
Filomat 32:19 (2018), 6563–6573
https://doi.org/10.2298/FIL1819563M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Theory of matrix splittings is a useful tool for finding the solution of a rectangular linear
system of equations, iteratively. The purpose of this paper is two-fold. Firstly, we revisit the theory of
weak regular splittings for rectangular matrices. Secondly, we propose an alternating iterative method for
solving rectangular linear systems by using the Moore-Penrose inverse and discuss its convergence theory,
by extending the work of Benzi and Szyld [Numererische Mathematik 76 (1997) 309-321; MR1452511].
Furthermore, a comparison result is obtained which ensures the faster convergence rate of the proposed
alternating iterative scheme.

1. Introduction

Many questions in science and engineering give rise to linear discrete ill-posed problems. In particular,
the discretization of Fredholm integral equations of the first kind, and in particular deconvolution problems
with a smooth kernel, lead to linear systems of equations of the form

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, (1)

with a matrix of ill-determined rank, whereRm×n denotes the set of all real rectangular matrices. Linear sys-
tems of equations with a matrix of this kind are commonly referred to as linear discrete ill-posed problems.
We consider equation (1) as a least-squares problem in the case of an inconsistent system. Similarly, singular
linear systems of equations arise in many problems like the finite difference representation of Neumann
problems, finite element electromagnetic analysis using edge elements and the computation of stationary
probability vectors of stochastic matrices in the analysis of Markov chains, to name a few. In particular, we
arrive at an M-matrix as the coefficient matrix A. A matrix A ∈ Rn×n is said to be an M-matrix if A = sI − B,
where B ≥ 0 (see Section 2.2 for its meaning) and s ≥ ρ(B). It becomes a singular M-matrix when s = ρ(B).
The study of M-matrices has a long history. A systematic study of M-matrices was first initiated by Fiedler
and Ptak [7]. Fifty equivalent conditions of an M-matrix are reported in the book by Berman and Plemmons
[4]. An extensive theory of M-matrix has been developed for its role in the iterative methods. In both
theoretical and practical cases, iterative methods play a vital role in solving a large sparse linear system
of equations as either solvers or preconditioners. In this note, we propose an alternating iterative method
using the theory of proper splittings.
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Email address: dmishra@nitrr.ac.in (Debasisha Mishra)



D. Mishra / Filomat 32:19 (2018), 6563–6573 6564

For A ∈ Rm×n, a splitting is an expression of the form A = U − V, where U and V are matrices of the
same order as in A. The concept of splitting first arises from the iterative solution of the large linear system
of equations (1). Standard iterative methods like the Jacobi, Gauss-Seidel and successive over-relaxation
methods arise from different choices of U and V. Berman and Plemmons [3] proposed first an iterative
method for solving (1). They used the Moore-Penrose inverse for computing the least squares solution in
the inconsistent case. The matrix G satisfying the four matrix equations: AGA = A, GAG = G, (AG)T = AG
and (GA)T = GA is called the Moore-Penrose inverse of A (here BT denotes the transpose of B). It always exists
and unique, and is denoted by A†. The advantage of the iterative technique for solving the rectangular
system of linear equations is that it avoids the use of the normal system ATAx = ATb where ATA is frequently
ill-conditioned and influenced greatly by roundoff errors (see [8]).

Berman and Plemmons [3] introduced the notion of proper splitting for rectangular matrices, which we
recall next. A splitting A = U − V of A ∈ Rm×n is called a proper splitting if R(U) = R(A) and N(U) = N(A),
where the text R(A) and N(A) denote the range and null-space of a matrix A, respectively. The authors of
[3] considered the following iteration scheme:

xi+1 = Hxi + c, (2)

where A = U − V is a proper splitting, H = U†V ∈ Rn×n is called the iteration matrix and c = U†b to solve
(1), iteratively. The same authors proved that the iteration scheme (2) converges to A†b, the least squares
solution of minimum norm for any initial vector x0 if and only if the spectral radius of H is less than 1 (see
Corollary 1, [3]).

