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Abstract. In this paper, we show some geometric conditions on Banach spaces by considering Hölder’s
means and many well known parameters namely the James constant, the von Neumann-Jordan constant,
the weakly convergent sequence coefficient, the normal structure coefficient, the coefficient of weak or-
thogonality, which imply the existence of fixed points for multivalued nonexpansive mappings and normal
structure of Banach spaces. Some of our main results improve and generalize several known results in the
recent literature on this topic. We also show that some of our results are sharp.

1. Introduction

Fixed point theory for multivalued mappings has many useful applications in various fields, in particular
game theory, control theory, convex optimization, differential equations and mathematical economics. Thus,
it is natural to extend the known fixed point results for singlevalued mappings to the setting of multivalued
mappings.

In 1969, Nadler [35] extended the Banach Contraction Principle to multivalued contractive mappings
in complete metric spaces. Since then, the metric fixed point theory of multivalued mappings has been
rapidly developed. Some classical fixed point theorems for singlevalued nonexpansive mappings have
been extended to multivalued nonexpansive mappings. Nevertheless, the fixed point theory of multivalued
nonexpansive mappings is much more complicated and difficult than its singlevalued counterpart and a
lot of problems remain open, for instance, the possibility of extending the well known Kirk’s theorem [30],
that is, do Banach spaces with weak normal structure have the fixed point property (FPP, in short) for
multivalued nonexpansive mappings?

The notions of normal structure and uniform normal structure play an important role in metric fixed
point theory for nonexpansive mappings. Since under various geometric properties of a Banach space often
measured by different geometric constants, normal structure or uniform normal structure of the space is
guaranteed, it is natural to study if those properties imply the FPP for multivalued mappings. Dhompongsa
et al. [9, 11] introduced the Domı́nguez-Lorenzo condition ((DL)-condition, in short) and property (D) which
imply the FPP for multivalued nonexpansive mappings and normal structure in reflexive Banach spaces. A
possible approach to the above problem is to look for geometric conditions in a Banach space X which imply
either the (DL)-condition or property (D). In 2007, Domı́nguez-Benavides and Gavira [17] had established
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the FPP for multivalued nonexpansive mappings in terms of the modulus of squareness, universal infinite-
dimensional modulus, and Opial modulus. The James and von Neumann-Jordan constants are two most
widely studied constants by many authors. In [9, 11–15, 19, 20, 25–27, 34] one can find some recent works
and results which imply the FPP for multivalued nonexpansive mappings and normal structure of Banach
spaces in terms of the James and von Neumann-Jordan constants.

The main aim of the present paper is to give some sufficient conditions for fixed points of multivalued
nonexpansive mappings and normal structure of Banach spaces by considering Hölder’s means and many
geometrical constants. Some of our results improve and generalize a number of recent well known results
on this subject. Furthermore, we give different examples which show that some of our results are sharp.

2. Preliminaries

Before going to the results, let us recall some concepts and results which will be used in the following
sections.

Throughout the paper, let X be a real Banach space with dim(X) ≥ 2 and X∗ denotes the dual space of X.
We will use BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} to denote the closed unit ball and the unit
sphere of X, respectively.

We recall that a Banach space X is said to have normal structure (weak normal structure, respectively)
[4] if for every bounded closed (weakly compact, respectively) convex subset K of X that contains more
than one point, there exists a point x0 ∈ E such that

sup
{
‖x0 − y‖ : y ∈ K

}
< sup

{
‖x − y‖ : x, y ∈ K

}
.

In reflexive Banach spaces, normal structure and weak normal structure are the same. A Banach space
X is said to have uniform normal structure if there exists 0 < c < 1 such that for any closed bounded convex
subset K of X that contains more than one point, there exists x0 ∈ E such that

sup
{
‖x0 − y‖ : y ∈ K

}
< c sup

{
‖x − y‖ : x, y ∈ K

}
.

It was proved by Kirk [30] that if a weakly compact convex subset K of X has normal structure then
any nonexpansive mapping on K has a fixed point. Whether or not a Banach space has normal structure
depends on the geometry of the unit sphere.

Recall that a Banach space X is called uniformly non-square provided that there exists δ > 0 such that
either ‖x + y‖ ≤ 2 − δ or ‖x − y‖ ≤ 2 − δ for all x, y ∈ BX. In [23] it was proved that uniformly non-square
Banach spaces are reflexive, indeed super-reflexive.

Let E be a nonempty subset of X. We shall denote by CB(X) the family of all nonempty bounded closed
subsets of X and by KC(X) the family of all nonempty compact convex subsets of X. A multivalued mapping
T : E→ CB(X) is said to be nonexpansive if

H(Tx,Ty) ≤ ‖x − y‖, x, y ∈ E,

where H(·, ·) denotes the Hausdorff metric on CB(X) defined by

H(A,B) = max
{

sup
x∈A

inf
y∈B
‖x − y‖, sup

y∈B
inf
x∈A
‖x − y‖

}
, A,B ∈ CB(X).

The following method and results deal with the concept of asymptotic centers.
Let {xn} be a bounded sequence in X. The asymptotic radius r

(
E, {xn}

)
and the asymptotic center A

(
E, {xn}

)
of {xn} in E are defined by

r
(
E, {xn}

)
= inf

{
lim sup

n→∞
‖xn − x‖ : x ∈ E

}
,
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and

A
(
E, {xn}

)
=

{
x ∈ E : lim sup

n→∞
‖xn − x‖ = r

(
E, {xn}

)}
,

respectively. It is known that A
(
E, {xn}

)
is a nonempty weakly compact convex set whenever E is [22].

