Filomat 32:18 (2018), 6487–6492 https://doi.org/10.2298/FIL1818487M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hyers-Ulam Stability of Substitution Vector-Valued Integral Operator

Zahra Moayyerizadeh^a

^aDepartment of Mathematical Sciences, Lorestan University, Khorramabad, Iran

Abstract. For a substitution vector-valued integral operator T_u^{φ} , we determine necessary and sufficient conditions to have Hyers-Ulam stability using conditional expectation operators. Then, we present an example to illustrate our result.

1. Introduction and Preliminaries

It seems that S. M. Ulam [15] first raised the stability problem of functional equations. The problem can be stated as follows. Let G_1 be a group and (G_2, d) a metric group. Given $\epsilon > 0$, does there exists $\delta > 0$ such that if $f : G_1 \to G_2$ satisfies $d(f(xy), f(x)f(y)) < \delta$, for each $x, y \in G_1$, then a homomorphism $T : G_1 \to G_2$ exists with $d(f(x), T(x)) < \epsilon$, for each $x, y \in G_1$? The first (partial) answer to it was published in 1941 by Hyers[5]. It reads as follows. Let *E* and *Y* be Banach spaces and $\epsilon > 0$. Then, for each $g : E \to Y$ with

$$\sup_{x,y\in E}\|g(x+y)-g(x)-g(y)\|\leq\epsilon,$$

there is a unique solution $f : E \to Y$ of the Cauchy equation f(x + y) = f(x) + f(y) such that $\sup_{x \in E} ||g(x) - f(x)|| \le \epsilon$. This result is called the Hyers-Ulam stability of the additive Cauchy equation. For the last 50 years, that issue has been a very popular subject of investigations and we refer the reader to [1, 2, 6–8, 10] for further information, some discussions, and examples of recent results.

T. Miura, S. Miyajima and S. -E. Takahasi [9] introduced the notion of the Hyers-Ulam stability of a mapping between two normed linear spaces as follows:

Definition 1.1 ([9]). Let X, Y be normed linear spaces and T be a (not necessarily linear) mapping from X into Y. We say that T has the Hyers-Ulam stability if there exists a constant M > 0 with the following property: For any $g \in T(X)$, $\epsilon > 0$ and $f \in T(X)$ satisfying $||Tf - g|| \le \epsilon$, we can find $f_0 \in T(X)$ such that $Tf_0 = g$ and $||f - f_0|| \le M\epsilon$.

We call *M* a HUS constant for *T*, and denote the infimum of all HUS constants for *T* by M_T . We refer the reader for the Hyers-Ulam stability of substitution operators on function spaces to [4, 9, 13, 14] and the

²⁰¹⁰ Mathematics Subject Classification. Primary : 47B20 ; Secondory : 47B38

Keywords. Integral operator, Conditional expectation operator, Hyers-Ulam stability.

Received: 30 October 2016; Accepted: 06 January 2017

Communicated by Dragan S. Djordjević

Email address: moayerizadeh.za@lu.ac.ir (Zahra Moayyerizadeh)

references cited therein.

From now on, by an operator we will a non-zero linear operator. Let \mathcal{B} be a Banach space and let T be an operator from \mathcal{B} into itself. The linearity of T implies that T has the H-U stability if and only if there exists a constant M with the following property:

For any $\epsilon > 0$ and $f \in \mathcal{B}$ with $||Tf|| \le \epsilon$ there exists $f_0 \in \mathcal{B}$ such that $Tf_0 = 0$ and $||f - f_0|| \le M\epsilon$.

For a bounded operator $T : \mathcal{B} \to \mathcal{B}$, we denote the null space of T by $\mathcal{N}(T)$, the range of T by $\mathcal{R}(T)$ and the induced one-to-one operator \tilde{T} from the quotient space $\mathcal{B}/\mathcal{N}(T) \to \mathcal{B}$ defined by $\tilde{T}(f + \mathcal{N}(T)) = Tf$, for all $f \in \mathcal{B}$. Clearly $\mathcal{R}(T) = \mathcal{R}(\tilde{T})$.

Takagi, Miura and Takahashi [13] investigated the relation of the Hyers-Ulam stability of *T* and the inverse operator \tilde{T}^{-1} from $\mathcal{R}(T)$ into $\mathcal{B}/\mathcal{N}(T)$ in the following sense.

