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Abstract. A graph G is equitably k-list arborable if for any k-uniform list assignment L, there is an equitable
L-colouring of G whose each colour class induces an acyclic graph. The smallest number k admitting such
a coloring is named equitable list vertex arboricity and is denoted by ρ=

l (G). Zhang in 2016 posed the
conjecture that if k ≥ d(∆(G) + 1)/2e then G is equitably k-list arborable. We give some new tools that are
helpful in determining values of k for which a general graph is equitably k-list arborable. We use them to
prove the Zhang’s conjecture for d-dimensional grids where d ∈ {2, 3, 4} and give new bounds on ρ=

l (G) for
general graphs and for d-dimensional grids with d ≥ 5.

1. Introduction

All graphs considered in this paper are simple and undirected. For a graph G, we use V(G), E(G), and
∆(G) to denote vertex set, edge set, and the maximum degree of G, respectively. By G[V′] we mean the
subgraph of G induced by a vertex subset V′. To simplify the notation we write G−V′ instead of G[V(G)\V′].
Analogously, we write G− E′ to denote the graph obtained from G by the deletion of an edge subset E′. By
G1 ∪G2 we mean the union of disjoint graphs G1, G2, i.e. the graph with vertex set V(G1)∪V(G2) and edge
set E(G1) ∪ E(G2).

The symbolN stands for the set of positive integers, and moreoverN0 =N ∪ {0}. Let a, b ∈N0. If a < b
then [a, b] denotes the set {a, a + 1, . . . , b − 1, b}, if a = b then [a, b] = {a}, and if a > b then [a, b] = ∅. We adopt
the convention [1, b] = [b], moreover [b]ODD and [b]EVEN denote the sets of odd integers and even integers
in [b], respectively.

A colouring of a graph G is a mapping c : V(G) → N. A coloured graph is then a pair (G, c), where G is
a graph and c is its colouring. A colouring of a graph G is proper if each colour class induces an edgeless
graph. A k-colouring of a graph G is a mapping c : V(G) → [k]. A graph G is properly k-colourable if there is
a proper k-colouring of G. A graph G is k-arborable if there is a k-colouring of G such that each colour class
induces an acyclic graph.

Let L be a list assignment (for a graph G), i.e. a mapping that assigns to each vertex v ∈ V(G) a set L(v)
of allowable colours. An L-colouring of G is a colouring of G such that for every v ∈ V(G) the colour on v
belongs to L(v). A list assignment L is k-uniform if |L(v)| = k for all v ∈ V(G). A graph G is k-choosable if
for each k-uniform list assignment L, we can find a proper L-colouring of G. A graph G is k-list arborable if,
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given a k-uniform list assignment L, we can find an L-colouring of G so that each colour class induces an
acyclic subgraph of G. By χ(G), ρ(G), ch(G), ρl(G) we denote the minimum k ∈ N such that G is: properly
k-colourable, k-arborable, k-choosable, k-list arborable, respectively. We call these numbers the chromatic
number of G, the vertex arboricity of G, the choice number of G, the list vertex arboricity of G, respectively. The
invariant ρ(G) was first introduced by Beineke in 1964 [1] and then it was investigated by many researchers.
For example, Chartrand, Kronk, and Wall in 1968 [3] proved that ρ(G) ≤ d(∆(G) + 1)/2e for every graph G.
Next, in 1995, Borowiecki, Drgas-Burchardt, and Mihók [2] introduced the list version of these problem.
They showed that ρl(G) ≤ d(∆(G))/2e for every connected graph G excluding cycles and complete graphs of
odd order.

In this paper we are mostly interested in a non-classical model of graph colouring, known as equitable.
A k-colouring of a graph G is equitable when each of its colour classes is of the cardinality either d|V(G)|/ke
or b|V(G)|/kc. A graph G is equitably properly k-colourable if there exists an equitable proper k-colouring of
G. The definition was firstly introduced by Meyer [9] in 1973. Recently, Wu, Zhang and Li [12] introduced
the equitable version of vertex arborocity. A graph G is equitably k-arborable if there exists an equitable
k-colouring of G whose each colour class induces an acyclic graph. In the list version, given a k-uniform
list assignment L for G, we call an L-colouring of G equitable when each colour class has the cardinality at
most d|V(G)|/ke (see [7]). A graph G is equitably k-choosable when for any k-uniform list assignment L, there
is an equitable proper L-colouring of G. A graph G is equitably k-list arborable when for any k-uniform list
assignment L, there is an equitable L-colouring of G whose each colour class induces an acyclic graph. The
last definition was given by Zhang [13] in 2016. Byχ=(G), ρ=(G), ch=(G), ρ=

l (G) we denote the minimum k ∈N
such that G is: equitably properly k-colourable, equitably k-arborable, equitably k-choosable, equitably k-list
arborable, respectively. The numbers χ=(G), ρ=(G), ch=(G), ρ=

l (G) are called the equitable chromatic number of
G, the equitable vertex arboricity of G, the equitable choice number of G, the equitable list vertex arboricity of G,
respectively.

Hajnál and Szemerédi ([5]) proved that a graph G is equitably properly k-colourable whenever k ≥
∆(G) + 1. It caused a question posed by P. Erdös. Kostochka, Pelsmajer, and West [7] conjectured the list
version of this theorem.

Conjecture 1.1 ([7]). If k ∈N and k ≥ ∆(G) + 1 then every graph G is equitably k-choosable.

It has to be mentioned herein that equitable k-colouring is not monotone with respect to k. It means that
there are graphs that are equitably k-colourable and not equitably t-colourable for some t < k. To the best of
our knowledge there are no results of this type on equitable k-choosability nor equitable k-list arborability.

On the other hand, Zhang [13] formulated in 2016 the following conjectures.

Conjecture 1.2 ([13]). For every graph G it holds ρ=
l (G) ≤ d(∆(G) + 1)/2e.

Conjecture 1.3 ([13]). If k ∈N and k ≥ d(∆(G) + 1)/2e then every graph G is equitably k-list arborable.

Zhang [13] confirmed above two conjectures for complete graphs, 2-degenerate graphs, 3-degenerate
claw-free graphs with maximum degree at least 4, and planar graphs with maximum degree at least 8. Our
results confirm above conjectures for some Cartesian products of paths, i.e. for some grids.

Given two graphs G1 and G2, the Cartesian product of G1 and G2, denoted by G1�G2, is defined to be a
graph whose vertex set is V(G1) × V(G2) and edge set consists of all the edges joining vertices (x1, y1) and
(x2, y2) when either x1 = x2 and y1y2 ∈ E(G2) or y1 = y2 and x1x2 ∈ E(G1). Note that the Cartesian product is
commutative and associative. Hence the graph G1� · · ·�Gd is unambiguously defined for any d ∈ N. Let
Pn denote a path on n vertices. Notice that when G = G1� · · ·�Gd and each of the factors Gi of G is P2 then
G is a d-dimensional hypercube. Similarly, when each of the factors Gi is a path on at least two vertices then G
is a d-dimensional grid (cf. Fig. 1). By grids we mean the class of all d-dimensional grids taken over all d ∈N.

Nakprasit and Nakprasit [10] proved that the problem of equitable vertex arboricity is NP-hard. Thus the
problem of equitable list vertex arboricity cannot be easier. We are interested in determining polynomially
solvable cases. We will use the following known lemmas. By NG(x) we denote neighborhood of a vertex x in
G, i.e. the set of adjacent vertices to x.
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(1,1,1) (2,1,1) (3,1,1) (4,1,1) (5,1,1)

(1,2,1) (2,2,1) (3,2,1) (4,2,1) (5,2,1)

(1,3,1) (2,3,1) (3,3,1) (4,3,1) (5,3,1)

(1,1,2) (2,1,2) (3,1,2) (4,1,2) (5,1,2)

(1,2,2) (2,2,2) (3,2,2) (4,2,2) (5,2,2)

(1,3,2) (2,3,2) (3,3,2) (4,3,2) (5,3,2)

Figure 1: 3-dimensional grid P5�P3�P2.

Lemma 1.4 ([7, 11]). Let k ∈N and S = {x1, . . . , xk}, where x1, . . . , xk are distinct vertices of G. If G−S is equitably
k-choosable and

|NG(xi)\S| ≤ i − 1 (1)

holds for every i ∈ [k] then G is equitably k-choosable.

Lemma 1.5 ([13]). Let k ∈ N and S = {x1, . . . , xk}, where x1, . . . , xk are distinct vertices of G. If G − S is equitably
k-list arborable and

|NG(xi)\S| ≤ 2i − 1 (2)

holds for every i ∈ [k] then G is equitably k-list arborable.

In this paper we investigate the problem of equitable list vertex arboricity of graphs. The remainder of
the paper is organized as follows. In Section 2 we generalize Lemmas 1.4 and 1.5 in such a way that their
new versions guarantee the continuity of the equitable choosability and equitable list vertex arboricity of
graphs. We give also a new tool using the equitable choosability of a subgraph H covering graph G (Lemma
2.7). These tools (Lemmas 2.5, 2.6, and 2.7) lead to new bounds on ρ=

l (G), for any graph G. Since the new tool
uses the notation of equitable choosability we dedicate Section 3 to this notation for some graphs related to
grids. Finally, we apply all the lemmas to confirm the correctness of Zhang’s conjectures for d-dimensional
grids, d ∈ {2, 3, 4}, and to give new bounds on ρ=

l (G) for d-dimensional grids with d ≥ 5 (Section 4). We
conclude the paper with posing some new conjectures concerning equitable list vertex arboricity of graphs.

2. Some auxiliary tools and general bounds on ρ=
l

(G)

In the literature a lot of iproofs of results on equitable choosability are done by induction on the number
of vertices of a graph and by usage of Lemma 1.4. It means, to show that G is equitably k-choosable, the set
S ⊆ V(G) that fulfills the inequality (1) is determined and next the induction hypothesis is applied to the
graph G − S. Repeated application of this approach defines a partition S1 ∪ · · · ∪ Sη+1 of V(G) such that the
following both conditions hold:

• |S1| ≤ k and |S j| = k for j ∈ [2, η + 1];

• for each j ∈ [2, η + 1] there is an ordering of vertices of S j, say x j
1, . . . , x

j
k, that fulfills the inequality

|NG(x j
i ) ∩ (S1 ∪ · · · ∪ S j−1)| ≤ i − 1 for every i ∈ [k].
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In this section we prove that if G has such a partition then G is not only equitably k-choosable but also is
equitably t-choosable for every t ∈ N satisfying t ≥ k. Next, we observe that the similar result for a graph
to be equitably k-list arborable can be formulated.

Let k ∈ N. A k-partition of a graph G is a partition of the vertex set of G into d|V(G)|/ke sets. The
k-partition is special if all sets of the k-partition, except at most one, have k elements. Let G be a graph and c
be its vertex colouring (not necessarily proper). A set S ⊆ V(G) is rainbow in the coloured graph (G, c) if all
vertices in S are coloured differently. A k-partition of the coloured graph (G, c) is rainbow if every set of the
k-partition is rainbow. It is easy to see the following fact.

