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Abstract. In this paper, we investigate the dynamical properties of a stochastic ratio-dependent predator-
prey system with Holling type IV functional response. The existence of the globally positive solutions to the
system with positive initial value is shown employing comparison theorem of stochastic equation and Itô’s
formula. We derived some sufficient conditions for the persistence in mean and extinction. This system has
a stable stationary distribution which is ergodic. Numerical simulations are carried out for further support
of present research.

1. Introduction

May [1] proposed the classic predator-prey model with deterministic environment. This model can be
expressible in the form

dx
dt

= rx(1 −
x
K

) − yφ(x),

dy
dt

= y[s(1 −
hy
x

)],
(1)

in which x = x(t) and y = y(t) represent population densities of the prey and predator respectively at time t.
All parameters r, K, s and h are positive constants and the prey population grows logistically with carrying
capacity K. Parameters r and s stand for the intrinsic growth rate of prey and predator species respectively,
and h is the number of prey required to feed one predator at equilibrium conditions. The term hy

x involved
with the predator growth equation is known as Leslie-Gower term, for example, [2], [3]. The consumption
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of prey by the predators is governed by the prey dependent functional response φ(x), denoted by Holling
type I, II, III and IV function. Include Holling-Tanner model namely Leslie type with Holling type II by

φ(x) =
cx

a + x
. (2)

In above equation the parameters c and a are all positive constants. Many researchers analyzed this model
in detail. Hsu and Hwang [4], Saez and Gonzalez-Olivares [5] and Gasull and Kooij [6] discussed the
relationship between asymptotic stability of positive equilibrium and global stability. The system (1) of
Leslie type with generalized Holling type III

φ(x) =
cx2

x2 + bx + a
(3)

subjected to the same conditions as given above and an arbitrary constant b was studied. Under the
condition of b > 0, the system was investigated and the global stability was showed. The unique positive
equilibrium of this system is globally asymptotically stable for some parameter values if it was local
asymptotically stable [4]. Recently Huang [7] considered this model in more general situation of b > −2

√
a,

and exhibited two non-hyperbolic positive equilibria for some values of parameters and subcritical Hopf
bifurcation and Bogdanov-Takens bifurcation simultaneously in the corresponding small neighborhoods
of the two degenerate equilibria respectively. Collings [8] focused on the model systems (1) with the type
IV functional responses

φ(x) =
cx

x2 + bx + a
(4)

subjected to the same conditions as given above, and found qualitatively similar bifurcation and stability
behavior at low levels of prey interference to the types I, II and III functional responses. In this context,
some studies [9]-[11] have drawn attention on the other properties of Leslie system with Holling type IV.

In [12], Arditi and Ginzburg based on numerous ecological fields data and laboratory experiments [13]-
[15], have suggested that a ratio dependent model is more suitable one for predator-prey interactions where
predation involves searching process. This model (1) is obtained by replacing prey-dependent functional
response term in (2) and (3) by ratio-dependent functional response φ( x

y ) = cx
ay+x and φ( x

y ) = cx2

x2+bxy+ay2

subjected to the same conditions as given above. Recently several researchers have considered the ratio-
dependent predator-prey models of Holling type II and III, and discussed the stability of deterministic
models and their equilibrium solutions, for example, [4], [16], [17], [18] and [19]. For the stochastic
model with Beddington-DeAngelis type functional response and logistic growth for predators, Mandal
and Banerjee [20] showed that the system admits unique positive global solution starting from the positive
initial value. They proved that the system is strongly persistent in mean. Zhang [21] studied dynamics of
a stochastic Holling II one-predator two-prey system with jumps. Liu [22] and Ji [23] also investigated the
effect of environment on dynamical behaviors of stochastic models. An increasing number of researchers
revealed the effect of white noise forcing on the prey-predator model (see [24]-[29]).