Theorem A ([13], Theorem2). For a bounded linear operator T on a Banach space, the following statements are equivalent:

- 1. *T* has the Hyers-Ulam stability.
- 2. *T* has closed range.

3. \tilde{T}^{-1} is bounded.

Moreover, in this case $M_T = \|\tilde{T}^{-1}\|$.

The aim of this paper is to carry some of the results obtained for the linear operators on function spaces in [4, 9, 13, 14] to a substitution vector-valued integral operator on $L^1(X)$ space.

Firs of all, we introduce notations, definitions and preliminary facts that are used throughout the paper.

Let (X, Σ, μ) be a σ -finite measure space and $\varphi : X \to X$ be a non-singular measurable transformation; i.e. $\mu \circ \varphi^{-1} \ll \mu$. Here the non-singularity of φ guarantees that the operator $f \to f \circ \varphi$ is well defined as a mapping on $L^0(\Sigma)$ where $L^0(\Sigma)$ denotes the linear space of all equivalence classes of Σ -measurable functions on X. Let $h_0 = d\mu \circ \varphi^{-1}/d\mu$ be the Radon-Nikodym derivative. We also assume that h_0 is almost everywhere finite-valued, or equivalently $\varphi^{-1}(\Sigma) \subseteq \Sigma$ is a sub- σ -finite algebra see[12]. As usual, Σ is said to be φ -invariant if $\varphi(\Sigma) \subseteq \Sigma$, where $\varphi(\Sigma) = \{\varphi(A), A \in \Sigma\}$. The measure μ is said to be normal if $\mu(A) = 0$ implies that $\varphi(A) \in \Sigma$ and $\mu(\varphi(A)) = 0$. The support of a measurable function f is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. For a sub- σ -finite algebra $\mathcal{A} \subseteq \Sigma$, the conditional expectation operator associated with \mathcal{A} is the mapping $f \to E^{\mathcal{A}} f$, defined for all non-negative f as well as for all $f \in L^p(\Sigma), 1 \leq p \leq \infty$, where $E^{\mathcal{A}} f$, by Radon-Nikodym Theorem, is the unique \mathcal{A} -measurable function satisfying

$$\int_{A} f d\mu = \int_{A} E^{\mathcal{A}} f d\mu, \quad \forall A \in \mathcal{A}.$$

We recall that $E^{\mathcal{A}} : L^2(\Sigma) \to L^2(\mathcal{A})$ is an orthogonal projection. For more details on the properties of $E^{\mathcal{A}}$ see [11]. Throughout this paper, we assume that $\mathcal{A} = \varphi^{-1}(\Sigma)$ and $E^{\varphi^{-1}(\Sigma)} = E$.

For a given complex Hilbert space \mathcal{H} , let $u : X \to \mathcal{H}$ be a mapping. We say that u is weakly measurable if for each $h \in \mathcal{H}$ the mapping $x \mapsto \langle u(x), h \rangle$ of X to C is measurable. We will denote this map by $\langle u, h \rangle$. Let $L^p(\Sigma)$ be the class of all measurable mappings $f : X \to C$ such that $||f||_p^p = \int_X |f(x)|^p d\mu < \infty$ for $p \ge 1$.

Let $\varphi : X \to X$ be a non-singular measurable transformation and let $u : X \to \mathcal{H}$ be a weakly measurable function. Then the pair (u, φ) induces a substitution vector-valued integral operator $T_u^{\varphi} : L^p(\Sigma) \to \mathcal{H}$ defined

by

$$\langle T_u^{\varphi}f,h\rangle = \int_X \langle u,h\rangle f\circ \varphi d\mu, \quad h\in \mathcal{H}, \ f\in L^p(\Sigma).$$

It is easy to see that T_u^{φ} is well defined and linear. Moreover for each $f \in L^p(\Sigma)$,

$$\sup_{h \in \mathcal{H}_1} |\langle T_u^{\varphi} f, h \rangle| \le \sup_{h \in \mathcal{H}_1} ||T_u^{\varphi} f|| ||h|| = ||T_u^{\varphi} f|| = |\langle T_u^{\varphi} f, \frac{T_u^{\varphi} f}{||T_u^{\varphi} f||} \rangle| \le \sup_{h \in \mathcal{H}_1} |\langle T_u^{\varphi} f, h \rangle|$$

-0 c

where \mathcal{H}_1 is the closed unit ball of \mathcal{H} . Hence $||T_u^{\varphi}f|| = \sup_{h \in \mathcal{H}_1} |\langle T_u^{\varphi}f, h\rangle|$, for each $f \in L^p(\Sigma)$. Some fundemental properties of this operator on $L^2(\Sigma)$ space are studied by the author et al in [3].

