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Abstract. In this paper, hyperconnectedness with respect to an ideal, called hyperconnectedness modulo
an ideal, of a topological space X is introduced. It is shown that hyperconnectedness and hypercon-
nectedness modulo an ideal coincide in case of trivial and codense ideal. Several characterisations of
hyperconnectedness modulo an ideal I are obtained using semi-open, pre-open and semi-preopen sets. It
is also shown that I-hyperconnectedness and hyperconnectedness modulo I, where I is an ideal in a space
X, are equivalent. A new type of semi-open modulo ideal sets are defined and several characterisations of
hyperconnectedness modulo an ideal using these sets are obtained.

1. Introduction

A topological space X is said to be hyperconnected [22] if every pair of nonempty open sets of X has
nonempty intersection. Several notions which are equivalent to hyperconnectedness were defined and
investigated in the literature. Levine [13] called a topological space X a D-space if every nonempty open set
of X is dense in X and showed that X is a D-space if and only if it is hyperconnected. Pipitone and Russo
[20] defined a topological space X to be semi-connected if X is not the union of two disjoint nonempty
semi-open sets of X and showed that X is semi-connected if and only if it is a D-space. Maheshwari and
Tapi [14] defined a topological space X to be s-connected if X is not the union of two nonempty semi-
separated sets and showed the equivalence of s-connectedness and semi-connectedness. Hyperconnected
spaces are also called irreducible in [23]. Recently, Ajmal and Kohli [2] have investigated further properties
of hyperconnected spaces.

A nonempty collection I of subsets of X is called an ideal in X if it has the following properties: (i) If
A ∈ I and B ⊆ A, then B ∈ I (hereditary) (ii) If A ∈ I and B ∈ I, then A ∪ B ∈ I (finite additivity). According
to Rose and Hamlet [21] (X, τ, I) denotes a set X with a topology τ and an ideal I on X. For a subset
A ⊆ X,A?(I) = {x ∈ X : U ∩ A < I, for all open sets U containing x} is called the local function of A with
respect to I and τ [6]. In 1999 J. Dontchev et a1.[6] called a subset A of a space (X, τ, I) to be I-dense if every
point of X is in the local function of A with respect I and τ, that is, if A?(I) = X. An ideal I is codense if
I ∩ τ = {∅}
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This paper is organized as follows. In Section 2, the notion of hyperconnected modulo an ideal is defined
and the basic properties are developed. In Section 3, the characterizations of hyperconnectedness modulo
an ideal are obtained and its relationship with other weaker and stronger forms of hyperconnectedness is
investigated. Section 4 contains the properties of hyperconnected sets modulo an ideal. In Section 5, we
introduced the notion of semi-open modulo an ideal set in a topological space and studied the behaviour
of hyperconnected modulo an ideal spaces.

2. Preliminaries

Throughout the present paper, (X, τ) (or simply X) will denote a topological space on which no separation
axioms are assumed unless explicitly stated. Let A be a subset of a topological space X. The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be semi-open [12]
(resp. α-open [17], preopen [15], β-open [1]) if A ⊆ Cl(Int(A)) (resp. A ⊆ Int(Cl(Int(A))),A ⊆ Int(Cl(A)),A ⊆
Cl(Int(Cl(A))). Andrijević [3] defined a subset A to be semi-preopen if there exists a preopen set V in X such
that V ⊆ A ⊆ Cl(V) and showed the equivalence of β-openness and semi-preopenness. The complement of a
semi-open (resp. preopen, semi-preopen) set is said to be semi-closed (resp. preclosed, semipreclosed). The
semi-closure [5] (resp. preclosure [7], semi-preclosure [3]) of A, denoted by sCl(A) (resp. pCl(A), spCl(A)), is
defined by the intersection of all semi-closed (resp. preclosed, semi-preclosed) sets of X containing A. The
union of all semi-open sets contained in A is called the semi-interior of A and is denoted by sInt(A). The
family of all semi-open (resp. preopen, semi-preopen, regular open, regular closed) sets of X is denoted by
SO(X) (resp. PO(X),SPO(X),RO(X),RC(X)).

Definition 2.1. Let X be a space and I be an ideal in X. Then X is called hyperconnected modulo I if
intersection of every two nonempty open sets is not in I.

Theorem 2.2. Let X be a space and I be an ideal in X. Then the following statements are equivalent:

1. The intersection of two nonempty open sets is not in I.
2. There are no proper closed sets G and H such that X \ (G ∪H) ∈ I.

Proof. (1) implies (2). Suppose that there are proper closed G and H such that X \ (G ∪ H) ∈ I. If H empty,
then X \ G ∈ I. Since X \ G and X are nonempty open sets with X ∩ (X \ G) = (X \ G) ∈ I, a contradiction.
Hence, G and H both are nonempty proper closed sets. Then X \ G and X \H are nonempty open sets. By
(i), (X \ G) ∩ (X \H) < I implies that X \ (G ∪H) < I, a contradiction.

(2) implies (1). Let A and B be any nonempty open sets in X. Then X \ A and X \ B are proper closed
sets in X, X \ [(X \ A) ∪ (X \ B)] < I implies that X \ [X \ (A ∩ B)] < I. Thus, (A ∩ B) < I.

Theorem 2.3. Let X be a space and I be an ideal in X. Then the following statements are equivalent:

1. The interior of every proper closed set is in I.
2. For every nonempty open set V in X, X \ Cl(V) ∈ I.

Proof. (1) implies (2). Let V be any nonempty proper open set in X. Since X \ V is a proper closed set,
Int(X \ V) ∈ I implies that (X \ Cl(V)) ∈ I.

(2) implies (1). Let A be any nonempty proper closed set in X. Since X \ A is a nonempty proper open
set in X, by (ii), [X \ Cl(X \ A)] ∈ I. Thus, Int(A) ∈ I.