The authors of [3] also obtained several convergence criteria for different subclasses of proper splittings.
Recently, Jena et al. [9] revisited the same theory. Certain necessary parts of the same theory are recalled and
discussed in Section 3 of this paper. The above discussion extends the convergence theory of the iterative
scheme:

xi+1 = U−1Vxi + U−1b, (3)

which is being used to solve the nonsingular linear system Ax = b.
On the other hand, the speed of the iteration schemes (2) and (3) is a subject of concern. In this direction,

several works have been done in literature. Among these works, Benzi and Szyld [2] proposed the concept
of the alternating iteration method for solving the linear system of the form Ax = b, iteratively where A
may be nonsingular or singular. They considered two splittings of A ∈ Rn×n such that A = M −N = P −Q,
and proposed the scheme

xi+1/2 = M−1Nxi + M−1b, xi+1 = P−1Qxi+1/2 + P−1b, i = 0, 1, 2, . . . . (4)

Then, eliminating xi+1/2, they obtained

xi+1 = P−1QM−1Nxi + P−1(QM−1 + I)b, i = 0, 1, 2, . . . . (5)

Finally, they discussed the convergence theory of the above scheme using a weak regular splitting of A
among other results. (Recall that a splitting A = U −V of A ∈ Rn×n is weak regular [12] if U−1 exists, U−1

≥ 0
and U−1V ≥ 0.) The objective of the present paper is to introduce an alternating iteration technique and to develop its
convergence theory for solving the rectangular linear system of equations (1). By doing this, we will have another
iteration scheme of the form (7) which converges faster than the iteration scheme (2).

To fulfill this objective, we organize the content of the paper as follows. In Section 2, we set up our
notation and terminology. Furthermore, we collect some useful facts on projection, the Moore-Penrose
inverse, proper splittings, spectral radius and its connection with non-negative matrices which will be used
in deriving the main results in Section 3 and Section 4. The next Section recalls results on the theory of
regular and weak regular splittings for rectangular matrices. It also contains two comparison results which
will help us in detecting a better splitting between matrix splittings. The main contribution of this paper
discussed in Section 4 is that we introduce the notion of an alternating iterative scheme for rectangular
matrices by using the Moore-Penrose inverse. Then convergence and comparison results involving this
scheme are reported. Finally, we end up with a concluding Section which compares our work with Benzi
and Szyld’s work.
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2. Prerequisites

This section contains our notation and definitions, and also we recall some useful facts related to the
Perron-Frobenius theory for non-negative matrices. Throughout the paper, all our matrices are real. Let
L and M be complementary subspaces of Rn, i.e., L ⊕M = Rn. Let also PL,M be a projector on L along M.
Then PL,MA = A if and only if R(A) ⊆ L and APL,M = A if and only if N(A) ⊇ M. If L ⊥ M, then PL,M will
be denoted by PL. The spectral radius of A ∈ Rn×n, denoted by ρ(A) is defined by ρ(A) = max

1≤i≤n
|λi|, where

λ1, λ2, · · · , λn are the eigenvalues of A. It is known that ρ(AB) = ρ(BA), where A and B are two matrices
such that AB and BA are defined. We now recall some facts on generalized inverses, non-negative matrices
and proper splittings below.

2.1. Generalized inverses

These are generalizations of the ordinary matrix inverse. Generalized inverses exist for all matrices
while the ordinary matrix inverse does not exist. Some of the important generalized inverses are the
Moore-Penrose inverse, the group inverse and the Drazin inverse. While the definition of the first one is
introduced in page 2, the other two are presented next. The Drazin inverse of a matrix A ∈ Rn×n is the unique
solution X ∈ Rn×n satisfying the equations: Ak = AkXA, X = XAX and AX = XA, where k is the index1) of
A. It is denoted by AD. But for k = 1, AD is called as group inverse of A, and is denoted by A#. While A†

and AD exist for any matrix A, A# does not. It exists only for matrices of index 1. We refer to [1] for more
details. In the case of nonsingular matrix A, A† = A−1 = AD = A#. Some of the well-known properties of A†

which will be frequently used in this paper are: R(AT) = R(A†); N(AT) = N(A†); AA† = PR(A); A†A = PR(AT).
In particular, if x ∈ R(AT) then x = A†Ax.

2.2. Non-negative matrices

A = (ai j) ∈ Rm×n is called non-negative if A ≥ 0, where A ≥ 0 means ai j ≥ 0 for each i, j, and there exists
at least one pair of indices k, l for which ak,l > 0. For A,B ∈ Rm×n, A ≤ B means B − A ≥ 0. Similarly, B > 0
means all the entries of B are positive. The same notation and nomenclature are also used for vectors. A
matrix A ∈ Rm×n is called semi-monotone if A† ≥ 0. Next four results deal with non-negativity and spectral
radius, and are going to be used in Section 3 and Section 4.