Observation 2.1. Let k ∈ N and (G, c) be a coloured graph. If there is a rainbow k-partition of (G, c) then each
colour appears on at most d|V(G)|/ke vertices of G.

Lemma 2.2. Let k ∈N. A graph G is equitably k-choosable if and only if for every k-uniform list assignment L there
is a proper L-colouring c of G such that (G, c) has a rainbow k-partition.

Proof. Obviously, if for every k-uniform list assignment L there is a proper L-colouring c of G such that (G, c)
has a rainbow k-partition then each colour class has the cardinality at most d|V(G)|/ke, by Observation 2.1.
It means that this L-colouring c is equitable, and hence G is equitably k-choosable.

To prove the opposite implication, suppose that G is equitably k-choosable and L is a k-uniform list
assignment for G. It follows that there is a proper L-colouring c of G such that each colour class has at
most d|V(G)|/ke elements. Let |V(G)| = ηk + r, where η ∈ N0, r ∈ [k]. Thus η + 1 = d|V(G)|/ke, and so each
colour class contains at most η + 1 vertices. Assume, on the contrary, that there is no rainbow k-partition
of (G, c). Among all partitions of (G, c) into rainbow sets, let V1 ∪ · · · ∪ Vt be one with the smallest t.
Since there is no rainbow k-partition, we have t > η + 1. Without loss of generality, we may assume that
V1 ∪ · · · ∪ Vt is the rainbow partition with |V1| ≤ · · · ≤ |Vt| and with the minimum cardinality of V1. Let
|V1| = s and x ∈ V1. Since we have at most η + 1 vertices coloured with c(x) and t > η + 1, there is a
set Vi such that Vi ∪ {x} is rainbow. If s = 1 then V2 ∪ V3 ∪ · · · ∪ Vi−1 ∪ (Vi ∪ {x}) ∪ Vi+1 ∪ · · · ∪ Vt is the
partition with less number of rainbow sets, a contradiction. If s > 1 then we get the rainbow partition
V1 \ {x} ∪V2 ∪ · · · ∪Vi−1 ∪ (Vi ∪ {x})∪Vi+1 ∪ · · · ∪Vt that contradicts with the minimum cardinality of V1.

Lemma 2.3. Let k ∈ N. A graph G is equitably k-list arborable if and only if for every k-uniform list assignment
L there is an L-colouring c in which every colour class induces an acyclic graph and such that (G, c) has a rainbow
k-partition.

Proof. We repeat all the steps of the proof of Lemma 2.2, but in each case when we refer to the colouring
c of a graph G we assume or state that each colour class in c is acyclic instead of the assumption that c is
proper. Additionally, we substitute the notion of equitable k-choosability by the notion of equitable k-list
arborability.

Lemma 2.4. Let k ∈ N and (G, c) be a coloured graph. If there is a rainbow special k-partition of (G, c) then there is
also a rainbow special x-partition of (G, c) for every integer x such that x ≤ k.

Proof. Let |V(G)| = ηk + r1, where η ∈N0, r1 ∈ [k]. Let S1 ∪ S2 ∪ · · · ∪ Sη+1 be a rainbow special k-partition of
(G, c) such that |S1| = r1 and |Si| = k for i ∈ [2, η + 1]. We show that there is a rainbow special x-partition, for
every x ≤ k.

Arrange vertices of G in the list in such a way that:

• vertices from Si are placed before vertices from S j for i < j;

• vertices from S1 are placed in any order at the top of the list;

• each vertex from Si, for i > 1, is placed in the list in such a way that its colour is different from the
colours of k − 1 previous vertices in the list or its colour is different from the colours of all previous
vertices in the list, if the number of previous vertices is smaller than k − 1.
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Since sets Si are rainbow, for every i, then the above described arrangement of vertices is possible. Assume
that (v1, v2, . . . , v|V(G)|) is the list of vertices created in such a way. Let |V(G)| = βx + r2, where β ∈N0, r2 ∈ [x].

Sets Ri = {v(i−1)·x+1, . . . , vi·x}, for 1 ≤ i ≤ β and Rβ+1 = {vβ·x+1, . . . , v|V(G)|} form an x-partition. It is easy to
see that this partition is rainbow and special.

Lemma 2.5. Let k ∈ N. If a graph G has a special k-partition S1 ∪ · · · ∪ Sη+1 such that |S1| ≤ k and |S j| = k for
j ∈ [2, η + 1], moreover, if for every j ∈ [2, η + 1] there is an ordering x j

1, . . . , x
j
k of vertices of the set S j that for every

i ∈ [k] the inequality

|NG(x j
i ) ∩ (S1 ∪ · · · ∪ S j−1)| ≤ i − 1 (3)

is fullfilled then G is equitably t-choosable for every integer t satisfying t ≥ k.

Proof. Let k, t be fixed and L be a t-uniform list assignment for G. We show that there is a proper L-colouring
c of G such that the coloured graph (G, c) has a rainbow special t-partition. Since L is chosen freely, it will
follow that G is equitably t-choosable, by Lemma 2.2. Let

• |V(G)| = ηk + r1, where η, r1 are non-negative integers, r1 ∈ [k], and

• |V(G)| = βt + r2, where β, r2 are non-negative integers, r2 ∈ [t], and

• t = γk + r where γ, r are non-negative integers, r ∈ [k].

Thus |V(G)| = β(γk+r)+r2 = βγk+βr+r2. We split V(G) into two subsets V1 and V2, where V1 = S1∪· · ·∪Sη+1−βγ
and V2 = Sη+1−(βγ−1) ∪ · · · ∪ Sη+1. Observe that |V1| = βr + r2 and |V2| = βγk. First, we properly colour the
vertices in V1, next we spread the colouring on V2. We colour vertices in each set Si of V1 in such a way
that we obtain a rainbow set. It is easy to see that we can colour vertices from S1 such that we obtain a
rainbow set, since each vertex has assigned a list of length t and |S1| = r1 ≤ t. Next, we colour vertices
x2

1, . . . , x
2
k in S2. We assign to x2

k a colour from its list that is not used in S1. Since |NG(x2
k) ∩ S1| ≤ k − 1

and |L(xk)| = t ≥ k, this may be done. Next we assign to x2
k−1, . . . , x

2
1 (in the sequence) a colour from its list

that is different from the ones assigned to the vertices with higher subscript and not used in S1. All these
steps may be completed since |N(x2

i ) ∩ S1| ≤ i − 1 and |L(xi)| = t ≥ k. Similarly, we colour the vertices of
each set S j ( j ∈ [3, η + 1 − βγ]). Consider the coloured subgraph (G1, c), where G1 = G[V1]. Since each set
S j ( j ∈ [η + 1 − βγ]) is rainbow, we obtain a rainbow k-partition of (G1, c). If r2 ≤ r1, we take r2 vertices of
S1 and denote this set by R. Otherwise, we additionally choose r2 − r1 vertices from S2 that have colours
different than colours of vertices in S1 and then these vertices together with S1 form R. Observe that also
(G1 − R, c) has a rainbow k-partition. Furthermore, |(S1 ∪ · · · ∪ Sη+1−βγ) \ R| = |V(G1 − R)| = βr. By Lemma
2.4, G1 − R has a rainbow r-partition. Let T1, . . . ,Tβ be a rainbow r-partition of (G1 − R, c).

Now we colour the vertices in V2. Recall that |V2| = βγk. Let us divide V2 into β subsets, each containing
γ k-sets Si, in the following way:

H1 = Sη+1−(βγ−1) ∪ Sη+1−(βγ−2) ∪ · · · ∪ Sη+1−(β−1)γ
H2 = Sη+1−((β−1)γ−1) ∪ Sη+1−((β−1)γ−2) ∪ · · · ∪ Sη+1−(β−2)γ
...
Hi = Sη+1−((β−i+1)γ−1) ∪ Sη+1−((β−i+1)γ−2) ∪ · · · ∪ Sη+1−(β−i)γ
...
Hβ = Sη+1−(γ−1) ∪ Sη+1−(γ−2) ∪ · · · ∪ Sη+1.

We will properly colour vertices in H1, . . . ,Hβ from their lists, step by step, in such a way that each set Ti∪Hi
for i ∈ [β] is rainbow.

First, consider a colouring of vertices of Hi. To simplify the notation let A = α + 1 − ((β − i + 1)γ − 1).
Thus Hi = SA ∪ SA+1 ∪ · · · ∪ SA+γ−1. Recall that vertices xA

1 , . . . , x
A
k in SA fulfill the inequality (3). We delete

colours that are used on vertices in Ti from lists of vertices in SA. Now the lists of vertices in SA are shorter
than t, however each vertex still has at least γk colours on the list. Assign to xA

k a colour from its list that
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is not used on vertices from S1 ∪ · · · ∪ SA−1. Since |NG(xA
k ) ∩ (S1 ∪ · · · ∪ SA−1)| ≤ k − 1 and |L(xA

k )| = γk ≥ k,
this may be done. Then assign to xA

k−1, . . . , x
A
1 (in a sequence) a colour from its list that is different from the

ones assigned to the vertices with higher subscript and not used in S1 ∪ · · · ∪ SA−1. All these steps may be
done since |NG(xA

i ) ∩ (S1 ∪ · · · ∪ SA−1)| ≤ i − 1 and |L(xA
i )| = γk ≥ k. Now, we colour vertices in SA+1, where

SA+1 = {xA+1
1 , . . . , xA+1

k }. We delete colours that are used on vertices in Ti and SA from lists of vertices in SA+1.
Observe that after deleting colours from lists, each vertex in SA+1 has at least (γ − 1)k colours on the list.
Similarly as above, first we colour the vertex xA+1

k with a colour from its list that is not used in S1 ∪ · · · ∪ SA

and then we colour, one by one, vertices xA+1
k−1 , . . . , x

A+1
1 with colours from their lists that are different from

the ones assigned to the vertices with higher subscript and not used in S1 ∪ · · · ∪ SA. We can do this since
|NG(xA+1

i ) ∩ (S1 ∪ · · · ∪ SA)| ≤ i − 1 and |L(xA+1
i )| = (γ − 1)k ≥ k. Observe that in the same way we can colour

vertices from sets SA+2, . . . ,SA+γ−1. Indeed, let SA+ j = {xA+ j
1 , . . . , xA+ j

k }. We delete from lists of vertices in SA+ j
colours that are used on vertices in Ti ∪ SA ∪ · · · ∪ SA+ j−1 and then we assign the colour different from the
ones assigned to the vertices with higher subscript and not used in S1 ∪ · · · ∪ SA+ j−1.

Thus finally, we have obtained a proper colouring c that admits a rainbow t-partition of (G, c) which
completes the proof.

To stress the difference between Lemma 1.4 and Lemma 2.5 let us consider the equitable choice number
of a special family of graphs, which we denote byK . Assume K3 ∈ K and if G ∈ K , then the graph obtained
from G by adding three new vertices, say x, y, z, and six edges such that x, y, z are pairwise adjacent and
additionally the vertex x is adjacent to any two vertices of G and the vertex y is adjacent to any one vertex of
G is also inK . The definition ofK very naturally indicates the special 3-partition satisfying the assumptions
of Lemma 2.5 of every graph G ∈ K . Thus Lemma 2.5 implies that if G ∈ K , then G is equitably t-choosable
for every integer t satisfying t ≥ 3. However, such a result cannot be easily proved by Lemma 1.1. Obviously,
Lemma 1.1 implies that G is equitably 3-choosable, but to prove that G is equitably t-choosable for every
integer t ≥ 4 we have to involve more arguments.

