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Paley-Wiener-Zygmund Integral over Continuous Paths
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Abstract. Let C[0,T] denote an analogue of generalized Wiener space, the space of continuous real-valued
functions on the interval [0,T]. On the space C[0,T], we introduce a finite measure wα,β;ϕ and investigate
its properties, where ϕ is an arbitrary finite measure on the Borel class of R. Using the measure wα,β;ϕ, we
also introduce two measurable functions on C[0,T]; one of them is similar to the Itô integral and the other
is similar to the Paley-Wiener-Zygmund integral. We will prove that if ϕ(R) = 1, then wα,β;ϕ is a probability
measure with the mean function α and the variance function β, and the two measurable functions are
reduced to the Paley-Wiener-Zygmund integral on the analogue of Wiener space C[0,T]. As an application
of the integrals, we derive a generalized Paley-Wiener-Zygmund theorem which is useful to calculate
generalized Wiener integrals on C[0,T]. Throughout this paper, we will recognize that the generalized Itô
integral is more general than the generalized Paley-Wiener-Zygmund integral.

1. Introduction

Let C0[0,T] denote the classical Wiener space, the space of continuous real-valued functions x on the
interval [0,T] with x(0) = 0. In [8], Paley, Wiener and Zygmund defined a stochastic integral which is based
on integration by parts and is now called the Paley-Wiener-Zygmund (PWZ) integral. When applied to
the classical Wiener space C0[0,T], it is less general than the Itô integral [6], but the two integrals agree
when they are both defined. The PWZ stochastic integrals have been used in various papers, in particular,
concerning Feynman integration theories [2, 9]. In particular the PWZ stochastic integrals were used in
defining a Banach algebra S of functions on C0[0,T] which was introduced by Cameron and Storvick in
[2]. In [5], Johnson showed that S is isometrically isomorphic to the Banach algebra of Fresnel integrable
functions as given by Albeverio and Høegh-Krohn [1]. Further work for relationships between the Itô
integral and the PWZ integral were introduced by Pierce [10] on the generalized Wiener space Cα,β[0,T]
which is a generalized classical Wiener space with the mean function α and the variance function β.

Let C[0,T] denote an analogue of a generalized Wiener space [4, 11, 12], the space of continuous real-
valued functions on the interval [0,T]. On the space C[0,T], we introduce a finite measure wα,β;ϕ and
investigate its properties, where α, β : [0,T]→ R are appropriate functions such that β is strictly increasing,
and ϕ is an arbitrary finite measure on the Borel class B(R) of R. Using this finite measure wα,β;ϕ, we
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also introduce two measurable functions on C[0,T]; one of them is similar to the Itô type integral Iα,β(1)
for 1 ∈ L2

α,β[0,T], where L2
α,β[0,T] is the L2-space with respect to the Lebesgue-Stieltjes measure induced

by α and β, and the other is similar to the PWZ integral. And then, we investigate their properties and
relationships. In fact, we will prove that if ϕ(R) = 1, then wα,β;ϕ is a probability measure with the mean
function α and the variance function β, and the two measurable functions are reduced to the PWZ integral.
As an application of Iα,β, we derive a generalized PWZ theorem which is useful to calculate generalized
Wiener integrals on C[0,T]; for a Borel measurable(integrable) function f : Rn

→ C∫
C[0,T]

f (Iα,β( f1)(x), . . . , Iα,β( fn)(x))dwα,β;ϕ(x) = ϕ(R)
( 1

2π

) n
2
∫
Rn

f (~u) exp
{
−

1
2

n∑
j=1

[
u j −

∫ T

0
f j(t)dα(t)

]2}
dmn

L(~u),

where ~u = (u1, . . . ,un), { f1, . . . , fn} is orthonormal in L2
0,β[0,T] with f j ∈ L2

α,β[0.T] for j = 1, . . . ,n and mL

denotes the Lebesgue measure on B(R). We note that Pierce used the pointwise convergence in Cα,β[0,T]
to define the Itô integral in [10]. Throughout this paper, we will use the L2(C[0,T])-convergence to define
Iα,β(1) on C[0,T] so that we can give an exact proof that Iα,β is more general than the generalized PWZ
integral.

2. An analogue of a generalized Wiener space

In this section, we introduce a finite measure over continuous paths and investigate its properties.
Let α, β : [0,T]→ R be two functions, where β is strictly increasing. Let ϕ be a positive finite measure on

B(R). For ~tn = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn ≤ T, let J~tn
: C[0,T]→ Rn+1 be the function given by

J~tn
(x) = (x(t0), x(t1), . . . , x(tn)). For

∏n
j=0 B j ∈ B(Rn+1), the subset J−1

~tn
(
∏n

j=0 B j) of C[0,T] is called an interval I
and let I be the set of all such intervals I. Define a premeasure mα,β;ϕ on I by

mα,β;ϕ(I) =
∫

B0

∫
∏n

j=1 B j

Wn(α, β,~tn, ~un,u0)dmn
L(~un)dϕ(u0),

where for ~un = (u1, . . . ,un) ∈ Rn and u0 ∈ R,

Wn(α, β,~tn, ~un,u0) =
[ 1∏n

j=1 2π[β(t j) − β(t j−1)]

] 1
2

exp
{
−

1
2

n∑
j=1

[u j − α(t j) − u j−1 + α(t j−1)]2

β(t j) − β(t j−1)

}
.

The Borel σ-algebra B(C[0,T]) of C[0,T] with the supremum norm, coincides with the smallest σ-algebra
generated by I and there exists a unique positive finite measure wα,β;ϕ onB(C[0,T]) with wα,β;ϕ(I) = mα,β;ϕ(I)
for all I ∈ I. This measure wα,β;ϕ is called an analogue of a generalized Wiener measure on (C[0,T],B(C[0,T]))
according to ϕ [11, 12].

Theorem 2.1. If f : Rn+1
→ C is a Borel measurable function, then the following equality holds:∫

C[0,T]
f (x(t0), x(t1), . . . , x(tn))dwα,β;ϕ(x) ∗=

∫
Rn+1

f (u0,u1, . . . ,un)Wn(α, β,~tn, ~un,u0)dmn
L(~un)dϕ(u0),

where ∗= means that if either side exists, then both sides exist and they are equal.

Using the same method as used in the proof of Theorem 3.1 of [3], we can prove the following Lemma.

Lemma 2.2. For λ > 0, a ∈ R and nonnegative integer n, we have( 1
2πλ

) 1
2
∫
R

un exp
{
−

(u − a)2

2λ

}
dmL(u) =

[ n
2 ]∑

j=0

n!λ jan−2 j

2 j j!(n − 2 j)!
,

where [·] denotes the greatest integer function.
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By Theorem 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.3. If 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ T, then we have for nonnegative integers m and n∫
C[0,T]

[x(t2) − x(t1)]n[x(t4) − x(t3)]mdwα,β;ϕ(x)

= ϕ(R)
[ [ n

2 ]∑
j=0

n![α(t2) − α(t1)]n−2 j

2 j j!(n − 2 j)!
[β(t2) − β(t1)] j

][ [ m
2 ]∑

k=0

m![α(t4) − α(t3)]m−2k

2kk!(m − 2k)!
[β(t4) − β(t3)]k

]
.

Proof. Suppose that 0 = t0 < t1 < t2 < t3 < t4 ≤ T. Then we have by Theorem 2.1∫
C[0,T]

[x(t2) − x(t1)]n[x(t4) − x(t3)]mdwα,β;ϕ(x)

=
[ 4∏

j=1

1
2π[β(t j) − β(t j−1)]

] 1
2
∫
R5

(u2 − u1)n(u4 − u3)m exp
{
−

4∑
j=1

[u j − α(t j) − u j−1 + α(t j−1)]2

2[β(t j) − β(t j−1)]

}
dm4

L(u1,u2,u3,u4)dϕ(u0).