Theorem 2.1. (Theorem 2.20, [12])
Let B ∈ Rn×n and B ≥ 0. Then
(i) B has a non-negative real eigenvalue equal to its spectral radius.
(ii) There exists a non-negative eigenvector for its spectral radius.

Theorem 2.2. (Theorem 2.21, [12])
Let A, B ∈ Rn×n and A ≥ B ≥ 0. Then ρ(A) ≥ ρ(B).

Theorem 2.3. (Theorem 3.15, [12])

Let X ∈ Rn×n and X ≥ 0. Then ρ(X) < 1 if and only if (I − X)−1 exists and (I − X)−1 =

∞∑
k=0

Xk
≥ 0.

Theorem 2.4. (Theorem 1.11, [4], Chapter 2)
Let B ∈ Rn×n, B ≥ 0 and x > 0 be such that Bx − αx ≤ 0. Then ρ(B) ≤ α.

1)The index of A ∈ Rn×n is the least non-negative integer k such that rank(Ak+1)=rank(Ak).
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2.3. Proper splittings
Here, we recall some results on proper splittings which are useful in proving our main results. The first

one contains a few properties of a proper splitting.

Theorem 2.5. (Theorem 1, [3])
Let A = U − V be a proper splitting of A ∈ Rm×n. Then
(a) A = U(I −U†V);
(b) I −U†V is invertible;
(c) A† = (I −U†V)−1U†.

If A = U −V is a proper splitting of A ∈ Rm×n, then U = A + V is also a proper splitting. Thus I + A†V is
invertible by Theorem 2.5 (b). Since FG and GF have same eigenvalues for any F and G such that both the
product are defined, and I +A†V is invertible, so −1 is not an eigenvalue of VA†. Hence I +VA† is invertible.
This fact can also be proved by considering the proper splitting UT = AT + VT. The next lemma shows a
relation between the eigenvalues of U†V and A†V.

Lemma 2.6. (Lemma 2.6, [11])
Let A = U − V be a proper splitting of A ∈ Rm×n. Let µi, 1 ≤ i ≤ s and λ j, 1 ≤ j ≤ s be the eigenvalues of the
matrices U†V and A†V, respectively. Then for every j, we have 1 + λ j , 0. Also, for every i, there exists j such that
µi =

λ j

1+λ j
and for every j, there exists i such that λ j =

µi

1−µi
.

3. Proper Regular & Proper Weak Regular Splittings

In this section, the theory of proper regular and weak regular splittings is recalled first, and then some
new results are proposed. We reproduce the definitions of proper regular splitting and proper weak regular
splitting below.

Definition 3.1. (Definition 1, [5] & Definition 1.1, [9])
A splitting A = U −V of A ∈ Rm×n is called a proper regular splitting if it is a proper splitting such that U† ≥ 0 and
V ≥ 0.

Definition 3.2. (Definition 1.2, [9])
A splitting A = U−V of A ∈ Rm×n is called a proper weak regular splitting if it is a proper splitting such that U† ≥ 0
and U†V ≥ 0.

The class of matrices having a fixed positive real number in all the entries always have proper regular
and proper weak regular splittings. We next present an example of a proper splitting which is a proper
weak regular splitting but not a proper regular splitting.

Example 3.3. Let A =

[
9 −8 15
−6 6 −10

]
=

[
6 −4 10
−3 4 −5

]
−

[
−3 4 −5
3 −2 5

]
= U − V. Then R(U) = R(A),

N(U) = N(A), U† =

 3/34 3/34
1/4 1/2

5/34 5/34

 ≥ 0 and U†V =

 0 3/17 0
3/4 0 5/4
0 5/17 0

 ≥ 0. Thus A = U − V is a proper weak

regular splitting but not a proper regular splitting since V � 0.

Jena et al. proved the following convergence criteria for the class of proper regular splittings.

Theorem 3.4. (Theorem 1.3, [9])
Let A = U − V be a proper regular splitting of A ∈ Rm×n. Then A† ≥ 0 if and only if ρ(U†V) < 1.

Berman and Plemmons [3] initiated the study of convergence theory of iteration scheme (2) without
terming the class of proper splittings A = U − V as proper weak regular splittings. One of their results
presented below characterizes semi-monotone matrices in the terms of this class of splittings.
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Theorem 3.5. (Theorem 3, [3])
Let A = U − V be a proper weak regular splitting of A ∈ Rm×n. Then A† ≥ 0 if and only if ρ(U†V) < 1.