The next result generalizes Lemma 1.5. We give only a sketch of its proof because it imitates the proof
of Lemma 2.5.

Lemma 2.6. Let k ∈ N. If a graph G has a special k-partition S1 ∪ · · · ∪ Sη+1 such that |S1| ≤ k and |S j| = k for
j ∈ [2, η + 1], moreover, if for every j ∈ [2, η + 1] there is an ordering x j

1, . . . , x
j
k of vertices of the set S j that for every

i ∈ [k] the inequality

|NG(x j
i ) ∩ (S1 ∪ · · · ∪ S j−1)| ≤ 2i − 1, (4)

is fulfilled then G is equitably t-list arborable for any integer t satisfying t ≥ k.

Proof. For fixed k, t and a t-uniform list assignment L for G, we construct an L-colouring c of G such that
the coloured graph (G, c) has a rainbow special t-partition and each colour class in c induces an acyclic
graph. We do it in the same manner as in the proof of Lemma 2.5, but if we put a colour on the vertex x j

i ,
i ∈ [k], j ∈ [2, η + 1] then we use Lemma 1.5 (instead of Lemma 1.4) to guarantee that each colour class in c
induces an acyclic graph (instead of to guarantee that the constructed colouring is proper).

Next, we give new tool that help us in proving further results concerning exact values as well as bounds
on equitable list vertex arboricity of graphs.

A spanning graph H of a graph G is any subgraph of G such that V(H) = V(G). We say that a graph
H covers all cycles of G if it is spanning and for any cycle C contained in G there are x, y ∈ V(C) such that
xy ∈ E(H).

Lemma 2.7. Let k ∈N. If H is a graph that covers all cycles of G and H is equitably k-choosable then G is equitably
k-list arborable.
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Proof. Let L be any k-list assignment for G. Let c be an equitable proper L-colouring of H. We show that
each colour class induces an acyclic subgraph of G. Let C be a cycle of G. By our assumption on H there are
x, y ∈ V(C) such that xy ∈ E(H). Thus C contains two vertices which have different colours in c. Since G has
no monochromatic cycle in c, each colour class induces an acyclic graph.

Lemma 2.7 states that we can use known results related to equitable choosability for determining results
on equitable list vertex arboricity. Let us recall results proven in [6].

Theorem 2.8 ([6]). Let r ∈N and G be a graph such that ∆(G) ≤ r.

(i) If r ≤ 7 and k ≥ r + 1 then G is equitably k-choosable.

(ii) If k ≥ r +

{
1 + r−1

7 i f r ≤ 30
r
6 i f r ≥ 31 then G is equitably k-choosable.

(iii) If |V(G)| ≥ r3 and k ≥ r + 2 then G is equitably k-choosable.
(iv) If ω(G) ≤ r and |V(G)| ≥ 3(r + 1)r8 then G is equitably (r + 1)-choosable (ω(G) is the clique number of G).

Theorem 2.8 and Lemma 2.7 imply the general upper bound on equitable list vertex arboricity.

Theorem 2.9. Let r ∈N and G be a graph with at least one edge and ∆(G) − 1 ≤ r.

(i) If r ≤ 7 and k ≥ r + 1 then G is equitably k-list arborable.

(ii) If k ≥ r +

{
1 + r−1

7 i f r ≤ 30
r
6 i f r ≥ 31 then G is equitably k-list arborable.

(iii) If |V(G)| ≥ r3 and k ≥ r + 2 then G is equitably k-list arborable.
(iv) If ω(G) ≤ r and |V(G)| ≥ 3(r + 1)r8 then G is equitably (r + 1)-list arborable.

Proof. Let F be a spanning forest of G such that the numbers of connected components of F and G are the
same. Thus G− F covers all cycles of G. By Lemma 2.7, if G− F is equitably k-choosable then G is equitably
k-list arborable. Since ∆(G − F) ≤ ∆(G) − 1, the theorem follows directly from Theorem 2.8.

If we restrict our consideration to particular graph classes or to graphs with particular properties, we
get even better bounds on equitable list arboricity that, in addition, confirm Zhang’s conjecture.

Theorem 2.10 ([7]). Let k ∈N and let F be a forest. If k ≥ ∆(F)/2 + 1 then F is equitably k-choosable.

We can apply Theorem 2.10 to show an upper bound on equitable list vertex arboricity of graphs with
(edge) arboricity equal to 2. The (edge) arboricity of a graph G is the minimum number of forests into which
its edges can be partitioned.

Theorem 2.11. Let k ∈ N and let G be a graph with arboricity 2. If k ≥ d(∆(G) + 1)/2e then G is equitably k-list
arborable.

Proof. Let F1 = (V(G),E1) and F2 = (V(G),E2) be two forests into which E(G) was partitioned. Of course,
E(G) = E1 ∪ E2. It is clear that F1 covers all cycles of G. If ∆(F1) < ∆(G) then by Theorem 2.10 and Lemma
2.7 G is equitably k-list arborable for k ≥ ∆(F1)/2 + 1. It means that G is equitably k-list arborable for
k ≥ d(∆(G) + 1)/2e. Suppose that ∆(F1) = ∆(G). Let D be the set of vertices of maximum degree in F1.
Observe that every vertex in D is adjacent only with edges from E1. Let E′1 ⊆ E1 be the minimal set of
edges such that D ⊆

⋃
e∈E′1

e. Since E′1 is minimal, the subgraph induced by E′1 is a star-forest. Furthermore,
in the subgraph induced by E2 ∪ E′1 every edge in E′1 is a pendant edge. Thus the subgraph induced by
E2 ∪E′1 is acyclic and so F1 −E′1 covers all cycles of G. Since ∆(F1 −E′1) < ∆(G), by Theorem 2.10 and Lemma
2.7, G is equitably k-list arborable for k ≥ ∆(F1 − E′1)/2 + 1. It means that G is equitably k-list arborable for
k ≥ d(∆(G) + 1)/2e.

A graph G is d-degenerate if every subgraph of G has a vertex of degree at most d. Since every 2-degenerate
graph has arboricity 2, Theorem 2.11 confirms the result for 2-degenerate graphs obtained by Zhang [13].

Corollary 2.12 ([13]). Let k ∈N and let G be a 2-degenerate graph. If k ≥ d(∆(G) + 1)/2e then G is equitably k-list
arborable.
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3. Equitable choosability of grids

Since our new tool (Lemma 2.7) uses the notion of equitable choosability we dedicate this section to
this notion for some graphs related to grids. Nethertheless, before we consider it, we give some sufficient
conditions for graphs to be equitably 2-choosable.

Lemma 3.1. If G has a matching of size b|V(G)|/2c and G is 2-choosable then G is equitably 2-choosable.

Proof. Observe that the assumption that G has a matching of size b|V(G)|/2c implies that α(G) ≤ d|V(G)|/2e
(α(G) denotes the cardinality of the largest independent vertex set of G). Thus each colour class has at most
d|V(G)|/2e vertices in any proper colouring of G. Let L be a 2-uniform list assignment for G. Since G is
2-choosable, there is a proper L-colouring c of G. Furthermore, every colour class in c has at most d|V(G)|/2e
vertices, and so c is equitable proper L-colouring of G.

The graphs that are 2-choosable were characterized by Erdös, Rubin and Taylor in [4]. The core of G is a
graph obtained from G by recursive removing all vertices of degree one. Thus the core of G has no vertices
of degree one. A graph is called a Θ2,2,p-graph if it consists of two vertices x and y and three internally
disjoint paths of lengths 2, 2 and p, joining x and y.

Theorem 3.2 ([4]). A connected graph G is 2-choosable if and only if the core of G is either K1, or an even cycle, or a
Θ2,2,2r-graph, where r ∈N.

Lemma 3.3. Let k ∈N with k ≥ 2. If G is a bipartite graph with ∆(G) ≤ 2 then G is equitably k-choosable.

Proof. Observe first that each component of G is either an even cycle or a path. If G has more than one
component that is a path, let G′ be a graph obtained from G by adding edges so that G′ has one component
that is a path and all other components are even cycles. In the case when G has at most one component that
is a path, we assume G′ = G. We will show that G′ is equitably k-choosable for any k ≥ 2. By Theorem 3.2,
being applied to each connected component of G′, G′ is 2-choosable (it is clear that if each component is
2-choosable then the whole graph is also 2-choosable). Since G′ has a matching of size b|V(G′)|/2c then G′ is
equitably 2-choosable by Lemma 3.1. Furthermore, Theorem 2.8(i) follows that G′ is equitably k-choosable
for every k ≥ 3 (since ∆(G′) ≤ 2). Hence the arguments that G′ is equitably k-choosable for any k ≥ 2 and
that G is a spanning subgraph of G′ imply that G is equitably k-choosable for any k ≥ 2.

Now, we define G1 to be a family of all grids Pn1�P2 and all graphs resulting from grids Pn1�P2 by
removing one vertex of minimum degree, taken over all n1 ∈ N. The following results will be used in the
next section to determine equitable list vertex arboricity of grids.

Lemma 3.4. Let k ∈N with k ≥ 3. If every component of a graph G is in G1 then G is equitably k-choosable.

Proof. We show that there is a special 3-partition of G that fulfills the assumptions of Lemma 2.5, i.e. there
are disjoint sets S1, . . . ,Sη+1 such that the following conditions hold:

• V(G) = S1 ∪ · · · ∪ Sη+1;

• |S1| ≤ 3 and |S j| = 3 for j ∈ [2, η + 1];

• there is an ordering of vertices of each set S j, say x j
1, x

j
2, x

j
3, fulfilling the inequality |NG(x j

i )∩ (S1 ∪ . . .∪
S j−1)| ≤ i − 1 for i ∈ [3];

and hence, by Lemma 2.5, G is equitably k-choosable for any k ≥ 3. We prove the existence of the partition
by induction on the number of vertices of G. It is easy to see that it is true for a graph with at most 3 vertices.
Thus suppose that if every component of a graph is in G1 and the graph has less than n vertices, n ≥ 4, then
it has a special 3-partition that fulfills the assumptions of Lemma 2.5. Let G be an n-vertex graph having



E. Drgas-Burchardt et al. / Filomat 32:18 (2018), 6353–6374 6361

a) b)

Figure 2: A graph a) (P5�P3, 3) and b) (P5�P2, 2) being isomorphic to P3�P2.

every component in G1. We show that there is a set S in G, say {x1, x2, x3}, such that |NG(xi) \ S| ≤ i − 1 for
i ∈ [3] and every component of G − S is in G1. Thus, by induction, the lemma follows.