Letting v j = u j − u j−1 for j = 1, 2, 3, 4, we have, by the change of variable theorem,∫
C[0,T]

[x(t2) − x(t1)]n[x(t4) − x(t3)]mdwα,β;ϕ(x)

= ϕ(R)
[ 4∏

j=1

1
2π[β(t j) − β(t j−1)]

] 1
2
∫
R4

vn
2vm

4 exp
{
−

4∑
j=1

[v j − α(t j) + α(t j−1)]2

2[β(t j) − β(t j−1)]

}
dm4

L(v1, v2, v3, v4)

= ϕ(R)
[ 1
(2π)2[β(t4) − β(t3)][β(t2) − β(t1)]

] 1
2
∫
R2

vn
2vm

4 exp
{
−

[v2 − α(t2) + α(t1)]2

2[β(t2) − β(t1)]
−

[v4 − α(t4) + α(t3)]2

2[β(t4) − β(t3)]

}
dm2

L(v2, v4).

By Lemma 2.2, we have the result. For the general case 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ T, we can prove the result
with minor modifications.

By Theorem 2.3, we have the following corollary.

Corollary 2.4. Let t1, t2 ∈ [0,T]. Then

1.
∫

C[0,T][x(t2) − x(t1)]dwα,β;ϕ(x) = ϕ(R)[α(t2) − α(t1)],

2.
∫

C[0,T][x(t2) − x(t1)][x(t4) − x(t3)]dwα,β;ϕ(x) = ϕ(R)[α(t2) − α(t1)][α(t4) − α(t3)] if 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ T,
and

3.
∫

C[0,T][x(t2) − x(t1)]2dwα,β;ϕ(x) = ϕ(R)[|β(t2) − β(t1)| + [α(t2) − α(t1)]2].

Theorem 2.5. Let 0 ≤ t1 ≤ t2 ≤ T. Then the followings hold:

1.
∫

C[0,T] x(t1)dwα,β;ϕ(x) ∗= ϕ(R)[α(t1) − α(0)] +
∫
R

udϕ(u).

2. If
∫
R

u2dϕ(u) < ∞, then∫
C[0,T]

x(t1)x(t2)dwα,β;ϕ(x) = ϕ(R)[[α(t2) − α(t1)][α(t1) − α(0)] + β(t1) − β(0)]

+

∫
R

[α(t1) − α(0) + u]2dϕ(u) + [α(t2) − α(t1)]
∫
R

udϕ(u).

In particular, we have∫
C[0,T]

[x(t1)]2dwα,β;ϕ(x) = ϕ(R)[β(t1) − β(0)] +
∫
R

[α(t1) − α(0) + u]2dϕ(u).
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Proof. By Theorem 2.1 and Corollary 2.4, we have∫
C[0,T]

x(t1)dwα,β;ϕ(x) =
∫

C[0,T]
[x(t1) − x(0) + x(0)]dwα,β;ϕ(x) ∗= ϕ(R)[α(t1) − α(0)] +

∫
R

udϕ(u).

If 0 < t1 ≤ T, then we have by Theorem 2.1∫
C[0,T]

[x(t1)]2dwα,β;ϕ(x) =
[ 1
2π[β(t1) − β(0)]

] 1
2
∫
R2

u2
1 exp

{
−

[u1 − α(t1) − u0 + α(0)]2

2[β(t1) − β(0)]

}
dmL(u1)dϕ(u0)

=

∫
R

[β(t1) − β(0) + [α(t1) + u0 − α(0)]2]dϕ(u0)

which also holds for t1 = 0. By Theorem 2.1 and Corollary 2.4, we have∫
C[0,T]

x(t1)x(t2)dwα,β;ϕ(x) =

∫
C[0,T]

[x(t2) − x(t1)][x(t1) − x(0)]dwα,β;ϕ(x) +
∫

C[0,T]
[x(t1)]2dwα,β;ϕ(x)

+

∫
C[0,T]

[x(t2) − x(t1)]x(0)dwα,β;ϕ(x)

= ϕ(R)[[α(t2) − α(t1)][α(t1) − α(0)] + β(t1) − β(0)] +
∫
R

[α(t1) − α(0) + u]2

dϕ(u) + [α(t2) − α(t1)]
∫
R

udϕ(u)

which completes the proof.

Theorem 2.6. Let 0 ≤ t ≤ T. Let X0(x) = x(0) and Xt(x) = x(t) for x ∈ C[0,T]. Let ϕX0 , ϕXt and ϕXt−X0 be the
Fourier-transforms of X0, Xt and Xt − X0, respectively. Then for ξ ∈ R

ϕX0 (ξ) =

∫
R

exp{iξu}dϕ(u),

ϕXt−X0 (ξ) = ϕ(R) exp
{
−
ξ2

2
[β(t) − β(0)] + iξ[α(t) − α(0)]

}
and

ϕXt (ξ) =
1

ϕ(R)
ϕXt−X0 (ξ)ϕX0 (ξ).

Proof. For ξ ∈ R we have by Theorem 2.1

ϕXt−X0 (ξ) =
∫

C[0,T]
exp{iξ[x(t) − x(0)]}dwα,β;ϕ(x) =

∫
R

exp
{
−

1
2
ξ2[β(t) − β(0)] + iξ[α(t) − α(0)]

}
dϕ(u0)

and

ϕXt (ξ) =

∫
C[0,T]

exp{iξx(t)}dwα,β;ϕ(x)

=

∫
C[0,T]

exp{iξ[x(t) − x(0)] + iξx(0)}dwα,β;ϕ(x)

=

∫
R

exp
{
−

1
2
ξ2[β(t) − β(0)] + iξ[α(t) − α(0)] + iξu0

}
dϕ(u0).

Now this theorem follows easily.

By Theorem 2.6, we have the following corollary.
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Corollary 2.7. Suppose that ϕ is a probability measure on B(R).
1. If 0 ≤ t1 < t2 ≤ T and X(x) = x(t2) − x(t1) for x ∈ C[0,T], then the characteristic function ϕX of X is given by

ϕX(ξ) = exp
{
−

1
2
ξ2[β(t2) − β(t1)] + iξ[α(t2) − α(t1)]

}
for ξ ∈ R so that X is normally distributed with the mean α(t2) − α(t1) and the variance β(t2) − β(t1).

2. If 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ T, X1(x) = x(t2) − x(t1) and X2(x) = x(t4) − x(t3) for x ∈ C[0,T], then X1 and X2
are independent.

3. If 0 ≤ t ≤ T, X0(x) = x(0) and Xt(x) = x(t) − x(0) for x ∈ C[0,T], then X0 and Xt are independent.

Remark 2.8. Some results of Corollaries 2.4, 2.7 and Theorems 2.5, 2.6 were proved by Ryu using Theorem 2.1
[11, 12].

3. An analogue of the Itô integral

In this section, we define a measurable function on C[0,T] that is similar to the Itô integral.
Let α be absolutely continuous on [0,T] and let β be continuous, strictly increasing on [0,T]. We observe

that the functions α and β induce a Lebesgue-Stieltjes measure να,β on [0,T] by να,β = να + νβ, where
να(E) =

∫
E d|α|(t) with the total variation |α| of α and νβ(E) =

∫
E dβ(t) for a Lebesgue measurable subset E of

[0,T]. Define L2
α,β[0,T] to be the space of functions on [0,T] that are square integrable with respect to the

measure να,β induced by α and β [10]; that is,

L2
α,β[0,T] =

{
f : [0,T]→ R

∣∣∣∣∣∫ T

0
[ f (t)]2dνα,β(t) < ∞

}
.