The sequence {xn} is called regular with respect to E if r
(
E, {xn}

)
= r

(
E, {xni }

)
for all subsequences {xni } of

{xn}, and {xn} is called asymptotically uniform with respect to E if A
(
E, {xn}

)
= A

(
E, {xni }

)
for all subsequences

{xni } of {xn}. Furthermore, {xn} is called regular asymptotically uniform with respect to E if {xn} is regular
and asymptotically uniform with respect to E.

Lemma 2.1. Let {xn} and E be as above. Then the following assertions hold.

(i) (Goebel [21], Lim [32]) There always exists a subsequence of {xn} which is regular with respect to E.

(ii) (Kirk [31]) If E is separable, then {xn} contains a subsequence which is asymptotically uniform with respect to
E.

Let C be a nonempty bounded subset of X. The Chebyshev radius of C relative to E is defined by

rE(C) = inf
{
rx(C) : x ∈ E

}
,

where rx(C) = sup{‖x − y‖ : y ∈ C}. We denote rC(C) = r(C).
The following two properties of Banach spaces were introduced and used to guarantee the existence of

fixed points for multivalued nonexpansive mappings (see [9, 11]).

Definition 2.2. ([9])A Banach space X is said to satisfy property (D) if there exists λ ∈ [0, 1) such that for any
nonempty weakly compact convex subset E of X, any sequence {xn} ⊂ E which is regular asymptotically
uniform with respect to E, and any sequence {yn} ⊂ A

(
E, {xn}

)
which is regular asymptotically uniform with

respect to E we have

r
(
E, {yn}

)
≤ λ r

(
E, {xn}

)
.

Definition 2.3. ([11])A Banach space X is said to satisfy the (DL)-condition if there exists λ ∈ [0, 1) such that
for every weakly compact convex subset E of X and for every bounded sequence {xn} in E which is regular
with respect to E,

rE

(
A
(
E, {xn}

))
≤ λ r

(
E, {xn}

)
.

It is clear from the definition that property (D) is weaker than the (DL)-condition. The next results
show that property (D) and the (DL)-condition are stronger than weak normal structure and also imply the
existence of fixed points for multivalued nonexpansive mappings.

Theorem 2.4. ([9, 11]) Let E be a nonempty weakly compact convex subset of a Banach space X which satisfies (the
(DL)-condition) property (D). Let T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Theorem 2.5. ([9, 11]) Let X be a Banach space satisfying (the (DL)-condition) property (D). Then X has weak
normal structure.

There are various geometric constants for a Banach space in the literature. Among them the James
and von Neumann-Jordan constants are two most widely studied constants, due to their connections with
various geometric structure of Banach spaces. The following two constants of a Banach space X,

CNJ(X) = sup
{
‖x + y‖2 + ‖x − y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, ‖x‖ + ‖y‖ > 0

}
,
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J(X) = sup
{

min{‖x + y‖, ‖x − y‖} : x, y ∈ BX

}
,

are called the von Neumann-Jordan [7] and James constants [19], respectively.
The following result regarding the relationship between the James and von Neumann-Jordan constants

was proved in [20].

Theorem 2.6. ([20]) If X is a Banach space such that CNJ(X) < 1 + 1
(J(X))2 , then X satisfies the (DL)-condition.

The following theorem can be found in [10].

Theorem 2.7. ([10]) If a Banach space X verifies CNJ(X) < 1 + 1
(J(X))2 , then X has uniform normal structure.

We recall that Hölder’s means (also called power means) between two positive numbers a and b are
defined by

Mp(a, b) =
(ap + bp

2

) 1
p

for p , 0,

M0(a, b) = lim
p→0

Mp(a, b) =
√

ab.

In particular, the arithmetic mean A := M1 and the geometric mean G := M0 are well known. For two real
numbers p ≤ q,

min(a, b) ≤Mp(a, b) ≤Mq(a, b) ≤ max(a, b),

where “ = ” holds only for the case a = b.
Recently, Cui and Lu [8] introduced the constant

Hp(X) = sup
{
Mp

(
‖x + y‖, ‖x − y‖

)
: x, y ∈ BX

}
,

for a real number p, by considering Hölder’s means. It is obvious that A2(X) = H1(X) (see [3]) and
T(X) = H0(X) (see [1]), that is,

A2(X) = sup
{
‖x + y‖ + ‖x − y‖

2
: x, y ∈ BX

}
,

and

T(X) = sup
{√
‖x + y‖ ‖x − y‖ : x, y ∈ BX

}
.

The constant A2(X) was defined by Baronti, Casini and Papini in [3] by considering the arithmetic mean of
‖x+ y‖ and ‖x− y‖ and the constant T(X) was introduced by Alonso and Llorens-Fuster in [1] by considering
the geometric mean between ‖x + y‖ and ‖x − y‖. It is noteworthy that X is uniformly non-square if and
only if Hp(X) < 2 (see [8]).