Noted next result is proved in [9] which contains equivalent convergence conditions for iteration scheme
(2).

Theorem 3.6. (Theorem 3.1, [9])
Let A = U − V be a proper regular splitting of A ∈ Rm×n. If A† ≥ 0, then
(a) A† ≥ U†;
(b) ρ(A†V) ≥ ρ(U†V);
(c) ρ(U†V) =

ρ(A†V)
1+ρ(A†V) < 1.

The conditions of the proper weak regular splitting still can be weakened by dropping the condition
U† ≥ 0, and the resultant splitting is known as proper nonnegative (proper weak) splitting (Definition 3.1, [10]).
A convergence result for a proper nonnegative splitting is obtained below.

Lemma 3.7. (Lemma 3.4, [10])
Let A = U − V be a proper nonnegative splitting of A ∈ Rm×n and A†U ≥ 0. Then ρ(U†V) =

ρ(A†U)−1
ρ(A†U) < 1.

We remark that the above result is also true for the proper weak regular splitting. Next result further
adds a few more equivalent conditions to the above Lemma for a proper weak regular splitting.

Theorem 3.8. Let A = U − V be a proper weak regular splitting of A ∈ Rm×n. Then

(a)⇒ (b)⇒ (c)⇒ (d)⇒ (e)⇒ ( f )⇒ (1).

(a) A†U ≥ 0;
(b) ρ(U†V) =

ρ(A†U)−1
ρ(A†U) ;

(c) ρ(U†V) < 1;
(d) (I −U†V)−1

≥ 0;
(e) A†V ≥ 0;
(f) A†V ≥ U†V;
(g) ρ(U†V) =

ρ(A†V)
1+ρ(A†V) < 1.

Proof. (a)⇒ (b): Follows from the proof of Lemma 3.7.
(b)⇒ (c): Obvious.

(c) ⇒ (d): The conditions ρ(U†V) < 1 and U†V ≥ 0 together yields that (I − U†V)−1 =

∞∑
k=0

(U†V)k
≥ 0, by

Theorem 2.3.
(d) ⇒ (e): By Theorem 2.5 (c), we obtain A† = (I − U†V)−1U†. Post-multiplying V both the sides, we get
A†V = (I −U†V)−1U†V. Hence A†V ≥ 0 as (I −U†V)−1

≥ 0 and U†V ≥ 0.
(e) ⇒ ( f ): We have A†V = (I − U†V)−1U†V by Theorem 2.5 (c). Pre-multiplying I − U†V both the sides,
we obtain (I − U†V)A†V = U†V which implies A†V − U†V = U†VA†V. Thus A†V ≥ U†V as U†V ≥ 0 and
A†V ≥ 0.
( f )⇒ (1): Observe that A†V ≥ 0 as U†V ≥ 0. Let λ be any eigenvalue of A†V and f (η) =

η
1+η , η ≥ 0. Then

f is a strictly increasing function. Let µ be any eigenvalue of U†V. We now have µ = λ
1+λ by Lemma 2.6.

Hence, µ attains its maximum when λ is maximum. But λ is maximum when λ = ρ(A†V). As a result, the

maximum value of µ is ρ(U†V). Thus ρ(U†V) =
ρ(A†V)

1+ρ(A†V) < 1.

The rate of convergence of the iteration scheme (2) depends on the spectral radius of the iteration matrix
U†V. Hence, the spectral radius of the iteration matrix plays a vital role in the comparison of the speed of
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the convergence of different iterative schemes of the same linear system given in (1). Next result compares
the spectral radii of the iteration matrices between a proper regular splitting and a proper weak regular
splitting arising out of the same coefficient matrix A.

Theorem 3.9. Let A = B − C be a proper weak regular splitting and A = U − V be a proper regular splitting of a
semi-monotone matrix A ∈ Rm×n. If A ≥ 0 and B† ≥ U†, then

ρ(B†C) ≤ ρ(U†V) < 1.

Proof. By Theorem 3.4 and Theorem 3.5, we have ρ(U†V) < 1 and ρ(B†C) < 1. Also ρ(U†V) and ρ(B†C) are
strictly increasing functions of ρ(A†V) and ρ(A†C), so it suffices to show that

ρ(A†V) ≥ ρ(A†C).