The space L2
α,β[0,T] is in fact a Hilbert space (as our notation suggests), and has the obvious inner product

〈 f , 1〉α,β =
∫ T

0
f (t)1(t)dνα,β(t).

Let S[0,T] be the collection of step functions on [0,T] and letφ(∈ S[0,T]) have the formφ(t) =
∑n

j=1 c jχI j (t)
for t ∈ [0,T], where c j ∈ R and the intervals I j ⊆ [0,T] with endpoints t j−1 and t j are mutually disjoint. For

x ∈ C[0,T], we define
∫ T

0 φ(t)dx(t) as the Riemann-Stieltjes integral
∫ T

0 φ(t)dx(t) =
∑n

j=1 c j[x(t j) − x(t j−1)]. For
convenience, the norm on L2(C[0,T]) is denoted by ‖ · ‖C.

Lemma 3.1. If φ ∈ S[0,T], then

1.
∫

C[0,T]

∫ T

0 φ(t)dx(t)dwα,β;ϕ(x) = ϕ(R)
∫ T

0 φ(t)dα(t),

2. ‖
∫ T

0 φ(t)dx(t)‖2C = ϕ(R)[‖φ‖20,β + [
∫ T

0 φ(t)dα(t)]2], and

3.
∫ T

0 φ(t)dx(t) is normally distributed with the mean
∫ T

0 φ(t)dα(t) and the variance ‖φ‖20,β if ϕ(R) = 1.

Proof. Letφ(∈ S[0,T]) have the formφ(t) =
∑n

j=1 c jχI j (t) for t ∈ [0,T], where c j ∈ R and the intervals I j ⊆ [0,T]
with endpoints t j−1 and t j are mutually disjoint. By Corollary 2.4, we have∫

C[0,T]

∫ T

0
φ(t)dx(t)dwα,β;ϕ(x) = ϕ(R)

∫ T

0
φ(t)dα(t)

and∥∥∥∥∥∫ T

0
φ(t)dx(t)

∥∥∥∥∥2

C
=

∫
C[0,T]

[ n∑
j=1

c j[x(t j) − x(t j−1)]
]2

dwα,β;ϕ(x)

=

n∑
j=1

c2
j

∫
C[0,T]

[x(t j) − x(t j−1)]2dwα,β;ϕ(x) + 2
∑

1≤ j<k≤n

c jck

∫
C[0,T]

[x(t j) − x(t j−1)][x(tk) − x(tk−1)]
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dwα,β;ϕ(x)

= ϕ(R)
[ n∑

j=1

c2
j [β(t j) − β(t j−1)] +

n∑
j=1

n∑
k=1

c jck[α(t j) − α(t j−1)][α(tk) − α(tk−1)]
]

= ϕ(R)
[
‖φ‖20,β +

[∫ T

0
φ(t)dα(t)

]2]
.

If ϕ(R) = 1, then from Corollary 2.7, the characteristic function of
∫ T

0 φ(t)dx(t) is given by∫
C[0,T]

exp
{
iξ

∫ T

0
φ(t)dx(t)

}
dwα,β;ϕ(x) =

∫
C[0,T]

exp
{
iξ

n∑
j=1

c j[x(t j) − x(t j−1)]
}
dwα,β;ϕ(x)

= exp
{
−

1
2
ξ2

n∑
j=1

c2
j [β(t j) − β(t j−1)] + iξ

n∑
j=1

c j[α(t j) − α(t j−1)]
}

= exp
{
−

1
2
ξ2
‖φ‖20,β + iξ

∫ T

0
φ(t)dα(t)

}
for ξ ∈ R, which completes the proof.

For f ∈ L2
α,β[0,T], let {φn} be a sequence of the step functions in S[0,T] with limn→∞ ‖φn − f ‖α,β = 0.

Define Iα,β( f ) by the L2(C[0,T])-limit

Iα,β( f )(x) = lim
n→∞

∫ T

0
φn(t)dx(t)

for all x ∈ C[0,T] for which this limit exists. We note that S[0,T] is dense in L2
α,β[0,T] so that the sequence

{φn} in S[0,T] with limn→∞ ‖φn − f ‖α,β = 0 exists. Moreover, we have the following lemma.

Lemma 3.2. If f ∈ L2
α,β[0,T], then Iα,β( f ) is well-defined; that is, Iα,β( f )(x) exists for wα,β;ϕ a.e. x ∈ C[0,T] and is

independent of choice of the sequence {φn} in S[0,T].

Proof. For f ∈ L2
α,β[0,T], let {φn} be a sequence of the step functions in S[0,T] with limn→∞ ‖ f − φn‖α,β = 0.

Then, each
∫ T

0 φn(t)dx(t) is an element of L2(C[0,T]) by Lemma 3.1. We now have φn − φm ∈ S[0,T] so that
by Lemma 3.1 and the Hölder’s inequality,∥∥∥∥∥∫ T

0
φn(t)dx(t) −

∫ T

0
φm(t)dx(t)

∥∥∥∥∥2

C
= ϕ(R)

[
‖φn − φm‖

2
0,β +

[∫ T

0
(φn − φm)(t)dα(t)

]2]
≤ ϕ(R)[‖φn − φm‖

2
0,β + να([0,T])‖φn − φm‖

2
α,0]

≤ ϕ(R) max{1, να([0,T])}‖φn − φm‖
2
α,β

which converges to 0 as m,n approach∞. From this, we conclude that the sequence {
∫ T

0 φn(t)dx(t)} is Cauchy
in L2(C[0, T]) so that Iα,β( f )(x) exists for wα,β;ϕ a.e. x ∈ C[0,T]. Moreover, if limn→∞ φn = f = limn→∞ ψn
in L2

α,β[0,T] for sequences {φn} and {ψn} in S[0,T], then by Lemma 3.1, the Hölder’s inequality and the
Minkowski’s inequality, we have∥∥∥∥∥∫ T

0
φn(t)dx(t) −

∫ T

0
ψn(t)dx(t)

∥∥∥∥∥
C
≤ [ϕ(R) max{1, να([0,T])}]

1
2 [‖φn − f ‖α,β + ‖ f − ψn‖α,β]

which also converges to 0 as n approaches∞. Now we have

Iα,β( f )(x) = lim
n→∞

∫ T

0
φn(t)dx(t) = lim

n→∞

∫ T

0
ψn(t)dx(t)
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in L2(C[0,T]) and conclude that the definition of Iα,β( f ) is essentially independent of choice of the sequence
from S[0,T] that is used to define it.

Theorem 3.3. Let f , 1 ∈ L2
α,β[0,T] and c1, c2 ∈ R. Then the followings hold:

1. If f ∈ S[0,T], then Iα,β( f )(x) =
∫ T

0 f (t)dx(t) for wα,β;ϕ a.e. x ∈ C[0,T].
2. Iα,β(c1 f + c21)(x) = c1Iα,β( f )(x) + c2Iα,β(1)(x) for wα,β;ϕ a.e. x ∈ C[0,T].

3.
∫

C0,T] Iα,β( f )(x)dwα,β;ϕ(x) = ϕ(R)
∫ T

0 f (t)dα(t).

4. ‖Iα,β( f )‖2C = ϕ(R)[‖ f ‖20,β + [
∫ T

0 f (t)dα(t)]2].

