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Abstract. In the first part of this note we show that if X is a paracompact Hausdorff space and there is a
locally compact closed subspace Y of X such that for every x ∈ X \ Y there exists an open neighborhood
Ox of x in X such that Ox is base-paracompact, then the space X is base-paracompact. In the second part
of this note we introduced notions of monotonically base-paracompact (base-metacompact, base-Lindelöf)
and discuss some of their properties.

1. Introduction

For two collectionsU andV of subsets of a space X, we writeU ≺ V to mean that for each U ∈ U there
is some V ∈ V with U ⊂ V. For a subspace U of a space X and a collection V of subsets of a space X, we
write U ≺ V to mean that there is some V ∈ V with U ⊂ V. For a topological space X, w(X) denotes the
weight of X.

A topological space X is base-paracompact [13] (base-metacompact [9]) if there is a base B for X with
|B| = w(X) such that every open cover of X has a locally finite (point-finite) refinement by members ofB. In
[13] and [9], some properties of base-paracompact spaces and base-metacompact spaces are investigated.
In [5], it is proved that every paracompact generalized ordered topological space (ab. GO-space) is base-
paracompact.

A topological space (X,T ) is monotonically (countably) metacompact if each (countable) open cover U of
the space X has a point-finite open refinement r(U) such that ifU andV are (countable) open covers of the
space X andU ≺ V, then r(U) ≺ r(V)[12]. Popvassilev showed that ω1 and ω1 + 1 are not monotonically
countably metacompact[12]. In [1], it is proved that any metacompact Moore space is monotonically
metacompact and any monotonically metacompact GO-space is hereditarily paracompact. In [11], it is
proved that a monotonically normal space that is monotonically countably metacompact (monotonically
meta-Lindelöf) must be hereditarily paracompact. In 2013, Chase and Gruenhage proved that compact
monotonically metacompact Hausdorff spaces are metrizable [3].
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In the first part of this note we show that if X is a paracompact Hausdorff space and there is a locally
compact closed subspace Y of X such that for every x ∈ X \ Y there exists an open neighborhood Ox of x in
X such that Ox is base-paracompact, then the space X is base-paracompact. In the second part of this note
we introduced notions of monotonically base-paracompact (base-metacompact, base-Lindelöf) and discuss
some of their properties.

A topological space X is called monotonically base-paracompact (monotonically base-metacompact, monoton-
ically base-Lindelöf) if there is a base B for X with |B| = w(X) such that for each open cover U of X there
is a locally finite (point-finite, countable) open refinement r(U) by members of B such that if U and V
are open covers of X and U ≺ V, then r(U) ≺ r(V). In this case, the operator r is called a monotone base-
paracompact (monotone base-metacompact, monotone base-Lindelöf) operator for the space X. We point out that
there exists a paracompact scattered space which is not monotonically base-paracompact. We prove that
any topological space with a regular (point-regular) base is monotonically base-paracompact (monotoni-
cally base-metacompact). As a corollary, we get that every metric space is monotonically base-paracompact
and every developable metacompact space is monotonically base-metacompact. In [2], it is proved that
any separable GO-space is hereditarily monotonically Lindelöf. We show that any separable GO-space is
hereditarily monotonically base-Lindelöf.

A subspace M of a topological space X is called base-paracompact (base-metacompact) relative to X if there
is a base B for X with |B| = w(X) such that for every family U of open subsets of X with M ⊂

⋃
U there

is a subfamily r(U) of B which is locally finite (point-finite) in X such that r(U) ≺ U and M ⊂
⋃

r(U).
The notion of base-paracompact relative to a space X is introduced in [13]. A subspace M of a topological
space X is called monotonically base-paracompact (base-metacompact) relative to X if there is a base B for X
with |B| = w(X) such that for every family U of open subsets of X with M ⊂

⋃
U there is a subfamily

r(U) of B which is locally finite (point-finite) in X such that r(U) ≺ U, M ⊂
⋃

r(U) and if familiesU and
V of open subsets of X satisfying that U ≺ V and M ⊂

⋃
U then r(U) ≺ r(V). If M is monotonically

base-paracompact (monotonically base-metacompact) relative to X, then M is also called a monotonically
base-paracompact (monotonically base-metacompact) set relative to X. We prove that if X is the countable union
of closed monotonically base-metacompact sets relative to X, then X is monotonically base-metacompact.
As a corollary, we show that every Fσ-set A of a monotonically base-metacompact space X satisfying that
w(A) = w(X) is monotonically base-metacompact.