Let x1 be a vertex of the minimum degree in G, thus degG(x1) ≤ 2. Suppose first that degG(x1) = 2. In
this case each component has at least four vertices. Let x2, x3 be the neighbors of x1 such that degG(x2) = 2
and degG(x3) ≤ 3. Let S = {x1, x2, x3}, then |NG(x1) \ S| = 0, |NG(x2) \ S| ≤ 1 and |NG(x3) \ S| ≤ 2. Observe that
every component of G−S is inG1, so by our induction hypothesis G−S has a special 3-partition that fulfills
the assumptions of Lemma 2.5, and so we are done.

Suppose now that degG(x1) = 1. Let x2 be the neighbor of x1. If degG(x2) = 3 then let x3 be the neighbor
of x2 of degree 2. Let S = {x1, x2, x3}. Hence every component of G − S is in G1 and we see that the vertices
of S satisfy |NG(xi) \ S| ≤ i − 1 for i ∈ [3]. If degG(x2) = 2 then let x3 be the neighbor of x2, other than
x1. Observe that in this case the vertices x1, x2, x3 form a component of G. Again S = {x1, x2, x3} satisfies
|NG(xi) \ S| = 0 ≤ i − 1 for i ∈ [3], and so, by induction hypothesis, G has a special 3-partition that fulfills
the assumptions of Lemma 2.5. If degG(x2) = 1 then as x3 in S we put a vertex of the minimum degree in
G − {x1, x2}.

Finally suppose that degG(x1) = 0. In this case let x2, x3 be two adjacent vertices of degree at most two.
If there are no such vertices then G is an edgeless graph and we can choose x2, x3 arbitrarily. Similarly as
above we can see that every component of G − S is in G1 and S satisfies |NG(xi) \ S| ≤ i − 1 for i ∈ [3]. It
implies that G has a special 3-partition that fulfills the assumptions of Lemma 2.5, and so G is equitably
k-choosable for k ≥ 3.

It should be mentioned here that for each component of graph G in G1, we have ∆(G) ≤ 3. Thus, by
Theorem 2.8, such a graph is equitably k-choosable for k ≥ 4. Hence Lemma 3.4 extends this result to k ≥ 3.

Let n1,n2 ∈N, n2 ≥ 2, and ` ∈ [0,n1− 1]. The symbol (Pn1�Pn2 , `) denotes a graph obtained from Pn1�Pn2

by the deletion of a set V′ (cf. Fig. 2), where

V′ = {(n1 − p,n2) : p ∈ [0, ` − 1]} ∪ {(n1 − p,n2 − 1) : p ∈ [0, ` − 1]}.

Observe that (Pn1�Pn2 , 0) is a grid Pn1�Pn2 .
Let G2 = {(Pn1�Pn2 , `) : n1 ≥ 1,n2 ≥ 2, ` ∈ [0,n1 − 1]}.

Lemma 3.5. Let k ∈N with k ≥ 4. If each component of a graph G is in G2 then G is equitably k-choosable.

Proof. We show that there is a special 4-partition of G that fulfills the assumptions of Lemma 2.5. We prove
it by induction on the number of vertices. Observe that every graph in G2 has at least two vertices and it is
easy to see that if G has at most 4 vertices then G has a special 4-partition that fulfills the assumptions of
Lemma 2.5. Suppose that the assertion is true for graphs with less than n vertices, n ≥ 5. Let G be a graph
with n vertices that satisfies assumptions of the lemma. We show that there is a set S, say {x1, x2, x3, x4}, such
that |NG(xi) \ S| ≤ i − 1 for i ∈ [4] and each component of G − S is in G2.

We choose the set S as follows. First suppose that there is a component (Pn1�Pn2 , `) of G such that
n1 − ` ≥ 2 and n2 ≥ 2. Let us consider the set S = {x1, x2, x3, x4} with x1 = (n1 − `,n2), x2 = (n1 − ` − 1,n2),
x3 = (n1 − `,n2 − 1), and x4 = (n1 − ` − 1,n2 − 1).
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Thus |NG((n1−`,n2))\S| = 0, |NG((n1−`−1,n2))\S| ≤ 1, |NG((n1−`,n2−1))\S| ≤ 1 and |NG((n1−`−1,n2−1))\S| ≤
2. Furthermore, every component of G−S is inG2 and hence, by the induction hypothesis, G has 4-partition
of G that fulfills the assumptions of Lemma 2.5. If there is a component (Pn1�Pn2 , `) of G such that n1 − ` = 1
and n2 ≥ 4 then we put x1 = (1,n2), x2 = (1,n2 − 1), x3 = (1,n2 − 2), and x4 = (1,n2 − 3). Every component of
G−S is inG2 and |NG((1,n2))\S| = 0, |NG((1,n2−1))\S| = 0, |NG((1,n2−2))\S| ≤ 1 and |NG((1,n2−3))\S| ≤ 2,
so by the induction hypothesis, the assumptions of Lemma 2.5 are satisfied. Otherwise, every component
of G is a path. If there is a component with at least four vertices then four consecutive vertices of the path
form the set S that satisfies |NG(xi) \ S| ≤ i − 1 for i ∈ [4]. If each component of G has less than four vertices
then, to obtain S, we take all vertices of one component and we next complete the set S by vertices of some
other component or even components, if the number of vertices chosen to set S is still to small. It is easy to
see that also in such a case the assumptions of Lemma 2.5 are fulfilled, which finishes the proof.

Lemma 3.6. Let n1,n2, t ∈ N. If G is a graph with t components such that each one is isomorphic to Pn1�Pn2 then
G is equitably 3-choosable.
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Figure 3: Illustration for the proof of Lemma 3.6; Gp = P7�P3.

Proof. If n1 ≤ 2 or n2 ≤ 2 then the proof follows from Lemma 3.4. Thus we may assume that n1 ≥ 3 and
n2 ≥ 3. Let Gp = Pp

n1
�Pp

n2
for p ∈ [t] be components of G and {(i, j)p : i ∈ [n1], j ∈ [n2]} be the vertex set of the

component Gp. Let n1 = 3q + r where r ∈ [0, 2] and let L be a 3-uniform list assignment for the graph G. We
show that there is a proper L-colouring c such that (G, c) has a rainbow 3-partition. Let H be a subgraph of
G induced by the set {(1, j)p : j ∈ [n2], p ∈ [t]} if r = 1, and induced by the set {(1, j)p, (2, j)p : j ∈ [n2], p ∈ [t]} if
r = 2. Moreover, let Sp

ij = {(3i + 1 + r, j)p, (3i + 2 + r, j)p, (3i + 3 + r, j)p
} where i ∈ [0, q − 1], j ∈ [n2], p ∈ [t] (cf.

Fig. 3).
First, we colour the vertices of H. Let c′ be an equitable proper L-colouring of H guaranteed by Lemma

3.4. Thus, by Lemma 2.2, there is a rainbow 3-partition of (H, c′). After this step all vertices of the first
and the second column are coloured if r = 2, all vertices of the first column are coloured if r = 1, and
graph is uncoloured if r = 0. Next, in each component, we colour uncoloured vertices of the first row, i.e.,
(r + 1, 1)p, (r + 2, 1)p, . . . , (n1, 1)p for p ∈ [t]. We properly colour these vertices in such a way that the sets Sp

i1,
i ∈ [0, q− 1] are rainbow. Now we divide the uncoloured vertices of each component into 3-element subsets
Sp

ij where i ∈ [0, q − 1], j ∈ [2,n2], and p ∈ [t]. In each component we define linear ordering ≺p on these sets

in the following way: Sp
ij ≺ Sp

rs if ( j < s) or ( j = s and i < r). According to this ordering, we properly colour

vertices of each set Sp
ij with the following rules:

• if it is only possible, we colour vertices in Sp
ij in such a way that vertices of this set obtain different

colours;

• if we cannot colour vertices in Sp
ij in such a way that Sp

ij is rainbow then we color vertices in Sp
ij in such

a way that two vertices have the same colour, let us say c1, and there is no vertex coloured with c1 in
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Sp
ij−1; moreover, if also the set Sp

ij−1 is not rainbow, i.e. two vertices in Sp
ij−1 are coloured with the same

colour, let us say c2, then there is no vertex coloured with c2 in Sp
ij.

We will show that such a colouring exists. Let c′′ be a proper L-colouring of G − H such that these
rules are maintained. Suppose that we are at the step when we have just coloured vertices in Sp

ij, so

vertices in every set that precedes Sp
ij, with respect to ≺p, and the vertices in Sp

ij are coloured, the vertices in

Sp
i+1 j (or Sp

0 j+1 when i = q − 1) are uncoloured. To simplify notation let Sp
ij = {(x, j), (x + 1, j), (x + 2, j)} and

Sp
ij−1 = {(x, j−1), (x+1, j−1), (x+2, j−1)}. Let c′′((x, j)) = c′′((x+2, j)) = c1 and c′′((x+1, j)) = b1. First we show

that there is no vertex coloured with c1 in Sp
ij−1. Since vertices (x, j) and (x, j− 1) are adjacent, it follows that

c1 , c′′((x, j− 1)). Similarly, c1 , c′′((x + 2, j− 1)). Now we need to show that c1 , c′′((x + 1, j− 1)). Since we
use c1 to colour (x+2, j) then we necessarily have L((x+2, j)) = {c1, b1, c′′((x+2, j−1))}. If c1 = c′′((x+1, j−1))
then we could colour (x + 1, j) with colour different from c1 and b1 and next colour (x + 2, j) with b1 and so
we would colour the vertices in Sp

ij with different colours, a contradiction. To finish the reasoning we show

that if c′′((x, j− 1)) = c′′((x + 2, j− 1)) = c2 then there is no vertex coloured with c2, in Sp
ij. It is easy to see that

c2 , c′′((x, j)) and c2 , c′′((x + 2, j)). As we observed above L((x + 2, j)) = {c1, b1, c′′((x + 2, j− 1))}. Since each
vertex has the list consisting of three different colours, we have b1 , c′′((x + 2, j−1)) and so c′′((x + 1, j)) , c2.

c1 b1 c1

c2 b2
c2

c1 b1 c1

c2 b2
c2

S
p

ij

S
p

ij−1

S
p′

ij S
p′′

ij−1

a) b)

Figure 4: a) A part of Gp with depicted non-rainbow sets Sp
ij and Sp

ij−1, b2 , c1, b1 , c2. b) Repartition of Sp
ij ∪ Sp

ij−1 into two rainbow

sets Sp′
i j and Sp′′

i j−1.

Above described rules imply that either Sp
ij is rainbow or Sp

ij ∪ Sp
ij−1 can be divided into two 3-element

rainbow sets in (G − H, c′′): Sp′
i j ∪ Sp′′

i j−1 (cf. Fig. 4). We use this property to show that there is a rainbow
special 3-partition of (G −H, c′′). We divide V(G −H) in the following way:

• the set of vertices of each component is divided step by step;

• in each component Gp, we start with the last set, with respect to ≺p, and go down due to this ordering;

• if Sp
ij is rainbow then it forms a set of the rainbow special 3-partition of (G − H, c′′); otherwise, we

partite Sp
ij ∪ Sp

ij−1 into two 3-element rainbow sets Sp′
i j ∪ Sp′′

i j−1 (cf. Fig. 4); we modify ≺p by removing
sets that are already included in the rainbow 3-partition.

