26E60; Secondary 26D15, 26A51
 Keywords. mean of two variables, Schur-convexity, Schur-geometric convexity, Schur-harmonic convexity, majorization, inequalities

 Received: 28 September 2015; Accepted: 16 November 2015
 Communicated by Hari M. Srivastava
 Email addresses: fuchunru2008@163.com (Chun-Ru Fu), wds000651225@sina.com (Dongsheng Wang), sfthuannan@buu.com.cn, shihuannan2014@qq.com (Huan-Nan Shi)

