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Abstract. In this article, we present some formulas of the Drazin inverses of the sum of two matrices
under the conditions P2QP = 0, P2Q2 = 0, QPQ = 0 and PQP2 = 0, PQ2 = 0, QP3 = 0 respectively. These
conditions are weaker than those used in some literature on this subject. Furthermore, we apply our results

to give the representations for the Drazin inverses of block matrix
(

A B
C D

)
(A and D are square matrices)

with generalized Schur complement is zero.

1. Introduction

Let A be a square complex matrix. As we know, the Drazin inverse [1] of A, denoted by Ad, is the unique
matrix satisfying the following three equations

Ak+1Ad = Ak, AdAAd = Ad, AAd = AdA,

where k is the smallest non-negative integer such that rank(Ak+1) = rank(Ak), i.e., k = ind(A), the index of
A. In the case that ind(A) = 1, the Drazin inverse is called the group inverse of A and it is denoted by
A]. Clearly, ind(A) = 0 if and only if A is nonsingular, and in that case Ad = A−1. We denote by Aπ the
eigenprojection of A corresponding to the eigenvalue 0 that is given by Aπ = I − AAd.

Suppose P,Q ∈ Cn×n. In 1958, Drazin (see [7]) studied the problem of finding the formula for (P + Q)d

and he offered the formula (P + Q)d = Pd + Qd, which is valid when PQ = QP = 0. In recent years, many
papers focused on the problem under some weaker conditions. According to current literature, there is no
formula for (P + Q)d without any side condition for matrices P and Q, so this problem is still the open one.
Formulas for (P + Q)d can be very useful for deriving formulas for the Drazin inverse of a 2×2 block matrix.
Actually, in 1979 Campbell and Meyer [3], posed the problem of finding an explicit representation for the

Drazin inverse of a complex block matrix M =

(
A B
C D

)
, in terms of its blocks, where A and D are square

matrices, not necessarily of the same size. Until now, there has been no formula for Md without any side
conditions for blocks of matrix M. Some results about the representations of (P + Q)d and Md under some
conditions were given. Here we list the results below:

(1) Results of the representations of (P + Q)d under the following conditions respectively:
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(1-1) PQ = 0 (see [9]);

(1-2) P2Q = 0, Q2 = 0 (see [10]);

(1-3) Q2P = 0, PQP = 0 (see [13]);

(1-4) P2Q = 0, Q2P = 0 (see [2]).

Other results have been studied in [4–6, 12].
(2) Results of the representations of Md under the following conditions respectively:

(2-1) CAπ = 0, AπB = 0 and S = 0 (see [11]);

(2-2) CAπB = 0, AAπB = 0 and S = 0 (see [8]);

(2-3) CAπB = 0, CAAπ = 0 and S = 0 (see [8]);

(2-4) AAπBC = 0, CAπBC = 0 and S = 0 (see [13]);

(2-5) BCAAπ = 0, BCAπB = 0 and S = 0 (see [13]);

(2-6) AAπBC = 0, ABCAπ = 0 and S = 0 (see [2]).

We organize this article in three sections. In section 2, we give the formula of (P + Q)d under the conditions
P2QP = 0, P2Q2 = 0 and QPQ = 0. These result extend the formula (1-1) and (1-3) above. Then we apply the
computational formula to give the computational formulas for Md, under some conditions with generalized
Schur complement S = 0. Here we list them below:

(a). AAπBC = 0, BCAπB = 0 and S = 0;

(b). BCAAπ = 0, CAπBC = 0, and S = 0.

The result (a) generalizes the results (2-1) and (2-2) listed above. The result (b) generalizes the result (2-1),
(2-2) and (2-3) listed above.

In section 3, we present our additive formula under conditions PQP2 = 0, PQ2 = 0 and QP3 = 0. And
we derive some new representations for Md, under some conditions with generalized Schur complement
S = 0. Here we list them below:

(a) BCAd = 0, BCAAπB = 0, CA2Aπ = 0 and S = 0;

(b) AdBC = 0, CAAπBC = 0, A2AπB = 0 and S = 0.

Before giving the main results, we first introduce several lemmas as follows.

Lemma 1.1 ([1]). Let P ∈ Cm×n and Q ∈ Cn×m. Then (PQ)d = P((QP)d)2Q.