Recall that the sets Sp
i1 for i ∈ [0, q−1] (sets of the first row) are rainbow, so the above partition results in a

rainbow special 3-partition of (G−H, c′′). Thus together with the rainbow 3-partition of (H, c′) we obtain the
rainbow 3-partition of (G, c′∪ c′′). Hence for every 3-uniform list assignment L there is a proper L-colouring
c such that (G, c) has a rainbow 3-partition and next, by Lemma 2.2, G is equitably 3-choosable.

Lemma 3.5 and Lemma 3.6 immediately imply the following result.

Lemma 3.7. Let n1,n2, k ∈ N with k ≥ 3. If each component of a graph G is isomorphic to Pn1�Pn2 then G is
equitably k-choosable.
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If each component of graph G is in Pn1�Pn2 then ∆(G) ≤ 4. Thus, by Theorem 2.8, such a graph is
equitably k-choosable for k ≥ 5. Hence Lemma 3.7 extends this result to k ≥ 3.

Remark 3.8. Observe that Lemma 3.6 and Lemma 3.7 are still true if each component of G is an arbitrary 2-
dimensional grid (components are not necessarily of the same sizes). Furthermore, the bound in Lemma 3.7 is tight,
since P2�P3 is not 2-choosable.

Lemma 3.9. Let n1,n2 ∈ N and t, s ∈ N0. If G is a graph with t components such that each one is isomorphic to
Pn1�Pn2�P2 and with s components being isomorphic to Pn1�Pn2 then G is equitably 4-choosable.
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Figure 5: Illustration for the proof of Lemma 3.9; Gp = P5�P3�P2.

Proof. If n1 = 1 or n2 = 1 then the proof follows from Lemma 3.7. Thus, without loss of generality, we may
assume that n1,n2 ≥ 2. Let Gp = Pn1�Pn2�P2, Fu = Pn1�Pn2 for p ∈ [t],u ∈ [s] be components of G and
V(Gp) = {(i, j, `)p : i ∈ [n1], j ∈ [n2], ` ∈ [2]}, V(Fu) = {(i, j)u : i ∈ [n1], j ∈ [n2]}.
Let n1 = 2q + r where r ∈ [0, 1]. Let L be a 4-uniform list assignment for a graph G. We show that there is
a proper L-colouring c such that (G, c) has a rainbow 4-partition. If r = 1 then let H be a subgraph induced
in G by the set {(1, j, `)p : j ∈ [n2], p ∈ [t], ` ∈ [2]} ∪ {(i, j)u : i ∈ [n1], j ∈ [n2],u ∈ [s]}. If r = 0 then let H be
a subgraph induced in G by the set {(i, j)u : i ∈ [n1], j ∈ [n2],u ∈ [s]}. By Lemma 3.7 there is an equitable
proper L-colouring c′ of H, and so by Lemma 2.2 there is a rainbow 4-partition of (H, c′). Now we start with
colouring vertices of G −H (vertices of G, if r = 0 and G has no component isomorphic to Pn1�Pn2 ).

We divide the set of uncoloured vertices of each component into 4-element subsets.
Sp

ij = {(2i + 1 + r, j, 1)p, (2i + 1 + r, j, 2)p, (2i + 2 + r, j, 1)p, (2i + 2 + r, j, 2)p
}, where i ∈ [0, q − 1], j ∈ [n2], p ∈ [t] (cf.

Fig 5). In each component we define a linear ordering ≺p on the family of these sets in the following way:
Sp

ij ≺ Sp
rs if ( j < s) or ( j = s and i < r). According to this ordering we properly colour vertices of each set with

the following rules:

• if it is only possible, we colour vertices in Sp
ij in such a way that the vertices from this set get different

colours;

• if we cannot colour vertices in Sp
ij in such a way that Sp

ij is rainbow then we colour vertices in this set
in such a way that two vertices have the same colour, let us say colour c, other vertices are coloured
differently and there is no vertex coloured with c in Sp

ij−1.

We show that there exists a proper L-colouring of G −H such that these rules are maintained. It is easy
to see that we can colour vertices in sets {Sp

i1 : i ∈ [0, q − 1]} such that these sets are rainbow. Suppose
that we are at the step when we colour vertices in Sp

ij, j ≥ 2, so vertices of every set that precedes Sp
ij are
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coloured, the vertices in Sp
ij are uncoloured. Let c′′ be a proper L-colouring of the coloured part of G − H

constructed up to now. To simplify the notation let Sp
ij = {(x, j, 1), (x, j, 2), (x + 1, j, 1), (x + 1, j, 2)}. Thus

each vertex in {(x, j, 1), (x, j, 2)} has at most two coloured neighbours that are not in Sp
ij and each vertex in

{(x + 1, j, 1), (x + 1, j, 2)} has one coloured neighbour that is not in Sp
ij. Suppose that we cannot colour vertices

in Sp
ij such that Sp

ij is rainbow. Since every vertex has four colours on its list, we can always colour three

vertices in Sp
ij with different colours, only the last vertex being coloured in Sp

ij obtains the colour just used on

Sp
ij. Let c′′((x, j, 1)) = c1, c′′((x, j, 2)) = c2, c′′((x + 1, j, 1)) = c3, c′′((x + 1, j, 2)) = c1. If there is no vertex coloured

with c1 in Sp
ij−1 then we are done. Suppose that there is a vertex coloured with c1 in Sp

ij−1. Since we are
forced to use the colour c1 on (x + 1, j, 2), we necessarily have L((x + 1, j, 2)) = {c1, c2, c3, c′′(x + 1, j− 1, 2)}. If in
L((x + 1, j, 1)) there is a colour b such that b < {c1, c2, c3, c′′((x + 1, j− 1, 1)) then we can colour (x + 1, j, 1) with
b and next we colour (x + 1, j, 2) with c3, to obtain a rainbow set Sp

ij, a contradiction. Thus L((x + 1, j, 1)) =

{c1, c2, c3, c′′(x+1, j−1, 1)}. Since each vertex has four different colours on the list, we have c1 , c′′(x+1, j−1, 2)
and c1 , c′′(x+1, j−1, 1). Furthermore, (x, j−1, 1) has a neighbour coloured with c1, thus c′′((x, j−1, 1)) , c1.
However, by our assumption in Sp

ij−1 there is a vertex coloured with c1, so c′′((x, j − 1, 2)) = c1. Observe
that also c2 , c′′((x + 1, j − 1, 2)) and c2 , c′′((x + 1, j − 1, 1)). Thus if c2 , c′′((x, j − 1, 1)) then we can colour
(x + 1, j, 1) with c2 and (x + 1, j, 2) with c3 to obtain desired colouring. Assume that c2 = c′′((x, j − 1, 1)).
Observe that there is no vertex coloured with c3 in Sp

ij−1. If c3 ∈ L((x, j, 1)) then we colour (x, j, 1) with c3 and
next (x + 1, j, 1) with c2 to obtain a desired colouring. Otherwise, (x, j, 1) has a colour b different from c1, c2, c3
and c′′(x − 1, j, 1) on its list. If we colour (x, j, 1) with b, the Sp

ij is rainbow, a contradiction.

Claim 3.10. If the set Sp
ij is not rainbow and Sp

ij−1 is not rainbow, i.e., in Sp
ij−1 there are two vertices coloured with b1,

then in Sp
ij there is no vertex coloured with b1.

Proof. Without loss of generality we may assume c′′((x, j, 1)) = c1, c′′((x, j, 2)) = c2, c′′((x + 1, j, 1)) = c3, c′′((x +
1, j, 2)) = c1. Similarly as above we observe that L((x+1, j, 1)) = {c1, c2, c3, c′′((x+1, j−1, 1))} and L((x+1, j, 2)) =
{c1, c2, c3, c′′((x + 1, j − 1, 2))}. Since the colours on lists are different, c′′((x + 1, j − 1, 1)) < {c1, c2, c3} and
c′′(x + 1, j − 1, 2) < {c1, c2, c3} and hence neither c′′((x + 1, j − 1, 1)) nor c′′((x + 1, j − 1, 2)) is used on Sp

ij. The
argument that c′′((x, j − 1, 1)) , c′′((x, j − 1, 2)) completes the proof.

Previous arguments imply that either Sp
ij is rainbow or Sp

ij ∪ Sp
ij−1 can be divided into two 4-elements

rainbow sets in (G −H, c′′), as it has been shown that each colour is used in Sp
ij ∪ Sp

ij−1 at most twice.
We use the similar method as in the proof of Lemma 3.6 to show that there is a rainbow 4-partition of

(G −H, c′′). We divide V(G −H) in the following way (cf. Fig. 5):

• the set of vertices of each component is divided step by step;

• in each component Gp, we start with the last set due to ≺p and go down according this ordering;

• if Sp
ij is rainbow then it forms a set of the rainbow special 4-partition of (G−H, c′′), otherwise, we partite

Sp
ij ∪ Sp

ij−1 into two rainbow 4-element sets that form two sets of the rainbow 4-partition of (G−H, c′′),
we modify ≺p by removing sets that have been already included into the rainbow 4-partition.

Recall that for i ∈ [0, q − 1] the sets Sp
i1 are rainbow, so the above partition results in a rainbow special

4-partition of (G − H, c′′). Thus, together with the rainbow 4-partition of (H, c′), we obtain the rainbow
4-partition of (G, c′ ∪ c′′). Hence for every 4-uniform list assignment L there is a proper L-colouring c such
that (G, c) has a rainbow 4-partition, and so G is equitably 4-choosable, by Lemma 2.2.

Remark 3.11. Lemma 3.9 is still true when components of G are of different size.
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Observe that the 4-partition given in the proof of Lemma 3.9 does not meet the assumptions of Lemma 2.5,
thus from that proof we cannot conclude that such a graph is equitably k-choosable for k > 4. However, if
each component of G is isomorphic to Pn1�Pn2�P2 or Pn1�Pn2 then ∆(G) ≤ 5 and by Theorem 2.8 we have
that G is equitably k-choosable for k ≥ 6.

4. Equitable list vertex arboricity of grids

In this section we apply tools described in the previous sections what causes in giving new results
concerning equitable list arboricity of d-dimensional grids Pn1� · · ·�Pnd .

First, observe that every 2-dimensional grid has a spanning linear forest, i.e. a union of disjoint paths),
that covers all cycles. Since every linear forest is equitably k-choosable for any k ≥ 2 (cf. Lemma 3.3) then,
using Lemma 2.7, we have the following

Theorem 4.1. Let k ∈N. If k ≥ 2 then every 2-dimensional grid is equitably k-list arborable.

4.1. 3-dimensional grids

Theorem 4.2. Let k,n2,n3 ∈N with n2 ≥ 2, n3 ≥ 2. If k ≥ 2 then P2�Pn2�Pn3 is equitably k-list arborable.

Proof. We will prove that P2�Pn2�Pn3 contains a subgraph H with maximum degree at most two that covers
all cycles. Since P2�Pn2�Pn3 is bipartite then H is also bipartite so, by Lemma 3.3, H is certainly equitably
k-choosable for any k ≥ 2. Hence, by Lemma 2.7, the proof will follow.