Theorem 2.4. Let X be a space and I be an ideal in X and there are no proper closed sets G and H such that
X \ (G ∪H) ∈ I. Then the interior of every proper closed set is in I.

Proof. Let A be a nonempty proper closed set in X. Suppose that Int(A) < I. Then X \ Int(A) is nonempty
proper closed set in X. Then [X \ (A ∪ (X \ Int(A)))] = ∅ ∈ I, a contradiction.

Theorem 2.5. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then
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1. The intersection of two nonempty open sets is not in I.
2. There are no proper closed sets G and H such that X \ (G ∪H) ∈ I.
3. The interior of every proper closed set is in I.
4. For every nonempty open set V in X, X \ Cl(V) ∈ I.

Theorem 2.6. Let X be a space and I be an ideal in X and for Int(A) ∈ I and each J ∈ I, Int(A ∪ J) ∈ I. Then the
following statements are equivalent:

1. The topological space X is hyperconnected modulo I.
2. There are no proper closed sets G and H such that X \ (G ∪H) ∈ I.
3. The interior of every proper closed set is in I.
4. For every nonempty open set V in X, X \ Cl(V) ∈ I.

3. Characterizations of Hyperconnectedess Modulo I

In case of trivial or codense ideal, the two notions, hyperconnectedness modulo an ideal and hypercon-
nectedness concide.

Theorem 3.1. Let X be a space and I be a codense ideal in X. Then X is hyperconnected modulo I if and only if X is
hyperconnected.

Proof. Let (X, τ) be hyperconnected modulo I. Then by the definition (X, τ) is hyperconnected.
Conversely, let (X, τ) be hyperconnected and A,B ∈ τ \ {∅}. Then A ∩ B ∈ τ \ {∅}. Since I is codense,

A ∩ B < I. Thus, (X, τ) is hyperconnected modulo I.

Recall that a space X is called I-hyperconnected [6] if every nonempty open set is I-dense in X.

Theorem 3.2. ([6]) Let X be a space and I be an ideal in X. Then X is I-hyperconnected if and only if X is
hyperconnected and I is codense.

Theorem 3.3. Let X be a space and I be an ideal in X. Then X is I-hyperconnected if and only if X is hyperconnected
modulo I.

Proof. The proof follows from Theorem 3.1 and Theorem 3.2.

Theorem 3.4. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then I is codense.

Proof. The proof follows from Theorem 3.2 and Theorem 3.3.

Theorem 3.5. ([9]) Let (X, τ, I) be a space, where I is codense. Then a set D is I-dense if and only if (U−A)∩D , ∅,
for all ∅ , U ∈ τ and A ∈ I.

Theorem 3.6. Let (X, τ) be a space and I be codense in X. Then X is hyperconnected modulo I if and only if
(U − A) ∩D , ∅, for all ∅ , U ∈ τ,A ∈ I and D ∈ τ.

Proof. The proof follows from Theorem 3.2 and Theorem 3.5.

Theorem 3.7. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then X is pseudocompact.

Proof. The proof follows from the fact that hyperconnectedness of X implies pseudocompactness of X.

Theorem 3.8. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then X is locally connected.

Proof. The proof follows from the fact that hyperconnectedness of X implies local connectedness of X.



B.K. Tyagi et al. / Filomat 32:18 (2018), 6375–6386 6378

Theorem 3.9. Let (X, τ) be a space and I be an ideal in X. Then (X, τ) is hyperconnected modulo I if and only if for
each subsets E and F of X, X \ Cl(E) and X \ Cl(F) < I implies X \ Cl(E ∪ F) < I and I is codense.

Proof. Let (X, τ) be hyperconnected modulo I and E and F be subsets of X such that X \ Cl(E),X \ Cl(F) < I.
Then X \ Cl(E),X \ Cl(F) ∈ τ \ {∅}. Since X is hyperconnected modulo I, X \ Cl(E ∪ F) = X \ Cl(E) ∪ Cl(F) =
(X \ Cl(E)) ∩ (X \ Cl(F)) < I.

Conversely, let A,B ∈ τ \ {∅}. Since I is codense, A = X \ Cl(X \ A) < I and B = X \ Cl(X \ B) < I. Then
X \ Cl((X \ A) ∪ (X \ B)) < I⇒ A ∩ B < I. Thus, (X, τ) is hyperconnected modulo I.

Theorem 3.10. ([3]) Let X be a space. Then

1. sCl(W) = W ∪ Int(Cl(W)), for every nonempty set W ∈ SPO(X).
2. pCl(W) = W ∪ Cl(Int(W)), for every nonempty set W ∈ SO(X).
3. spCl(W) = W ∪ Int(Cl(Int(W))), for every nonempty set W ∈ SO(X).

Theorem 3.11. ([19]) The following are equivalent for a topological space X:

1. X is hyperconnected.
2. X = Cl(W), for every nonempty set W ∈ SPO(X).
3. X = sCl(W), for every nonempty set W ∈ SPO(X).
4. X = pCl(W), for every nonempty set W ∈ SO(X).
5. X = spCl(W), for every nonempty set W ∈ SO(X).

Theorem 3.12. ([18]) A space X is hyperconnected if and only if sCl(U) = X, for every nonempty set U ∈ SO(X).

Theorem 3.13. Let X be a space and I be a codense ideal in X. Then:

1. X \ Cl(W) ∈ I if and only if X = Cl(W), for every nonempty set W.
2. X \ sCl(W) ∈ I if and only if X = sCl(W), for every nonempty set W ∈ SPO(X).
3. X \ pCl(W) ∈ I if and only if X = pCl(W), for every nonempty set W ∈ SO(X).
4. X \ spCl(W) ∈ I if and only if X = spCl(W), for every nonempty set W ∈ SO(X).
5. X \ sCl(W) ∈ I if and only if X = sCl(W), for every nonempty set W ⊆ X.