But I + A†C and I + VA† are both invertible as A = B − C = U − V are proper splittings. The conditions
A = B−C is a proper weak regular splitting and ρ(B†C) < 1 imply that A†C ≥ 0 by Theorem 2.3 and Theorem
2.5 (c) which in turn yields I + A†C ≥ 0. Clearly, I + VA† ≥ 0. Now B† ≥ U† results A†(I + VA†) ≥ (I + A†C)A†

i.e., A†VA† ≥ A†CA†. Then, post-multiplying it by V, we have

(A†V)2
≥ A†CA†V.

Again, post-multiplying A†VA† ≥ A†CA† by A, we get A†VA†A = A†V ≥ A†CA†A = A†C. So

A†VA†C ≥ (A†C)2.

Therefore, by Theorem 2.2, we have

ρ2(A†V) ≥ ρ(A†VA†C) = ρ(A†CA†V) ≥ ρ2(A†C).

Hence ρ(A†V) ≥ ρ(A†C). Thus
ρ(B†C) ≤ ρ(U†V) < 1.

We now present a result which replaces the condition A ≥ 0 in the above theorem by row sums of U†

are positive.

Theorem 3.10. Let A = B − C be a proper weak regular splitting and A = U − V be a proper regular splitting of a
semi-monotone matrix A ∈ Rm×n. If B† ≥ U† and row sums of U† are positive, then

ρ(B†C) ≤ ρ(U†V) < 1.

Proof. We have ρ(U†V) < 1 and ρ(B†C) < 1, by Theorem 3.4 and Theorem 3.5, respectively. As U†V ≥ 0,
by Theorem 2.1, there exists x ≥ 0 such that U†Vx = ρ(U†V)x. So x ∈ R(UT) = R(BT). Therefore Ux =

1
ρ(U†V) UU†Vx = 1

ρ(U†V) Vx. Now Ax = (U−V)x = U(I−U†V)x = (1−ρ(U†V))Ux = ( 1
ρ(U†V) −1)Vx ≥ 0 as V ≥ 0

and ρ(U†V) < 1. Then the condition B† ≥ U† yields B†Ax ≥ U†Ax, i.e., B†(B − C)x ≥ U†(U − V)x which in
turn implies that x − B†Cx ≥ x −U†Vx. Hence B†Cx ≤ U†Vx = ρ(U†V)x. By replacing A by A − εJ and V by
V + εJ, where all the entries of J are 1, and ε is a small positive real number, we can assume that x > 0. Thus
ρ(B†C) ≤ ρ(U†V) < 1, by Theorem 2.4.

We remark that the above result is also true if we replace the condition ‘row sums of U† are positive’
by ‘no row of U† is zero’ as the conditions ‘U† ≥ 0’ and ‘no row of U† is zero’ yield ‘row sums of U† are
positive’. The above proof adopts a similar technique as in the proof of Lemma (Section 3, [6]). Notice that
U†(V + εJ) > 0 may not be possible always unless row sums of U† are positive. Hence we have assumed
the condition row sums of U† are positive. This fact is shown through an example below.
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Example 3.11. Let A =

[
0 2 1
0 4 2

]
=

[
0 4 2
0 8 4

]
−

[
0 2 1
0 4 2

]
. We have R(U) = R(A), N(U) = N(A),

V ≥ 0 and U† =

 0 0
1/25 2/25
1/50 1/25

 ≥ 0. Hence A = U − V is a proper regular splitting. But for ε = 0.01, we have

U†(V + εJ) =

 0 0 0
3/2500 1003/2500 503/2500
3/5000 535/2667 218/2167

 ≥ 0.

One can use the comparison results to pick the best splitting among any finite number of splittings.
However, the major drawback of this theory is the following: it is time-consuming and needs many computation.
To avoid this situation and to get a finer process, we now proceed to introduce alternating iteration scheme
for rectangular matrices replacing the ordinary matrix inverse by the Moore-Penrose inverse, and then
discuss its convergence theory.

4. Application to Convergence of Alternating Iterations

Let A = M −N = U − V be two proper splittings of A ∈ Rm×n. We now propose

xi+1/2 = M†Nxi + M†b, xi+1 = U†Vxi+1/2 + U†b, i = 0, 1, 2, . . . , (6)

as the general class of iterative method for finding the solution of (1) with the initial approximation x0. In
the case of nonsingular M and U, the above equation reduces to equation (8) of section 3, [2] (i.e., equation
(4) of this paper). Not only that many well-known methods belong to such a class, and are also discussed
in the same section of [2].