Definition 1.2. Let $u : X \to \mathcal{H}$ be a weakly measurable function. We say that $(u, \varphi, \mathcal{H})$ has absolute property, if for each $f \in L^p(X)$, there exists $h_f \in \mathcal{H}_1$ such that $\sup_{h \in \mathcal{H}_1} \int_X |\langle u, h \rangle| |f \circ \varphi| d\mu = \int_X |\langle u, h_f \rangle| |f \circ \varphi| d\mu$, and $\langle u, h_f \rangle = e^{i(-\arg f \circ \varphi + \theta_f)} |\langle u, h_f \rangle|$, for a constant θ_f .

Proposition 1.3 ([3]). Assume that $(u, \varphi, \mathcal{H})$ has the absolute property. Then

$$\sup_{h\in\mathcal{H}_1}|\int_X\langle u,h\rangle f\circ\varphi d\mu|=\sup_{h\in\mathcal{H}_1}\int_X|\langle u,h\rangle||f\circ\varphi|d\mu.$$

Throughout of this paper we assume that $(u, \varphi, \mathcal{H})$ has the absolute property.

2. The main results

In this section, we determine the Hyers-Ulam stability the substitution vector-valued integral operator $T_u^{\varphi}: L^1(\Sigma) \to \mathcal{H}$, with the norm of the inverse of the one-to-one operator induced by this operator.

First, we present an auxiliary lemma which plays a key role in the sequel.

Lemma 2.1. Let Σ be φ -invariant. If $T_u^{\varphi} : L^1(\Sigma) \to \mathcal{H}$ is a bounded substitution vector-valued integral operator. Then we have

$$||f + \mathcal{N}(T_u^{\varphi})|| = \int_{\varphi(\cup_{h \in \mathcal{H}_1} \sigma | \langle u, h \rangle |)} |f|$$

Proof. Put $\mathcal{D} = \varphi(\bigcup_{h \in \mathcal{H}_1} \sigma | \langle u, h \rangle |)$ and $\mathcal{D}^c = X \setminus \mathcal{D}$. we can write

$$L^{1}(X, \Sigma, \mu) = L^{1}(\mathcal{D}, \Sigma_{1}, \mu) \oplus L^{1}(\mathcal{D}^{c}, \Sigma_{2}, \mu),$$

where $\Sigma_1 = \Sigma \cap \mathcal{D}$ and $\Sigma_2 = \Sigma \cap \mathcal{D}^c$. Moreover we have

$$\mathcal{N}(T_u^{\varphi}) = \{ f \in L^1(\Sigma) : |f| = 0 \quad \text{on} \quad \mathcal{D} \} = L^1(\Sigma_2).$$

If T_u^{φ} is one-to-one, then $\mu(\mathcal{D}^c) = 0$ and hence there is nothing to prove. Choose $g \in \mathcal{N}(T_u^{\varphi})$ arbitrary. Thus for each $f \in L^1(\Sigma)$ we obtain

$$\int_{\mathcal{D}} |f| d\mu = \int_{\mathcal{D}} |f + g| d\mu \le \int_{X} |f + g| d\mu = ||f + g||.$$

Therefore, we deduce that $\int_{\mathcal{D}} |f| d\mu \leq ||f + \mathcal{N}(T_u^{\varphi})||$. Now, put $p = -\chi_{\mathcal{D}^c} f$. It is easy to see that $p \in \mathcal{N}(T_u^{\varphi})$. Hence, we get that for all $f \in L^1(\Sigma)$,

$$||f + \mathcal{N}(T_u^{\varphi})|| \le ||f + p|| = ||f(1 - \chi_{\mathcal{D}^*})|| = ||f\chi_{\mathcal{D}})|| = \int_{\mathcal{D}} |f| d\mu.$$

Therefore the lemma is proved. \Box

6489

In the following theorem we give necessary and sufficient conditions for $T_u^{\varphi} : L^1(\Sigma) \to \mathcal{H}$ to have the Hyers-Ulam stability.