The set of all positive integers is denoted by N and ω is N ∪ {0}. In notation and terminology we will
follow [4].

2. Main Results

In [5], it is pointed out that every paracompact GO-space is base-paracompact. It is an open problem
that whether every paracompact space is base-paracompact [13].

Definition 1. A subspace M of a topological space X is called base-paracompact (base-metacompact) in X if
there is a baseB for X with |B| = w(X) and for every open coverU of X there is a subfamilyU

′

ofB such that
U
′

≺ U,U
′

is locally finite (point-finite) in X and M ⊂
⋃
U
′

. If M is base-paracompact (base-metacompact)
in X, then M is also called a base-paracompact (base-metacompact) set in X.

Clearly, if a subspace M of a topological space X is base-paracompact (base-metacompact) relative to X,
then M is base-paracompact (base-metacompact) in X. Every subspace M of a compact topological space X
is base-paracompact in X. ω1+1 with the order topology is compact, but the subspaceω1 is not paracompact.
The subspace ω1 of ω1 + 1 is base-paracompact in ω1 + 1, but it is not base-paracompact relative to ω1 + 1.
Thus a subset of a topological space X which is base-paracompact in X need not be a paracompact subspace
of X and a base-paracompact set in a topological space X need not be a base-paracompact set relative to X.

Proposition 2. If M is a closed subspace of a topological space X, then M is base-paracompact (base-metacompact)
relative to X if and only if M is base-paracompact (base-metacompact) in X.
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Lemma 3. Let X be a paracompact Hausdorff space and let F be a closed subspace of X. If for each x ∈ F there is an
open neighborhood Vx of x in X such that Vx is base-paracompact, then F is base-paracompact in X.

Proof. Let B∗ be a base for X such that |B∗| = w(X). For each x ∈ F, there is an open neighborhood Vx of x in
X such that Vx is base-paracompact. Thus there is a base Bx for Vx such that Vx is base-paracompact. So
|Bx| = w(Vx) for each x ∈ F. The family {Vx : x ∈ F} ∪ {X \ F} is an open cover of X. Since X is paracompact
Hausdorff, the space X is regular. The open cover {Vx : x ∈ F} ∪ {X \ F} of X has a locally finite open
refinement V′1 such that for each V1 ∈ V

′

1 with V1 ∩ F , ∅, there is some x ∈ F such that V1 ⊂ V1 ⊂ Vx.
DenoteV1 = {V ∈ V′1 : V ∩ F , ∅}. The familyV1 ∪ {X \ F} is an open cover of X. Since X is a paracompact
regular space, the open cover V1 ∪ {X \ F} of X has a locally finite open refinement V′2 such that for each
V2 ∈ V

′

2 with V2 ∩ F , ∅ there is some V1 ∈ V1 such that V2 ⊂ V1. Denote V2 = {W ∈ V
′

2 : W ∩ F , ∅}.
For each W ∈ V2 there is some AW ∈ V1 such that W ⊂ W ⊂ AW and there is some xW ∈ F such that
AW ⊂ AW ⊂ VxW . Thus W ⊂W ⊂ AW ⊂ AW ⊂ VxW . For each x ∈ F |Bx| ≤ w(X). SinceV2 is locally finite in X,
for each x ∈ X there is some open neighborhood Ox of x such that Ox ∈ B

∗ and |{W ∈ V2 : Ox ∩W , ∅}| < ω.
Thus |V2| ≤ w(X). For each W ∈ V2 we denote BW = {O ∈ BxW : O ⊂ AW}. So |BW | ≤ w(X) for each W ∈ V2.
Let B = B∗ ∪ (

⋃
{BW : W ∈ V2}). We can see that B is a base for X and |B| = w(X).