Proof. 1. Since I is codense, X \ Cl(W) ∈ I⇔ X \ Cl(W) = ∅ ⇔ X = Cl(W).
2. Let X \ sCl(W) ∈ I and W ∈ SPO(X). By Theorem 3.10, sCl(W) = W ∪ Int(Cl(W)). Then W ⊆

Cl(Int(Cl(W)))⇒W∪Int(Cl(W)) ⊆ Cl(Int(Cl(W))) ⊆ Cl(W)⇒ X\Cl(W) ⊆ X\(W∪Int(Cl(W))) = X\sCl(W) ∈ I.
Since I is codense, X\Cl(W) = ∅ ⇒ X = Cl(W). Thus, sCl(W) = W∪Int(Cl(W)) = X. The converse is obvious.

3. Let X\pCl(W) ∈ I and W ∈ SO(X). By Theorem 3.10, pCl(W) = W∪Cl(Int(W)). Then W ⊆ Cl(Int(W))⇒
W∪Cl(Int(W)) = Cl(Int(W))⇒ X \Cl(Int(W)) = X \ pCl(W) ∈ I. Since I is codense, X \Cl(Int(W)) = ∅ ⇒ X =
Cl(Int(W)). Thus, pCl(W) = W ∪ Cl(Int(W)) = X. The converse is obvious.

4. Let X \ spCl(W) ∈ I and W ∈ SO(X). By Theorem 3.10, spCl(W) = W ∪ Int(Cl(Int(W))). Then
W ⊆ Cl(Int(W)) ⇒ W ∪ Int(Cl(Int(W))) ⊆ Cl(Int(W)) ⇒ X \ Cl(Int(W)) ⊆ X \ (W ∪ Int(Cl(Int(W))) =
X \ spCl(W) ∈ I. Since I is codense, X \ Cl(Int(W)) = ∅ ⇒ X = Cl(Int(W)) = Int(Cl(Int(W))). Thus,
spCl(W) = W ∪ Int(Cl(Int(W))) = X. The converse is obvious.

5. Let X \ sCl(W) ∈ I and W ∈ SO(X). Then sCl(W) ⊆ Cl(W) ⇒ X \ Cl(W) ⊆ X \ sCl(W) ∈ I. Since I is
codense, X \ Cl(W) = ∅ ⇒ X = Cl(W) = Int(Cl(W)). Thus, sCl(W) = W ∪ Int(Cl(W)) = X. The converse is
obvious.

Theorem 3.14. Let X be a space and I be an ideal in X. Then X is hyperconnected modulo I if and only if

1. X \ Cl(W) ∈ I, for every W ∈ SPO(X) and I is codense.
2. X \ sCl(W) ∈ I, for every W ∈ SPO(X) and I is codense.
3. X \ pCl(W) ∈ I, for every W ∈ SO(X) and I is codense.
4. X \ spCl(W) ∈ I, for every W ∈ SO(X) and I is codense.
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5. X \ sCl(W) ∈ I, for every W ∈ SO(X) and I is codense.
6. U ∩ V < I, for every nonempty U,V ∈ SO(X).
7. U ∩W < I, for every nonempty U ∈ SO(X) and W ∈ αO(X).

Proof. 1. Let X be hyperconnected modulo I. By Theorem 3.4, X is hyperconnected and I is codense. By
Theorem 3.11, X = Cl(W) for every nonempty W ∈ SPO(X). Then X \ Cl(W) ∈ I.

Conversely, let X \ Cl(W) ∈ I for every nonempty W ∈ SPO(X) and I be a codense. Then X = Cl(W). By
Theorem 3.11, X is hyperconnected. Since I is codense, by Theorem 3.1, X is hyperconnected modulo I.

2. Let X be hyperconnected modulo I. By Theorem 3.4, X is hyperconnected and I is codense. By
Theorem 3.11, X = sCl(W) for every nonempty W ∈ SPO(X). Then X \ sCl(W) ∈ I.

Conversely, let X \ sCl(W) ∈ I for every nonempty W ∈ SPO(X) and I be codense ideal in X. By
Theorem 3.13, X = sCl(W). By Theorem 3.11, X is hyperconnected. Since I is codense, by Theorem 3.1, X is
hyperconnected modulo I.

3. Let X be hyperconnected modulo I. By Theorem 3.4, X is hyperconnected and I is codense. By
Theorem 3.11, X = pCl(W) for every nonempty W ∈ SO(X). Then X \ pCl(W) ∈ I.

Conversely, let X \ pCl(W) ∈ I for every nonempty W ∈ SO(X) and I be a codense ideal in X. By
Theorem 3.13, X = pCl(W). By Theorem 3.11, X is hyperconnected. Since I is codense, by Theorem 3.1, X is
hyperconnected modulo I.

4. Let X be hyperconnected modulo I. By Theorem 3.4, X is hyperconnected and I is codense. By
Theorem 3.11, X = spCl(W) for every nonempty W ∈ SO(X). Then X \ spCl(W) ∈ I.

Conversely, let X \ spCl(W) ∈ I for every nonempty W ∈ SO(X) and I be codense ideal in X. By Theorem
3.13, X = spCl(W). By Theorem 3.11, X is hyperconnected. Since I is codense, by Theorem 3.1, X is
hyperconnected modulo I.

5. Let X be hyperconnected modulo I. By Theorem 3.4, X is hyperconnected and I is codense. By
Theorem 3.11, X = sCl(W) for every nonempty W ∈ SO(X). Then X \ sCl(W) ∈ I.

Conversely, let X \ sCl(W) ∈ I for every nonempty W ∈ SO(X) and I be a codense ideal in X. By
Theorem 3.13, X = sCl(W). By Theorem 3.12, X is hyperconnected. Since I is codense, by Theorem 3.1, X is
hyperconnected modulo I.