Lemma 1.2 ([9]). Let P,Q ∈ Cn×n be such that ind(P) = s and ind(Q) = t. If PQ = 0, then

(P + Q)d = Qπ
t−1∑
i=0

Qi(Pd)i+1 +

s−1∑
i=0

(Qd)i+1PiPπ.

Lemma 1.3 ( [1]). Let

M1 =

(
A 0
C B

)
, M2 =

(
B C
0 A

)
,

where A and B are square matrices with ind(A) = r and ind(B) = s. Then

Md
1 =

(
Ad 0
X Bd

)
, Md

2 =

(
Bd X
0 Ad

)
,

where

X =

r−1∑
i=0

(Bd)i+2CAiAπ + Bπ
s−1∑
i=0

BiC(Ad)i+2
− BdCAd.
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Lemma 1.4 ([11]). Let M =

(
A B
C D

)
, (A and D are square), if S = D − CAdB = 0, AπB = 0, CAπ = 0, then

Md =

(
I

CAd

)
((AW)d)2A

(
I AdB

)
where W = AAd + AdBCAd.

2. Additive result (Conditions: P2QP = 0, P2Q2 = 0 , QPQ = 0 )

Theorem 2.1. Let P,Q ∈ Cn×n be such that P2QP = 0, P2Q2 = 0 and QPQ = 0, then

(P + Q)d = (P + Q)

−(Qd)2Pd
−Qd(Pd)2 +

l−1∑
i=0

QπQi(Pd)i+3 +

r−1∑
i=0

(Qd)i+3PπPi

 (P + Q),

where r = ind(P) and l = ind(Q).

Proof. From the definition of the Drazin inverse, we have that

(P + Q)d = (P + Q)2((P + Q)d)3 = (P + Q)2(P3 + P2Q + PQP + QPQ + Q3 + Q2P + PQ2 + QP2)d.

Denote by F = P3 + P2Q + PQP and G = QPQ + Q3 + Q2P + PQ2 + QP2. From P2QP = 0, P2Q2 = 0 and
QPQ = 0, we get FG = 0. Then applying Lemma 1.2, we obtain

(P + Q)d = (P + Q)2

ind(G)−1∑
i=0

GπGi(Fd)i+1 +

ind(F)−1∑
i=0

(Gd)i+1FiFπ
︸                                               ︷︷                                               ︸

∗

. (1)

Now, we calculate Fd. Consider the following splitting

F = (P2Q) + (P3 + PQP) := A + B.

According to the condition P2QP = 0, we have AB = 0 and A2 = 0. Applying Lemma 1.2, we get

(Fd)n = (Bd)n + (Bd)n+1A (2)

for every n ∈N.Notice that B = P3 + PQP. From P2QP = 0, we get (PQP)2 = 0, (PQP)d = 0. Matrices P3 and
PQP satisfy condition of Lemma 1.2. After applying Lemma 1.2, we obtain

(Bd)n = (Pd)3n + PQ(Pd)3n+2 (3)

for every n ∈N. Substituting (3) into (2) we obtain

(Fd)n =
(
(Pd)3n+1 + PQ(Pd)3(n+1)

)
(P + Q) (4)

for every n ∈N. Next, we will compute Gd. Consider the following splitting

G = (Q3 + Q2P + QP2) + (PQ2) := S + T.

According to the conditions P2Q2 = 0 and QPQ = 0 we have ST = 0 and T2 = 0. Applying Lemma 1.2, we
get

(Gd)n = (Sd)n + T(Sd)n+1 (5)
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for every n ∈N. Let S = S1 + S2, where S1 = Q2P + QP2 and S2 = Q3. According to the conditions P2Q2 = 0,
QPQ = 0 and P2QP = 0, we have S1S2 = 0 and S2

1 = 0. Applying Lemma 1.2, we get

(Sd)n = (Qd)3n + (Qd)3n+2P2 + (Qd)3n+1P (6)

for arbitrary n ∈N. Substituting (6) into (5) we obtain

(Gd)n = (P + Q)
(
(Qd)3n+2(P + Q) + (Qd)3(n+1)P2

)
(7)

for every n ∈N. After computation we get:{
Fn = (PQP3(n−1) + P3n−1)(P + Q), if n ≥ 2,

Gn = (P + Q)(Q3n−2(P + Q) + Q3(n−1)P2), if n ≥ 2.