Sun [30] studied the ratio-dependent predator-prey models of Holling type IV (φ( x
y ) =

cxy
x2+bxy+ay2 ) with

human-controlled biological system, and derived the explicit formulas determining the stability, direction
and other properties of bifurcation. We also assume that there are neither significant time lags nor human-
controlled in the system which is given as follows

dx(t)
dt

= rx(t) − f x2(t) −
cx(t)y2(t)

x2(t) + bx(t)y(t) + ay2(t)
,

dy(t)
dt

= sy(t) −
my2(t)

x(t)
,

(5)

where x(t) and y(t) depict population densities respectively at time t. Parameters r, f , s, m, c, a and b are
positive constants in which r/ f is the carrying capacity of the prey and m/s is the number of prey required
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to feed one predator at equilibrium conditions. Here r, s, a and c represent the growth rate of prey and
predator species, capturing rate and half capturing saturation constant respectively. To the best of our
knowledge, the model (5) was acquired little attention for the dynamic behavior with deterministic or
stochastic system. In the present work, we will analyze model (5) with the aspect of white noise due to the
effect of environmental fluctuation in reality. To capture this effect it is necessary to establish the stochastic
equation according to the deterministic model (5).

Suppose that the environmental noise affect the intrinsic growth rate of the prey and the predator
population, specifically,

r→ r + αḂ1(t), s→ s + βḂ2(t),

where B1(t) and B2(t) are independent Brownian motions and α and β are positive constants. Then we
obtain the following stochastic system

ẋ(t) = rx(t) − f x2(t) −
cx(t)y2(t)

x2(t) + bx(t)y(t) + ay2(t)
+ αx(t)Ḃ1(t),

ẏ(t) = sy(t) −
my2(t)

x(t)
+ βy(t)Ḃ2(t).

(6)

The parameters are subjected to the same conditions as mentioned before. This paper is organized as
follows. In Section 2, by Itô’s formula and the comparison theorem of stochastic equations, we show that
system (6) has a unique positive solution (x(t), y(t)) a.s. with any initial value (x0, y0) ∈ R2

+. In section 3,
assuming

r −
c
a
−
α2

2
> 0, s −

β2

2
> 0, (7)

one has

lim
t→∞

1
t

∫ t

0

y(z)
x(z)

dz =
s − β2

2

m
a.s.

and system (6) is peresistent in mean under condition (7). If r − α2

2 < 0 the prey population x(t) is going to

be extinct. On the other hand for s − β2

2 < 0, the predator population y(t) will die out. Meanwhile system
(6) in section 3 holding condition

r −
c
a
− α2 > 0, s − β2 > 0

has a stationary distribution which is ergodicity. Finally numerical simulations for a hypothetical set of
parametric values are presented to illustrate the analytical findings.

Throughout this paper, unless otherwise specified, let (Ω, F , {Ft}t≥0, P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null
sets). Let Bi(t) (i = 1, 2) denote the independent standard Brownian motions defined on this probability
space.

2. Existence of the positive solution

It is known that if the coefficients of equation satisfy the linear growth condition and local Lipschitz
condition, then the stochastic differential equation has a unique global (i.e.no explosion in a finite time)
solution for any given initial value (see [31]-[34]). However, the coefficients of system (6) neither satisfy the
linear growth condition, nor local Lipschitz continuous. In this section by making the change of variables
and the comparison theorem of stochastic equation (see [35]), we will show there is a unique global positive
solution with positive initial value of system (6).
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Lemma 2.1. There is a unique positive local solution (x(t), y(t)) for t ∈ [0, τe) of system (6) a.s. for any initial value
(x0, y0) ∈ R2

+.

Proof. First we transform the system (6) into the following equivalent form Consider the following system

du(t) =

(
r −

α2

2
− f eu(t)

−
ce2v(t)

ae2v(t) + beu(t)+v(t) + e2u(t)

)
dt + αdB1(t),

dv(t) =

(
s −

β2

2
+

mev(t)

eu(t)

)
dt + βdB2(t)

(8)

for t ≥ 0 with initial value u(0) = lnx0, v(0) = lny0. Obviously the coefficients of Eq. (8) satisfy the local
Lipschitz condition then there is a unique local solution (u(t), v(t)) on t ∈ [0, τe), where τe is the explosion
time (see [32], [36]). By Itô’s formula, it is easy to see (x(t) = eu(t), y(t) = ev(t)) is the unique positive local
solution to equation (6) with initial value (x0, y0) ∈ R2

+ accordingly.