6. Let X be hyperconnected modulo I and U,V ∈ SO(X). There are A,B ∈ τ \ {∅} such that A ⊆ U and
B ⊆ V. Since X is hyperconnected modulo I, A ∩ B < I⇒ U ∩ V < I.

Conversely, let A,B ∈ τ \ {∅}. Then A,B ∈ SO(X)⇒ A ∩ B < I. Thus, X is hyperconnected modulo I.
7. Let X be hyperconnected modulo I, U ∈ SO(X) and V ∈ αO(X) be non-empty sets. Then Int(U) , ∅ ,

Int(V). Since X is hyperconnected modulo I, Int(U) ∩ Int(V) < I so that U ∩ V < I.
Conversely, let A,B ∈ τ\{∅}. Then A ∈ SO(X) and B ∈ αO(X), so that A∩B < I. Thus, X is hyperconnected

modulo I.

Theorem 3.15. ([8]) A space is hyperconnected if and only if the collection of not dense sets and the nowhere dense
sets are equal.

Theorem 3.16. Let X be a space and I be a codense ideal in X. Then X is hyperconnected modulo I if and only if the
collection of not dense sets and the nowhere dense sets are equal.

Proof. The proof follows from Theorem 3.15.

4. Properties of Hyperconnectedess Modulo I Spaces

It is known that any continuous image of a hyperconnected space is hyperconnected.

Theorem 4.1. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then every continuous
mapping from X to a Hausdorff space is constant.

Proof. The proof follows from the fact that hyperconnectedness modulo an ideal implies hyperconnected-
ness.
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Let X and Y be sets and let f : X → Y be a mapping. For an ideal I in Y we denote f−1(I) = {A ⊆ X :
f (A) ∈ I}which is an ideal in X.

Theorem 4.2. Let X and Y be spaces and let f : X → Y be a continuous surjection. Let I be an ideal in Y. Then, if
X is hyperconnected modulo f−1(I), then Y is hyperconnected modulo I.

Proof. Suppose that Y is not hyperconnected modulo I. Then there are nonempty open sets A and B such that
(A∩ B) ∈ I. Then f−1(A) and f−1(B) are nonempty open sets in X with f−1(A)∩ f−1(B) = f−1(A∩ B) ∈ f−1(I),
a contradiction.

Recall that for a space X and an ideal I in X, X is called connected modulo I [11] if there is no continuous
mapping f : X→ [0, 1] such that

• f−1(0) and f−1(1) are neither in I

• X \ ( f−1(0) ∪ f−1(1)) is in I.

Let X be a space and I be an ideal in X. A mapping f : X→ [0, 1] is called 2-valued modulo I [11] if

• f−1(0) and f−1(1) are neither in I

• X \ ( f−1(0) ∪ f−1(1)) is in I.

Theorem 4.3. If X is hyperconnected modulo I, then X is connected modulo I.

Proof. Suppose X is not connected modulo I. Then there is a continuous mapping f : X → [0, 1] which is
2-valued modulo I. The sets f−1(0) and f−1(1) are neither in I hence are nonempty. Since f is continuous,
f−1(0) and f−1(1) are closed sets in X. As f is 2-valued modulo I, (X\( f−1(0)∪ f−1(1))) ∈ I, a contradiction.

Next theorem deals with Theorem 2.7 [11] in case of hyperconnected modulo I.

Theorem 4.4. Let X be a space and let I be an ideal in X. Suppose that X is hyperconnected modulo I. Then, there is
a maximal (with respect to set-theoretic inclusion ⊆) ideal M in X which contains I and X is hyperconnected modulo
M.

Proof. The proof is similar to the proof of Theorem 2.7 [11].

It is well known that a continuous mapping from a hyperconnected space to a Hausdorff space is
constant. Here it is generlized for hyperconnected modulo an ideal.

Theorem 4.5. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then there is no continuous
mapping f from X to a T1-space Y with at least two points y1, y2 ∈ Y such that

1. f−1(y1) and f−1(y2) are neither in I.
2. (X \ ( f−1(y1) ∪ f−1(y2)) ∈ I.

Proof. Suppose that there is a continuous mapping f from X to a T1-space Y with at least two points such
that (i) and (ii) hold. Since Y is T1-space, {y1} and {y2} are closed sets in Y. Then f−1(y1) and f−1(y2) are
nonempty proper closed sets in X and (X \ ( f−1(y1) ∪ f−1(y2)) ∈ I, a contradiction.

Corollary 4.6. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then there is no continuous
mapping f from X to a Hausdorff space Y with at least two points y1, y2 ∈ Y such that

1. f−1(y1) and f−1(y2) are neither in I.
2. (X \ ( f−1(y1) ∪ f−1(y2)) ∈ I.

Theorem 4.7. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then X cannot be Hausdorff
unless it contains only one point.
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Proof. Let X be a Hausdorff space with more than one point. Let x1 and x2 are two distinct points in X.
There are disjoint open sets U and V in X containing points x1 and x2, respectively. Then U ∩ V = ∅ ∈ I, a
contradiction.

Theorem 4.8. Let Y be a subspace of a topological space X and I be an ideal in X. Then IY = {A ∩ Y : A ∈ I} is an
ideal in Y.

Proof. Let G and H be in IY. Then G = A ∩ Y and H = B ∩ Y, for some A,B ∈ I. Since (A ∪ B) ∈ I,
(G ∪H) = (A ∩ Y) ∪ (B ∩ Y) = (A ∪ B) ∩ Y ∈ IY. Now let L ∈ IY and M ⊆ L. Then L = N ∩ Y for some N ∈ I.
Since M ⊆ L ⊆ N ∈ I and (M ∩N) ∈ I, M = (M ∩N) ∩ Y implies that M ∈ IY.

It is known that every open subspace of a hyperconnected space is hyperconnected. This fact is
generalized for hyperconnectedness modulo an ideal.