G1 G2

Gi

a) b)

Figure 6: Illustration for the proof of Theorem 4.2; a) P2�P5�P5 with depicted layers G1 and G2; b) layer Gi with depicted set M′i
(dotted line) and set M′′i (dashed line).

We can see P2�Pn2�Pn3 as two copies of Pn2�Pn3 (we call them layers G1 and G2) joined by some edges. Let
V(G1) = {(1, y, z) : y ∈ [n2], z ∈ [n3]}be the vertex set of the layer G1 and let V(G2) = {(2, y, z) : y ∈ [n2], z ∈ [n3]}
be the vertex set of the layer G2 (cf. Fig. 6a)). In each layer we choose a maximal matching in the following
way. In each column we choose a maximal matching. We start with the first edge if the column is odd and
with the second edge if the column is even. More formally, for i ∈ [2], M′i = {(i, 2p + 1, r)(i, 2p + 2, r) : p ∈
[0, b(n2 − 2)/2c], r ∈ [n3], r is odd} and M′′i = {(i, 2p, r)(i, 2p + 1, r) : p ∈ [b(n2 − 1)/2c], r ∈ [n3], r is even} (cf.
Fig. 6b)). Let Mi be a spanning subgraph of Gi such that V(Mi) = V(Gi) and E(Mi) = M′i ∪M′′i . We show
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that Mi covers all cycles in Gi. Since both G1,G2 are isomorphic to Pn2�Pn3 we simplify notation and show
that M = M′ ∪M′′ covers all cycles in Pn2�Pn3 , where M′ = {(2p + 1, r)(2p + 2, r) : p ∈ [0, b(n2 − 2)/2c], r ∈
[n3], r is odd} and M′′ = {(2p, r)(2p + 1, r) : p ∈ [b(n2 − 1)/2c], r ∈ [n3], r is even}. We prove it by induction
on n3. It is obviously true for n3 = 2. Thus by induction hypothesis we may assume that such a spanning
subgraph covers all cycles of Pn2�Pn3−1. Suppose that Pn2�Pn3 contains a cycle C not covered by M. Thus C
contains an edge whose vertices have second coordinates n3, say (x,n3)(x + 1,n3). So (x,n3)(x + 1,n3) < M,
however by our choice of M we have (x − 1,n3)(x,n3) ∈ M and (x + 1,n3)(x + 2,n3) ∈ M (whenever such
edges exist in Pn2�Pn3 ). Thus C must contain vertices (x,n3−1), (x + 1,n3−1) but (x,n3−1)(x + 1,n3−1) ∈M,
which contradicts that M does not cover C. Now we construct a spanning subgraph H of P2�Pn2�Pn3 in
the following way. Let us denote the set of edges in P2�Pn2�Pn3 joining vertices between G1 and G2 by
E(G1,G2). We set E(H) = M1 ∪M2 ∪ E(G1,G2). Thus H covers all cycles of P2�Pn2�Pn3 and ∆(H) = 2, and so
P2�Pn2�Pn3 is equitably k-list arborable for every k ≥ 2.

Theorem 4.3. Let n3, k ∈N. If k ≥ 2 then P3�P3�Pn3 is equitably k-list arborable.

Proof. Similarly as in the proof of Theorem 4.2, we prove that P3�P3�Pn3 contains a spanning subgraph
HP3×3×n3 with maximum degree at most two that covers all cycles. Since P3�P3�Pn3 is bipartite, HP3×3×n3 is
also bipartite so, by Lemma 3.3, HP3×3×n3 is equitably k-choosable for any k ≥ 2. Thus, by Lemma 2.7, the
proof will follow.

G1

(1, 1, 1)

(1, 3, 6)

G2

(2, 1, 1)

(2, 3, 6)

G3

(3, 1, 1)

(3, 3, 6)

(3, 3, k)(1, 3, k)

(1, 1, k) (3, 1, k)

a) b)

Figure 7: Illustration for the proof of Theorem 4.3

Let G1,G2 and G3 be layers of P3�P3�Pn3 such that V(Gi) = {(i, y, z) : y ∈ [3], z ∈ [n3]} for i ∈ [3]. In each
layer Gi we choose the spanning subgraph Mi in the following way (cf. Fig. 7a)):

• E(M1) = {(1, i, j)(1, i, j + 1) : i ∈ [3], j ∈ [n3 − 1]};

• E(M2) = {(2, 1, i)(2, 1, i + 1) : i ∈ [n3 − 1]ODD} ∪ {(2, 1, i)(2, 2, i), (2, 2, i)(2, 3, i) : i ∈ [n3]};

• E(M3) = {(3, 1, i)(3, 1, i + 1) : i ∈ [n3 − 1]} ∪ {(3, 2, i)(3, 2, i + 1) : i ∈ [n3 − 1]} ∪ {(3, 3, i)(3, 3, i + 1) : i ∈
[n3 − 1]EVEN}.

Moreover,

• E2,3 = {(2, 3, i)(3, 3, i) : i ∈ [n3]}.

The subgraph HP3×3×n3 is defined in the following way: V(HP3×3×n3 ) = V(P3�P3�Pn3 ) and E(HP3×3×n3 ) =
E(M1) ∪ E(M2) ∪ E(M3) ∪ E2,3.
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We show that HP3×3×n3 covers all cycles of P3�P3�Pn3 . Let Li for i ∈ [n3] be layers that are isomorphic to
P3�P3, so V(Li) = {( j, `, i) : j ∈ [3], ` ∈ [3]}. Observe that the subgraphs induced by V(HP3×3×n3 ) ∩ V(Li) are
isomorphic (cf. Fig. 7b)).

If a cycle in P3�P3�Pn3 contains an edge from HP3×3×n3 then obviously it is covered by HP3×3×n3 . Thus
we focus only on cycles in P3�P3�Pn3 −E(HP3×3×n3 ). We use the induction method to proof that every cycle
in P3�P3�Pn3 − E(HP3×3×n3 ) contains two vertices u and v such that uv ∈ E(HP3×3×n3 ).

It is easy to see that HP3×3×1 covers all cycles in P3�P3�P1. Let n3 ≥ 2, assume that HP3×3×(n3−1) covers all
cycles in P3�P3�Pn3−1 and consider HP3×3×n3 in P3�P3�Pn3 . Thus if there is an uncovered cycle in P3�P3�Pn3−

E(HP3×3×n3 ) then it must contain vertices from layer Ln3 . First observe that the only cycle of Ln3 that contains
no edge from HP3×3×n3 contains vertices (2, 1,n3) and (2, 2,n3). Since (2, 1,n3)(2, 2,n3) ∈ E(HP3×3×n3 ), all
cycles of Ln3 are covered by HP3×3×n3 . Thus if there is an uncovered cycle C in P3�P3�Pn3 −E(HP3×3×n3 ) then
it must contain vertices from layers Ln3 and Ln3−1. We consider two cases.

Case 1. n3 is even. C must go through two out of three following edges: a = (2, 3,n3 − 1)(2, 3,n3),
b = (2, 2,n3 − 1)(2, 2,n3), c = (3, 3,n3 − 1)(3, 3,n3). If C contains edges a and b (edges a and c, resp.) then it
is covered by the edge (2, 2,n3)(2, 3,n3) ((2, 3,n3)(3, 3,n3), resp.). If C goes through the edges b and c then it
must contain the vertex (3, 2,n3). On the other hand, edges (3, 3,n3−2)(3, 3,n3−1) and (2, 3,n3−1)(3, 3,n3−1)
belong to HP3×3×n3 . Hence C must go through (3, 2,n3 − 1)(3, 3,n3 − 1). This implies that the cycle is covered
by the edge (3, 2,n3 − 1)(3, 2,n3).

Case 2. n3 is odd. C must go through two out of three following edges: a = (2, 3,n3 − 1)(2, 3,n3),
b = (2, 2,n3 − 1)(2, 2,n3), c = (2, 1,n3 − 1)(2, 1,n3). If C contains edges a and b (b and c, resp.) then it
is covered by the edge (2, 2,n3)(2, 3,n3) ((2, 1,n3)(2, 2,n3), resp.). If the cycle contains the edges a and c
then, to avoid vertex (2, 2,n3), it consecutively goes through the edge a, vertices (1, 3,n3), (1, 2,n3), (1, 1,n3),
(2, 1,n3) and edge c. Observe that (2, 3,n3 − 1) is incident with exactly two edges (1, 3,n3 − 1)(2, 3,n3 − 1) and
(2, 3,n3 − 2)(1, 3,n3 − 1) that are not in E(HP3×3×n3 ). Due to ’n3 even’ case the cycle C cannot go through the
second one. If it goes through the first one then (1, 3,n3 − 1) ∈ V(C) and C is covered by (1, 3,n3 − 1)(1, 3,n3).

Thus HP3×3×n3 covers all cycles of P3�P3�Pn3 . ∆(HP3×3×n3 ) = 2, and so P3�P3�Pn3 is equitably k-list
arborable for every k ≥ 2.

Theorem 4.4. Let n1,n2,n3, k ∈N. If k ≥ 3 then Pn1�Pn2�Pn3 is equitably k-list arborable.

Proof. Let G = Pn1�Pn2�Pn3 be a 3-dimensional grid. Let us define a set of edges Xi j = {(`, i, j)(` + 1, i, j) : ` ∈
[n1 − 1]} for i ∈ [n2] and j ∈ [n3]. First, observe that the graph (V(G),X), where X =

⋃
i∈[n2], j∈[n3] Xi j, is a linear

forest. Thus G−X covers all cycles of G. Furthermore, every component of G−X is isomorphic to Pn2�Pn3 .
Thus, by Lemma 3.7, G − X is equitably k-choosable for every k ≥ 3. Finally, Lemma 2.7 implies that G is
equitably k-list arborable for every k ≥ 3.

4.2. 4-dimensional grids

Theorem 4.5. Let n4, k ∈N. If k ≥ 2 then P2�P2�P2�Pn4 is equitably k-list arborable.

Figure 8: Illustration for the proof of Theorem 4.5
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Proof. Let G = P2�P2�P2�Pn4 . We can see G as n4 3-dimensional cubes Q1, . . . ,Qn4 joined by some edges.
Let H be a spanning subgraph of G that contains two cycles of length 4 of each cube Qi: ’front’ and ’back’
cycles of Qi with i odd, ’top’ and ’bottom’ cycles of Qi with i even (cf. Fig. 8). More formally, let us define a
spanning subgraph H of G in the following way E(H) = E1 ∪ E2, where

E1 = {(1, 1, 1, i)(1, 2, 1, i), (1, 1, 1, i)(2, 1, 1, i), (1, 2, 1, i)(2, 2, 1, i), (2, 1, 1, i)(2, 2, 1, i),
(1, 1, 2, i)(1, 2, 2, i), (1, 1, 2, i)(2, 1, 2, i), (1, 2, 2, i)(2, 2, 2, i), (2, 1, 2, i)(2, 2, 2, i) : i ∈ [n4]ODD}

E2 = {(1, 1, 1, j)(1, 1, 2, j), (1, 1, 1, j)(2, 1, 1, j), (2, 1, 1, j)(2, 1, 2, j), (1, 1, 2, j)(2, 1, 2, j),
(1, 2, 1, j)(1, 2, 2, j), (1, 2, 1, j)(2, 2, 1, j), (2, 2, 1, j)(2, 2, 2, j), (1, 2, 2, j)(2, 2, 2, j) : j ∈ [n4]EVEN}.