Let U be any open cover of X. For each W ∈ V2 the family CW = {U ∩ AW : U ∈ U} ∪ {VxW \W} is an
open cover of VxW . The subspace VxW of X is base-paracompact, so there is a family U∗W ⊂ BxW such that
U
∗

W is locally finite in VxW such that VxW =
⋃
U
∗

W and U∗W ≺ CW . Let UW = {V ∈ U∗W : V ∩W , ∅}. So⋃
UW ⊂ AW . Thus UW ⊂ BW ⊂ B and UW is locally finite in X. If V =

⋃
{UW : W ∈ V2}, then V ≺ U.

Since {AW : W ∈ V2} is locally finite in X andUW is locally finite in X such that
⋃
UW ⊂ AW , the familyV

is locally finite in X. We can see thatV ⊂ B. Thus F is base-paracompact in X.

Theorem 4. Let X be a paracompact Hausdorff space. If there is a locally compact closed subspace Y of X such that
for every x ∈ X \ Y there exists an open neighborhood Ox of x in X such that Ox is base-paracompact, then X is
base-paracompact.

Proof. Let Y be a locally compact closed subspace of X such that for every x ∈ X \ Y there exists an open
neighborhood Ox of x in X such that Ox is base-paracompact. Let B be a base for X such that |B| = w(X). It
is well known that a paracompact Hausdorff space is regular. Thus the space X is regular. For each x ∈ Y
there is an open neighborhood Vx of x in X such that Vx ∩ Y is compact. For each x ∈ X \ Y there is an open
neighborhood Vx of x in X such that x ∈ Vx ⊂ Vx ⊂ X \ Y. Since X is paracompact regular space, the open
cover {Vx : x ∈ X} of X has a locally finite open refinement V1 such that for each A ∈ V1 there is some
xA ∈ X such that A ⊂ A ⊂ VxA . We can see that |V1| ≤ w(X). Since X is a paracompact regular space, the
open cover V1 of X has an open refinement V2 which is locally finite in X, and for each W ∈ V2 there is
some AW ∈ V1 and some xAW ∈ X such that W ⊂ W ⊂ AW ⊂ VxAW

⊂ VxAW
. We can see that |V2| ≤ w(X).

Denote V21 = {W ∈ V2 : W ∩ Y , ∅} and V22 = {W ∈ V2 : W ∩ Y = ∅}. Since V2 is locally finite in X, we
have |V2| ≤ w(X). Thus |V21| ≤ w(X) and |V22| ≤ w(X). If W ∈ V21, then W ⊂ AW ⊂ VxAW

⊂ VxAW
. Since

W ∩ Y , ∅, the point xAW ∈ Y. So VxAW
∩ Y is compact if W ∈ V21.

For each W ∈ V21 we denote CW = {W \
⋃
BW : BW ⊂ B,W ∩ Y ⊂

⋃
BW ⊂ AW and |BW | < ω}. Since

|B| = w(X), we have |CW | ≤ w(X). Let C21 =
⋃
{CW : W ∈ V21}. So |C21| ≤ w(X). Let C22 = {W : W ∈ V22}.