5.
∫

C[0,T][Iα,β( f )(x)][Iα,β(1)(x)]dwα,β;ϕ(x) = ϕ(R)[〈 f , 1〉0,β + [
∫ T

0 f (t)dα(t)][
∫ T

0 1(t)dα(t)]].

6. Iα,β( f ) is a normally distributed random variable with the mean
∫ T

0 f (t)dα(t) and the variance ‖ f ‖20,β ifϕ(R) = 1.
In this case, Cov(Iα,β( f ), Iα,β(1)) = 〈 f , 1〉0,β.

Proof. The equality in Theorem 3.3.1 is trivial by the definition of Iα,β( f ). Take {φn} and {ψn} to be sequences
in S[0,T] with limn→∞ φn = f and limn→∞ ψn = 1 in L2

α,β[0,T]. Then c1φn + c2ψn belongs to S[0,T] and
‖c1φn + c2ψn − (c1 f + c21)‖α,β ≤ |c1|‖φn − f ‖α,β + |c2|‖ψn − 1‖α,β so that c1 f + c21 = limn→∞(c1φn + c2ψn) in
L2
α,β[0,T]. Now we have by the linearity of Riemann-Stieltjes integral

‖Iα,β(c1φn + c2ψn) − [c1Iα,β( f ) + c2Iα,β(1)]‖C ≤ |c1|‖Iα,β(φn) − Iα,β( f )‖C + |c2|‖Iα,β(ψn) − Iα,β(1)‖C

which converges to 0 as n approaches∞. By the uniqueness of limit in L2(C[0,T]), we have Iα,β(c1 f +c21)(x) =
c1Iα,β( f )(x)+ c2Iα,β(1)(x) for wα,β;ϕ a.e. x ∈ C[0,T], which proves Theorem 3.3.2. We also have by the Hölder’s
inequality∣∣∣∣∣∫

C[0,T]
Iα,β(φn)(x)dwα,β;ϕ(x) −

∫
C0,T]

Iα,β( f )(x)dwα,β;ϕ(x)
∣∣∣∣∣2 ≤ ϕ(R)‖Iα,β(φn) − Iα,β( f )‖2C

which converges to 0 as n approaches∞ by the definition of Iα,β( f ). Moreover,∣∣∣∣∣∫ T

0
φn(t)dα(t) −

∫ T

0
f (t)dα(t)

∣∣∣∣∣2 ≤ νa([0,T])‖φn − f ‖2α,β

which also converges to 0 as n approaches∞. Now we have by Lemma 3.1∫
C0,T]

Iα,β( f )(x)dwα,β;ϕ(x) = lim
n→∞

∫
C[0,T]

Iα,β(φn)(x)dwα,β;ϕ(x) = ϕ(R) lim
n→∞

∫ T

0
φn(t)dα(t) = ϕ(R)

∫ T

0
f (t)dα(t)

which proves Theorem 3.3.3. Since Iα,β( f ) = limn→∞ Iα,β(φn) in L2(C[0,T]), we have

‖Iα,β( f )‖2C = lim
n→∞
‖Iα,β(φn)‖2C = ϕ(R) lim

n→∞

[
‖φn‖

2
0,β +

[∫ T

0
φn(t)dα(t)

]2]
by Lemma 3.1. Since 0 ≤ |‖φn‖0,β − ‖ f ‖0,β| ≤ ‖φn − f ‖0,β ≤ ‖φn − f ‖α,β and limn→∞ φn = f in L2

α,β[0,T], we have
limn→∞ ‖φn‖

2
0,β = ‖ f ‖20,β so that

‖Iα,β( f )‖2C = ϕ(R)
[
‖ f ‖20,β +

[∫ T

0
f (t)dα(t)

]2]
which proves Theorem 3.3.4. Furthermore, we have by Theorems 3.3.2 and 3.3.4

ϕ(R)
[
‖ f + 1‖20,β +

[∫ T

0
[ f (t) + 1(t)]dα(t)

]2]
= ‖Iα,β( f + 1)‖2C

= ‖Iα,β( f )‖2C + ‖Iα,β(1)‖
2
C + 2

∫
C[0,T]

[Iα,β( f )(x)][Iα,β(1)(x)]dwα,β;ϕ(x)
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= ϕ(R)
[
‖ f ‖20,β + ‖1‖

2
0,β +

[∫ T

0
f (t)dα(t)

]2

+
[∫ T

0
1(t)dα(t)

]2]
+ 2

∫
C[0,T]

[Iα,β( f )(x)][Iα,β(1)(x)]dwα,β;ϕ(x)

so that we have∫
C[0,T]

[Iα,β( f )(x)][Iα,β(1)(x)]dwα,β;ϕ(x) = ϕ(R)
[
〈 f , 1〉0,β +

[∫ T

0
f (t)dα(t)

][∫ T

0
1(t)dα(t)

]]
which proves Theorem 3.3.5. Since limn→∞ Iα,β(φn) = Iα,β( f ) in L2(C[0,T]), take a subsequence {Iα,β(φnk )}

∞

k=1
of {Iα,β(φn)} with limk→∞ Iα,β(φnk )(x) = Iα,β( f )(x) pointwisely for wα,β;ϕ a.e. x ∈ C[0,T]. If ϕ(R) = 1, then we
have for ξ ∈ R

E[exp{iξIα,β( f )}] =

∫
C[0,T]

exp
{
iξ lim

k→∞
Iα,β(φnk )(x)

}
dwα,β;ϕ(x)

= lim
k→∞

∫
C[0,T]

exp{iξIα,β(φnk )(x)}dwα,β;ϕ(x)

= lim
k→∞

exp
{
−

1
2
ξ2
‖φnk‖

2
0,β + iξ

∫ T

0
φnk (t)dα(t)

}
= exp

{
−

1
2
ξ2
‖ f ‖20,β + iξ

∫ T

0
f (t)dα(t)

}
by the dominated convergence theorem and Lemma 3.1, so that the final results follow by Theorem 3.3.5.

The following theorem is useful and the proof of it is motivated by results in [13].

Theorem 3.4. If f is of bounded variation on [0,T], then Iα,β( f )(x) =
∫ T

0 f (t)dx(t) for wα,β;ϕ a.e. x ∈ C[0,T], where∫ T

0 f (t)dx(t) denotes the Riemann-Stieltjes integral of f with respect to x.

Proof. Suppose that f is monotonically increasing on [0,T]. If f (T) = f (0), that is, f is a constant function on
[0,T], then the result is trivial, so that we assume that f (T) > f (0). Let M = f (T) − f (0) and for k = 1, . . . ,n,
let

Dn,k =
{
t ∈ [0,T]

∣∣∣∣∣ f (0) +
k − 1

n
M ≤ f (t) < f (0) +

k
n

M
}
.

Since f is monotonically increasing, Dn,k is either an interval or a point or an empty-set. If Dn,k is a point,
then adjoin the point to an its adjacent interval. In this way we have a decomposition of [0,T] into finitely
many disjoint intervals. If necessary, we decompose these intervals so that the lengths of the resulting
intervals Jn,k (k = 1, 2, . . . ,mn) with endpoints tn,k−1 and tn,k are less than T

n . For t ∈ [0,T], let

φn(t) =
mn∑
k=1

f (tn,k−1+)χJn,k (t)

for n = 1, 2, . . .. Then φn ∈ S[0,T] and |φn(t) − f (t)| ≤ M
n for να,β a.e. t ∈ [0,T] so that

lim
n→∞
‖φn − f ‖2α,β ≤ lim

n→∞

M2

n2 να,β([0,T]) = 0.