After substituting this expressions, (7) and (4) into ∗we have

ind(G)−1∑
i=2

GπGi(Fd)i+1 =

ind(Q)−1∑
i=4

QπQi(Pd)i+4(P + Q) +

ind(Q)−1∑
i=3

PQπQi(Pd)i+5(P + Q).

Also,

GπFd =
(
Qπ(Pd)4 + PQ(Pd)6

− (Qd)2(Pd)2
−Qd(Pd)3

− PQd(Pd)4
− P(Qd)3(Pd)2

− P(Qd)2(Pd)3
)
(P + Q),

and

GπG(Fd)2 =
(
PQπQ2(Pd)7

− PQ2Qd(Pd)6
− PQQd(Pd)5 +

3∑
i=1

QπQi(Pd)i+4
)
(P + Q).

So,

ind(G)−1∑
i=0

GπGi(Fd)i+1 =
(
−Qd(Pd)3

− PQd(Pd)4
− P(Qd)2(Pd)3

− P(Qd)3(Pd)2
− (Qd)2(Pd)2

− (Pd)4

+

ind(Q)−1∑
i=0

QπQi(Pd)i+4 +

ind(Q)−1∑
i=0

PQπQi(Pd)i+5
)
(P + Q). (8)

Now,

ind(F)−1∑
i=2

(Gd)i+1FiFπ =
( ind(P)−1∑

i=5

(Qd)i+4PπPi +

ind(P)−1∑
i=5

P(Qd)i+5PiPπ
)
(P + Q),

on the other hand

GdFπ =
(
(Qd)4Pπ + (Qd)5PπP + P(Qd)5Pπ + P(Qd)6PPπ − (Qd)3Pd

− P(Qd)4Pd
)
(P + Q),

and

(Gd)2FFπ =
( 4∑

i=2

(Qd)i+4PπPi +

4∑
i=2

P(Qd)i+5PiPπ
)
(P + Q).

Hence
ind(F)−1∑

i=0

(Gd)i+1FiFπ =
(
− (Qd)3Pd

− P(Qd)4Pd +

ind(P)−1∑
i=0

(Qd)i+4PπPi +

ind(P)−1∑
i=0

P(Qd)i+5PiPπ
)
(P + Q). (9)

Finally, substituting (8) and (9) into (1), we complete the proof.
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Example 2.2. Consider the two matrices P,Q ∈ C6×6, where

P =



0 1 0 0 1 1
0 1 0 1 1 0
0 −1 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 1 0


, Q =



1 0 1 1 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 −1 0 −1
0 0 0 0 0 0
0 0 0 0 0 0


,

We have

Pd =



0 1 0 1 3 1
0 1 0 1 3 1
0 −1 0 −1 −3 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, Qd =



1 0 1 1 1 0
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 −1 0 −1
0 0 0 0 0 0
0 0 0 0 0 0


.

From P2Q , 0 and Q2P , 0, formula for (P + Q)d from [13, Theorem (2.2)] fail to apply. But it satisfies P2QP = 0,
QPQ = 0 and P2Q2 = 0, also we have

ind(P) = 4, ind(Q) = 2.

Applying Theorem 2.1, we get

(P + Q)d =



1 1 1 1 12 4
0 1 0 2 3 1
0 −1 0 1 −6 −1
0 0 0 −1 1 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Applications to the Drazin inverse of block matrix

We use the formula in Theorem 2.1 to give some representations for the Drazin inverse of some block
matrices.

Let M =

(
A B
C D

)
, ( A and D are square) with generalized Schur complement S = D − CAdB is zero.

Hartwig et al. [8] extended the results in [11] by replacing the assumptions CAπ = 0 and AπB = 0 with
CAπB = 0 and AAπB = 0. In the following Theorem 2.3, we give the representation for the Drazin inverse
of M under the conditions AAπBC = 0 and BCAπB = 0, the result generalizes the conclusion in [8].

