Subgroups, congruences and normal subgroups are investigated for Ω-groups. These are lattice-valued algebraic structures, defined on crisp algebras which are not necessarily groups, and in which the classical equality is replaced by a lattice-valued one. A normal Ω-subgroup is defined as a particular class in an Ω-congruence. Our main result is that the quotient groups over cuts of a normal Ω-subgroup of an Ω-group G, are classical normal subgroups of the corresponding quotient groups over G. We also describe the minimal normal Ω-subgroup of an Ω-group, and some other constructions related to Ω-valued congruences.