So |C22| ≤ w(X). Denote C = C21 ∪ C22. Let C be an arbitrary element of C. Then the set C ∩ Y = ∅. Thus
for every x ∈ C there exists an open neighborhood Ox of x in X such that Ox is base-paracompact. So the
closed subspace C of X is base-paracompact in X by Lemma 3. Thus C is base-paracompact in X for each
C ∈ C. So for each C ∈ C there is a base B∗C for X such that |B∗C| = w(X) and C is base-paracompact in X with
respect to the base B∗C. If B′ = B ∪ (

⋃
{B
∗

C : C ∈ C}), then B′ is a base for X and |B′| = w(X).
LetU be any open cover of X. For each W ∈ V21 the set W ∩ Y is compact. Thus there is a finite family

BW ⊂ B such that W ∩ Y ⊂
⋃
BW ⊂ AW and satisfying that for each B ∈ BW there is some UB ∈ U such that

B ⊂ UB. If CW = W \
⋃
BW , then CW ∈ CW and hence CW ∈ C21. If UW = {U ∩ AW : U ∈ U} ∪ {X \ CW},
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thenUW is an open cover of X. The set CW is base-paracompact in X by Lemma 3. Thus there is a family
V
∗

CW
⊂ B

∗

CW
which is locally finite in X and V∗CW

≺ UW . Denote VCW = {V ∈ V∗CW
: V ∩ CW , ∅}. Thus

VCW ⊂ B
∗

CW
, VCW is locally finite in X,

⋃
VCW ⊂ AW , and every element of VCW is contained in some

member ofU. IfVW = VCW ∪ BW , thenVW ⊂ B
′ andVW is locally finite in X such that

⋃
VW ⊂ AW and

W ⊂
⋃
VW .

For each W ∈ V22 the set W∩Y = ∅. So W is base-paracompact in X by Lemma 3. DenoteUW = {U∩AW :
U ∈ U}∪{X\W} for each W ∈ V22. ThusUW is an open cover of X. Since W is base-paracompact in X, there
is a locally finite family V∗W ⊂ B

∗

W such that V∗W ≺ UW and W ⊂
⋃
V
∗

W . If VW = {V ∈ V∗W : V ∩W , ∅},
then VW is locally finite in X,

⋃
VW ⊂ AW , VW ⊂ B

∗

W and every element of VCW is contained in some
member ofU.

If V =
⋃
{VW : W ∈ V2}, then V ⊂ B′ is a locally finite open refinement of U. Thus X is a base-

paracompact space.

In what follows, we discuss some properties of monotone base-covering properties which are stronger
than base-covering properties and monotone covering properties, respectively.

Obviously,
monotonically paracompact⇒monotonically metacompact

⇑ ⇑

monotonically base-paracompact⇒monotonically base-metacompact
⇓ ⇓

base-paracompact ⇒ base-metacompact.
In [12], it is proved thatω1 +1 is not monotonically metacompact. Thusω1 +1 is not monotonically base-

metacompact. So there exists a paracompact scattered space which is not monotonically base-paracompact.
Every paracompact GO-space is base-paracompact [5, Theorem 3.1], the space ω1 + 1 is base-paracompact.
Thus there is a base-paracompact space which is not monotonically base-paracompact and there is a base-
metacompact space which is not monotonically base-metacompact.

In what follows, we discuss some basic properties of monotonically base-paracompact spaces and
monotonicaliy base-metacompact spaces.

Recall that a baseB for a topological space X is point-regular if for every point x ∈ X and any neighborhood
U of x the set of all members of B that contain x and meet X \ U is finite, and a base B for a topological
space X is regular if for every point x ∈ X and any neighborhood U of x there exists a neighborhood V ⊂ U
of the point x such that the set of all members of B that meets both V and X \U is finite [4]. Clearly, every
regular base of a topological space X is point-regular.

Lemma 5. ([4, Theorem 1.1.15]) Let κ be a cardinal. If w(X) ≤ κ, then for every base B for X there exists a base B0
for X such that |B0| ≤ κ and B0 ⊂ B.

For a familyA of subsets of a topological space X we denote byAm the subfamily ofA consisting of all
maximal elements (i.e., of sets A ∈ A such that if A ⊂ A′

and A′

∈ A, then A = A′

).

Lemma 6. ([4, Theorem 5.4.3]) If B is a point-regular (regular) base for a space X, then the family Bm
⊂ B is a

point-finite (locally finite) cover of X.

Theorem 7. Let X be a topological space. If X has a regular base, then X is monotonically base-paracompact.