Now, let us collect some useful properties concerning these constants (see [1, 3, 28]):

(a) CNJ(X) = CNJ(X∗);

(b) A2(X) = A2(X∗);

(c) J(X) ≤ T(X) ≤ A2(X).
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The weakly convergent sequence coefficient WCS(X) ∈ [1, 2] [2] of X is equivalently defined by

WCS(X) = inf
{ limn,m ‖xn − xm‖

lim supn ‖xn‖

}
,

where the infimum is taken over all weakly (not strongly) null sequences {xn}with limn,m ‖xn−xm‖ existing.
The normal structure coefficient N(X) ∈ [1, 2] of X defined by Bynum [5] is the number

N(X) = inf
{diam(E)

r(E)
: E ⊂ X bounded and convex and diam(E) > 0

}
.

The modulus of convexity of X [6] is the function δX : [0, 2]→ [0, 1] defined by

δX(ε) = inf
{
1 −
‖x + y‖

2
: x, y ∈ BX, ‖x − y‖ ≥ ε

}
.

The characteristic of convexity of X [6] is the number

ε0(X) = sup
{
ε : δX(ε) = 0

}
.

The function δX can be discontinuous at 2, but in spite of this

ε0(X) = 2
(
1 − lim

ε→2−
δ(ε)

)
,

(see [33]). As a consequence of Lindenstrauss’ formulae [33],

ε0(X) = 2ρ′X∗ (0) and ε0(X∗) = 2ρ′X(0).

We recall that

ρ′X(0) = lim
t→0+

ρX(t)
t
,

where ρX : [0,∞)→ [0,∞) is the modulus of smoothness of X [22] defined by

ρX(t) = sup
{
‖x + ty‖ + ‖x − ty‖

2
− 1 : x, y ∈ BX

}
.

In section 4 we prove a result that generalizes, in an strict sense, the following theorems.

Theorem 2.8. ([17]) If X is a Banach space such that ρ′X(0) < 1
2 , then X satisfies the (DL)-condition.

Theorem 2.9. ([36]) If a Banach space X verifies ρ′X(0) < 1
2 , then X has uniform normal structure.

The coefficient M(X) ∈ [1, 2] of X, introduced by Domı́nguez Benavides [16], is defined by

M(X) = sup
{ 1 + a

R(a,X)
: a ≥ 0

}
,

with

R(a,X) = sup
{

lim inf
n→∞

‖xn + x‖
}
,

where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all weakly null sequences {xn} in BX such that

D({xn}) = lim sup
n→∞

(
lim sup

m→∞
‖xn − xm‖

)
≤ 1.

The following theorems can be found in [20] and [34].
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Theorem 2.10. ([20]) If X is a Banach space such that ρ′X(0) < M(X)
2 , then X satisfies the (DL)-condition.

Theorem 2.11. ([34]) If a Banach space X verifies ρ′X(0) < M(X)
2 , then X has normal structure.

Theorem 2.12. ([20]) If X is a Banach space such that J(X) < 1 + 1
R(1,X) , then X satisfies the (DL)-condition.

Theorem 2.13. ([34]) If a Banach space X verifies J(X) < 1 + 1
R(1,X) , then X has normal structure.

In [24], Jiménez-Melado and Llorens-Fuster defined the coefficient of weak orthogonality µ(X) ∈ [1, 3]
of X by

µ(X) = inf
{
λ : lim sup

n→∞
‖xn + x‖ ≤ λ lim sup

n→∞
‖xn − x‖

}
,

where the infimum is taken over all x ∈ X and all weakly null sequences {xn} in X. It is known that
µ(X) = µ(X∗) if X is reflexive (see [25]).

The following result regarding the relationship between the James constant and the coefficient of weak
orthogonality was proved in [27].

Theorem 2.14. ([27]) If X is a Banach space such that J(X) < 1 + 1
µ(X) , then X satisfies the (DL)-condition.

The following theorem can be found in [25].

Theorem 2.15. ([25]) If a Banach space X verifies J(X) < 1 + 1
µ(X) , then X has normal structure.

3. Hölder’s means and property (D)

We first give a condition which implies property (D) and so the FPP for multivalued nonexpansive
mappings and normal structure in a reflexive Banach space.

Theorem 3.1. Let X be a Banach space such that

A2(X) < 1 +
WCS(X)

2
.

Then X has property (D).

Proof. Let E be a nonempty weakly compact convex subset of X. Denote r = r
(
E, {xn}

)
and A = A

(
E, {xn}

)
.

We can assume that r > 0. Let {xn} ⊂ E and {yn} ⊂ A be regular asymptotically uniform sequences with
respect to E. Passing through a subsequence of {yn} if necessary, we can also assume that {yn} is weakly
convergent to a point y ∈ E and d := limn,m→∞,n,m ‖yn − ym‖ exists. By using the convexity of A and again,
passing through a subsequence of {xn} if necessary, we assume in addition that

‖xn − y2n‖ ≤ r +
1
n
, ‖xn − y2n+1‖ ≤ r +

1
n
,

and ∥∥∥∥∥xn −
1
2

(
y2n + y2n+1

)∥∥∥∥∥ ≥ r −
1
n
,

for all n ∈N. Consider

un =
1

r + 1
n

(
xn − y2n

)
, vn =

1
r + 1

n

(
xn − y2n+1

)
.
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It is easy to see that limn→∞ ‖un + vn‖ = 2 and limn→∞ ‖un − vn‖ = d
r . Thus, we have

A2(X) ≥
1
2

(
2 +

d
r

)
= 1 +

d
2r
.