Theorem 2.3. Let M =

(
A B
C D

)
, ( A and D are square) such that S = D − CAdB = 0. If AAπBC = 0 and

BCAπB = 0, then

Md = M

( A2Ad B
CAAd CAdB

) (Qd
1)4 +

ind(A)∑
i=1

(Qd
1)i+4

(
0 0

CAi−1Aπ 0

)
 M

where

(Qd
1)n =

(
I

CAd

)
((AW)d)n+1A

(
I AdB

)
, W = AAd + AdBCAd, f or n ≥ 1.
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Proof. Let P =

(
AAπ 0
CAπ 0

)
, Q =

(
A2Ad B
CAAd CAdB

)
, then M = P + Q. From P is (s + 1)−nilpotent, where

s = ind(A), so we get Pd = 0.
From AAπBC = 0 and BCAπB = 0, we get P2QP = 0, QPQ = 0 and P2Q2 = 0, so according to Theorem 2.1,
we have

Md = (P + Q)

ind(P)−1∑
i=0

(Qd)i+3Pi

 (P + Q). (10)

Let Q1 =

(
A2Ad AAdB
CAAd CAdB

)
, Q2 =

(
0 AπB
0 0

)
, then we have Q = Q1 + Q2.

We notice that Q1Q2 = 0 and Q2 is nilpotent, thus according to Lemma 1.2, we get

Qd = Qd
1 + Q2(Qd

1)2. (11)

The generalized Schur complement of Q1 is equal to zero, and the matrix Q1 satisfies

(A2Ad)πAAdB = 0, CAAd(A2Ad)π = 0,

so according to Lemma 1.4, we get

(Qd
1)n =

(
I

CAd

)
((AW)d)n+1A

(
I AdB

)
, W = AAd + AdBCAd, f or n ≥ 1. (12)

Substituting (12) into (11), then substituting (11) into (10), we get

Md = (P + Q)

ind(P)−1∑
i=0

(Qd
1)i+3Pi +

ind(P)−1∑
i=0

Q2(Qd
1)i+4Pi

 (P + Q).

From Q2 = Q −Q1, we have the representation of the Md above can be simplified as follow:

Md = (P + Q)

( A2Ad B
CAAd CAdB

) (Qd
1)4 +

ind(A)∑
i=1

(Qd
1)i+4

(
0 0

CAi−1Aπ 0

)
 (P + Q).

In [8], Hartwig et al. gave the representation for the Drazin inverse of M under the conditions CAπB = 0
and CAAπ = 0. In the following Theorem 2.4, we give the representation for the Drazin inverse of M under
the conditions CAπBC = 0 and BCAAπ = 0 the result generalizes the conclusion in [8].

Theorem 2.4. Let M =

(
A B
C D

)
, ( A and D are square) such that S = D − CAdB = 0. If CAπBC = 0 and

BCAAπ = 0, then

Md = M


(Qd

1)4 +

ind(A)∑
i=1

(
0 Ai−1AπB
0 0

)
(Qd

1)i+4

 ( A2Ad AAdB
C CAdB

) M

where

(Qd
1)n =

(
I

CAd

)
((AW)d)n+1A

(
I AdB

)
, W = AAd + AdBCAd, f or n ≥ 1.
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Proof. We can split matrix M as

M =

(
A B
C CAdB

)
=

(
A2Ad AAdB

C CAdB

)
+

(
AAπ AπB

0 0

)
.

If we denote by P =

(
AAπ AπB

0 0

)
and Q =

(
A2Ad AAdB

C CAdB

)
, we have that matrices P and Q satisfy the

symmetrical formulation of Theorem 2.1. Using similar method as in Theorem 2.3, we get that the statement
of the theorem is true.

Example 2.5. We give an example to demonstrate Theorem 2.4. Let M =

(
A B
C D

)
∈ C7×7 where

A =


0 −1 1 0
0 1 0 0
0 0 0 0
1 1 0 0

 , B =


0 1 0
1 2 1
1 0 1
1 0 1

 ,
C =

 0 0 1 −1
0 1 1 0
0 0 −1 1

 , D =

 0 0 0
1 2 1
0 0 0

 .
By computing we get that generalized Schur complement S = D − CAdB is equal to zero. Since CAπ , 0 and
CAπB , 0 we know that the conditions of Theorem (4.1) in [8] do not hold. However it satisfies the conditions
BCAAπ = 0 and CAπBC = 0 in Theorem 2.4 in this paper. We have

ind(A) = 3, Ad =


0 −1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (AW)d =


0 −1

3 0 0
0 1

3 0 0
0 0 0 0
0 0 0 0

 .
Then according to the formula in Theorem 2.4, we get

Md =



0 0 0 0 0 0 0
0 1

9
2
27 0 11

81
2
9

11
81

0 0 0 0 0 0 0
0 1

27
2
81 0 11

243
2
27

11
243

0 −1
81

−2
243 0 −11

729
−2
81

−11
729

0 1
9

2
27 0 11

81
2
9

11
81

0 1
81

2
243 0 11

729
2
81

11
729


.