Proof. Let B
′

be a regular base for X. Thus there is a regular base B ⊂ B
′

for X such that |B| = w(X) by
Lemma 5. Let U be any open cover of X. Put r′ (U) = {B ∈ B : B ⊂ U for some U ∈ U}. Thus r′ (U) is a
regular base for X. Define r(U) = r′ (U)m. Thus r(U) is a locally finite open refinement of U by members
of B by Lemma 6. IfU andV are open covers of X andU ≺ V, then r′ (U) ⊂ r′ (V). For each S ∈ r(U), the
set S ∈ r′ (U). Since r′ (U) ⊂ r′ (V), there exists some T′ ∈ r′ (V) such that S ⊂ T′ . Since r(V) is a collection of
maximal elements from r′ (V), there exists some T ∈ r(V) such that T′ ⊂ T. Therefore there is some T ∈ r(V)
such that S ⊂ T. So r(U) ≺ r(V). Thus X is monotonically base-paracompact.
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Lemma 8. ([4, Theorem 5.4.6]) A topological space is metrizable if and only if it is a T1-space and has a regular
base.

By Theorem 7 and Lemma 8, we have:

Theorem 9. Every metric space is monotonically base-paracompact.

Corollary 10. ([13, Theorem 3.3]) Every metric space is base-paracompact.

Recall that a base B for a topological space X is said to be non-Archimedean if B1,B2 ∈ B and B1 ∩ B2 , ∅,
then either B1 ⊂ B2 or B2 ⊂ B1. A topological space is called non-Archimedean if it has a non-Archimedean
base. In [10], it is proved that every non-Archimedean space has a base which is a tree by reverse inclusion.

Theorem 11. Every non-Archimedean space is monotonically base-paracompact.

Proof. Let X be a non-Archimedean space and let U be any open cover of X. Thus there exists a base B
which is a tree by reverse inclusion and |B| = w(X). Let B(U) = {B ∈ B : B ⊂ U for some U ∈ U}. Denote
r(U) = B(U)m.

(1) For any x ∈ X, there exists U ∈ U and B ∈ B such that x ∈ B ⊂ U. Hence there exists Bx ∈ r(U) such
that x ∈ B ⊂ Bx. Thus r(U) is a pairwise disjoint open refinement of the coverU. So r(U) is a locally finite
refinement ofU by members of B.

(2) Let U and V be open covers of the space X such that V ≺ U. For any W ∈ r(V) there is VW ∈ V

such that W ⊂ VW . SinceV ≺ U, there exists UW ∈ U such that VW ⊂ UW . So W ∈ B(U). Thus there exists
BW ∈ r(U) such that W ⊂ BW . Then r(V) ≺ r(U). So X is a monotonically base-paracompact space.

By a similar proof with Theorem 7, we have the following conclusion.

Theorem 12. Let X be a topological space. If X has a point-regular base, then X is monotonically base-metacompact.

Lemma 13. ([4, Theorem 5.4.7]) For every Hausdorff space X the following conditions are equivalent:
(1) The space X has a point-regular base.
(2) The space X is metacompact and has a development.

By Theorem 12 and Lemma 13, we have:

Theorem 14. Every developable metacompact space is monotonically base-metacompact.

Thus we have the following corollaries.

Corollary 15. ([1, Theorem 3.1]) Every metacompact Moore space is monotonically metacompact.

Corollary 16. ([9, Theorem 1.5]) Every developable metacompact space is base-metacompact.

A topological space X is monotonically Lindelöf [2] if for each open coverU of X there is a countable open
cover r(U) of X such that r(U) refinesU and has the property that if an open coverU of X refines an open
coverV of X then r(U) refines r(V). The function r is called a monotone Lindelöf operator for X.

Proposition 17. Every second-countable space is monotonically base-Lindelöf.

Proof. Let X be a second-countable space and let B be a countable base for X. For any open coverU of X,
put r(U) = {B ∈ B : there is some U ∈ U such that B ⊂ U}. Thus r is a monotone base-Lindelöf operator for
X.