Theorem 4.9. Let Y be a subspace of a topological space X with nonempty interior and I be an ideal in X. If X is
hyperconnected modulo I, then Y is hyperconnected modulo IY.

Proof. Suppose that Y is not hyperconnected modulo IY. Then there are nonempty open sets A and B
in Y such that (A ∩ B) ∈ IY. Then A = C ∩ Y and B = D ∩ Y, for some open sets C and D in X. Now
(C∩D)∩Y = (A∩ B) ∈ IY implies that (C∩D)∩Y = (M∩Y) for some M ∈ I. Therefore, (C∩D)∩ IntX(Y) ⊆
(C ∩D) ∩ Y ⊆M ∈ I, a contradiction.

Corollary 4.10. Let Y be a subspace of a topological space X with Y α-open (semi-open) in X and I be an ideal in X.
If X is hyperconnected modulo I,then Y is hyperconnected modulo IY.

Theorem 4.11. Let Y be a subspace of a topological space X and I be an ideal in X. Then

1. IIntX(Y) = {A ∩ IntX(Y) : A ∈ I} is an ideal in Y.
2. IClX(Y) = {A ∩ ClX(Y) : A ∈ I} is an ideal in X.

Proof. 1. Let G and H be in IIntX(Y). Then G = A ∩ IntX(Y) and H = B ∩ IntX(Y), for some A,B ∈ I. Since
(A ∪ B) ∈ I, (G ∪ H) = (A ∩ IntX(Y)) ∪ (B ∩ IntX(Y)) = (A ∪ B) ∩ IntX(Y) ∈ I. Now let L ∈ IIntX(Y) and M ⊆ L.
Then L = N ∩ IntX(Y) for some N ∈ I. Since M ⊆ L ⊆ N ∈ I and (M ∩N) ∈ I, M = (M ∩N) ∩ IntX(Y). Thus,
M ∈ IIntX(Y).

2. Let G and H be in IClX(Y). Then G = A∩ClX(Y) and H = B∩ClX(Y), for some A,B ∈ I. Since (A∪B) ∈ I,
(G∪H) = (A∩ClX(Y))∪(B∩ClX(Y)) = (A∪B)∩ClX(Y) ∈ I. Now let L ∈ IClX(Y) and M ⊆ L. Then L = N∩ClX(Y)
for some N ∈ I. Since M ⊆ L ⊆ N ∈ I and (M ∩N) ∈ I, M = (M ∩N) ∩ ClX(Y). Thus, M ∈ IClX(Y).

Theorem 4.12. Let Y be a subspace of a topological space X with nonempty interior and I be an ideal in X. If X is
hyperconnected modulo I, then Y is hyperconnected modulo IIntX(Y).

Proof. Suppose that Y is not hyperconnected modulo IIntX(Y). Then there are nonempty open sets A and B
in Y such that (A ∩ B) ∈ IIntX(Y). Then A = C ∩ Y and B = D ∩ Y for some open sets C and D in X. Now
(C ∩ D) ∩ IntX(Y) ⊆ (C ∩ D) ∩ Y = (A ∩ B) ∈ IIntX(Y) implies that (C ∩ D) ∩ IntX(Y) = M ∩ IntX(Y) for some
M ∈ I. Therefore, (C ∩D) ∩ IntX(Y) ⊆M ∈ I, a contradiction.

Corollary 4.13. Let Y be a subspace of a topological space X with Y pre-open (β-open) in X and I be an ideal in X. If
X is hyperconnected modulo I, then Y is hyperconnected modulo IClX(Y).

Theorem 4.14. Let Y and Z be subspaces of a topological space X and I be an ideal in X. Then IY ∪ IZ ⊆ IY∪Z.

Proof. Let A ∈ IY ∪ IZ. Then A = (J ∩ Y) or A = (J ∩ Z). So A ⊆ J ∩ (Y ∪ Z) ∈ IY∪Z, for some J ∈ I.

Theorem 4.15. Let Y and Z be subspaces of a topological space X with at least one having nonempty interior and I
be an ideal in X. If X is hyperconnected modulo I, then the subspace Y ∪ Z is hyperconnected modulo IY∪Z.
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Proof. Suppose that Y∪Z is not hyperconnected modulo IY∪Z. Then there are nonempty open sets A and B
in Y ∪ Z such that (A ∩ B) ∈ IY∪Z. Then A = C ∩ (Y ∪ Z) and B = D ∩ (Y ∪ Z) for some open sets C and D in
X. Thus, A ∩ B = (C ∩D) ∩ (Y ∪ Z) ∈ IY∪Z implies that (C ∩D) ∩ (Y ∪ Z) = J ∩ (Y ∪ Z) for some J ∈ I. Now
(C ∩D) ∩ (Y ∪ Z) ⊆ J ∈ I implies that (C ∩D) ∩ (Int(Y) ∪ Int(Z)) ∈ I, a contradiction.

Theorem 4.16. Let Y and Z be subspaces of a topological space X with intersecting interiors and I be an ideal in X.
If X is hyperconnected modulo I, then the subspace Y ∩ Z is hyperconnected modulo IY∩Z.

Proof. Suppose that Y∩Z is not hyperconnected modulo IY∩Z. Then there are nonempty open sets A and B
in Y ∩ Z such that (A ∩ B) ∈ IY∩Z. Then A = C ∩ (Y ∩ Z) and B = D ∩ (Y ∩ Z) for some open sets C and D in
X. Thus, A ∩ B = (C ∩D) ∩ (Y ∩ Z) ∈ IY∩Z implies that (C ∩D) ∩ (Y ∩ Z) = J ∩ (Y ∩ Z) for some J ∈ I. Now
(C ∩D) ∩ (Y ∩ Z) ⊆ J ∈ I implies that (C ∩D) ∩ (IntX(Y) ∩ IntX(Z)) ∈ I, a contradiction.