3. Additive result (Conditions: PQP2 = 0, PQ2 = 0, QP3 = 0 )

Theorem 3.1. Let P,Q ∈ Cn×n. If PQP2 = 0, PQ2 = 0 and QP3 = 0, then

(P + Q)d =

k∑
i=0

(
(Pd)2i+1 + (Qd)2i+1

) (
(QP)i(QP)π + (PQ)i(PQ)π

)
+

k−1∑
i=0

(
P2i+1Pπ + Q2i+1Qπ

) (
((QP)d)i+1 + ((PQ)d)i+1

)
+

k−1∑
i=0

QπQ2i
(
P2((QP)d)i+2Q + QP2((QP)d)i+2

)
+

k−1∑
i=0

(Qd)2(i+2)
(
P2(QP)i(QP)πQ + QP2(QP)i(QP)π

)
− Pd

−Qd
−QdP2(QP)d

− P(PQ)d
− (Qd)2P2Q(PQ)d,
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where k = max{ind(P2), ind(Q2), ind(QP)}.

Proof. Using Lemma 1.1, we have

(P + Q)d =

((
P Q

) ( I
I

))d

=
(

P Q
) ( P Q

P Q

)2d (
I
I

)
=

(
P Q

) ( P2 + QP PQ + Q2

P2 + QP PQ + Q2

)d (
I
I

)
. (13)

Let

M =

(
P2 + QP PQ + Q2

P2 + QP PQ + Q2

)
:= F + G,

where

F =

(
QP PQ
QP PQ

)
, G =

(
P2 Q2

P2 Q2

)
.

From PQP2 = 0, PQ2 = 0 and QP3 = 0, we get FG = 0. Then applying Lemma 1.2, we have

Md =

ind(G)−1∑
i=0

GπGi(Fd)i+1 +

ind(F)−1∑
i=0

(Gd)i+1FiFπ. (14)

Now, we calculate Fd. Let A =

(
QP PQ
0 PQ

)
, B =

(
0 0

QP 0

)
, then F = A + B, B2 = 0.

From PQ2 = 0, we get AB = 0, then we can apply Lemma 1.2 to get the
Fd = Ad + B(Ad)2.

Now by Lemma 1.3, we get Ad =

(
(QP)d (PQ)d + (QP)((PQ)d)2

0 (PQ)d

)
.

After computation we get:

(Fd)n =

(
((QP)d)n ((PQ)d)n + (QP)((PQ)d)n+1

((QP)d)n ((PQ)d)n + (QP)((PQ)d)n+1

)
(15)

for every n ∈ N. Consider the splitting G = S + T, where S =

(
P2 0
P2 Q2

)
and T =

(
0 Q2

0 0

)
. We observe

that ST = 0 and T2 = 0. Then by Lemma 1.2, we get
Gd = Sd + T(Sd)2.

By Lemma 1.3, Sd =

(
(Pd)2 0

(Qd)4P2 + (Pd)2 (Qd)2

)
. we obtain

(Gd)n =

(
(Pd)2n + (Qd)2(n+1)P2 (Qd)2n

(Pd)2n + (Qd)2(n+1)P2 (Qd)2n

)
(16)

for every n ∈N. After computation we get:
Gn =

 P2n + (Q)2(n−1)P2 Q2n

P2n + (Q)2(n−1)P2 Q2n

 , if n ≥ 2

Fn =

 (QP)n (PQ)n + (QP)(PQ)n−1

(QP)n (PQ)n + (QP)(PQ)n−1

 , if n ≥ 2
.
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After substituting this expressions, (15) and (16) into (14) we have

ind(F)−1∑
i=2

(Gd)i+1FiFπ =

(
a11 a12
a21 a22

)
(17)