Now, we estimate d as follows:

d = lim
n,m
‖yn − ym‖ = lim

n,m

∥∥∥(yn − y) − (ym − y)
∥∥∥

≥WCS(X) lim sup
n→∞

‖yn − y‖

≥WCS(X)r
(
E, {yn}

)
.

Therefore, we conclude

r
(
E, {yn}

)
≤

2
(
A2(X) − 1

)
WCS(X)

r.

Since A2(X) < 1 +
WCS(X)

2 , it follows that X satisfies property (D).

Since WCS(X) ≤ 2, if A2(X) < 1 +
WCS(X)

2 , then A2(X) < 2, which implies that X is uniformly non-square,
and consequently X is reflexive. Thus, by applying Theorems 2.4, 2.5 and 3.1, we obtain the following
sufficient conditions so that a Banach space X has the fixed point theory for multivalued nonexpansive
mappings and normal structure.

Corollary 3.2. Let E be a nonempty bounded closed convex subset of a Banach space X such that

A2(X) < 1 +
WCS(X)

2
,

and T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Corollary 3.3. Let X be a Banach space such that

A2(X) < 1 +
WCS(X)

2
.

Then X has normal structure.

4. Hölder’s means and the (DL)-condition

In this section, we present some properties concerning geometrical constants of Banach spaces which
also imply the (DL)-condition and so the FPP for multivalued nonexpansive mappings and normal structure
in a reflexive Banach space.

Theorem 4.1. Let E be a nonempty weakly compact convex subset of a Banach space X and let {xn} be a bounded
sequence in E regular with respect to E. Then

rE

(
A
(
E, {xn}

))
≤

2
(
A2(X) − 1

)
N(X)

r
(
E, {xn}

)
.

Proof. Denote r = r
(
E, {xn}

)
and A = A

(
E, {xn}

)
. We can assume that r > 0. We note that since {xn} is regular

with respect to E, passing through a subsequence does not have any effect to the asymptotic radius of
the whole sequence {xn}. If diam(A) = 0, then rE(A) = 0 and hence we are done. So we can assume that
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diam(A) > 0. Let ε > 0 and u, v ∈ A be such that ‖u− v‖ ≥ diam(A)− ε > 0. Convexity of A implies u+v
2 ∈ A.

By the definition of A, we have

lim sup
n→∞

‖xn − u‖ = lim sup
n→∞

‖xn − v‖ = lim sup
n→∞

∥∥∥∥∥xn −

(u + v
2

)∥∥∥∥∥ = r.

Since ‖u− v‖ > 0, there exists a subsequence {xn′ } of {xn} such that xn′ −u and xn′ − v are not both zero. Thus,
we have(

diam(A) − ε
)

+

∥∥∥∥∥2
(
xn′ −

(u + v
2

))∥∥∥∥∥ ≤ ‖u − v‖ +

∥∥∥∥∥2
(
xn′ −

(u + v
2

))∥∥∥∥∥
≤ A2(X)

(
‖xn′ − u‖ + ‖xn′ − v‖

)
.

By taking the upper limit as n′ →∞ throughout, we have(
diam(A) − ε

)
+ 2r ≤ A2(X)(r + r),

from which it follows that

diam(A) − ε ≤ 2
(
A2(X) − 1

)
r.

Because ε is arbitrarily small, we conclude

diam(A) ≤ 2
(
A2(X) − 1

)
r. (1)

Since A is a bounded convex subset of X with diam(A) > 0, it follows that

rE(A) ≤ r(A) ≤
diam(A)

N(X)
. (2)

Combining (1) and (2), we obtain

rE(A) ≤
2
(
A2(X) − 1

)
N(X)

r.

Since N(X) ≤ 2, if A2(X) < 1 +
N(X)

2 , then A2(X) < 2, which implies that X is uniformly non-square, and
consequently X is reflexive. Thus, by applying Theorems 2.4, 2.5 and 4.1, we obtain the following sufficient
conditions so that a Banach space X has the fixed point theory for multivalued nonexpansive mappings
and normal structure.

Corollary 4.2. Let E be a nonempty bounded closed convex subset of a Banach space X such that

A2(X) < 1 +
N(X)

2
,

and T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Corollary 4.3. Let X be a Banach space such that

A2(X) < 1 +
N(X)

2
.

Then X has normal structure.
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By using the relation (c), it is easy to prove the following result.

Proposition 4.4. Let X be a Banach space and consider the following statements:

(i) CNJ(X) < 1 + 1
(A2(X))2 ,

(ii) CNJ(X) < 1 + 1
(T(X))2 ,

(iii) CNJ(X) < 1 + 1
(J(X))2 .

Each of these conditions implies the next.

Since A2(X) ≥
√

2, if CNJ(X) < 1+ 1
(A2(X))2 , then CNJ(X) < 2, which implies that X is uniformly non-square,

and consequently X is reflexive. Hence, we obtain the following results.

Corollary 4.5. Let E and E∗ be a nonempty bounded closed convex subset of a Banach space X and its dual space X∗,
respectively. If

CNJ(X) < 1 +
1

(A2(X))2 ,

and T : E→ KC(E) and T∗ : E∗ → KC(E∗) are nonexpansive mappings, then T and T∗ have a fixed point.