Thus Iα,β( f ) = limn→∞ Iα,β(φn) is in L2(C[0,T]). Now there exists a subsequence {Iα,β(φnl )}
∞

l=1 of {Iα,β(φn)}∞n=1
with liml→∞ Iα,β(φnl )(x) = Iα,β( f )(x) pointwisely for wα,β;ϕ a.e. x ∈ C[0,T]. For wα,β;ϕ a.e. x ∈ C[0,T],

Iα,β( f )(x) = lim
l→∞

Iα,β(φnl )(x) = lim
l→∞

mnl∑
j=1

f (tnl, j−1+)[x(tnl, j) − x(tnl, j−1)] =
∫ T

0
f (t)dx(t).
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If f is of bounded variation on [0,T], then there exist monotonically increasing functions f1 and f2 on [0,T]
with f = f1− f2. By Theorem 3.3, Iα,β( f )(x) = Iα,β( f1)(x)− Iα,β( f2)(x) =

∫ T

0 f1(t)dx(t)−
∫ T

0 f2(t)dx(t) =
∫ T

0 f (t)dx(t)
for wα,β;ϕ a.e. x ∈ C[0,T], which completes the proof.

By Theorems 3.3 and 3.4, we have the following corollary.

Corollary 3.5. Let f , 1 ∈ L2
α,β[0,T] and each be of bounded variation on [0,T]. Then∫

C[0,T]

[∫ T

0
f (t)dx(t)

][∫ T

0
1(t)dx(t)

]
dwα,β;ϕ(x) = ϕ(R)

[
〈 f , 1〉0,β +

[∫ T

0
f (t)dα(t)

][∫ T

0
1(t)dα(t)

]]
.

Theorem 3.6. Let { f1, . . . , fn} be a set of functions in L2
α,β[0,T] which are independent in L2

0,β[0,T], and let∫ T

0
~f (t)dα(t) = (

∫ T

0 f1(t)dα(t), . . . ,
∫ T

0 fn(t)dα(t)). If f : Rn
→ C is Borel measurable, then we have∫

C[0,T]
f (Iα,β( f1)(x), . . . , Iα,β( fn)(x))dwα,β;ϕ(x)

∗
= ϕ(R)

[ 1
(2π)n|M|

] 1
2
∫
Rn

f (~u) exp
{
−

1
2

〈
M−1

[
~u −

∫ T

0

~f (t)dα(t)
]
, ~u −

∫ T

0

~f (t)dα(t)
〉
Rn

}
dmn

L(~u), (1)

where 〈·, ·〉Rn denotes the dot product on Rn and M = [〈 fi, f j〉0,β]n×n which is positive definite and non-singular.
Moreover, if ϕ is a probability measure on B(R), then the random vector (Iα,β( f1), . . . , Iα,β( fn)) has the multivariate

normal distribution with the mean vector
∫ T

0
~f (t)dα(t) and the covariance matrix M.

Proof. Let ϕ0 =
1

ϕ(R)ϕ. Then ϕ0 is a probability measure on R so that wα,β;ϕ0 is also a probability measure

on C[0,T]. By Theorem 3.3.6, Iα,β( fi) with respect to wα,β;ϕ0 is Gaussian with the mean
∫ T

0 fi(t)dα(t) and the
variance ‖ fi‖20,β for i = 1, . . . ,n. For ~c = (c1, . . . , cn) ∈ Rn,

〈M~c,~c〉Rn =

n∑
i=1

n∑
j=1

cic j〈 fi, f j〉0,β

=

n∑
i=1

n∑
j=1

cic j

∫
C[0,T]

[Iα,β( fi)(x) − E[Iα,β( fi)]][Iα,β( f j)(x) − E[Iα,β( f j)]]dwα,β;ϕ0 (x)

=

∫
C[0,T]

[
Iα,β

( n∑
j=1

c j f j

)
(x) − E

[
Iα,β

( n∑
j=1

c j f j

)]]2

dwα,β;ϕ0 (x)

=

∥∥∥∥∥ n∑
j=1

c j f j

∥∥∥∥∥2

0,β
≥ 0

by Theorem 3.3.2. Moreover, if 〈M~c,~c〉Rn = 0, then
∑n

j=1 c j f j(t) = 0 for νβ a.e. t ∈ [0,T], which implies ~c = ~0
by the independence of { f1, . . . , fn} in L2

0,β[0,T]. Now M is positive definite and symmetric so that M is non-
singular and M−1 is positive definite. By Theorem 4 of [10], we have (1) for ϕ0. Since wα,β;ϕ = ϕ(R)wα,β;ϕ0

by their definitions, the null sets with respect to wα,β;ϕ are equivalent to the null sets with respect to wα,β;ϕ0 ,
so that for f ∈ L2

α,β[0,T], Iα,β( f ) with respect to wα,β;ϕ is also equivalent to Iα,β( f ) with respect to wα,β;ϕ0 . Now
we have (1) for arbitrary ϕ, since∫

C[0,T]
f (Iα,β( f1)(x), . . . , Iα,β( fn)(x))dwα,β;ϕ(x) ∗= ϕ(R)

∫
C[0,T]

f (Iα,β( f1)(x), . . . , Iα,β( fn)(x))dwα,β;ϕ0 (x),

where Iα,β( fi) of the left-hand and right-hand sides are taken over wα,β;ϕ and wα,β;ϕ0 , respectively. The
remainder of this theorem immediately follows.
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Using characteristic functions and Theorem 3.6, we can prove the following corollary.

Corollary 3.7 (Generalized PWZ Theorem). Let { f1, . . . , fn} be a set of functions in L2
α,β[0,T], which are nonzero

and orthogonal in L2
0,β[0,T]. Then, for a Borel measurable function f : Rn

→ C,∫
C[0,T]

f (Iα,β( f1)(x), . . . , Iα,β( fn)(x))dwα,β;ϕ(x)

∗
= ϕ(R)

[ n∏
j=1

1
2π‖ f j‖

2
0,β

] 1
2
∫
Rn

f (~u) exp
{
−

1
2

n∑
j=1

[u j −
∫ T

0 f j(t)dα(t)]2

‖ f j‖
2
0,β

}
dmn

L(~u),

where ~u = (u1, . . . ,un). Moreover, if ϕ is a probability measure on B(R), then Iα,β( f1), . . . , Iα,β( fn) are independent
random variables.

Using Corollary 3.7, we can prove the following corollary suggested by Ryu [12].

Corollary 3.8. Assume that ϕ is a probability measure. Let { h1√
β′
, . . . , hn√

β′
} be a set of nonzero orthogonal functions

in L2[0,T] such that h j

β′ ( j = 1, . . . ,n) are of bounded variation on [0,T]. For j = 1, . . . ,n, let X j(x) =
∫ T

0
h j(t)
β′(t) dx(t)

for x ∈ C[0,T]. Then X1, . . . ,Xn are independent random variables and each X j has the normal distribution with the

mean
∫ T

0
h j(t)
β′(t) dα(t) and the variance ‖ h j

√
β′
‖

2
mL

. Moreover, if f : Rn
→ C is Borel measurable, then

∫
C[0,T]

f (X1(x), . . . ,Xn(x))dwα,β;ϕ(x) ∗=
[ n∏

j=1

1

2π‖ h j
√
β′
‖2mL

] 1
2
∫
Rn

f (~u) exp
{
−

1
2

n∑
j=1

[u j −
∫ T

0
h j(t)
β′(t) dα(t)]2

‖
h j
√
β′
‖2mL

}
dmn

L(~u).