where

a11 =

ind(QP)−1∑
i=2

(Pd)2i+2(QP)i(QP)π +

ind(QP)−1∑
i=2

(Qd)2(i+2)P2(QP)i(QP)π +

ind(QP)−1∑
i=2

(Qd)2i+2(QP)i(QP)π,

a12 =

ind(PQ)−1∑
i=2

(Pd)2i+2(PQ)i(PQ)π +

ind(PQ)∑
i=2

(Qd)2i+2(QP)(PQ)i−1(PQ)π +

ind(PQ)−1∑
i=2

(Qd)2i+2(PQ)i(PQ)π,

a21 =

ind(QP)−1∑
i=2

(Pd)2i+2(QP)i(QP)π +

ind(QP)−1∑
i=2

(Qd)2(i+2)P2(QP)i(QP)π +

ind(QP)−1∑
i=2

(Qd)2i+2(QP)i(QP)π,

a22 =

ind(PQ)−1∑
i=2

(Pd)2i+2(PQ)i(PQ)π +

ind(PQ)∑
i=2

(Qd)2i+2(QP)(PQ)i−1(PQ)π +

ind(PQ)−1∑
i=2

(Qd)2i+2(PQ)i(PQ)π.

On the other hand

(Gd)2FFπ =

(
b11 b12
b21 b22

)
where

b11 = (Pd)4(QP)(QP)π + (Qd)6P2(QP)(QP)π − (Qd)3P(QP)(QP)d + (Qd)4(PQ)π(QP)

b12 = (Pd)4(QP)π(PQ) − (Pd)3Q(PQ)d(PQ) + (Qd)4(PQ)(PQ)π − (Qd)3P(PQ)d(PQ)

b21 = (Pd)4(QP)(QP)π + (Qd)6P2(QP)(QP)π − (Qd)3P(QP)(QP)d + (Qd)4(PQ)π(QP)

b22 = (Pd)4(QP)π(PQ) − (Pd)3Q(PQ)d(PQ) + (Qd)4(PQ)(PQ)π − (Qd)3P(PQ)d(PQ)

and

GdFπ =

(
(Pd)2(QP)π + (Qd)4P2(QP)π −QdP(QP)d

−PdQ(PQ)d + (Qd)2(PQ)π −QdP(PQ)d

(Pd)2(QP)π + (Qd)4P2(QP)π −QdP(QP)d
−PdQ(PQ)d + (Qd)2(PQ)π −QdP(PQ)d

)
Thus simplifying (17), we get

a11 = −(Qd)2 +

ind(QP)−1∑
i=0

(
(Pd)2i+2 + (Qd)2(i+2)P2 + (Qd)2i+2

)
(QP)i(QP)π,

a12 = −(Pd)2
− (Qd)3P −QdP(PQ)d +

ind(PQ)−1∑
i=0

(
(Pd)2i+2 + (Qd)2i+3P + (Qd)2i+2

)
(PQ)i(PQ)π,

a21 = −(Qd)2 +

ind(QP)−1∑
i=0

(
(Pd)2i+2 + (Qd)2(i+2)P2 + (Qd)2i+2

)
(QP)i(QP)π,

a22 = −(Pd)2
− (Qd)3P −QdP(PQ)d +

ind(PQ)−1∑
i=0

(
(Pd)2i+2 + (Qd)2i+3P + (Qd)2i+2

)
(PQ)i(PQ)π.
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Now,

ind(G)−1∑
i=2

GπGi(Fd)i+1 =

(
c11 c12
c21 c22

)
(18)

where

c11 =

∞∑
i=2

(
Pπ(P)2i + Pπ(Q)2i−2P2

− (Q)d(Q)2i−1P2 + Pπ(Q)2i
− (Q)d(Q)2i+1

)
((QP)d)i+1,

c12 =

∞∑
i=2

(
Pπ(P)2i + Pπ(Q)2i

− (Q)2i+1Qd
)

((PQ)d)i+1 +

∞∑
i=2

(
Pπ(Q)2i+1P − (Q)2i+2QdP

)
((PQ)d)i+2,

c21 =

∞∑
i=2

(
−(P)2i+1(P)d + Qπ(P)2i + Qπ(Q)2i−2(P)2 + Qπ(Q)2i

)
((QP)d)i+1,

c22 =

∞∑
i=2

(
−(P)2i+1Pd + Qπ(P)2i + Qπ(Q)2i

)
((PQ)d)i+1 +

ind((Q)2
−1∑

i=2

Qπ(Q)2i+1P((PQ)d)i+2.