Proof. Since CNJ(X) < 1+ 1
(A2(X))2 , it implies that X satisfies the (DL)-condition by Theorem 2.6 and Proposition

4.4. Thus, T has a fixed point by Theorem 2.4. Now, Since CNJ(X) = CNJ(X∗) and A2(X) = A2(X∗), we get
CNJ(X∗) < 1 + 1

(A2(X∗))2 . Hence, by Theorem 2.6 and Proposition 4.4 again we conclude that X∗ satisfies the
(DL)-condition. Therefore, T∗ has a fixed point by Theorem 2.4.

Corollary 4.6. Let X be a Banach space such that

CNJ(X) < 1 +
1

(A2(X))2 .

Then X and X∗ have uniform normal structure.

Proof. Since CNJ(X) < 1 + 1
(A2(X))2 , it follows that X has uniform normal structure by Theorem 2.7 and

Proposition 4.4. Now, Since CNJ(X) = CNJ(X∗) and A2(X) = A2(X∗), we get CNJ(X∗) < 1 + 1
(A2(X∗))2 . Thus, by

Theorem 2.7 and Proposition 4.4 again we conclude that X∗ has uniform normal structure.

Since T(X) ≥
√

2, if CNJ(X) < 1 + 1
(T(X))2 , then CNJ(X) < 2, which implies that X is uniformly non-square,

and consequently X is reflexive. Hence, by applying Theorems 2.6 and 2.7 and Proposition 4.4, we obtain
the following sufficient conditions so that a Banach space X has the fixed point theory for multivalued
nonexpansive mappings and uniform normal structure.

Corollary 4.7. Let E be a nonempty bounded closed convex subset of a Banach space X such that

CNJ(X) < 1 +
1

(T(X))2 ,

and T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Corollary 4.8. Let X be a Banach space such that

CNJ(X) < 1 +
1

(T(X))2 .

Then X has uniform normal structure.
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Proposition 4.9. Let X be a Banach space. If ρ′X(0) < 1
A2(X) , then ρ′X(0) < M(X)

2 .

Proof. In [34] it is proved that

M(X) ≥ sup
t>0

1 + t
1 + ρX(t)

= sup
t>0

( 1
1 + ρX(t)

+
1

1 + ρX(1/t)

)
.

By this inequality, we conclude that M(X) ≥ 2
A2(X) since A2(X) = 1 + ρX(1) (see [3]). Therefore, we deduce

the desired inequality.

Corollary 4.10. Let E be a nonempty bounded closed convex subset of a Banach space X such that

ρ′X(0) <
1

A2(X)
,

and T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Proof. Since A2(X) ≥
√

2, it follows that ρ′X(0) < 1, and therefore X is reflexive. As ρ′X(0) < 1
A2(X) , it implies

that X satisfies the (DL)-condition by Theorem 2.10 and Proposition 4.9. Thus, T has a fixed point by
Theorem 2.4.

Remark 4.11. Let us see that Corollary 4.10 is a strict generalization of Theorem 2.8. In Theorem 2.8 it
was proved that ρ′X(0) < 1

2 implies the (DL)-condition. Since A2(X) ≤ 2, the condition ρ′X(0) < 1
2 implies

ρ′X(0) < 1
A2(X) . So that, Corollary 4.10 generalizes Theorem 2.8. Moreover, the following example shows that

the generalization is strict.
Consider the Bynum space `2,1 defined as `2,1 := (`2, ‖ · ‖2,1) where ‖x‖2,1 := max{‖x+

‖2, ‖x−‖2} with
x+(i) = max{x(i), 0} for each i ≥ 1 and x− = x+

− x. It is known that A2(`2,1) = A2(`2,∞) = 1 + 1
√

2
(see [25]) and

ρ′`2,1
(0) = 1

2 (see [22]). Thus, we have

ρ′`2,1
(0) =

1
2
<

√
2

√
2 + 1

=
1

A2(`2,1)
.

Therefore, `2,1 verifies the hypothesis in Corollary 4.10, but lies out of the scope of Theorem 2.8.

Corollary 4.12. Let X be a Banach space such that

ρ′X(0) <
1

A2(X)
.

Then X has uniform normal structure.

Proof. Since A2(X) ≥
√

2, it follows that ρ′X(0) < 1. So X is reflexive, indeed superreflexive. If X̃ be a
ultrapower of X, then ρ′X(0) = ρ′

X̃
(0) (see [22]) and A2(X) = A2(X̃). Thus, we get ρ′

X̃
(0) < 1

A2(X̃)
. Hence,

X̃ has normal structure by Theorem 2.11 and Proposition 4.9. It is known that if X is superreflexive,
that is X̃∗ = (X̃)∗, then X has uniform normal structure if and only if X̃ has normal structure (see [29]).
Consequently, X has uniform normal structure.

Remark 4.13. As in Remark 4.11, Corollary 4.12 is a strict generalization of Theorem 2.9.

Proposition 4.14. In any Banach space X,

(i) A2(X) ≥ 1 +
ε0(X)

2 .
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(ii) A2(X) ≥ 1 + ρ′X(0).