Lemma 2.1 only tells us there is a unique positive local solution of system (6). Next we show this solution
is global, i.e., τe = ∞. We consider the following auxiliary stochastic differential equations:

dΦ(t) = (rΦ(t) − fΦ2(t))dt + αΦ(t)dB1(t),

dφ(t) = (rφ(t) −
cφ(t)

a
− fφ2(t))dt + αφ(t)dB1(t),

(9)

and

dΨ(t) =

(
sΨ(t) −

m
Φ(t)

Ψ2(t)
)

dt + βΨ(t)dB2(t),

dψ(t) =

(
sψ(t) −

m
φ(t)

ψ2(t)
)

dt + βψ(t)dB2(t),
(10)

with the initial value Φ(0) = φ(0) = x0 and Ψ(0) = ψ(0) = y0. The solutions of the equations (9) and (10) are
(see [34]):

Φ(t) =
e(r− α

2
2 )t+αB1(t)

1
x0

+ f
∫ t

0 e(r− α2
2 )z+αB1(z)dz

,

φ(t) =
e(r− c

a−
α2
2 )t+αB1(t)

1
x0

+ f
∫ t

0 e(r− c
a−

α2
2 )z+αB1(z)dz

,

(11)

and

Ψ(t) =
e(s− β

2

2 )t+βB2(t)

1
y0

+ m
∫ t

0
1

Φ(z) e
(s− β

2

2 )z+βB2(z)dz
,

ψ(t) =
e(s− β

2

2 )t+βB2(t)

1
y0

+ m
∫ t

0
1
φ(z) e

(s− β
2

2 )z+βB2(z)dz
.

(12)

Using the comparison principle of stochastic equation, one can write

φ(t) ≤ x(t) ≤ Φ(t), ψ(t) ≤ y(t) ≤ Ψ(t) a.s. (13)

From the process of solutions Φ(t), φ(t),Ψ(t), ψ(t), it is clear that these solutions are well defined for all
t ∈ [0,∞) a.s. Thus we obtain:

Theorem 2.2. There is a unique positive global solution (x(t), y(t)) for t ≥ 0 a.s. of equation (6) for any given initial
value (x0, y0) ∈ R2

+. Meanwhile there exists the functions Φ(t), φ(t),Ψ(t) and ψ(t) such that φ(t) ≤ x(t) ≤ Φ(t) and
ψ(t) ≤ y(t) ≤ Ψ(t), t ≥ 0.
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3. The long time behavior of system (6)

3.1. Persistence
Assuming

(H) r −
c
a
−
α2

2
> 0, s −

β2

2
> 0,

the solution Φ(t), φ(t) of the system (9) is similar to the Lemma A.1 of [23], when r − c
a −

α2

2 > 0. Thus

lim
t→∞

log Φ(t)
t

= 0, lim
t→∞

1
t

∫ t

0
Φ(s)ds =

r − α2

2

f
a.s.

and

lim
t→∞

logφ(t)
t

= 0, lim
t→∞

1
t

∫ t

0
φ(s)ds =

r − c
a −

α2

2

f
a.s.

In view of (13)

lim
t→∞

log x(t)
t

= 0 a.s.,

and

r − c
a −

α2

2

f
≤ lim inf

t→∞

1
t

∫ t

0
x(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
x(s)ds ≤

r − α2

2

f
a.s. (14)

Theorem 3.1. The solution x(t) of the system (6) for any initial value (x0, y0) ∈ R2
+ is peresistent in mean if condition

(H) is satisfied. That is

r − c
a −

α2

2

f
≤ lim inf

t→∞

1
t

∫ t

0
x(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
x(s)ds ≤

r − α2

2

f
a.s.

Next we get the following result (consulting Ji [23] (page 1332-1333)):

lim inf
t→∞

logψ(t)
t

≥ 0 a.s.