Theorem 2.2. Let T_u^{φ} be a bounded operator from $L^1(\Sigma)$ into \mathcal{H} . Also let Σ be φ -invariant. If μ is normal, then the following assertions are equivalent:

- (i) T_{μ}^{φ} has the Hyers-Ulam stability.
- (ii) T_u^{φ} has closed range.
- (iii) There exists r > 0 such that $\sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} \ge r$ for μ -almost all $x \in \bigcup_{h \in \mathcal{H}_1} \sigma(J_h)$, where $J_h := h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1}$.
- (iv) $\varphi(\bigcup_{h\in\mathcal{H}_1}\sigma|\langle u,h\rangle|) \subseteq \{x\in X; \sup_{h\in\mathcal{H}_1}h_0E(|\langle u,h\rangle|)\circ\varphi^{-1}(x)\geq r\}, \text{ for some } r>0.$
- (v) There exists M > 0 such that $||f + \mathcal{N}(T_u^{\varphi})|| \le M ||T_u^{\varphi}f||$, for each $f \in L^1(\Sigma)$.

Proof. The implication (i) \Rightarrow (ii) is direct consequent of Theorem A.

(ii) \Rightarrow (iii) Assume T_u^{φ} has closed range. Then $T_u^{\varphi}|_{\sigma(J_h)}(L^1|_{J_h}(\Sigma))$ is closed in \mathcal{H} for each $h \in \mathcal{H}_1$. Since $T_u^{\varphi}|_{\sigma(J_h)}$ is injective for each $h \in \mathcal{H}_1$ see([3], Theorem 2.12). Hence we can deduce that there exists a constant d > 0 such that $||T_u^{\varphi}|_{\sigma(J_h)}f|| \ge d||f||$ for any $f \in L^1|_{\sigma(J_h)}(\Sigma)$ and for each $h \in \mathcal{H}_1$. Now, by the contrary assume that (iii) is not hold. Then for each r > 0 and for each $h \in \mathcal{H}_1$ we have $h_0E(|\langle u, h \rangle|) \circ \varphi^{-1} < r$ on $\cup_{h \in \mathcal{H}_1} \sigma(J_h)$. Put $f = \chi_B$ with $\mu(B) < \infty$ and $B \subseteq \bigcup_{h \in \mathcal{H}_1} \sigma(J_h)$. Therefore we have

$$d||\chi_B|| \leq ||T_u^{\varphi}|_{\sigma(J_h)}\chi_B|| = \sup_{h \in \mathcal{H}_1} \int_X h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1}\chi_B d\mu < r\mu(B).$$

It is sufficient put r = d, but this is a contradiction. Hence we conclude that (iii) is hold.

(iii) \Rightarrow (iv) We have $\sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} \ge r$ on $\bigcup_{h \in \mathcal{H}_1} \sigma(J_h)$ for some r > 0. It is enough to prove that $\varphi(\bigcup_{h \in \mathcal{H}_1} \sigma|\langle u, h \rangle|) \subseteq \bigcup_{h \in \mathcal{H}_1} \sigma(J_h)$. If T_u^{φ} is one-to-one, then $\bigcup_{h \in \mathcal{H}_1} \sigma(J_h) = X$ and hence there is nothing to prove. If $\varphi(\bigcup_{h \in \mathcal{H}_1} \sigma|\langle u, h \rangle|) \nsubseteq \bigcup_{h \in \mathcal{H}_1} \sigma(J_h)$, then we can choose $C \subseteq \bigcup_{h \in \mathcal{H}_1} \sigma|\langle u, h \rangle|$ such that $0 < \mu(\varphi(C)) < \infty$ with $\varphi(C) \cap (\bigcup_{h \in \mathcal{H}_1} \sigma(J_h)) = \emptyset$. For any $h \in \mathcal{H}_1$ we have

$$0 = \int_X \chi_{\varphi(C)} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} d\mu = \int_X \chi_{\varphi^{-1}(\varphi(C))} |\langle u, h \rangle| d\mu.$$

On the other hand we have

$$\begin{split} \mu(C) &= \mu(C \cap (\cup_{h \in \mathcal{H}_1} \sigma | \langle u, h \rangle |)) = \mu(\cup_{h \in \mathcal{H}_1} (C \cap \sigma | \langle u, h \rangle |)) \\ &\leq \mu(\cup_{h \in \mathcal{H}_1} (\varphi^{-1}(\varphi(C)) \cap \sigma | \langle u, h \rangle |)) \leq \sum_{h \in \mathcal{H}_1} \mu(\varphi^{-1}(\varphi(C)) \cap \sigma | \langle u, h \rangle |) \end{split}$$

Since μ is normal, we get that $\mu(\varphi(C)) = 0$. But this is a contradiction.