Proof. (i) Let ε ∈ [0, 2]. Consider x, y ∈ BX such that ‖x − y‖ ≥ ε. Thus, we have

A2(X) ≥
‖x + y‖ + ‖x − y‖

2
≥
‖x + y‖ + ε

2
,

and therefore,

1 −
‖x + y‖

2
≥ 1 − A2(X) +

ε
2
.

By the definition of δX, we obtain that

δX(ε) ≥ 1 − A2(X) +
ε
2
,

or which is the same

A2(X) ≥
ε
2

+
(
1 − δX(ε)

)
.

Hence, we conclude

A2(X) ≥ sup
{
ε
2

+
(
1 − δX(ε)

)
: ε ∈ [0, 2]

}
,

and in particular

A2(X) ≥ lim
ε→2−

(
ε
2

+
(
1 − δX(ε)

))
= 1 +

ε0(X)
2

.

(ii) A2(X) = A2(X∗) ≥ 1 +
ε0(X∗)

2 = 1 + ρ′X(0).

Proposition 4.15. Let X be a Banach space and consider the following statements:

(i) A2(X) < 1+
√

5
2 ,

(ii) A2(X) < 1 + 1
T(X) ,

(iii) A2(X) < 1 + 1
J(X) ,

(iv) A2(X) < 1 +
M(X)

2 ,

(v) ρ′X(0) < M(X)
2 .

Each of these conditions implies the next.

Proof. (i)⇒ (ii). Since the inequality x(x − 1) < 1 holds if and only if x ∈ (−∞, 1−
√

5
2 ] ∪ [0, 1+

√
5

2 ], we have
A2(X)(A2(X) − 1) < 1. On the other hand, T(X) ≤ A2(X). Hence,

T(X)(A2(X) − 1) ≤ A2(X)(A2(X) − 1) < 1.

Therefore, A2(X) < 1 + 1
T(X) .

(ii)⇒ (iii). The result follows from the inequality J(X) ≤ T(X).
(iii)⇒ (iv). Since J(X) ≥ R(1,X) (see [34]), we get J(X) ≥ 2

M(X) , which gives the desired inequality.
(iv)⇒ (v). This implication derives from from the inequality A2(X) ≥ 1 + ρ′X(0) in Proposition 4.14.
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Remark 4.16. In view of Proposition 4.15, we can see that there are spaces satisfying condition (iv) which
do not satisfy (i), (ii) and (iii). To do this, we show that A2(X) < 1 +

M(X)
2 does not imply A2(X) < 1 + 1

J(X) . For
example, if we consider x = ( 1

2 ,−
1
2 , 0, · · · ) and y = ( 1

√
2
, 1
√

2
, 0, · · · ) in the Bynum space `2,1, then we obtain

that J(`2,1) ≥ 3
2 . It is also known that A2(`2,1) = A2(`2,∞) = 1 + 1

√
2

(see [25]) and M(`2,1) =
√

5
2 (see [18]).

Hence,

A2(`2,1) = 1 +
1
√

2
>

5
3
≥ 1 +

1
J(`2,1)

,

while

A2(`2,1) = 1 +
1
√

2
< 1 +

√
5

2
√

2
= 1 +

M(`2,1)
2

.

Consequently, the scope of Conditions (i), (ii) and (iii) is strictly more limited than the scope of Condition
(iv) (and then of Condition (v)).

Corollary 4.17. Let E and E∗ be a nonempty bounded closed convex subset of a Banach space X and its dual space
X∗, respectively. If

A2(X) <
1 +
√

5
2

,

and T : E→ KC(E) and T∗ : E∗ → KC(E∗) are nonexpansive mappings, then T and T∗ have a fixed point.

Proof. Since A2(X) < 1+
√

5
2 , it follows that A2(X) < 2 and hence X is uniformly non-square, and consequently

X is reflexive. As A2(X) = A2(X∗), it follows from Theorem 2.10 and Proposition 4.15 that X and X∗ satisfy
the (DL)-condition. Thus, T and T∗ have a fixed point by Theorem 2.4.

Remark 4.18. In [37, Corollary 2.4] it was proved that if X is a Banach space with A2(X) < 1+
√

5
2 , then X and

X∗ have normal structure, and it is proved in [11, Theorem 3.2] that the (DL)-condition implies the weak
normal structure. Thus, our Corollary 4.17 is stronger than [37, Corollary 2.4].

The following result improves Corollary 2.4 of [37].

Corollary 4.19. Let X be a Banach space such that

A2(X) <
1 +
√

5
2

.

Then X and X∗ have uniform normal structure.

Proof. As A2(X) < 1+
√

5
2 , it implies that A2(X) < 2 and hence X is uniformly non-square, and consequently

X is reflexive, indeed superreflexive. If X̃ be a ultrapower of X, then A2(X) = A2(X̃). Thus, we get
A2(X̃) < 1+

√
5

2 . Hence, X̃ has normal structure by Theorem 2.11 and Proposition 4.15. It is known that if X is
superreflexive, that is X̃∗ = (X̃)∗, then X has uniform normal structure if and only if X̃ has normal structure
(see [29]). Consequently, X and X∗ have uniform normal structure since A2(X) = A2(X∗).