Proof. By Theorems 3.3 and 3.4, each X j has the normal distribution with the mean
∫ T

0
h j(t)
β′(t) dα(t) and the

variance ‖ h j

β′ ‖
2
0,β = ‖

h j
√
β′
‖

2
mL

. By the assumption, we also have 〈 hl
β′ ,

h j

β′ 〉0,β = 〈
hl√
β′
,

h j
√
β′
〉mL = 0 if l , j; that is,

{
h j

β′ : j = 1, . . . ,n} is a set of nonzero orthogonal functions in L2
0,β[0,T] so that X1, . . . ,Xn are independent

random variables and the equality ∗
= holds by Corollary 3.7.

Remark 3.9. Suppose that β′ is bounded away from zero. As β′ > 0, νβ is mutually, absolutely continuous with
respect to mL. We note that να is absolutely continuous with respect to mL, but that the converse need not hold. Thus
να,β is absolutely continuous with respect to mL and L2

α,β[0,T] ⊆ L2
0,β[0,T] ⊆ L2[0,T] in general. The inclusions mean

that they are continuously embedded as vector spaces, but that they need not be embedded isometrically.

Theorem 3.10. Iα,β is a bounded linear operator from L2
α,β[0,T] into L2(C[0,T]) and for all f ∈ L2

α,β[0,T],

‖Iα,β( f )‖C ≤ [ϕ(R) max{1, να([0,T])}]
1
2 ‖ f ‖α,β.

Moreover, the followings hold:

1. If β′ is bounded away from zero, then Iα,β is injective.
2. If Iα,β is injective, then the inverse operator I−1

α,β : Im(Iα,β)→ L2
α,β[0,T] is bounded if and only if Im(Iα,β) itself is

a Hilbert space.

3. If α is a constant function (or equivalently,
∫ T

0 Iα,β( f )(x)dwα,β;ϕ(x) = 0 for all f ∈ S[0,T]), then for all
f ∈ L2

α,β[0,T],

‖Iα,β( f )‖C = [ϕ(R)]
1
2 ‖ f ‖α,β (2)

so that I−1
α,β : Im(Iα,β)→ L2

α,β[0,T] is bounded and Im(Iα,β) is a Hilbert space.
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4. If α is a constant function and ϕ(R) = 1, then Iα,β is an isometric isomorphism between L2
α,β[0,T] and Im(Iα,β).

Proof. Since [
∫ T

0 f (t)dα(t)]2
≤ να([0,T])‖ f ‖2α,0 by the Hölder’s inequality, we have the inequality of this

theorem by Theorem 3.3.4 so that Iα,β is a bounded linear operator from L2
α,β[0,T] into L2(C[0,T]) by Theorem

3.3.2. Suppose that β′ is bounded away from zero and ‖Iα,β( f )‖C = 0 for f ∈ L2
α,β[0,T]. By Theorem 3.3.4,

‖ f ‖20,β ≤
1

ϕ(R)‖Iα,β( f )‖2C = 0 so that ‖ f ‖0,β = 0 and ‖ f ‖mL = 0 by the above remark. Now we have ‖ f ‖α,0 = 0
since να is absolutely continuous with respect to mL. Thus ‖ f ‖2α,β = ‖ f ‖2α,0 + ‖ f ‖20,β = 0; that is, f = 0
in L2

α,β[0,T], which implies that Iα,β is injective. Suppose that Iα,β is injective and the inverse operator
I−1
α,β : Im(Iα,β) → L2

α,β[0,T] is bounded. Then Im(Iα,β) is a closed subspace of L2(C[0,T]) so that it is a Hilbert
space. Conversely, suppose that Im(Iα,β) is a Hilbert space. Then Iα,β : L2

α,β[0,T] → Im(Iα,β) is open by
the open mapping theorem so that I−1

α,β : Im(Iα,β) → L2
α,β[0,T] is bounded. If α is a constant function, (2)

immediately follows from Theorem 3.3.4. Furthermore, if ϕ(R) = 1, then Iα,β : L2
α,β[0,T] → Im(Iα,β) is an

isometric isomorphism by Theorem 3.3.5.

Corollary 3.11. Let f be in L2
α,β[0,T] and let { fn} be a sequence of functions in L2

α,β[0,T] with limn→∞ ‖ fn− f ‖α,β = 0.
Then {Iα,β( fn)} converges to Iα,β( f ) in L2(C[0,T]) so that it converges to Iα,β( f ) in L1(C[0,T]). Moreover, if Iα,β( fn)(x)
→ Y(x) pointwisely for wα,β;ϕ a.e. x ∈ C[0,T] as n → ∞, then Y(x) = Iα,β( f )(x) for wα,β;ϕ a.e. x ∈ C[0,T] so that
Iα,β( fn)→ Y in both L1(C[0,T]) and L2(C[0,T]) as n→∞.

Proof. Since Iα,β is a bounded operator by Theorem 3.10, {Iα,β( fn)} converges to Iα,β( f ) in L2(C[0,T]). We also
have by the Hölder’s inequality[∫

C[0,T]
|Iα,β( fn)(x) − Iα,β( f )(x)|dwα,β;ϕ(x)

]2

≤ ϕ(R)‖Iα,β( fn) − Iα,β( f )‖2C

which converges to 0 as n → ∞; that is, {Iα,β( fn)} converges to Iα,β( f ) in L1(C[0,T]). Moreover, suppose
that Iα,β( fn)(x) → Y(x) pointwisely for wα,β;ϕ a.e. x ∈ C[0,T] as n → ∞. Since {Iα,β( fn)} converges to
Iα,β( f ) in L2(C[0,T]), we can take an its subsequence {Iα,β( fnk )}

∞

k=1 converging to Iα,β( f ) pointwisely so that
Y(x) = limk→∞ Iα,β( fnk )(x) = Iα,β( f )(x) for wα,β;ϕ a.e. x ∈ C[0,T].

By Theorems 3.3.5 and 3.3.6, Corollary 3.7 and Theorem 3.10, we have the following corollary.

Corollary 3.12. Suppose that α is a constant function. Let { fn} be a sequence in L2
α,β[0,T]. Then, { fn} is orthogonal

in L2
α,β[0,T] if and only if {Iα,β( fn)} orthogonal in Im(Iα,β). Moreover, if ϕ is a probability measure, then we have the

followings:

1. { fn} is orthogonal in L2
α,β[0,T] if and only if {Iα,β( fn)} is a set of independent random variables on C[0,T].

2. { fn} is orthonormal in L2
α,β[0,T] if and only if {Iα,β( fn)} is orthonormal in Im(Iα,β).

3. { fn} is completely orthonormal in L2
α,β[0,T] if and only if {Iα,β( fn)} is completely orthonormal in Im(Iα,β).

By Theorems 3.3 and 3.10, Corollary 3.12 and Proposition 2.3.3 of [7], we have the following theorem.

Theorem 3.13. Suppose that α is a constant function and ϕ(R) is a probability measure. Let { fn} be completely
orthonormal in L2

α,β[0,T]. Then for f ∈ L2
α,β[0,T],

Iα,β( f )(x) =
∞∑

n=1

〈Iα,β( f ), Iα,β( fn)〉CIα,β( fn)(x) =
∞∑

n=1

〈 f , fn〉α,βIα,β( fn)(x)

in L2(C[0,T]) and pointwisely for wα,β;ϕ a.e. x ∈ C[0,T].



D. H. Cho / Filomat 32:18 (2018), 6441–6456 6452

4. An analogue of the Paley-Wiener-Zygmund integral

In this section, we define a generalized PWZ integral on C[0,T] and investigate its properties.
Throughout the remainder of this paper, we give additional conditions for α and β; β′

|α|′+β′ is bounded
away from zero and 1√

|α|′+β′
is of bounded variation on [0,T]. In the case, L2

α,β[0,T] = L2
0,β[0,T] and the

equality means that they are equal as vector spaces and the two norms on them are equivalent so that they
have the same topology, but that they need not be equal isometrically. Moreover, we have the following
lemma.