We prove by induction on n4 that H covers all cycles of P2�P2�P2�Pn4 . It is obviously true for n4 = 1.
Assume that it is true for P2�P2�P2�Pn4−1. Without loss of generality we may assume that n4 is even.
Suppose that there is a cycle C in G that has no two vertices adjacent by an edge in H. Since there is
no such a cycle in P2�P2�P2�Pn4−1, it follows that C contains an edge of the cube Qn4 induced by the
vertices of the form (i, j, `,n4), i ∈ [2], j ∈ [2], ` ∈ [2] that is not in H. By symmetry we may assume that C
contains (1, 1, 1,n4)(1, 2, 1,n4). Thus C must also contain vertices (1, 1, 1,n4 − 1) and (1, 2, 1,n4 − 1), however
(1, 1, 1,n4 − 1)(1, 2, 1,n4 − 1) ∈ E(H), a contradiction. Since H is equitably k-choosable for k ≥ 2 by Lemma
3.3, G is equitably k-list arborable for k ≥ 2 by Lemma 2.7.

Theorem 4.6. Let n3,n4, k ∈N. If k ≥ 3 then P2�P2�Pn3�Pn4 is equitably k-list arborable.

Figure 9: Illustration for the proof of Theorem 4.6

Proof. Let G = P2�P2�Pn3�Pn4 . We show that there is a spanning subgraph H of G that covers all cycles of
G such that each component of H is isomorphic to P2�Pn3 . Since H is equitably k-choosable for k ≥ 3, by
Lemma 3.4, we apply Lemma 2.7 to show that G is equitably k-list arborable for every k ≥ 3. We can cf. G as
n4 layers G1, . . . ,Gn4 , each of which is isomorphic to a 3-dimensional grid P2�P2�Pn3 , joined by some edges.
To obtain H from every grid Gi we take two disjoint P2�Pn3 , if i is odd we take ’top’ and ’bottom’ P2�Pn3 , if
i is even we take ’left’ and ’right’ P2�Pn3 (cf. Fig. 9). Let H =

⋃
i∈[n4]ODD

(H1i ∪H2i) ∪
⋃

j∈[n4]EVEN
(H′1 j ∪H′2 j) be

a spanning subgraph of G, where

• H1i = G[{(1, 1, p, i), (2, 1, p, i) : p ∈ [n3]] (’bottom’);

• H2i = G[{(1, 2, p, i), (2, 2, p, i) : p ∈ n3]] (’top’);

• H′1 j = G[{(1, 1, p, j), (1, 2, p, j) : p ∈ [n3]] (’left’);

• H′2 j = G[{(2, 1, p, j), (2, 2, p, j) : p ∈ [n3]] (’right’).

We prove by induction on n4 that H covers all cycles of G. It is easy to see that if n4 = 1, the subgraph
H covers all cycles of G. Now, suppose that H covers all cycles of P2�P2�Pn3�Pn4−1. Without loss of
generality we may assume that n4 is odd. If G contains a cycle C not covered by H then there is an edge
in C whose end vertices have the last coordinate n4 and that are not in H. Let (1, 1, p,n4)(1, 2, p,n4) be
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such an edge. Since all edges adjacent to the edge (1, 1, p,n4)(1, 2, p,n4) except (1, 1, p,n4)(1, 1, p,n4 − 1) and
(1, 2, p,n4)(1, 2, p,n4 − 1) are in H then the vertices (1, 1, p,n4 − 1) and (1, 2, p,n4 − 1) must be in C. However,
(1, 1, p,n4 − 1)(1, 2, p,n4 − 1) ∈ E(H), which contradicts the assumption that H does not cover C. Thus, by
Lemma 3.4 and Lemma 2.7, the theorem holds.

Theorem 4.7. Every 4-dimensional grid is equitably 4-list arborable.

Proof. Let G = Pn1�Pn2�Pn3�Pn4 . Again, we determine a graph H, whose every component is isomorphic
to P2�Pn2�Pn3 or Pn2�Pn3 , that covers all cycles of G. Next we apply Lemmas 3.9 and 2.7, so G is equitably
4-list arborable.

Figure 10: Illustration for the proof of Theorem 4.7.

We can see G as 3-dimensional grids Gi = Pn1�Pn2�Pn3 , i ∈ [n4] joined by some edges, i.e. Gi =
G[{(r, s, t, i) : r ∈ [n1], s ∈ [n2], t ∈ [n3]}], ; i ∈ [n4]. To obtain H we take all copies of Gi after removing the
matching Ei defined as follows (cf. Fig. 10).

Ei =

{
{(r, s, t, i)(r + 1, s, t, i) : r ∈ [n1 − 1]ODD, s ∈ [n2], t ∈ [n3]} if i is odd,
{(r, s, t, i)(r + 1, s, t, i) : r ∈ [n1 − 1]EVEN, s ∈ [n2], t ∈ [n3]} if i is even.

Now, H =
⋃

i∈[n4](Gi − Ei). We prove by induction on n4 that H covers all cycles of G. Since E1 is a
matching, G1 − E1 obviously covers all cycles of G1. Let G′ = Pn1�Pn2�Pn3�Pn4−1 and H′ =

⋃
i∈[n4−1](Gi − Ei).

Assume that H′ covers all cycles of G′. Without of loss generality we may assume that n4 is odd. On
the contrary, suppose that G contains a cycle C not covered by H. Thus C contains an edge e of En4 , say
e = (2r + 1, s, t,n4)(2r + 2, s, t,n4). So vertices (2r + 1, s, t,n4), (2r + 2, s, t,n4) are in V(C). Since all edges of
Gn4 incident with (2r + 1, s, t,n4) and (2r + 2, s, t,n4), except e, are in H, we must have that (2r + 1, s, t,n4 − 1)
is a neighbour of (2r + 1, s, t,n4) in C and (2r + 2, s, t,n4 − 1) is a neighbour of (2r + 2, s, t,n4) in C. Thus
(2r + 1, s, t,n4 − 1), (2r + 2, s, t,n4 − 1) ∈ V(C), however (2r + 1, s, t,n4 − 1)(2r + 2, s, t,n4 − 1) ∈ E(H), which
contradicts that C is not covered by H.

In the proof of the next theorem we use Lemma 2.6. We determine a special 5-partition of a graph to
show that the graph is equitably k-list arborable for every k ≥ 5.

Theorem 4.8. Let k ∈N. If k ≥ 5 then every 4-dimensional grid is equitably k-list arborable.

Proof. Let G = Pn1�Pn2�Pn3�Pn4 and V(G) = {(i, j, k, l) : i ∈ [n1], j ∈ [n2], k ∈ [n3], l ∈ [n4]}, We determine a
special 5-partition S1∪· · ·∪Sη+1 of G, with |V(G)| = 5η+ r and r ∈ [5], that fulfills the assumptions of Lemma
2.6. So, by Lemma 2.6, the theorem will follow. We depict sets S j of size 5 step by step in decreasing order,
starting with determining a set Sη+1 and next, in the same manner, sets Sη, . . . ,S2. The last set S1 is formed
by vertices in V(G)\(S2 ∪ · · · ∪ Sη+1), so its size is less than or equal to 5. Since the assumtions of Lemma 2.6
are obviously fulfilled for each 4-dimentional grid G satisfying |V(G)| ≤ 5 we may assume that |V(G)| ≥ 6.

Let j ∈ [2, η + 1]. To determine a set S j consisting of elements x j
1, . . . , x

j
5, we use the sets S j+1, . . . ,Sη+1

constituted in the previous steps. Let G j = G − (S j+1 ∪ · · · ∪ Sη+1). Thus G j is the graph induced in G by
the union of sets S1, . . . ,S j, whose forms are unknown at this moment. Observe that V(G j−1) is equal to
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S1 ∪ · · · ∪ S j−1. Hence V(G j−1) is the set involved in the condition (4) of Lemma 2.6. Precisely, this condition
can be rewritten here in the form

|NG j−1 (x j
i )| ≤ 2i − 1.

To find x j
1, . . . , x

j
5 that satisfy the condition (4) of Lemma 2.6, let us do as follows.

Let Llex be the list of all vertices of V(G j−1) ordered lexicographically. Note that if vertex (a, b, c, d) is
the first in the list then it has at most four neighbours in the list: (a + 1, b, c, d), (a, b + 1, c, d), (a, b, c + 1, d),
(a, b, c, d + 1), moreover if it has exactly four neighbours then (a, b, c, d + 1) is the second in the list.

Let x j
1 be the first, x j

2 the second and x j
3 the third vertex in the list Llex. Remove those vertices from the

list. If there is still any neighbour of x j
1 in the list then let x j

4 be this neighbour, otherwise let x j
4 be the first

element in the list. Remove x j
4 from the list and similarly choose x j

5. If there is any neighbour of x j
1 in the

list then let x j
5 be this neighbour, otherwise let x j

5 be the first element in the list.
We will prove that the set S j, determined in the way described above, fulfill the assumption of Lemma

2.6. We know that |NG j (x
j
1)| ≤ 4. If |NG j (x

j
i )| = 4 then we have chosen to S j at least three of the neighbours

of x j
1: x j

2, x j
4, x j

5. On the other hand, if 2 ≤ |NG j (x
j
1)| ≤ 3 then at least two neighbours of x j

1 are chosen to S j.

In every case we have |NG j−1 (x j
1)| ≤ 1. If |NG j (x

j
2)| = 4 then x j

2 and x j
3 are adjacent, so |NG j−1 (x j

2)| ≤ 3. After

removing x j
1 and x j

2, the vertex x j
3 was the first in the list so |NG j−1 (x j

3)| ≤ 4 ≤ 5. If x j
4 was chosen as the first

in the list then |NG j−1 (x j
4)| ≤ 4, otherwise at least one of its neighbours, i.e. x j

1, is in S j, so |NG j−1 (x j
4)| ≤ 7.

Obviously |NG j−1 (x j
5)| ≤ 9.

4.3. d-dimensional grids, the general upper bound
In Section 2 we give a general upper bound on the equitable list vertex arboricity of all graphs. Now we

improve this bound for d-dimensional grids.
Assume that d ≥ 3 and n1, . . . ,nd−2 ∈N \ {1}. Let us define the following family of graphs.

H(n1, . . . ,nd−2) = {G : each component of G is isomorphic to Pn1� · · ·�Pnd−2�P2 or Pn1� · · ·�Pnd−2 }.

Lemma 4.9. Let d ∈ N with d ≥ 3, n1, . . . ,nd−2 ∈ N \ {1} and G = Pn1� . . .�Pnd . There is a graph H ∈
H(n1, . . . ,nd−2) that covers all cycles of G.