On the other hand

GπFd =

(
d11 d12
d21 d22

)
where

d11 = Pπ(QP)d
− (Qd)2(P)2(QP)d

−QQd(QP)d

d12 = Pπ(QP)((PQ)d)2 + Pπ(PQ)d
−QQd(PQ)d

− (Q)2QdP((PQ)d)2

d21 = −PPd(QP)d
− (Qd)2(P)2(QP)d + Qπ(QP)d

d22 = −PPd(PQ)d + Qπ(PQ)d + QQπP((PQ)d)2.

and

GπG(Fd)2 =

(
e11 e12
e21 e22

)
where

e11 = (P)2Pπ((QP)d)2
−QQd(P)2((QP)d)2 + (Q)2Qπ((QP)d)2

e12 = (P)2Pπ((PQ)d)2 + (Q)2Qπ((PQ)d)2 + (Q)3QπP((PQ)d)3

e21 = (P)2Pπ((QP)d)2
−QQd(P)2((QP)d)2 + (Q)2Qπ((QP)d)2

e22 = (P)2Pπ((PQ)d)2 + (Q)2Qπ((PQ)d)2 + (Q)3QπP((PQ)d)3.

Thus simplifying (18), we get

c11 = −((Q)d)2(P)2(QP)d +

∞∑
i=0

(
Pπ(P)2i

− (Q)d(Q)2i+1
)

((QP)d)i+1

+

∞∑
i=1

(
Pπ(Q)2i

− (Q)d(Q)2i−1P2
)

((QP)d)i+1 +

∞∑
i=2

Pπ(Q)2i−2P2((QP)d)i+1,
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c12 =

∞∑
i=0

(
Pπ(P)2i + (Q)2i+1Qd

)
((PQ)d)i+1 +

∞∑
i=0

(
Pπ(Q)2i+1P − (Q)2i+2QdP

)
((PQ)d)i+2 +

∞∑
i=1

Pπ(Q)2i((PQ)d)i+1,

c21 = −((Q)d)2(P)2(QP)d +

∞∑
i=0

(
Qπ(P)2i

− (P)2i+1(P)d
)

((QP)d)i+1

+

∞∑
i=2

Qπ(Q)2i−2(P)2((QP)d)i+1 +

ind((Q)2
−1∑

i=1

Qπ(Q)2i((QP)d)i+1,

c22 =

∞∑
i=0

(
−(P)2i+1Pd + Qπ(P)2i

)
((PQ)d)i+1 +

ind((Q)2
−1∑

i=1

Qπ(Q)2i((PQ)d)i+1 +

ind((Q)2
−1∑

i=0

Qπ(Q)2i+1P((PQ)d)i+2.

After substituting (17) and (18) into (13) we complete the proof.

Example 3.2. Consider the two matrices P,Q ∈ C6×6, where

P =



0 1 0 0 a b
0 1 0 0 1 0
0 −1 0 0 c 1
0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 0 0 0


, Q =



1 0 1 1 0 0
0 0 0 0 1 1
−1 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

for every nonzero a, b, c ∈ C. We have

Pd =



0 1 0 0 1 0
0 1 0 0 1 0
0 −1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, Qd =



0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 3 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

From P2 , 0 and QP2 , 0, formulas for (P + Q)d from [10, Theorem (2.2)] and [2, Theorem (2.2)] fail to apply. But
it satisfies PQP2 = 0, QP3 = 0 and PQ2 = 0, also we have

ind(P) = 3, ind(Q) = 2.

Applying Theorem 3.1, we get

(P + Q)d =



0 1 0 −1 3 2
0 1 0 0 3 1
0 −1 0 3 −3 −4
0 0 0 −1 0 1
0 0 0 0 0 0
0 0 0 0 0 0


.

Applications to the Drazin inverse of block matrix

We use the formula in Theorem 3.1 to give some representations for the Drazin inverse of block matrix.
Now we consider the generalized Schur complement is equal to zero.
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Theorem 3.3. Let M =

(
A B
C D

)
, ( A and D are square) such that S = D−CAdB = 0. If BCAd = 0, BCAAπB = 0

and CA2Aπ = 0, then

Md =

(
A I
C CAd

) { (
0 AAπ((BC)d)2

0 −A2Aπ((BC)d)2

)
+

k−1∑
i=0

A2iAπ((BC)d)i+1 +

k−1∑
i=0

(Ad)2(i+2)(BC)i(BC)π
}} (

I 0
AAπ B

)
,

where k = max{ind(A2), ind(BC)}.