Lemma 4.1. There exists an orthonormal basis {φ j}
∞

j=1 of functions of bounded variation in L2
α,β[0,T] such that it is

orthogonal in L2
0,β[0,T].

Proof. Let ζ(t) = |α|′(t) + β′(t) for t ∈ [0,T] and let {h j}
∞

j=1 be a complete orthonormal set of functions of
bounded variation in L2[0,T]. Note that possible such functions are the trigonometric functions on [0,T].
For j ∈N, let φ j =

h j
√
ζ
. Then we have

〈φl, φ j〉α,β =

∫ T

0

hl(t)h j(t)
ζ(t)

dνα,β(t) = 〈hl, h j〉mL = δl j,

where δl j denotes the Kronecker delta function, so that {φ j}
∞

j=1 is an orthonormal set in L2
α,β[0,T]. Since β′

ζ′ is
bounded away from zero, we have for some M > 0

Mδl j =M〈hl, h j〉mL ≤

∫ T

0

hl(t)h j(t)
ζ(t)

dνβ(t) ≤ 〈hl, h j〉mL = δl j,

so that if l , j, then

〈φl, φ j〉0,β =

∫ T

0

hl(t)h j(t)
ζ(t)

dνβ(t) = 0,

which implies that {φ j}
∞

j=1 is an orthogonal set in L2
0,β[0,T]. We also have for f ∈ L2

α,β[0,T]∥∥∥∥∥ n∑
j=1

〈 f , φ j〉α,βφ j − f
∥∥∥∥∥2

α,β
=

∫ T

0

[ n∑
j=1

h j(s)√
ζ(s)

∫ T

0
f (t)

h j(t)√
ζ(t)

dνα,β(t) − f (s)
]2

dνα,β(s)

=

∫ T

0

[ n∑
j=1

〈 f
√
ζ, h j〉mL h j(s) − f (s)

√
ζ(s)

]2

dmL(s)

=

∥∥∥∥∥ n∑
j=1

〈 f
√
ζ, h j〉mL h j − f

√
ζ

∥∥∥∥∥2

mL

which converges to 0 as n→∞, since {h j}
∞

j=1 is completely orthonormal in L2[0,T] and f
√
ζ ∈ L2[0,T]. Now,

{φ j}
∞

j=1 is a complete orthonormal set of functions in L2
α,β[0,T]. In addition, if 1

√
ζ

is of bounded variation on
[0,T], thenφ j is of bounded variation on [0,T] since it is a product of two functions of bounded variation.

We note that {φ j}
∞

j=1 in Lemma 4.1 is orthogonal in L2
α,0[0,T] and L2

α,β[0,T] is separable. Moreover, {φ j}
∞

j=1 is
orthogonal in L2

α,β[0,T] if it is orthogonal in both L2
α,0[0,T] and L2

0,β[0,T], but that the converse need not hold.
For the mean functions α which are needed in several papers, the following example provides existences
of {φ j}

∞

j=1 satisfying the conditions of Lemma 4.1.
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Example 4.2. 1. Let 1√
|α|′+β′

be of bounded variation, |α|′ + β′ be bounded and β′ be bounded away from zero.

Then, for some constants M1 and M2, we have 0 < M1 ≤ β′(t) ≤ (|α|′ + β′)(t) ≤ M2 for all t ∈ [0,T] so that
0 < M1

M2
≤

β′(t)
|α|′(t)+β′(t) for all t ∈ [0,T]; that is, β′

|α|′+β′ is bounded away from zero. Now, {φ j}
∞

j=1 satisfying the
conditions of Lemma 4.1 exists in L2

α,β[0,T]. In the case, L2
α,β[0,T] = L2

0,β[0,T] = L2[0,T] and the equalities
means that they are equal as vector spaces and the norms on them are equivalent so that they have the same
topology, but that they need not be equal isometrically.

2. Let 1√
β′

be of bounded variation on [0,T]. It is not difficult to show that α (or |α|) is a constant function on

[0,T] if and only if ‖ f ‖α,0 = 0 for all f ∈ S[0,T] if and only if 〈 f , 1〉α,0 = 0 for all f , 1 ∈ S[0,T]. In this case,
〈 f , 1〉α,β = 〈 f , 1〉0,β for all f , 1 ∈ L2

0,β[0,T] so that L2
α,β[0,T] = L2

0,β[0,T] isometrically. Now, {φ j}
∞

j=1 satisfying
the conditions of Lemma 4.1 exists in L2

α,β[0,T].

3. Let 1√
β′

be of bounded variation on [0,T]. If for some constant c > 0, |α|(t) = cβ(t) for all t ∈ [0,T] which

is the condition suggested by Yoo, Kim and Kim [14], then 〈 f , 1〉α,β = 〈 f , 1〉0,(1+c)β = (1 + c)〈 f , 1〉0,β for
all f , 1 ∈ L2

0,(1+c)β[0,T] so that L2
α,β[0,T] = L2

0,(1+c)β[0,T] isometrically. In this case, {φ j}
∞

j=1 satisfying the
conditions of Lemma 4.1 exists in L2

α,β[0,T].

Definition 4.3. Let {φ j}
∞

j=1 be a sequence in L2
α,β[0,T] satisfying the conditions of Lemma 4.1. For f ∈ L2

α,β[0,T], we
define a generalized PWZ integral ( f , x)α,β by the formula

( f , x)α,β = lim
n→∞

n∑
j=1

〈 f , φ j〉α,β

∫ T

0
φ j(t)dx(t)

pointwisely for all x ∈ C[0,T] for which this limit exists.

If ϕ(R) = 1, α(t) = 0 and β(t) = t for t ∈ [0,T], then ( f , x)α,β is exactly the PWZ integral on the analogue of
Wiener space introduced by Im and Ryu [4]. In the followings, we prove that for f ∈ L2

α,β[0,T], the PWZ
integral ( f , x)α,β exists for wα,β;ϕ a.e. x ∈ C[0,T] and it is essentially independent of a particular choice of the
complete orthonormal set to define it.

Lemma 4.4. For f in L2
α,β[0,T], the generalized PWZ integral ( f , x)α,β exists for wα,β;ϕ a.e. x ∈ C[0,T].

Proof. Suppose that ϕ is a probability measure. For each positive integer j, let X j(x) = 〈 f , φ j〉α,β
∫ T

0 φ j(t)dx(t)

for x ∈ C[0,T]. By Theorems 3.3, 3.4 and Corollary 3.7, X j is Gaussian with the mean 〈 f , φ j〉α,β
∫ T

0 φ j(t)dα(t)
and the variance 〈 f , φ j〉

2
α,β‖φ j‖

2
0,β, and {X j}

∞

j=1 is a sequence of independent random variables. Furthermore,
we have

∞∑
j=1

Var[X j] =
∞∑
j=1

〈 f , φ j〉
2
α,β‖φ j‖

2
0,β ≤

∞∑
j=1

〈 f , φ j〉
2
α,β = ‖ f ‖2α,β < ∞.