Theorem 4.17. Let Y be a dense subspace of a topological space X and I be an ideal in X. If Y is hyperconnected
modulo IY, then X is hyperconnected modulo I.

Proof. Suppose that X is not hyperconnected modulo I. Then there are nonempty open sets U and V
such that U ∩ V ∈ I. Since Y is dense in X, U ∩ Y and V ∩ Y are nonempty open sets in Y. Then
(U ∩ Y) ∩ (V ∩ Y) = (U ∩ V) ∩ Y ∈ IY, a contradiction.

Definition 4.18. Let X be a space and I be an ideal in X. Then a subset C ⊆ X is called irreducible component
modulo I of X, if C is hyperconnected modulo IC and if C ⊆ M and M is hyperconnected modulo IM, then
M = C.

Theorem 4.19. Let X be a space and I be an ideal in X. If X is hyperconnected modulo I, then the irreducible
component C modulo IC of X is X.

Theorem 4.20. Let X be a space and I be an ideal in X. Then the irreducible component C modulo IC lie in a connected
component X.

Proof. The proof follows from the fact that hyperconnectedness modulo an ideal implies hyperconnected-
ness and hyperconnectedness implies connectedness.

Theorem 4.21. Let X be a Hausdorff space and I be an ideal in X. If C is irreducible component modulo IC of X, then
C is a singleton in X.

Proof. Suppose that C is not a singleton. Then for distinct x and y in C, there are disjoint open sets U and V
in X containing x and y, respectively. Then U∩C and V∩C are disjoint nonempty open sets in C. Therefore
(U ∩ C) ∩ (V ∩ C) = ∅ ∈ IC, a contradiction.

Theorem 4.22. Let X be a space and I be an ideal in X. If I is codense, then I ∩ SO(X) = {∅}.

Proof. Suppose that V is nonempty semi-open set and V ∈ I. Then there exists a nonempty open set U such
that U ⊆ V ⊆ Cl(U). Then U ∈ I, a contradiction.

Theorem 4.23. ([16]) Let X be a space. Then SO(X, τ) \ {∅} forms a filter on X if and only if X is hyperconnected.

Theorem 4.24. Let X be a space and I be a codense ideal in X. Then SO(X, τ) \ {∅} forms a filter on X if and only if
X is hyperconnected modulo I.

Proof. Let A,B ∈ τ \ {∅}. Then A∩B ∈ SO(X, τ) \ {∅}. Since I is codense, A∩B < I. The converse follows from
Theorem 4.23.

Definition 4.25. ([4]) Let X be a space and I be an ideal in X. Then X is said to be submaximal if for every
dense set is open.
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Theorem 4.26. Let X be a submaximal space and I be codense ideal in X. Then X is hyperconnected modulo I if and
only if τ \ {∅} is filter on X.

Proof. Let X be hyperconnected modulo I. Then every two nonempty open sets intersect. Now if a
nonempty open set A is contained in B, then X \ Cl(B) ⊆ X \ Cl(A). Since X is hyperconnected modulo I,
X \Cl(B) ⊆ X \Cl(A) ∈ I. By submaximality of X, B is a nonempty open subset in X. Thus, τ \ {∅} is filter on
X.

Conversely, let τ \ {∅} be a filter on X. Suppose that X is not hyperconnected modulo I. Then there are
A,B ∈ τ \ {∅} such that A ∩ B ∈ I. Since I is codense, A ∩ B = ∅, a contradiction.

5. Semi-Open Modulo I Sets and Hyperconnected Modulo I Spaces

Definition 5.1. Let (X, τ) be a space and I be an ideal in X. A set V in X is said to be semi-open modulo I if
either A is empty or there is a nonempty open set U such that U \ V ∈ I, V \ Cl(U) ∈ I and U ∩ V , ∅. The
class of semi-open modulo I sets is denoted by SOI(X) or SOI(X, τ).

Theorem 5.2. Let (X, τ) be a space and I be an ideal in X. Then any finite union of semi-open modulo I sets is
semi-open modulo I.

Proof. Let A,B ∈ SOI(X, τ). Then there are nonempty open sets U and V such that U ∩ A , ∅,V ∩ B ,
∅,U \A,V \B ∈ I and A \Cl(U),B \Cl(V) ∈ I. Then (U∪V)∩ (A∪B) = (U∩ (A∪B))∪ (V∩ (A∪B)) , ∅. Now
(U∪V)\(A∪B) = (U∪V)∩(X\(A∪B)) = (U∪V)∩(X\A)∩(X\B) = (U∩(X\A)∩(X\B))∪(V∩(X\A)∩(X\B)) ⊆
(U∩ (X \A))∪ (V∩ (X \B)) = (U \A)∪ (V \B) ∈ I. Now (A∪B) \Cl(U∪V) = (A∪B)∩ (X \ (Cl(U)∪Cl(V))) =
(A ∪ B) ∩ (X \ Cl(U)) ∩ (X \ Cl(V)) ⊆ (A ∩ (X \ Cl(U))) ∪ (B ∩ (X \ Cl(V))) = (A \ Cl(U)) ∪ (B \ Cl(V)) ∈ I.

Theorem 5.3. Let X be a space and I be an ideal in X. Then every semi-open set is semi-open modulo I.

Theorem 5.4. Let X be a space and I be a codense ideal in X. Then X is hyperconnected modulo I if and only if
SOI(X) \ {∅} is a filter on X.