Accordingly

lim inf
t→∞

log y(t)
t

≥ 0 a.s. (15)

Through [23] (page 1331) we know

1
Φ(z)

≥
b

2(r − α2

2 )
e
α( min

0≤u≤z
{B1(u)}−B1(z))

,

therefore,

1
Ψ(t)

=
1
y0

e−(s− β
2

2 )t−βB2(t) + m
∫ t

0

1
Φ(z)

e−(s− β
2

2 )(t−z)−β(B2(t)−B2(z))dz

≥
1
y0

e−(s− β
2

2 )t−βB2(t) +
mb

2(r − α2

2 )
e
α(min

0≤z≤t
{B1(z)−max

0≤z≤t
{B1(z)})+β(min

0≤z≤t
{B2(z)}−B2(t))

∫ t

0
e−(s− β

2

2 )(t−z)dz.
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Subsequent proof is similar to Lemma A.1 (page 1339) of Ji [23] i.e.

lim sup
t→∞

log Ψ(t)
t

≤ 0 a.s.

Consequently

lim sup
t→∞

log y(t)
t

≤ 0 a.s. (16)

Combining of (15) and (16) yields

lim sup
t→∞

log y(t)
t

= 0 a.s.

Besides by Itô’s formula, system (6) can be expressed as follows:

d log y(t) =

(
s −

β2

2
−

my(t)
x(t)

)
dt − βdB2(t). (17)

Integrating from 0 to t, and dividing by t on both sides of (3.4), we have

log y(t) − log y(0)
t

= s −
β2

2
−

1
t

∫ t

0

my(z)
x(z)

dz − β
B2(t)

t
.

Letting t→∞, one has

lim
t→∞

1
t

∫ t

0

y(z)
x(z)

dz =
s − β2

2

m
a.s.,

Theorem 3.2. Supposing (H) is satisfied then the solution (x(t), y(t)) of system (6) for any initial value (x0, y0) ∈ R2
+

has

lim
t→∞

1
t

∫ t

0

y(z)
x(z)

dz =
s − β2

2

m
a.s. (18)

Definition 3.3. System (6) is said to be peresistent in mean if

lim inf
t→∞

1
t

∫ t

0
x(s)ds > 0, lim inf

t→∞

1
t

∫ t

0

y(s)
x(s)

ds > 0 a.s.

From (14) and (18), we directly write that:

Theorem 3.4. System (6) is said to be peresistent in mean if condition (H) is satisfied.

3.2. Extinction
We have known whether the establishment of the persistence of system (6) depend on condition (H).

We suppose condition (H) is not satisfied and get the following results.

Theorem 3.5. Let (x(t), y(t)) be the solution of system (6) for any initial value (x0, y0) ∈ R2
+,

(i) if s − β2

2 < 0, limt→∞y(t) = 0 a.s.
(ii) if r − α2

2 < 0, limt→∞x(t) = 0 and limt→∞y(t) = 0 a.s.
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Proof. Obviously the predator is extinct if s − β2

2 < 0; the prey is extinct if r − α2

2 < 0 by the similar proof as

in section (3.2) of [33]. Next we prove that the predator will die out when r − α2

2 < 0 and s − β2

2 ≥ 0. The
solution y(t) of the equation (6) is (see [34] ):

1
y(t)

=
1
y0

e−(s− β
2

2 )t−βB2(t) + m
∫ t

0

1
x(z)

e−(s− β
2

2 )(t−z)−β(B2(t)−B2(z))dz

≥ me
β(min

0≤z≤t
{B2(z)}−B2(t))

∫ t

0

1
x(z)

e−(s− β
2

2 )(t−z)dz.

Since

lim sup
t→∞

lo1x(t)
t
≤ r −

α2

2
a.s.,

for any 0 < ε < α2

2 − r, we have

x(t) ≤ e(r− α
2
2 +ε)t,

where t ≥ T and T = T(ε). Thus we get

1
y(t)
≥ me

β(min
0≤z≤t
{B2(z)}−B2(t))