(iv) \Rightarrow (v) Put $A := \{x \in X : \sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} \ge r\}$. Take ϵ arbitrary, then there exists $h_1 \in \mathcal{H}_1$ such

that $B := \{x \in X : h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1} \ge r - \epsilon\}$ with $A \subseteq B$. By Lemma 2.1, we obtain that

$$\begin{split} \|f + \mathcal{N}(T_u^{\varphi})\| &= \int_{\varphi(\cup_{h \in \mathcal{H}_1} \sigma | \langle u, h \rangle |)} |f| d\mu \leq \int_A |f| d\mu = \frac{1}{r - \epsilon} \int_A (r - \epsilon) |f| d\mu \\ &\leq \frac{1}{r - \epsilon} \int_B h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1} |f| d\mu \\ &\leq \frac{1}{r - \epsilon} \sup_{h \in \mathcal{H}_1} \int_X h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} |f| d\mu \\ &= \frac{1}{r - \epsilon} \|T_u^{\varphi} f\|, \end{split}$$

for each $f \in L^1(X)$. Since ϵ was arbitrary, consequently there is a constant $M = \frac{1}{r}$.

 $(v) \Rightarrow$ (i) It is trivial by using Theorem A and definition of the Hyers-Ulam stability. \Box

Theorem 2.3. Under the same assumptions as in Theorem 2.2, if $R = \sup\{r > 0 : \varphi(\bigcup_{h \in \mathcal{H}_1} \sigma | \langle u, h \rangle |) \subseteq \{x \in X; \sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle |) \circ \varphi^{-1} \ge r\}$. Then $M_{T_u^{\varphi}} = 1/R$.

Proof. By theorem 2.2, if *r* is taken over all numbers satisfying

$$\varphi(\bigcup_{h\in\mathcal{H}_1}\sigma|\langle u,h\rangle|)\subseteq \{\sup_{h\in\mathcal{H}_1}h_0E(|\langle u,h\rangle|)\circ\varphi^{-1}\ge r\},\$$

we obtain $M_{T_u^{\varphi}} = \|\tilde{T}_u^{\varphi^{-1}}\| \le 1/R$. For the opposite inequality, assume that $\|\tilde{T}_u^{\varphi^{-1}}\| \le 1/r$ and for each $h \in \mathcal{H}_1$, $\varphi(\bigcup_{h \in \mathcal{H}_1} \sigma | \langle u, h \rangle |) \not\subseteq \{J_h \ge r\}$ for some r > 0. Hence we can choose $A \subseteq \varphi(\bigcup_{h \in \mathcal{H}_1} \sigma | \langle u, h \rangle |)$, with $0 < \mu(A) < \infty$ such that $\sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle |) \circ \varphi^{-1}|_A < r$. Put $f_0 = \frac{\chi_A}{\mu(A)}$. Then we get that

$$\|T_u^{\varphi} f_0\| = \sup_{h \in \mathcal{H}_1} \int_X h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} \frac{\chi_A}{\mu(A)} d\mu = \sup_{h \in \mathcal{H}_1} \int_A h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} \frac{1}{\mu(A)} d\mu < r$$

Therefore

$$1 = \|f_0\| = \int_{\varphi(\bigcup_{h \in \mathcal{H}_1 \sigma \mid \langle u, h \rangle|)}} |f_0| d\mu = \|f_0 + \mathcal{N}(T_u^{\varphi})\| = \|\tilde{T}_u^{\varphi^{-1}}(T_u^{\varphi}f_0)\| \le \|\tilde{T}_u^{\varphi^{-1}}\|\|T_u^{\varphi}f_0\| < 1$$

Which is a contradiction. Hence we deduce that if $\|\tilde{T}_{u}^{\varphi^{-1}}\| < 1/r$ then $\varphi(\bigcup_{h \in \mathcal{H}_{1}} \sigma |\langle u, h \rangle|) \subseteq \{\sup_{h \in \mathcal{H}_{1}} h_{0}E(|\langle u, h \rangle|) \circ \varphi^{-1} \ge r\}$. This follows that $1/R \le \|\tilde{T}_{u}^{\varphi^{-1}}\|$. \Box