In order to study the convergence of the above scheme, we construct a single splitting A = B − C
associated with the iteration matrix by eliminating xi+1/2 from (6). So, we have

xi+1 = U†VM†Nxi + U†(VM† + I)b, i = 0, 1, 2, . . . , (7)

where H = U†VM†N is the iteration matrix of the new iterative scheme (7).
Recall that the convergence of the individual splittings A = M − N and A = U − V does not imply the

convergence of the alternating iterative scheme (7). Example 3.1, [2] is in this direction, and is obtained
below for the sack of completeness and ready reference.

Example 4.1. (Example 3.1, [2])

Let A =

[
2 −1
−1 2

]
, M =

[
2 1
−1 1

]
and U =

[
1 −1
1 2

]
. Then A = M −N = U − V are two convergent proper

splittings, but ρ(H) = ρ(U†VM†N) = 1.

Convergence of the iteration scheme (7) is addressed in the next result.

Theorem 4.2. Let A = M−N = U−V be two proper weak regular splittings of a semi-monotone matrix A ∈ Rm×n.
Then ρ(H) = ρ(U†VM†N) < 1.

Proof. We have H = U†VM†N = U†(U−A)M†(M−A) = U†U−U†A−M†A+U†AM†A. Since A = M−N = U−V
are two proper splittings, so R(U) = R(M) = R(A) and N(U) = N(M) = N(A). Hence M†M = U†U = A†A.
We then have H = U†U − U†A −M†A + U†AM†A. Again, U†AM† = U†(U − V)M† = U†UM† − U†VM† =
M†MM† − U†VM† = M† − U†VM†. But U†VM† ≥ 0 as A = M − N = U − V are two proper weak regular
splittings. So M† ≥ M† − U†VM† ≥ U†AM† which results (I − U†A)M† ≥ 0. The condition U† ≥ 0 yields
U† + (I−U†A)M† = U† + M† −U†AM† ≥ 0. This implies A† −U† −M† + U†AM† ≤ A† which can be rewritten
as U†UA† −U†AA† −M†AA† + U†AM†AA† ≤ A†. We then have (U†U−U†A−M†A + U†AM†A)A† ≤ A†, i.e.,
HA† ≤ A†. Thus (I −H)A† ≥ 0.

As H ≥ 0, we have 0 ≤ (I + H + H2 + H3 + · · ·+ Hm)(I −H)A† = (I −Hm+1)A† ≤ A† for each m ∈N. So, the

partial sums of the series
∞∑

m=0

Hm is uniformly bounded. Hence ρ(H) < 1.
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Next example shows that the converse of Theorem 4.2 is not true.

Example 4.3. Let A =

[
1 0 1
0 1 1

]
, M =

[
4 0 4
2 2 4

]
and U =

[
2 0 2
1 2 3

]
. Then A = M − N = U − V

are two proper splittings. Also ρ(H) = ρ(U†VM†N) = 3/8 < 1. But M† =

 1/4 −1/6
−1/4 1/3

0 1/6

 � 0 and U† = 5/12 −1/6
−1/3 1/3
1/12 1/6

 � 0, i.e., A = M −N = U − V are not proper weak regular splittings.

It is of interest to know the type of splitting B − C of A that yields the iterative scheme (7)(i.e., xi+1 =
Hxi + B†b with H = B†C). This can be restated as what can we say about the type of the induced splitting
A = B−C which is induced by H = U†VM†N. The same problem is settled partially by the next result under
the assumptions of a few conditions.

Theorem 4.4. Let A = M−N = U−V be two proper weak regular splittings of a semi-monotone matrix A ∈ Rm×n.
Then the unique splitting A = B − C induced by H with B = M(M + U − A)†U is a proper weak regular splitting if
R(M + U − A) = R(A) and N(M + U − A) = N(A).

Proof. From equation (7), we have B† = U†(VM† + I). By substituting V = U−A, we get B† = U† + U†UM† −
U†AM† = U†MM†+U†UM†−U†AM† = U†(M+U−A)M†. Since R(M+U−A) = R(A), N(M+U−A) = N(A) and
A = M−N = U−V are proper splittings, we have (M+U−A)(M+U−A)† = PR(M+U−A) = PR(A) = PR(U) = PR(M)
and (M + U − A)†(M + U − A) = PR((M+U−A)T) = PR(AT) = PR(MT) = PR(UT). Let X = M(M + U − A)†U, then
B†X = U†(M+U−A)M†M(M+U−A)†U = U†PR(U)U = U†U. So B†X is symmetric and B†XB† = B†. Similarly,
it can be shown that XB† is symmetric and XB†X = X. Hence X = (B†)† = B = M(M + U − A)†U.