Corollary 18. Any separable metric space is hereditarily monotonically base-Lindelöf.
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In [2], it is proved that any separable GO-space is hereditarily monotonically Lindelöf. By a similar
proof, we can show that any separable GO-space is hereditarily monotonically base-Lindelöf. In [7], it
is proved that if X is a linearly ordered topological space (LOTS), then X is separable if and only if X is
hereditarily separable. In [6], it is pointed out that X is a GO-space if and only if X is a subspace of a LOTS.
Recall that a LOTS Y is a linearly ordered dense extension of a GO-space X = (X, τ, <) if Y contains X as a dense
subspace and the ordering of Y extends the ordering < of X [8]. Every GO-space has a linearly ordered
dense extension [8]. Thus a separable GO-space is hereditarily separable.

Theorem 19. Any separable GO-space is hereditarily monotonically base-Lindelöf.

Proof. Let X be a separable GO-space. Since any subspace of X is a separable GO-space, it is sufficient to
show that X is monotonically base-Lindelöf. Let E be a countable dense subset of X. Let I = {x : x is an
isolated point of X}. Since X is separable, |I| ≤ ω. Let R = {x ∈ X\ I : [x,→) is open } and L = {x ∈ X\ I : (←, x]
is open }. LetB be a base for X such that |B| = w(X). Since every open subset of a GO-space can be uniquely
represented as the union of some maximal convex open sets, we can assume every element ofB is a convex
open subset of X. Let B

′

= {{x} : x ∈ I} ∪ {(e1, e2) : e1, e2 ∈ E} ∪ {[x, e) : x ∈ R, e ∈ E} ∪ {(e, x] : x ∈ L, e ∈ E}. Since
E is countable, |{(e1, e2) : e1, e2 ∈ E}| ≤ ω ≤ w(X). For any x ∈ R, the set [x,→) is open. Thus there is some
Bx ∈ B such that x ∈ Bx ⊂ [x,→). If y ∈ R and y , x, then [y,→) is open. Thus there is some By ∈ B such
that y ∈ By ⊂ [y,→). Since x , y, we have Bx , By. So |R| ≤ |B| = w(X). Analogously, we have |L| ≤ w(X).
Since E is countable, |{[x, e) : x ∈ R, e ∈ E}| ≤ w(X) and |{(e, x] : x ∈ L, e ∈ E}| ≤ w(X). Thus B

′

is a base for X
such that |B

′

| = w(X).
Let U be any open cover of X. Let r1(U) = {{x} : x ∈ I} and let r2(U) = {(e1, e2) : e1, e2 ∈ E and

(e1, e2) ≺ U}. Thus r1(U) ∪ r2(U) ⊂ B
′

, |r1(U) ∪ r2(U)| ≤ ω and r1(U) ∪ r2(U) ≺ U. Let r3(U) = {[x, e) :
x ∈ R, e ∈ E, [x, e) ≺ U and (d, e) ⊀ U for any d ∈ E with d < x}. Clearly, r3(U) ≺ U, r3(U) ⊂ B

′

. Let
r4(U) = {(e, x] : x ∈ R, e ∈ E, (e, x] ≺ U and (e, d) ⊀ U for any d ∈ E with d > x}. Clearly, r4(U) ≺ U and
r4(U) ⊂ B

′

. Let r(U) = r1(U) ∪ r2(U) ∪ r3(U) ∪ r4(U).
Firstly, we prove that r(U) is countable. Since r1(U) ∪ r2(U) is countable, we only need to show that

r3(U) ∪ r4(U) is countable. Now we prove that r3(U) is countable. Since E is countable, it is sufficient
to show that the set R(U) = {x ∈ R : there exists e ∈ E such that [x, e) ≺ U and (d, e) ⊀ U for any d ∈ E
with d < x} is countable. For each e ∈ E, let W(e) = {x ∈ R : [x, e) ≺ U and (d, e) ⊀ U for any d ∈ E with
d < x}. Thus R(U) =

⋃
{W(e) : e ∈ E}. If we show that |W(e)| ≤ 2 for each e ∈ E, then R(U) is countable.