Proof. Let X be hyperconnected modulo I and A,B ∈ SOI(X) \ {∅}. There are nonempty open sets U and V
such that U \ A,V \ B,A \ Cl(U),B \ Cl(V) ∈ I. To show that A ∩ B ∈ SOI(X) \ {∅}, since X is hyperconnected
modulo I, U∩V is nonempty. Now (U∩V) \ (A∩B) = (U∩V)∩ (X \ (A∩B)) = (U∩V)∩ ((X \A)∪ (X \B)) =
((U∩V)∩(X\A))∪((U∩V)∩(X\B)) ⊆ (U∩(X\A))∪(V∩(X\B)) = (U\A)∪(V\B) ∈ I. Now if A∩B = ∅, then
(U∩V) \ (A∩B) ∈ I implies that U∩V ∈ I, a contradiction. So A∩B , ∅. By Theorem 2.5, X \Cl(U∩V) ∈ I.
Then (A∩B)\Cl(U∩V) ∈ I. Now to show that (U∩V)∩ (A∩B) , ∅, suppose that (U∩V)∩ (A∩B) = ∅. Then
(U∩V) ⊆ (X\(A∩B)) which implies that U∩V = (U∩V)∩(X\(A∩B)) = (U∩V)\(A∩B) ∈ I, a contradiction.
Now let C ∈ SOI(X) \ {∅} and C ⊆ D. Now we show that D is semi-open modulo I, there is nonempty open
set W such that W \C,C \Cl(W) ∈ I. Then W \D ⊆W \C ∈ I and D \Cl(W) = D∩ (X \Cl(W) ⊆ X \Cl(W) ∈ I
as X is hyperconnected modulo I and W is a nonempty open set in X. Thus, SOI(X) \ {∅} is a filter on X.

Conversely, let SOI(X) \ {∅} be filter on X. Let A and B be nonempty open sets in X. Then A ∩ B is a
nonempty open set in X. Thus, X is hyperconnected modulo I.

Theorem 5.5. Let X be a space and I be a codense ideal in X. Then X is hyperconnected if and only if SOI(X) \ {∅} is
a filter on X.

Proof. The proof follows from Theorem 5.4 and Theorem 3.1.

Definition 5.6. ([16]) Let X be a space. If (X, τ) is hyperconnected and (X, τ1) is not hyperconnected for any
τ ⊂ τ1, then (X, τ) is called maximal hyperconnected.

Definition 5.7. Let X be a space and I be an ideal in X. If (X, τ) is hyperconnected modulo I and (X, τ1) is
not hyperconnected modulo I for any τ ⊂ τ1, then (X, τ) is maximal hyperconnected modulo I.
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The equivalence class of all topologies on a set X, which have the same semi-open modulo ideal I sets
as the semi-open modulo ideal I sets by τ, is denoted by [τ].

Theorem 5.8. Let X be a space and I be an ideal in X. If (X, τ) is hyperconnected modulo I, then (X,S), where S ∈ [τ]
is also hyperconnected modulo I.

Proof. Let (X, τ) be hyperconnected modulo I. Then SOI(X, τ) \ {∅} is a filter on X and SOI(X,S) = SOI(X, τ).
Thus, (X,S) is hyperconnected modulo I.

Theorem 5.9. Let X be a space and I be an ideal in X. If (X, τ) is hyperconnected modulo I, then (X,SOI(X, τ)) is
hyperconnected modulo I.

Proof. Let X be hyperconnected modulo I. Then SOI(X) \ {∅} is filter on X. It is sufficient to show
that SOI(X, τ) = SOI(X,SOI(X, τ)). Obviously, SOI(X, τ) ⊆ SOI(X,SOI(X, τ)). Now suppose that A ∈
SOI(X,SOI(X, τ)) \ {∅}. There is a U ∈ SOI(X, τ) \ {∅} such that U ∩ A , ∅,U \ A ∈ I and A \ SICl(U) ∈ I.
Since U ∈ SOI(X, τ) \ {∅}, there is a W ∈ τ \ {∅} such that W ∩ U , ∅,W \ U ∈ I and U \ Cl(W) ∈ I. Now we
show that A ∩W , ∅,W \ A ∈ I and A \ Cl(W) ∈ I. As X is hyperconnected modulo I, I is codense. Then
A∩W , ∅,A \Cl(W) ⊆ X \Cl(W) ∈ I and W \A ⊆ (W \U)∪ (U \A) ∈ I. Thus, SOI(X, τ) = SOI(X,SOI(X, τ)).
Hence, (X,SOI(X, τ)) is hyperconnected modulo I.

In particular, if (X, τ) is hyperconnected modulo an ideal I, SOI(X, τ) is the largest topology in [τ] such
that (X,SOI(X, τ)) is hyperconnected modulo I. If we consider inclusion as ”⊆” in [τ], then SOI(X, τ) is the
greatest element in [τ] and it is denoted by F(τ).

Definition 5.10. ([16]) A topological property R is called contractive (expensive) if (X, τ) has the property
R and τ

′

⊆ τ(τ ⊆ τ
′

), then (X, τ′ ) has the property R.

Theorem 5.11. Hyperconnectedness modulo an ideal is contractive property.

Proof. Let I be an ideal in a space (X, τ) and (X, τ) be hyperconnected modulo I. Consider a topology τ
′

such that τ
′

⊆ τ. To show that (X, τ′ ) is hyperconnected modulo I, let A,B ∈ τ′ \ {∅}. Then A,B ∈ τ \ {∅} and
A ∩ B < I. Thus, (X, τ′ ) is hyperconnected modulo I.

Theorem 5.12. Let (X, τ) be a space and I be an ideal in X. If (X, τ) is maximal hyperconnected modulo I, then
SOI(X, τ) \ {∅} is an ultrafilter on X and, τ = SOI(X, τ).