By Proposition 2.3.3 of [7],
∑
∞

j=1[X j(x) − E[X j]] converges pointwisely for wα,β;ϕ a.e. x ∈ C[0,T]. For m ≥ n,
we have by the Hölder’s inequality∣∣∣∣∣ m∑

j=n

E[X j]
∣∣∣∣∣2 = ∣∣∣∣∣ m∑

j=n

〈 f , φ j〉α,β

∫ T

0
φ j(t)dα(t)

∣∣∣∣∣2 ≤ να([0,T])
m∑

j=n

〈 f , φ j〉
2
α,β,

which converges to 0 as m,n → ∞. Now
∑
∞

j=1 E[X j] converges so that
∑
∞

j=1(X j(x) −E[X j] + E[X j]) =∑
∞

j=1 X j(x) = ( f , x)α,β exists for wα,β;ϕ a.e. x ∈ C[0,T]. If ϕ is an arbitrary positive finite measure, let
ϕ0 =

1
ϕ(R)ϕwhich is a probability measure. By the above argument, ( f , x)α,β exists for wα,β;ϕ0 a.e. x ∈ C[0,T].

Since the null sets with respect to wα,β;ϕ are equivalent to the null sets with respect to wα,β;ϕ0 , we have this
lemma.
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Theorem 4.5. For f ∈ L2
α,β[0,T], we have ( f , x)α,β = Iα,β( f )(x) for wα,β;ϕ a.e. x ∈ C[0,T] and ( f , x)α,β is independent

of a particular choice of the complete orthonormal set as described in Definition 4.3 for wα,β;ϕ a.e. x ∈ C[0,T].

Proof. For n ∈N, let fn =
∑n

j=1〈 f , φ j〉α,βφ j. Then limn→∞ ‖ fn − f ‖α,β = 0 so that limn→∞ ‖Iα,β( fn)− Iα,β( f )‖C = 0
by Corollary 3.11. By Theorem 3.4 and Lemma 4.4, Iα,β( fn)(x)→ ( f , x)α,β pointwisely for wα,β;ϕ a.e. x ∈ C[0,T]
as n → ∞. By Corollary 3.11 again, we have ( f , x)α,β = Iα,β( f )(x) for wα,β;ϕ a.e. x ∈ C[0,T]. Since the above
argument does not depend on a particular choice of {φ j}

∞

j=1, we have the second part of this theorem.

By the linearity of 〈·, φ j〉α,β, we have the linearity of the generalized PWZ integral; for c1, c2 ∈ R and
f , 1 ∈ L2

α,β[0,T],

(c1 f + c21, x)α,β = c1( f , x)α,β + c2(1, x)α,β

for wα,β;ϕ a.e. x ∈ C[0,T].
We now have the following theorem by Theorem 3.3.6 and Theorem 4.5.

Theorem 4.6. For f ∈ L2
α,β[0,T], ( f , ·)α,β is Gaussian with the mean

∫ T

0 f (t)dα(t) and the variance ‖ f ‖20,β ifϕ(R) = 1.

By Theorems 3.4 and 4.5, we have the following theorem.

Theorem 4.7. Let f be of bounded variation on [0,T]. Then for wα,β;ϕ a.e. x ∈ C[0,T], we have ( f , x)α,β =∫ T

0 f (t)dx(t), where
∫ T

0 f (t)dx(t) denotes the Riemann-Stieltjes integral of f with respect to x.

Remark 4.8. We can also obtain the results of Theorems 3.3, 3.6, 3.10, 3.13 and Corollaries 3.7, 3.11, 3.12 by
Theorem 4.5, with replacing Iα,β by the generalized PWZ integral. Note that, in order to use the generalized PWZ
integral instead of Iα,β, we need additional conditions for α and β; β′

|α|′+β′ is bounded away from zero and 1√
|α|′+β′

is of

bounded variation on [0,T].

5. Applications and examples of the generalized PWZ integral

In this section, we provide examples and applications of the generalized PWZ integral.

Example 5.1. For t ∈ [0,T], we have by Theorems 4.5 and 4.7

(χ[0,t], x)α,β = Iα,β(χ[0,t])(x) =
∫ t

0
dx(s) = x(t) − x(0)

for wα,β;ϕ a.e. x ∈ C[0,T]. In particular, (1, x)α,β = (χ[0,T], x)α,β = x(T) − x(0).

Example 5.2. If α is a constant function and ϕ(R) = 1, then we can prove Theorem 4.5 by Theorems 3.4 and 3.13.
Indeed, for f ∈ L2

α,β[0,T], we have

( f , x)α,β =
∞∑
j=1

〈 f , φ j〉α,β

∫ T

0
φ j(t)dx(t) =

∞∑
j=1

〈 f , φ j〉α,βIα,β(φ j)(x) = Iα,β( f )(x)

pointwisely for wα,β;ϕ a.e. x ∈ C[0,T], which does not depend on a particular choice of {φ j}
∞

j=1. In this case, since
β′(t)

|α|′(t)+β′(t) = 1 for all t ∈ [0,T], β′

|α|′+β′ is trivially bounded away from zero.
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Example 5.3. We can prove Theorem 4.6 using the characteristic function of the generalized PWZ integral if
ϕ(R) = 1. For f ∈ L2

α,β[0,T] and n ∈ N, let fn =
∑n

j=1〈 f , φ j〉α,βφ j. Then for ξ ∈ R, we have by Theorems 3.3, 3.4
and the dominated convergence theorem

E[iξ( f , ·)α,β] =

∫
C[0,T]

exp
{
iξ lim

n→∞
Iα,β( fn)(x)

}
dwα,β;ϕ(x)

= lim
n→∞

∫
C[0,T]

exp{iξIα,β( fn)(x)}dwα,β;ϕ(x)

= lim
n→∞

exp
{
−

1
2
ξ2
‖ fn‖20,β + iξ

∫ T

0
fn(t)dα(t)

}
= exp

{
−

1
2
ξ2
‖ f ‖20,β + iξ

∫ T

0
f (t)dα(t)

}
using the same method as used in the proof of Theorem 3.3.4, which completes the proof.

Theorem 5.4. Assume that β′ is bounded away from zero. If f ∈ L2
α,β[0,T] and x is absolutely continuous on [0,T]

with x′ ∈ L2[0,T], then ( f , x)α,β exists and it is given by ( f , x)α,β =
∫ T

0 f (t)x′(t)dmL(t).

Proof. Let fn be the function as given in Example 5.3. Then we have∫ T

0
fn(t)dx(t) = (L)

∫ T

0
fn(t)dx(t),

where (L)
∫ T

0 fn(t)dx(t) denotes the Lebesgue-Stieltjes integral of fn with respect to the measure induced by
x which is absolutely continuous on [0,T]. Since x′ ∈ L2[0,T] ⊆ L1[0,T], we have that x′ ∈ L1[0,T] and∫ T

0
fn(t)dx(t) = (L)

∫ T

0
fn(t)dx(t) =

∫ T

0
fn(t)x′(t)dmL(t). (3)

Now we have for 1 ∈ L2
α,β[0,T]

‖1‖2mL
≤M‖1‖20,β ≤M‖1‖2α,β (4)

for some constant M > 0, since β′ is bounded away from zero. Thus we have by the Hölder’s inequality
and (4)[∫ T

0
fn(t)x′(t)dmL(t) −

∫ T

0
f (t)x′(t)dmL(t)

]2

≤ ‖ fn − f ‖2mL
‖x′‖2mL

≤M‖ fn − f ‖2α,β‖x
′
‖

2
mL
,

which converges to 0 as n → ∞. Now, by (3), we have limn→∞
∫ T

0 fn(t)dx(t) =
∫ T

0 f (t)x′(t)dmL(t) with the

existence of the limit. By the definition of ( f , x)α,β, we have ( f , x)α,β = limn→∞
∫ T

0 fn(t)dx(t) =
∫ T

0 f (t)x′(t)dmL(t)
as desired.
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