Suppose that there exist three distinct points x1, x2, x3 in some set W(e). We may assume x1 < x2 < x3. Then
x1 < x2 < x3 < e and [xi, e) ≺ U for i = 1, 2, 3. Since (x1, x3) , ∅, there is some d′ ∈ E such that d′ ∈ (x1, x3).
Hence (d′ , e) ≺ U, where d′ ∈ E. So x3 < W(e). A contradiction. Thus |W(e)| ≤ 2 for each e ∈ E. So r3(U) is
countable. Similarly, r4(U) is also countable. Thus r(U) is countable.

We show that r(U) covers X. For any x ∈ X, we show that x ∈
⋃

r(U). If x ∈ I, then x ∈
⋃

r1(U). If
x ∈ X \ (I ∪ R ∪ L), then choose some U ∈ U such that x ∈ U. Thus there are points e1, e2 ∈ E such that
x ∈ (e1, e2) ⊂ U. So (e1, e2) ∈ r2(U) and hence x ∈

⋃
r(U). Now we consider the case of x ∈ R ∪ L. Assume

x ∈ R \ ((
⋃

r1(U)) ∪ (
⋃

r2(U))). Then for any e ∈ E and for any d ∈ E with d < x < e, we have (d, e) ⊀ U.
Choose some U ∈ U such that x ∈ U. Since x ∈ R ⊂ X \ I, there is some e ∈ E such that x < e and [x, e) ⊂ U.
Since x <

⋃
r2(U), the set [x, e) ∈ r3(U). Similarly, we have x ∈

⋃
r4(U) if x ∈ L \ ((

⋃
r1(U))∪ (

⋃
r2(U))). So

r(U) covers X.
Finally, letU andV be open covers of X such thatU ≺ V. It is obvious that ri(U) ≺ ri(V) for i = 1, 2.

If x ∈ R and [x, e) ∈ r3(U), then [x, e) ≺ U and (d, e) ⊀ U for any d ∈ E with d < x. If there exists some d < x
such that (d, e) ≺ V, then (d, e) ≺ r(V) and [x, e) ⊂ (d, e). Now we assume that (d, e) ⊀ V for any d ∈ E with
d < x. Thus [x, e) ∈ r3(V). Hence r3(U) ≺ r(V). Similarly, r4(U) ≺ r(V). Therefore r(U) ≺ r(V).

So X is hereditarily monotonically base-Lindelöf.

In what follows we discuss some properties of a monotonically base-paracompact (monotonically base-
metacompact) set relative to a topological space X and discuss some basic properties on monotonically
base-paracompact (monotonically base-metacompact) spaces.
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Theorem 20. If X is a monotonically base-paracompact (monotonically base-metacompact) space, then every closed
subspace of the space X is monotonically base-paracompact (monotonically base-metacompact) relative to X.

Proof. Let F be a closed subspace of X. LetBbe a base for X which witnesses monotone base-paracompactness
(monotone base-metacompactness) for the space X and let r be a monotone base-paracompact (monotone
base-metacompact) operator for X. For any family U of open subsets of X with F ⊂

⋃
U, the family

U
′

=U∪{X\F} is an open cover of X. Thus r(U
′

) ⊂ B is a locally finite (point-finite) refinement of the open
coverU

′

. Let rF(U) = {B ∈ r(U
′

): B ∩ F , ∅}. Clearly, rF(U) is locally finite (point-finite) in X, rF(U) ≺ U
and F ⊂

⋃
rF(U). If families U and V of open subsets of X satisfying that U ≺ V and F ⊂

⋃
U, then

U
′

≺ V
′

. Since r is a monotone base-paracompact (monotone base-metacompact) operator for the space X,
we have r(U

′

) ≺ r(V
′

). So rF(U) ≺ rF(V). Therefore F is monotonically base-paracompact (monotonically
base-metacompact) relative to X.