Next to show that R(B) = R(A) and N(B) = N(A). First, we prove that N(U) = N(A) = N(B). Clearly,
N(U) ⊆ N(B). Let Bx = 0. Pre-multiplying M† to Bx = 0 and using M†M = PR(AT) = PR((M+U−A)T), we obtain
(M + U − A)†Ux = 0. Again, pre-multiplying (M + U − A) and using the fact (M + U − A)(M + U − A)† =
PR(M+U−A) = PR(U), we get x ∈ N(U). So N(B) ⊆ N(U). We next have to prove that R(A) = R(B), i.e.,
N(MT) = N(AT) = N(BT). Since B = M(M + U −A)†U, so N(MT) ⊆ N(BT). Hence we need to show the other
way, i.e., N(BT) ⊆ N(MT). Let x ∈ N(BT). Then (M(M + U − A)†U)Tx = 0. Pre-multiplying (U†)T, we get
(UU†)T[(M + U−A)†]TMTx = 0, i.e., xTM(M + U−A)†UU† = xTM(M + U−A)† = 0. Again, post-multiplying
(M + U − A), we get xTMM†M = 0. Thus MTx = 0, i.e., N(BT) ⊆ N(MT).

We have B† = M† + U† − U†AM† = A† − U†UM†MA† + U†UM†AA† + U†AM†MA† − U†AM†AA† =
A† − (U†UM† −U†AM†)(MA† −AA†) = A† − (U†(U −A)M†(M−A)A†) = A† −U†VM†NA† = (I −H)A†.Next
to prove that A = B − C is a proper splitting, i.e., to show that A = B − C, R(B) = R(A) and N(B) = N(A). We
have already shown the last two conditions, so we have to prove only A = B− C. By Theorem 4.2, we have
ρ(H) < 1 and so I−H is invertible. Let X = A(I−H)−1. Then XB† = AA† which results XB† is symmetric and
XB†X = X. Again B†X = (I−H)A†A(I−H)−1 = (A†A−HA†A)(I−H)−1 = (A†A−A†AH)(I−H)−1 = A†A which
yields B†X is symmetric and B†XB† = A†A(I−H)A† = (I−H)A†AA† = B†. Hence X = (B†)† = B = A(I−H)−1

and C = B − A. Now B†C = B†B − B†A = B†B − (I −H)A†A = H. Thus A = B − C is a proper splitting. Next,
we have to prove that the proper splitting A = B − C is unique. Suppose that there exists another induced
splitting A = B̄− C̄ such that H = B̄†C̄. Then B̄H = B̄B̄†C̄ = C̄ = B̄−A. So B̄ = A + B̄H, i.e., B̄(I−H) = A. This
reveals that B̄ = A(I −H)−1 = B and therefore, H induces the unique proper splitting A = B − C.

Finally, B† = U† + U†UM† −U†AM† = U† + (M† −U†AM†) = U† + U†VM† ≥ 0 since A = M−N = U −V
are proper weak regular splittings and M† −U†AM† = U†VM†. Also B†C = U†VM†N ≥ 0. Hence A = B−C
with B = M(M + U − A)†U is a proper weak regular splitting.

Another question comes to picture now, i.e., among these splittings which will converge faster. More
specifically, we want to know the rate of convergence of the induced splitting for the iterative scheme
(7). If the induced splitting A = B − C will not converge faster than the individual splittings A = M − N
and A = U − V, then the proposed alternating iteration method will not be useful. In this direction, we
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next present a result which compares the rate of convergence of the induced splitting with the individual
splitting.

Theorem 4.5. Let A ∈ Rm×n and A ≥ 0. Let A = M−N = U−V be two proper regular splittings of a semi-monotone
matrix A such that R(M + U − A) = R(A) and N(M + U − A) = N(A). Then ρ(H) ≤ min{ρ(U†V), ρ(M†N)} < 1,
where H = U†VM†N.

Proof. Let H be the iteration matrix corresponding to the induced splitting A = B − C. Then, by Theorem
4.4, A = B − C is a proper weak regular splitting. Using the conditions U†VM† ≥ 0 and U†NM† ≥ 0, we
have

B† = U†(M + U − A)M† = U†MM† + U†VM† = U† + U†VM† ≥ U†

and
B† = U†(M + U − A)M† = M† + U†NM† ≥M†.

Now, applying Theorem 3.9 to the splittings A = B − C and A = U − V, we have

ρ(H) ≤ ρ(U†V) < 1.