∫ t

T
e−(r− α

2
2 +ε)ze−(s− β

2

2 )(t−z)dz

= me
β(min

0≤z≤t
{B2(z)}−B2(t))

e−(s− β
2

2 )t
∫ t

T
e( α

2
2 −r+s− β

2

2 −ε)zdz

= me
β(min

0≤z≤t
{B2(z)}−B2(t))

e−(s− β
2

2 )t e( α
2
2 −r+s− β

2

2 −ε)t
− e( α

2
2 −r+s− β

2

2 −ε)T

α2

2 − r + s − β2

2 − ε

= me
β(min

0≤z≤t
{B2(z)}−B2(t)) e( α

2
2 −r−ε)t

− e( α
2
2 −r−ε)T

α2

2 − r + s − β2

2 − ε
,

therefore

log
1

y(t)
≥ log m + β(min

0≤z≤t
{B2(z)} − B2(t)) + log(e( α

2
2 −r−ε)t

− e( α
2
2 −r−ε)T)

− log(
α2

2
− r + s −

β2

2
− ε).

Noticing that

lim
t→∞

max
0≤z≤t

B2(z)

t
= 0 a.s.

and

lim
t→∞

log(e( α
2
2 −r−ε)t

− e( α
2
2 −r−ε)T)

t
=
α2

2
− r − ε a.s.

Then we have

lim inf
t→∞

log
1

y(t)
t

≥
α2

2
− r − ε a.s.,
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that is,

lim sup
t→∞

log y(t)
t

≤ r −
α2

2
+ ε a.s.

Let ε→ 0, then

lim sup
t→∞

log y(t)
t

≤ r −
α2

2
a.s.

Therefore the solution y(t) of system (6) exponentially tend to 0 almost surely under the condition r − α2

2 <
0.

4. Stationary distribution and ergodicity for system (6)

In this section, the main aim is to investigate the conditions for the existence of a unique stationary
distribution of the system (6). It is useful to provide some information to prove the theorem in this part
(see Lemma of [37]).

Let X(t) be a homogeneous Markov process in En ⊂ Rn described by the following stochastic differential
equation :

dX(t) = b(X)dt +

n∑
m=1

1m(X)dBm(t),

the diffusion matrix is A(x) = (ai j(x)), ai j(x) =

n∑
m=1

1i
m(x)1 j

m(x).

Lemma 4.1. (see [37]) We assume that there exists a bounded domain D ⊂ En with regular boundary Γ, having the
following properties:

(B.1) In the domain D and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix A(x) is
bounded away from zero;

(B.2) if x ∈ En\D then the mean time τ at which a path issuing from x reaches the set D is finite, and supx∈k Exτ < ∞
for every compact subset k ⊂ En.

We have the following result:
The Markov process X(t) has a stationary distribution µ(·). Let f (·) be a function integrable with respect to the

measure µ then

px

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
En

f (x)µ(dx)
}

= 1 f or all x ∈ En.

Remark 4.2. The proof is given in [37]. The existence of stationary distribution with density is referred to Theorem
4.1, p.119 and Lemma 9.4, p.138. The weak convergence and the ergodicity is obtained in Theorem 5.1, p.121 and
Theorem 7.1, p.130.

To validate (B.1), it suffices to prove F is uniformly elliptical in any bounded domain D, where Fµ =

b(x)µx + 1
2 tr(A(x)µxx), that is, there is a positive number M such that

∑k
i, j=1 ai j(x)ξiξ j ≥ M||ξ||2, x ∈ D, ξ ∈ Rk.

(see chapter 3, p.103 of [38] and Rayleigh’s principle in chapter 6, p.349 of [39]). To validate (B.2), it is
enough to show that there exists some neighborhood D and a non-negative C2-function V such that LV is
negative for any En\D ( details refer to p.1163 of [40]).

Theorem 4.3. If r − c
a − α

2 > 0 and s − β2 > 0 then for any given initial value (x0, y0) ∈ R2
+, (x(t), y(t)) of system

(6) has a unique stationary distribution µ(·) and it is ergodic.
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Proof. By using Lemma 4.1, the system (6) firstly can be arranged in the form

d
(

x
y

)
=


rx − f x2

−
cxy2

x2 + bxy + ay2

sy −
my2

x

 dt +

(
αx
0

)
dB1(t) +

(
0
βy

)
dB2(t),

and the diffusion matrix is

Λ(x, y) =

(
α2x2 0

0 β2y2

)
.