Proof. Let (X, τ) be hyperconnected modulo I. Then, by Theorem 5.4, SOI(X, τ) \ {∅} is a filter on X. Assume
that A ⊆ X such that A < SOI(X, τ) \ {∅}. Then A < τ. Now τ(A), is the simple expansion of τ by A. Since
τ ⊆ τ(A), τ(A) is not hyperconnected modulo I. Then there exist two nonempty open sets C1 and C2 in
(X, τ(A)) such that C1 ∩ C2 ∈ I. Then C1 = U1 ∪ (V1 ∩ A) and C2 = U2 ∪ (V2 ∩ A), where U1,U2,V1,V2 ∈ τ.
Now C1 ∩C2 ∈ I implies that U1 ∩U2 ∈ I. Since (X, τ) is hyperconnected modulo I, U1 ∩U2 = ∅ implies that
U1 = ∅ or U2 = ∅. Without loss of generality, assume that U1 = ∅. Two cases may arise.

Case 1: U2 = ∅.
Then V1 ∩ V2 ∩ A = (V1 ∩ A) ∩ (V2 ∩ A) = C1 ∩ C2 ∈ I and V1 ∩ V2 < I as V1 and V2 are nonempty open

sets. Now we show that X \ A ∈ SOI(X, τ) \ {∅}.
Since (V1 ∩ V2) ∩ (X \ A) < I, (V1 ∩ V2) ∩ (X \ A) , ∅ and (V1 ∩ V2) \ (X \ A) = (V1 ∩ V2) ∩ A ∈ I. Since X

is hyperconnected modulo I, (X \ A) \ Cl(V1 ∩ V2) ⊆ X \ Cl(V1 ∩ V2) ∈ I⇒ (X \ A) ∈ SOI(X, τ) \ {∅}.
Case 2: U2 , ∅.
Then U2∩V1 < I. Since C1∩C2 ∈ I, V1∩U2∩A = (V1∩U2∩A)∩(U2∪V2) = (V1∩A)∩(U2∪V2)∩(U2∩A) =

C1 ∩ C2 ∈ I. Then (U2 ∩ V1) \ (X \ A) = (U2 ∩ V1) ∩ A ∈ I and (X \ A) ∩ (U2 ∩ V1) < I as U2 ∩ V1 < I. Now
since X is hyperconnected modulo I and U2 ∩ V1 , ∅, (X \ A) \ Cl(U2 ∩ V1) ⊆ X \ Cl(U2 ∩ V1) ∈ I. Thus, in
both cases X \ A ∈ SOI(X, τ) \ {∅}. Hence, SOI(X, τ) \ {∅} is an ultrafilter on X.

By Theorem 5.8, (X,SOI(X, τ)) is hyperconnected modulo I and τ ⊆ SOI(X, τ). Since (X, τ) is maximal
hyperconnected modulo I, τ = SOI(X, τ).
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Theorem 5.13. Let (X, τ) be a space and I be an ideal in X. If SOI(X, τ)\{∅} is an ultrafilter on X, then (X,SOI(X, τ))
is maximal hyperconnected modulo I.

Proof. Obviously, SOI(X, τ)\{∅} is filter on X. By Theorem 5.4, (X, τ) is hyperconnected modulo I. By Theorem
5.9, (X,SOI(X, τ)) is hyperconnected modulo I. Suppose that (X,SOI(X, τ)) is not maximal hyperconnected
modulo I. Then there exists a hyperconnected modulo I space (X, τ1) such that SOI(X, τ) $ τ1. Then
SOI(X, τ) $ SOI(X, τ1). Since (X, τ1) is hyperconnected modulo I, by Theorem 5.4, SOI(X, τ1) \ {∅} is a filter
on X, a contradiction. Hence, (X,SOI(X, τ)) is maximal hyperconnected modulo I.

Definition 5.14. ([10]) A space X is said to be a door space if for each subset A ⊂ X, either A or X \ A is
open.

Theorem 5.15. Let (X, τ) be a space and I be an ideal in X. Then (X, τ) is hyperconnected modulo I door space if and
only if τ \ {∅} is an ultrafilter on X.

Proof. Let (X, τ) be hyperconnected modulo I door space. Then for each A,B ∈ τ \ {∅}, A ∩ B ∈ τ \ {∅}. Let
A ∈ τ \ {∅} and A ⊂ B. If B = X, then B ∈ τ \ {∅}. Otherwise, B , X. Suppose that B < τ \ {∅}. Since X is door
space, X \ B ∈ τ \ {∅}. Then A∩ (X \ B) = ∅ ∈ I, a contradiction. Consider ∅ , A $ X. Then, by the definition
of door space, either A or X \ A is open. Thus, τ \ {∅} is an ultrafilter on X.

Conversely, let τ \ {∅} be an ultrafilter on X. Then, by Theorem 5.13, (X, τ) is maximal hyperconnected
modulo I. By the definition of an ultrafilter, X is a door space.

Corollary 5.16. Let (X, τ) be a space and I be an ideal in X. If X is hyperconnected modulo I door space, then X is
maximal hyperconnected modulo I.

Theorem 5.17. Let (X, τ) be a space and I be an ideal in X. Then (X, τ) is maximal hyperconnected modulo I if and
only if it is submaximal and hyperconnected modulo I.

Proof. Let (X, τ) be maximal hyperconnected modulo I and A $ X. Then X \ Cl(A) ∈ I implies X = Cl(A).
Then SOI(X, τ) \ {∅} is an ultrafilter on X and SOI(X, τ) = τ. Since A $ X and τ \ {∅} is an ultrafilter on X, A or
X \A ∈ τ \ {∅}. If X \A ∈ τ \ {∅}, then A is closed, a contradiction. Thus, A ∈ τ \ {∅}. Hence, X is submaximal.

Conversely, let (X, τ) be submaximal. Suppose that (X, τ) is not maximal hyperconnected modulo I.
Then there is a topology τ1 containing τ such that (X, τ1) is hyperconnected modulo I. let ∅ , U ∈ τ1. Then
X \ Clτ(U) ⊆ X \ Clτ1 (U) ∈ I. Since (X, τ) is submaximal, then U ∈ τ implies τ1 = τ. Hence, (X, τ) is maximal
hyperconnected modulo I.
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