Corollary 4.20. Let E be a nonempty bounded closed convex subset of a Banach space X such that one of the following
two conditions is satisfied:

(i) A2(X) < 1 + 1
T(X) ,
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(ii) A2(X) < 1 + 1
J(X) ,

and let T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Proof. From (i) or (ii) we know that X is reflexive. Now, by applying Theorem 2.10 and Proposition 4.15,
we conclude that X satisfies the (DL)-condition. Therefore, T has a fixed point by Theorem 2.4

Corollary 4.21. Let X be a Banach space such that one of the following two conditions is satisfied:

(i) A2(X) < 1 + 1
T(X) ,

(ii) A2(X) < 1 + 1
J(X) .

Then X has uniform normal structure.

Proof. From (i) or (ii) we know that X is reflexive, indeed superreflexive. If X̃ be a ultrapower of X, then
J(X) = J(X̃), T(X) = T(X̃) and A2(X) = A2(X̃). Thus, we get A2(X̃) < 1 + 1

T(X̃)
and A2(X̃) < 1 + 1

J(X̃)
. Hence,

X̃ has normal structure by Theorem 2.11 and Proposition 4.15. It is known that if X is superreflexive,
that is X̃∗ = (X̃)∗, then X has uniform normal structure if and only if X̃ has normal structure (see [29]).
Consequently, X has uniform normal structure.

Since M(X) ≤ 2, if A2(X) < 1 +
M(X)

2 , then A2(X) < 2, which implies that X is uniformly non-square, and
consequently X is reflexive. Thus, by applying Theorems 2.10 and 2.11 and Proposition 4.15, we obtain
the following sufficient conditions so that a Banach space X has the fixed point theory for multivalued
nonexpansive mappings and normal structure.

Corollary 4.22. Let E be a nonempty bounded closed convex subset of a Banach space X such that

A2(X) < 1 +
M(X)

2
,

and T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Corollary 4.23. Let X be a Banach space such that

A2(X) < 1 +
M(X)

2
.

Then X has normal structure.

Remark 4.24. Corollaries 4.22 and 4.23 are sharp in the sense that there is a Banach space X such that
A2(X) = 1 +

M(X)
2 and X does not satisfy the (DL)-condition. Consider the Bynum space `2,∞ defined as

`2,∞ := (`2, ‖ · ‖2,∞) where ‖x‖2,∞ := max{‖x+
‖2, ‖x−‖2} with x+(i) = max{x(i), 0} for each i ≥ 1 and x− = x+

− x.
It is known that A2(`2,∞) = 1 + 1

√
2

(see [25]) and M(`2,∞) =
√

2 (see [16]). Thus, we have

A2(`2,∞) = 1 +
1
√

2
= 1 +

M(`2,∞)
2

,

and `2,∞ fails to have weak normal structure. Therefore, `2,∞ does not satisfy the (DL)-condition.

Proposition 4.25. Let X be a Banach space and consider the following statements:

(i) T(X) < 1+
√

5
2 ,

(ii) T(X) < 1 + 1
J(X) ,
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(iii) T(X) < 1 + 1
R(1,X) ,

(iv) J(X) < 1 + 1
R(1,X) .

Each of these conditions implies the next.

Proof. (i) ⇒ (ii). Since the inequality x(x − 1) < 1 holds if and only if x ∈ (−∞, 1−
√

5
2 ] ∪ [0, 1+

√
5

2 ], we have
T(X)(T(X) − 1) < 1. On the other hand, J(X) ≤ T(X). So

J(X)(T(X) − 1) ≤ T(X)(T(X) − 1) < 1.

Therefore, T(X) < 1 + 1
J(X) .

(ii)⇒ (iii). Since J(X) ≥ R(1,X) (see [34]), it then follows that T(X) < 1 + 1
R(1,X) .

(iii)⇒ (iv). By using the inequality J(X) ≤ T(X), the result follows.

Remark 4.26. Note that we can see that there are spaces satisfying condition (iii) which do not satisfy (i)
nor (ii), that is, T(X) < 1 + 1

R(1,X) does not imply T(X) < 1+
√

5
2 . For example, if we consider for β ≥ 1, the

space Xβ := (`2, | · |β) endowed with the norm

|x|β := max{‖x‖2, β‖x‖∞}.

The space Xβ verifies T(Xβ) = min(2, β
√

2) (see [1]) and R(1,Xβ) = max( β
√

2
,
√

3
√

2
) (see [18]). Then, for any

β ∈ [ 1+
√

5
2
√

2
, 1+

√
2/3
√

2
), we have

1 +
√

5
2

≤ β
√

2 = T(Xβ) < 1 +

√
2
3

= 1 +
1

R(1,Xβ)
.

Corollary 4.27. Let E be a nonempty bounded closed convex subset of a Banach space X such that one of the following
two conditions is satisfied:

(i) T(X) < 1+
√

5
2 ,

(ii) T(X) < 1 + 1
J(X) ,

and let T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Proof. From (i) or (ii) we know that X is reflexive. Now, by applying Theorem 2.12 and Proposition 4.25,
we conclude that X satisfies the (DL)-condition. Therefore, T has a fixed point by Theorem 2.4.

Corollary 4.28. Let X be a Banach space such that one of the following two conditions is satisfied:

(i) T(X) < 1+
√

5
2 ,

(ii) T(X) < 1 + 1
J(X) .

Then X has uniform normal structure.