There exists M = min{α2x2, β2y2, (x, y) ∈ D} > 0 such that

2∑
i, j=1

ai j(x)ξiξ j = α2x2ξ2
1 + β2y2ξ2

2 ≥M||ξ||2, (x, y) ∈ D, ξ ∈ R2,

which implies that condition (B.1) is validated. Next we need to verify condition (B.2) in Lemma 4.1.
We denote x(t) and y(t) as x and y for convenience, and (x(t), y(t)) ∈ R2

+ is also the solution of (6) for any
initial value (x0, y0). Define a C2-function V: R2

+ → R+ by

V(x, y) =
1
x

+
k
y

+ x + log
y
k
, (19)

where k satisfies 0 < k <
r − c

a − α
2

m
.We find (1, k) is the minimum point of (19). Here V(1, k) > 0. and V(x, y)

is nonnegative. By Itô’s formula one may write

LV = −
r
x

+ f +

(
cy2

x2 + bxy + ay2

)
1
x

+
α2

x
−

ks
y

+
km
x

+
kβ2

y
+ rx

− f x2
−

cxy2

x2 + bxy + ay2 + s −
my
x
−
β2

2

≤ −
r
x

+ f +
c

ax
+
α2

x
−

ks
y

+
km
x

+
kβ2

y
+ rx − f x2 + s −

my
x
−
β2

2

= − (r −
c
a
− α2

− km)
1
x
− k(s − β2)

1
y

+ rx − f x2
−

my
x

+ f + s −
β2

2
.

Consider the bounded set

D = {(x, y) ∈ R2
+, ε1 ≤ x ≤

1
ε1
, ε2 ≤ y ≤

1
ε2
},

then

R2
+ \D = D1 ∪D2 ∪D3 ∪D4,

D1 = {(x, y) ∈ R2
+, 0 < x < ε1}, D2 = {(x, y) ∈ R2

+, x >
1
ε1
},

D3 = {(x, y) ∈ R2
+, 0 < y < ε2}, D4 = {(x, y) ∈ R2

+, y >
1
ε2
, 0 < x <

1
ε1
}.



J. Fu et al. / Filomat 32:19 (2018), 6549–6562 6558

We choose sufficiently small ε1, ε2 and ε2 = ε2
1 such that

−(r −
c
a
− α2

− km)
1
ε1

+ rε1 + f + s ≤ −1, (20)

K1 −
f

2ε2
1

≤ −1, (21)

K2 − (s − β2)
1
ε2
≤ −1, (22)

K2 −
m
ε1
≤ −1. (23)

in which K1 and K2 are defined by the following (24) and (25).
Case 1. When (x, y) ∈ D1 then we have

LV ≤ −(r −
c
a
− α2

− km)
1
x

+ rx + f + s

≤ −(r −
c
a
− α2

− km)
1
ε1

+ rε1 + f + s,

We have from (20) that

LV ≤ −1.

Case 2. For any (x, y) ∈ D2 we show

LV ≤ rx − f x2 + f + s ≤ K1 −
f x2

2
≤ K1 −

f
2ε2

1

where

K1 = sup
x∈(0,∞)

{rx −
f x2

2
+ f + s} < ∞. (24)

In view of (21) we get

LV ≤ −1.

Case 3. For (x, y) ∈ D3 we have

LV ≤ −k(s − β2)
1
y

+ rx − f x2 + f + s

≤ K2 − k(s − β2)
1
y

≤ K2 − k(s − β2)
1
ε2
,

with

K2 = sup
x∈(0,∞)

{rx − f x2 + f + s} < ∞. (25)

In view of (22) it is obvious that

LV ≤ −1.
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Case 4. Letting (x, y) ∈ D4 and ε2 = ε2
1, we have

LV ≤ rx − f x2 + f + s −
my
x

≤ K2 −
my
x

≤ K2 −
m
ε1
,

By condition (23), we also obtain

LV ≤ −1.

We can take D to be a neighborhood of the rectangular and a non-negative C2-function such that LV is
negative for any R2

+\D. It implies condition (B.2) in Lemma 4.1 is satisfied. Therefore the stochastic system
(6) has a unique stationary distribution µ(·) and it is ergodic.