Again, applying the same theorem to the splittings A = B − C and A = M −N, we obtain

ρ(H) ≤ ρ(M†N) < 1.

Hence ρ(H) ≤ min{ρ(U†V), ρ(M†N)} < 1.

In words, the above theorem says that the spectral radius of the product of the iteration matrices U†V
and M†N cannot exceed the spectral radius of either factor under the assumption of some conditions. The
converse of Theorem 4.5 does not hold. This is illustrated by the following example.

Example 4.6. Let A =

[
1 −2 3
2 3 4

]
, M =

[
1 −2 3
−4 −6 −8

]
and U =

[
3 −6 9
5 15/2 10

]
. Then A = M − N =

U − V are two proper splittings with ρ(H) = ρ(U†VM†N) = 9/10 < 1. But A = M − N = U − V are not proper

regular splittings as N =

[
0 0 0
−6 −9 −12

]
� 0 and V =

[
2 −4 6
3 9/2 6

]
� 0. Also A � 0.

We next produce an example which states that the condition proper regular splitting cannot be dropped.

Example 4.7. Let A =

[
1 0 0
0 0 0

]
, M =

[
2 0 0
0 0 0

]
and U =

[
−1 0 0
0 0 0

]
. Then A = M−N = U−V are two

splittings with ρ(H) = ρ(U†VM†N) = 1. But A = U−V is not a proper regular splitting as V =

[
−2 0 0
0 0 0

]
� 0.

Then ρ(H) = 1 � min{ρ(U†V) = 2, ρ(M†N) = 1/2} ≮ 1.

However, we have a few examples which show that Theorem 4.5 is also true even if A � 0. One such
example is provided below.

Example 4.8. Let A =

[
2 −1 0
−1 2 0

]
, M =

[
2 −1 0
−1 3 0

]
and U =

[
3 −1 0
−1 3 0

]
. Then A = M−N = U−V

are two proper regular splittings with ρ(H) = ρ(U†VM†N) = 7/40 = 0.175 ≤ min{ρ(U†V) = 1/2 = 0.5, ρ(M†N) =
2/5 = 0.4} < 1.

Note that Theorem 4.5 also holds for A = U − V is a proper weak regular splitting. This suggests the
following question.

Can we drop the condition A ≥ 0 from Theorem 4.5 ?
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The answer is partially affirmative if we use of Theorem 3.10 instead of Theorem 3.9. The same result is
stated below.

Theorem 4.9. Let A = M − N = U − V be two proper regular splittings of a semi-monotone matrix A such that
R(M + U − A) = R(A) and N(M + U − A) = N(A). Suppose that row sums of U† and M† are positive. Then
ρ(H) ≤ min{ρ(U†V), ρ(M†N)} < 1, where H = U†VM†N.

Finally, we conclude this section with a problem which appears to be open:

Can we drop the conditions “row sums of U† and M† are positive” from Theorem 4.9 ?

5. Conclusions

The notion of the alternating iterative method for singular and rectangular linear systems is introduced.
The present work extends the work of Benzi and Szyld [2] to the rectangular(singular) case. The following
three main results are obtained among others.

• Sufficient conditions for the convergence of alternating iteration scheme is provided (Theorem 4.2).
This coincides with the first objective of Theorem 3.2, [2] in the case of nonsingular matrices.

• The induced splitting is shown to be a proper weak regular splitting under a few assumptions. This
result not only partially fulfills the 2nd objective of Theorem 3.2, [2] in rectangular matrix setting but
also extends Theorem 3.4, [2].

• Theorem 4.5 describes that the induced splitting is a better choice among the individual splittings
which generalizes Theorem 4.1, [2] for non-negative A.

The numerical benchmark of the alternating iterative method indicates that the rate of convergence of
the proposed alternating iterative method is not higher than the rate of convergence of the usual iterative
method. A problem for future study is also proposed in the last part of Section 4. Not only that if we
consider

Xi+1 = U†VM†NXi + U†(VM† + I), i = 0, 1, 2, . . . ,

then this scheme will converge to the Moore-Penrose inverse of A.
In the case of a real singular matrix, let m be the degree of the minimal polynomial for A. If b ∈ R(Ak),

then the linear system Ax = b has a unique Krylov solution x = ADb ∈ Km−k(A, b), where k is the index of A.
Scope exists to extend this work to compute ADb, and the Drazin inverse of A as computing Drazin inverse
of a matrix is still a challenging problem.
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