Proof. From (i) or (ii) we know that X is reflexive, indeed superreflexive. If X̃ be a ultrapower of X, then
J(X) = J(X̃) and T(X) = T(X̃). Thus, we get T(X̃) < 1+

√
5

2 and T(X̃) < 1 + 1
J(X̃)

. Hence, X̃ has normal structure

by Theorem 2.13 and Proposition 4.25. It is known that if X is superreflexive, that is X̃∗ = (X̃)∗, then X has
uniform normal structure if and only if X̃ has normal structure (see [29]). Consequently, X has uniform
normal structure.
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Since R(1,X) ≤ 2, if T(X) < 1 + 1
R(1,X) , then T(X) < 2, which implies that X is uniformly non-square,

and consequently X is reflexive. Thus, by using Theorems 2.12 and 2.13 and Proposition 4.25, we obtain
the following sufficient conditions so that a Banach space X has the fixed point theory for multivalued
nonexpansive mappings and normal structure.

Corollary 4.29. Let E be a nonempty bounded closed convex subset of a Banach space X such that

T(X) < 1 +
1

R(1,X)
,

and T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Corollary 4.30. Let X be a Banach space such that

T(X) < 1 +
1

R(1,X)
.

Then X has normal structure.

Remark 4.31. Corollaries 4.29 and 4.30 are sharp in the sense that there is a Banach space X such that
T(X) = 1 + 1

R(1,X) and X does not satisfy the (DL)-condition. If we consider the Bynum space `2,∞ which fails

to have weak normal structure. It is known that T(`2,∞) = 1 + 1
√

2
(see [25]) and R(1, `2,∞) =

√
2 (see [16]).

Then, we have

T(`2,∞) = 1 +
1
√

2
= 1 +

1
R(1, `2,∞)

.

By using the relation (c), it is easy to prove the following result.

Proposition 4.32. Let X be a Banach space and consider the following statements:

(i) A2(X) < 1 + 1
µ(X) ,

(ii) T(X) < 1 + 1
µ(X) ,

(iii) J(X) < 1 + 1
µ(X) .

Each of these conditions implies the next.

Since µ(X) ≥ 1, if A2(X) < 1 + 1
µ(X) , then A2(X) < 2, which implies that X is uniformly non-square, and

consequently X is reflexive. Hence, we obtain the following results.

Corollary 4.33. Let E and E∗ be a nonempty bounded closed convex subset of a Banach space X and its dual space
X∗, respectively. If

A2(X) < 1 +
1

µ(X)
,

and T : E→ KC(E) and T∗ : E∗ → KC(E∗) are nonexpansive mappings, then T and T∗ have a fixed point.

Proof. Since A2(X) < 1 + 1
µ(X) , it implies that X satisfies the (DL)-condition by Theorem 2.14 and Proposition

4.32. Thus, T has a fixed point by Theorem 2.4. Now, Since A2(X) = A2(X∗) and µ(X) = µ(X∗), we get
A2(X∗) < 1 + 1

µ(X∗) . Hence, by Theorem 2.14 and Proposition 4.32 again we conclude that X∗ satisfies the
(DL)-condition. Therefore, T∗ has a fixed point by Theorem 2.4.
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Corollary 4.34. Let X be a Banach space such that

A2(X) < 1 +
1

µ(X)
.

Then X and X∗ have normal structure.

Proof. Since A2(X) < 1 + 1
µ(X) , it follows that X has normal structure by Theorem 2.15 and Proposition

4.32. Now, Since A2(X) = A2(X∗) and µ(X) = µ(X∗), we get A2(X∗) < 1 + 1
µ(X∗) . Thus, by Theorem 2.15 and

Proposition 4.32 again we conclude that X∗ has normal structure.

Remark 4.35. Corollaries 4.33 and 4.34 are sharp in the sense that there is a Banach space X such that
A2(X) = 1 + 1

µ(X) and X does not satisfy the (DL)-condition. Consider the Bynum space `2,∞. It is known

that A2(`2,∞) = 1 + 1
√

2
(see [25]) and µ(`2,∞) =

√
2 (see [25]). Hence, we have

A2(`2,∞) = 1 +
1
√

2
= 1 +

1
µ(`2,∞)

,

and `2,∞ fails to have weak normal structure. Therefore, `2,∞ does not satisfy the (DL)-condition.

Since µ(X) ≥ 1, if T(X) < 1 + 1
µ(X) , then T(X) < 2, which implies that X is uniformly non-square, and

consequently X is reflexive. Thus, by applying Theorems 2.14 and 2.15 and Proposition 4.32, we obtain
the following sufficient conditions so that a Banach space X has the fixed point theory for multivalued
nonexpansive mappings and normal structure.

Corollary 4.36. Let E be a nonempty bounded closed convex subset of a Banach space X such that

T(X) < 1 +
1

µ(X)
,

and T : E→ KC(E) be a nonexpansive mapping. Then T has a fixed point.

Corollary 4.37. Let X be a Banach space such that

T(X) < 1 +
1

µ(X)
.

Then X has normal structure.

Remark 4.38. As in Remark 4.35, Corollaries 4.36 and 4.37 are sharp.
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[24] A. Jiménez-Melado, E. Llorens-Fuster, The fixed point property for some uniformly nonsquare Banach spaces, Bollettino della

Unione Matematica Italiana. Sezione A. (7) 10 (1996) 587–595.
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