Now based on the ergodic property, we give the property of the solution of system (6). From (18) and
the conclusion of Theorem 4.3, we derive:

Theorem 4.4. Assume the same conditions as in Theorem 4.3. Then for any initial value (x0, y0) ∈ R2
+, the solution

(x(t), y(t)) of system (6) has the property

p

lim
t→∞

1
t

∫ t

0

y(s)
x(s)

ds =

∫
R2

+

z2

z1
µ(dz1, dz2) =

s − β2

2

m

 = 1.

5. Numerical simulation and discussion

Finally our outcomes are verified by the method mentioned [41] using matlab software. Consider the
discretization equation:

xk+1 = xk + (rxk − f x2
k −

cxky2
k

ay2
k + bxkyk + x2

k

)∆t + αxk
√

∆tξk +
α2

2
xk(∆tξ2

k − ∆t),

yk+1 = yk + (syk −
my2

k

xk
)∆t + βyk

√
∆tηk +

β2

2
yk(∆tη2

k − ∆t),

where ξk and ηk (k = 1, 2, · · · n) are the Gaussian random variables N(0, 1). We get the following numerical
simulation through appropriate choice of the parameters.

If r − c
a − α

2 > 0 and s − β2 > 0, then the results of Theorem 3.1-3.3 are obvious and system (6) has a
stationary distribution. Fig.1 and Fig.2 examine the results clearly. The difference between Fig.1 and Fig.2
is the intensity of white noise. Specially we choose α = 0.1, β = 0.1 in Fig.1 and α = 0.02, β = 0.04 in Fig.2.
We clearly observed that with the decreasing values of α, β, the dynamics of stochastic system is getting
more similar to the deterministic system’s.

In Fig.3, α = 0.01, β = 0.21 such that r − α2

2 > 0 and s − β2

2 < 0. We note that the prey is persistent
and the predator is going to die out as said in Theorem 3.5 (i); while in Fig.4, α = 0.5, β = 0.01 such that

r − α2

2 < 0 and s − β2

2 ≥ 0, the both species will die out as said in Theorem 3.5 (ii). Theorem 3.5 also shows

that both species of the system (6) are extinct if r − α2

2 < 0 and s − β2

2 < 0. Numerical simulation support
this conclusion. For example in Fig.5 we choose the parameters to satisfy the case of Theorem 3.5. Hence,
the prey and the predator are all extinct represented by the red line in Fig.5. In Figs.3-5, we simulate the
corresponding deterministic system represented by the blue line at the same values of parameters except
for the intensity of white noise. We find that the corresponding deterministic system is persistent and the
strong noise may take the species to be extinct which only occurs in the stochastic model.
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Figure 1: In the left two pictures, the red line represents
the solution (x(t), y(t)) of system (6); the blue lines represent
the solution (x(t), y(t)) of model (5) for the same initial value
(x0, y0) = (0.5, 0.5). Here, r = 1, f = 0.07, c = 0.8, a = 0.8, b =
0.1, s = 0.51,m = 0.4, α = 0.1 and β = 0.1. The right two figures
show system (6) has a unique stationary distribution.

Figure 2: The parameters α = 0.02 and β = 0.04, the others
are the same as Figure 1. In the left two pictures, the red
line represents the solution (x(t), y(t)) of system (6); the blue
lines represent the solution (x(t), y(t)) of model (5) for the same
initial value (x0, y0) = (0.5, 0.5). The right ones show system
(6) has a unique stationary distribution.

Figure 3: These two figures express the solutions of systems
(6) and (5) respectively for (x0, y0) = (0.5, 0.5), here r = 0.1, f =
0.07, c = 0.09, a = 1, b = 0.1, s = 0.02,m = 0.2, α = 0.01 and
β = 0.21.

Figure 4: These two figures express the solutions of systems
(6) and (5) respectively for (x0, y0) = (0.5, 0.5), here r = 0.1, f =
0.07, c = 0.09, a = 1, b = 0.1, s = 0.02,m = 0.2, α = 0.5 and
β = 0.01.
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