Proof. The idea of determining a graph H is the same as in the proof of Theorem 4.7. We can see G as nd
copies of a (d − 1)-dimensional grid Pn1� · · ·�Pnd−1 joined by some edges. Let Gi = G[{(y1, . . . , yd−1, i) : y j ∈

[n j], j ∈ [d − 1]}], i ∈ [nd]. To obtain H, we delete from every Gi the matching Ei defined as follows.

Case 1 i is odd
Ei = {(y1, y2, . . . , yd−1, i)(y1 + 1, y2, . . . , yd−1, i) : y1 ∈ [n1 − 1]ODD}.

Case 2 i is even
Ei = {(y1, y2, . . . , yd−1, i)(y1 + 1, y2, . . . , yd−1, i) : y1 ∈ [n1 − 1]EVEN}.

In both cases we take y j ∈ [n j] for j ∈ [2, d − 1]. Put H =
⋃

i∈[nd](Gi − Ei). Note that H ∈ H(n1, . . . ,nd−2). We

prove by induction on nd that H covers all cycles of G. Since E1 is a matching of G1, obviously G1−E1 covers
all cycles of G1. Let G′ = Pn1� · · ·�Pnd−1 and H′ =

⋃
i∈[nd−1](Gi − Ei). By the induction hypothesis, H′ covers

all cycles of G′. Without loss of generality we may assume that nd is odd. On the contrary, suppose that G
contains a cycle C not covered by H. Thus C contains an edge e of End , say e = (2r + 1, y2, . . . , yd−1,nd)(2r +
2, y2, . . . , yd−1,nd). So vertices (2r + 1, y2, . . . , yd−1,nd), (2r + 2, y2, . . . , yd−1,nd) are in V(C). Since all edges of
Gnd incident with (2r + 1, y2, . . . , yd−1,nd) and (2r + 2, y2, . . . , yd−1,nd), except e, are in H, we must have that
(2r + 1, y2, . . . , yd−1,nd − 1) is a neighbour of (2r + 1, y2, . . . , yd−1,nd) in C and (2r + 2, y2, . . . , yd−1,nd − 1) is a
neighbour of (2r + 2, y2, . . . , yd−1,nd) in C. Thus (2r + 1, y2, . . . , yd−1,nd − 1), (2r + 2, y2, . . . , yd−1,nd − 1) ∈ V(C),
however (2r + 1, y2, . . . , yd−1,nd−1)(2r + 2, y2, . . . , yd−1,nd−1) ∈ E(H), which contradicts that C is not covered
by H.
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Observation 4.10. Let d ∈N, n1, . . . ,nd−2 ∈N \ {1} and H ∈ H(n1, . . . ,nd−2). If d ≥ 3 then ∆(H) ≤ 2d − 3.

Observation 4.10 together with Theorem 2.8(i)-(ii) and Lemma 2.7 imply the following result.

Theorem 4.11. Let d, k ∈N.

(i) If k ≥ 8 then every 5-dimensional grid is equitably k-list arborable.
(ii) If d ∈ [6, 16] and k ≥ 2d − 2 + 2d−4

7 then every d-dimensional grid is equitably k-list arborable.
(iii) If d ≥ 17 and k ≥ 2d − 3 + 2d−3

6 then every d-dimensional grid is equitably k-list arborable.

5. Concluding remarks

Note that our results confirm Zhang’s conjectures for d-dimensional grids, when d ∈ [2, 4]. For many
cases they are even stronger than the conjectures. More precisely, we have obtained the following facts.

Corollary 5.1. Let k ∈ N and d ∈ {2, 3, 4}. If G is a d-dimensional grid and k ≥ d(∆(G) + 1)/2e then G is equitably
k-list arborable.

Corollary 5.2. Let d, k ∈ N with d ≥ 2 and k ≥ 2. If G is a d-dimensional grid with ∆(G) ≤ 5 then G is equitably
k-list arborable.

Corollary 5.3. Let k ∈ N, d ∈ {2, 3, 4}, and let G be a d-dimensional grid with ∆(G) ≥ 6 that is different from
Pn1�Pn2�Pn3�P2, n1,n2,n3 ∈N \ {1, 2}. If k ≥ b(∆(G))/2c then G is equitably k-list arborable.

Since d-dimensional grids have many special properties, we expect that the results that are better than
Zhang’s conjectures hold for almost all of them. Among others, d-dimensional grids are bipartite and
d-degenerate. The equitable colouring of such classes of graphs is analyzed in many papers. For instance, it
was proven in [8] that the inequality χ=(G) ≤ ∆(G) holds for every connected bipartite graph G. We improve
this result for all d-dimensional grids. The following two theorems will help us to post some conjectures.

Theorem 5.4. Let d, k ∈ N with d ≥ 2, and let G be a d-dimensional grid. If k ≥ 2 then there exists an equitable
proper k-colouring of G.

The concept of layers in d-dimensional grids, used until now, must be extended on the purpose of the
proof of Theorem 5.4. Let G = Pn1� · · ·�Pnd and {i1, . . . , is} be any s-subset of indexes from [d]. Moreover, let
(ai1 , . . . , ais ) be a fixed s-tuple from [ni1 ] × · · · × [nis ]. Then each graph induced in G by the set

{(y1, . . . , yd) : yi1 = ai1 , . . . , yis = ais }

is called an s-layer of G. Note that the layers used until now are 1-layers.

Proof. Let k be fixed and G = Pn1� · · ·�Pnd with n1, . . . ,nd ∈N \ {1}. We construct a proper k-colouring of G
in which every colour class has the cardinality either d|V(G)|/ke or b|V(G)|/kc. The construction is given in d
stages. For i ∈ [d], in the i− th stage we describe a proper k-colouring ci of an i-dimensional grid Pn1� · · ·�Pni

which is a (d − i)-layer Gi of G induced in G by the set of vertices Vi, where

Vi = {(y1, . . . , yi, 1, . . . , 1︸  ︷︷  ︸
d−i

) : y1 ∈ [n1], . . . , yi ∈ [ni]}.

We construct a proper k-coloring ci+1 on Vi+1 as an extention of a proper k-colouring ci on Vi. Finally, we
obtain a proper k-colouring cd of G. For each i ∈ [d] we care for ci to be equitable, which means that each
colour class of ci is of the cardinality either d(n1 · · · ni)/ke or b(n1 · · · ni)/kc.
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Let us start with the construction of c1. In this case G1 = Pn1 and we put c1((y1, 1, . . . , 1︸  ︷︷  ︸
d−1

)) ≡ y1(mod k).

Thus, depending on n1, each of k colours arises either dn1/ke or bn1/kc times and moreover, c1 is a proper
k-colouring of G1. Note that this time we use colors from [0, k − 1].

Suppose that, for some i ∈ [d − 1], the colouring ci is constructed. Of course ci satisfies all requirements
mentioned before. Now we permute coloures used in ci on vertices in Vi (recall that |Vi| = n1 · · · ni) in such
a way that each of the coloures 1, . . . , p is used d(n1 · · · ni)/ke times and each of the remaining k − p coloures
p + 1, . . . , k is used b(n1 · · · ni)/kc times. Of course it could be p = k. Now let us define ci+1 for each tuple
(y1, . . . , yi+1) ∈ [n1] × · · · × [ni+1]. We put

ci+1((y1, . . . yi, yi+1, 1, . . . , 1︸  ︷︷  ︸
d−i−1

)) =


(ci((y1, . . . yi, 1, . . . , 1︸  ︷︷  ︸

d−i

)) + p(yi+1 − 1))(mod k), if p , k,

(ci((y1, . . . yi 1, . . . , 1︸  ︷︷  ︸
d−i

)) + yi+1 − 1)(mod k), if p = k.

Note that ci+1 is proper. Indeed, the graph induced in Gi+1 by vertices with fixed coordinate yi+1 is
isomorphic to Gi and is coloured according to ci (with permuted coloures). Moreover, each edge e of Gi+1
that is not an edge of any copy of Gi (any of the ni+1 layers of Gi+1 that are isomorphic to Gi), joins vertices
from the consecutive copies of Gi that are consecutive layers of Gi+1. Hence e has end vertices coloured with
j and ( j + p)(mod k), when p , k and j and ( j + 1)(mod k), when k = p (for some j ∈ [k]). In both cases these
two coloures are different. Thus ci+1 is proper.

Next we have to observe that ci+1 is equitable. Suppose that p = k. In this case each of k coloures arises
in ci on the same number of vertices in Vi. Since in Gi+1 each of ni+1 copies of Gi is coloured in the same
manner (with permuted coloures) we can see that in the whole graph Gi+1 each colour arises the same
number (n1 · · · ni+1)/k of times. Consequently ci+1 is equitable in this case. Now, suppose that p , k. Recall
that the vertices of the first layer of Gi+1 are coloured in such a way that coloures 1, . . . , p arise one more than
coloures p + 1, . . . k. In the second layer the coloures (p + 1)(mod k), . . . , (p + p)(mod k) arise one more than
the remaining k − p coloures (p + p + 1)(mod k), . . . (p + p + k − p)(mod k) and so on. Thus we use coloures
cyclically, which guarantees that ci+1 is equitable also in this case.

It is very easy to observe the following fact valid for all d-degenerate graphs.

Theorem 5.5. Let d, k ∈N. If k ≥ d(d + 1)/2e then every d-degenerate graph is k-list arborable.

Proof. Let k be fixed. We order vertices vi, . . . , vn of G such that degG[{v1,...,vi}](vi) ≤ d. Such an ordering
always exists since G is d-degenerate. Let L be an arbitrary k-uniform list assignment for G. We construct an
L-colouring of G whose each colour class induces an acyclic subgraph of G. We do it, step by step, putting
on a vertex vi a colour from its list that is not present more than once on previously coloured vertices
v1, . . . , vi−1. Since the size of each list is at least d(d + 1)/2e, such a colour exists. Obviously, we obtained an
L-colouring for G. Moreover, putting the colour on vi we do not produce any monochromatic cycle since vi
has at most one neighbour in the colour of vi.

As we mentioned previously, a d-dimensional grid is d-degenerate graph and hence it is k-list arborable
for every k ≥ d(d + 1)/2e, by Theorem 5.5. Furthermore, when k , 1, by Theorem 5.4, for a d-dimensional
grid there is a k-colouring, in which, each colour class is of the cardinality at most d|V(G)|/ke and induces
an acyclic graph (each edgless graph is acyclic). These two facts and some other investigation yield the
proposition of a general conjecture. If the conjecture is true then it improves our results for 3-dimensional
and 4-dimensional grids.

Conjecture 5.6. Let k, d ∈N. If k ≥ d(d + 1)/2e then every d-dimensional grid is equitably k-list arborable.

In general, we think that if a graph has a k-colouring in which each colour class is of the cardinality at
most d|V(G)|/ke and induces an acyclic graph, then it may not be equitably k-list arborable, even if it is k-list
arborable. Thus we propose the following conjecture.
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Conjecture 5.7. There is a graph G and k ∈N such that G is k-list arborable and G has a k-colouring in which each
colour class is of the cardinality at most d|V(G)|/ke and induces an acyclic graph, however G is not equitably k-list
arborable.

Note that the motivation of the paper came from Zhang’s conjectures, but along the way, we have
obtained some new results on equitable k-choosability of grids.
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