Example 2.4. Let X = (0,1), Σ be the Lebesgue subsets of X and let μ be the Lebesgue measure on X. Also let $\varphi : X \to X$ be defined by

$$\varphi(x) = \begin{cases} 2x & 0 < x < \frac{1}{2}, \\ 2 - 2x & \frac{1}{2} \le x < 1. \end{cases}$$

Direct computation shows that $h_0(x) = 1$. Define $u: X \to \mathcal{R}$ by u(x) = x + 1. Then for each $h \in \mathcal{H}_1$, we have

$$\begin{split} \int_{X} h_{0} E|\langle u(x), h\rangle| \circ \varphi^{-1} d\mu &= \int_{(0,\frac{1}{2})} E|\langle u(x), h\rangle| \circ \varphi^{-1} d\mu \circ \varphi^{-1} \\ &+ \int_{(\frac{1}{2},1)} E|\langle u(x), h\rangle| \circ \varphi^{-1} d\mu \circ \varphi^{-1} \\ &= \int_{\varphi^{-1}(0,\frac{1}{2})} E|\langle u(x), h\rangle| d\mu + \int_{\varphi^{-1}(\frac{1}{2},1)} E|\langle u(x), h\rangle| d\mu \\ &= \int_{\varphi^{-1}(0,\frac{1}{2})} |\langle u(x), h\rangle| d\mu + \int_{\varphi^{-1}(\frac{1}{2},1)} |\langle u(x), h\rangle| d\mu \\ &= \frac{1}{2} \int_{(0,1)} |\langle u(\frac{x}{2}), h\rangle| dx + \frac{1}{2} \int_{(0,1)} |\langle u(1-\frac{x}{2}), h\rangle| dx \end{split}$$

Hence for each $h \in \mathcal{H}_1$ *we get that*

$$h_0 E|\langle u(x),h\rangle| \circ \varphi^{-1} = \frac{1}{2} \left(|\langle u(\frac{x}{2}),h\rangle| + |\langle u(1-\frac{x}{2}),h\rangle| \right).$$

Therefore

$$h_0 E|\langle u(x), h \rangle| \circ \varphi^{-1} = \frac{1}{2} \left(|\frac{xh}{2} + h| + |2h - \frac{xh}{2}| \right) \ge \frac{1}{2} |3h|$$

This implies that $\sup_{h \in \mathcal{R}_1} h_0 E|\langle u(x), h \rangle| \circ \varphi^{-1} \ge \frac{3}{2}$, where \mathcal{R}_1 is the closed unit ball of \mathcal{R} . It is sufficient put $r = \frac{3}{2} - \epsilon$, for ϵ arbitrary. Then, by Theorem 2.2 we deduce that T^{φ}_{μ} on $L^{1}(\Sigma)$ has the Hyers-Ulam stability.

References

- [1] R. P. Agarwal, B. Xu, and W. Zhang, Stability of functional equations in single variable, Journal of Mathematical Analysis and Applications 288 (2003) 852-869.
- [2] J. Brzdek, K. Cieplinski, and Z. Lesniak, On Ulam's Type Stability of the Linear Equation and Related Issues, Discrete Dynamics in Nature and Society Volume 2014, Article ID 536791, 14 pages.
- [3] H. Emamalipour, M. R. Jabbarzadeh and Z. Moayyerizadeh, A substitution vector-valued integral operator, J Mathematical Analysis and Applications 431 (2015), 812–821.
- [4] G. Hirasawa and T. Miura, Hyers-Ulam stability of a closed operator in a Hilbert space, Bull. Korean Math. Soc. 43 (2006), 107–111.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. [6] D. H.Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, Mass, USA,
- 1998. [7]
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, USA, 2011.
- [8] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fla, USA, 2001.
- [9] T. Miura, S. Miyajima, and S.-E. Takahasi, Hyers-Ulam stability of linear dif- ferential operator with constant coecients, Math. Nachr. 258 (2003), 90-96.
- [10] Z. Moszner, On the stability of functional equations, Aequationes Mathematicae 77 (2009) 33-88.
- [11] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
- [12] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North Holland Math. Studies 179, Amsterdam 1993.
- [13] H. Takagi, T. Miura and S.-E. Takahasi, Essential norms and stability constants of weighted composition operators on C(X), Bull. Korean Math. Soc. 40 (2003), 583-591.
- [14] H. Takagi, T. Miura and S.-E. Takahasi, The Hyers-Ulam stability of a weighted composition operator on a uniform algebra, J. Nonlinear Convex Anal. 5 (2004), 43-48.
- [15] Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960.
- [16] A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.