Proof. Let P =

(
AAπ B

0 0

)
, Q =

(
A2Ad 0

C CAdB

)
, then M = P + Q.

Obviously (AAπ)d = 0. After using Lemma 1.3, we get Pd = 0.
From BCAd = 0, BCAAπB = 0 and CA2Aπ = 0, we get QP3 = 0, PQP2 = 0 and PQ2 = 0. So according to
Theorem 3.1, we have

(P + Q)d =

k∑
i=0

(Qd)2i+1
(
(QP)i(QP)π + (PQ)i(PQ)π

)
+

k−1∑
i=0

(
P2i+1Pπ + Q2i+1Qπ

) (
((QP)d)i+1 + ((PQ)d)i+1

)
+

k−1∑
i=0

QπQ2i
(
P2((QP)d)i+2Q + QP2((QP)d)i+2

)
+

k−1∑
i=0

(Qd)2(i+2)
(
P2(QP)i(QP)πQ + QP2(QP)i(QP)π

)
−Qd

−QdP2(QP)d
− P(PQ)d

− (Qd)2P2Q(PQ)d, (19)

where k = max{ind(P2), ind(Q2), ind(QP)}.
After computation we get:

Qn =


 AdA3 0

CA2Ad + CAdBC 0

 , if n = 2, An+1Ad 0
CAnAd 0

 , if n ≥ 3.

Furthermore, by Lemma 1.3, we obain

(Qd)n =

(
(Ad)n 0

C(Ad)n+1 0

)
, Qπ =

(
Aπ 0
−CAd I

)
,

for every n ∈N. We note that Q3Qπ = 0.
After computation we get:

Pn =


 AAπ B

0 0

 , if n = 1, AnAπ An−1AπB
0 0

 , if n ≥ 2.

(PQ)n =

(
(BC)n 0

0 0

)
, ((PQ)d)n =

(
((BC)d)n 0

0 0

)
, (PQ)π =

(
(BC)π 0

0 I

)
,

After substituting this expressions into (19) we get that the statement of the theorem is valid.
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Theorem 3.4. Let M =

(
A B
C D

)
, ( A and D are square) such that S = D − CAdB = 0. If A2AπB = 0, AdBC = 0

and CAAπBC = 0 then

Md =

(
I AAπ

0 C

) { (
0 0

((BC)d)2AAπ
−((BC)d)2A2Aπ

)
+

k−1∑
i=0

(BC)i(BC)π(Ad)2i+2) +

k−1∑
i=0

((BC)d)i+1A2iAπ
} (

A B
I AdB

)
.

where k = max{ind(A2), ind(BC)}.

Proof. We can split matrix M as

M =

(
A B
C CAdB

)
=

(
A2Ad B

0 CAdB

)
+

(
AAπ 0

C 0

)
.

If we denote by P =

(
AAπ 0

C 0

)
and Q =

(
A2Ad B

0 CAdB

)
, we have that matrices P and Q satisfy satisfy

the symmetrical formulation of Theorem 3.1. Using similar method as in Theorem 3.3, we get that the
statement of the theorem is true.

Example 3.5. We give an example to demonstrate Theorem 3.3.

Let M =

(
A B
C D

)
∈ C7×7 where

A =


1 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

 , B =


1 0 0
0 0 0
0 1 1
0 1 1

 ,

C =

 0 1 1 1
1 1 1 1
−1 −1 1 −1

 , D =

 0 0 0
1 1 1
−1 −1 −1

 .
By computing we get that generalized Schur complement S = D − CAdB is equal to zero. Since CA2Aπ = 0,
BCAAπ = 0 and BCAd = 0, then it satisfies the conditions of Theorem 3.3. We have

ind(A) = 2, Ad =


1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (BC)d =


0 0 1

2 0
0 0 0 0
0 0 1

2 0
0 0 1

2 0

 ,
then according to the formula in Theorem 3.3 we get

Md =



1 2 −2 1 1 −
3
2 −

3
2

0 0 0 0 0 0 0
0 0 0 0 0 1

2
1
2

0 0 0 0 0 1
2

1
2

0 0 1 0 0 0 0
1 2 −

3
2 1 1 −1 −1

−1 −2 5
2 −1 −1 1 1


.
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