Theorem 21. Let X be a monotonically base-paracompact (monotonically base-metacompact) space. If F is a closed
subspace of X with w(F) = w(X), then F is monotonically base-paracompact (monotonically base-metacompact).

Proof. LetBbe a base which witnesses monotone base-paracompactness (monotone base-metacompactness)
for the space X and let r be a monotone base-paracompact (monotone base-metacompact) operator for the
space X. Put BF = {B ∩ F : B ∈ B}. Thus BF is a base for F and |BF| ≤ |B|. Since w(F) = w(X), we have
|BF| = w(F) = |B|. LetU be any open cover of F.

LetU
′

= {U∪ (X \ F) : U ∈ U}. Thus the open coverU
′

of X has a locally finite (point-finite) refinement
r(U

′

) by members of B. Let rF(U) = {B ∩ F : B ∈ r(U
′

) and B ∩ F , ∅}. Clearly, rF(U) is a locally finite
(point-finite) refinement of U and rF(U) ⊂ BF. If an open cover U of F refines an open cover W of F,
then for any U ∈ U, there is some W ∈ W such that U ⊂ W. Hence U

′

≺ W
′

. Thus r(U
′

) ≺ r(W
′

). So
rF(U) ≺ rF(W). Therefore F is monotonically base-paracompact (monotonically base-metacompact).

Theorem 22. If X is the countable union of closed monotonically base-metacompact sets relative to X, then X is
monotonically base-metacompact.

Proof. Let X =
⋃
i∈ω

Xi, where each Xi is closed and monotonically base-metacompact set relative to X. For

each i ∈ ω, there exists a base Bi for X such that Xi is monotone base-metacompact relative to X. Thus
|Bi| = w(X) for each i ∈ ω. Let B = {B \

⋃
j<i

X j : B ∈ Bi, i ∈ ω} ∪ (
⋃
i∈ω
Bi). Clearly, B is a base for X with

|B| = w(X) and B witnesses monotone base-metacompactness relative to X for each Xi. Let U be an open
cover for X. Put Un = {U ∈ U : U ∩ Xn , ∅} for each n ∈ ω. Thus Un is a family of open subsets of X
with Xn ⊂

⋃
Un for each n ∈ ω. So rn(Un) is point-finite in X such that rn(Un) ≺ Un, rn(Un) ⊂ Bn and

Xn ⊂
⋃

rn(Un), where rn is a monotone base-metacompact operator relative to X for the subspace Xn of X.
Let r(U0) = r0(U0) and r(Un) = {B \

⋃
j<n

X j : B ∈ rn(Un)} for each n > 0. Thus r(Un) ⊂ B for each n ∈ ω.

Denote r(U) =
⋃
{r(Un) : n ∈ ω}. Thus r(U) ⊂ B.

Claim The operator r is a monotone base-metacompact operator for the space X.
Proof of Claim. (1) For any x ∈ X, there exists a minimal number mx < ω such that x ∈ Xmx . If mx = 0,

then x ∈ B for some B ∈ r0(U0), which implies that x ∈ B ∈ r(U0) ⊂ r(U). If mx > 0, then x ∈ B for some
B ∈ rmx (Umx ). Thus x ∈ B \

⋃
j<mx

X j ∈ r(Umx ) ⊂ r(U). So r(U) covers X.

(2) For any x ∈ X, there exists a minimal number mx < ω such that x ∈ Xmx . If n > mx, then x < B \
⋃
j<n

X j

for each B ∈ rn(Un). Thus x <
⋃

r(Un) if n > mx. Since ri(Ui) is point-finite in X for each i ≤ mx, the point
x is in only finitely many members of r(Ui). Hence x is in only finitely many members of r(U). For each
V ∈ r(U), there exists some mV ∈ ω such that V ∈ r(UmV ). Thus there is some WV ∈ rmV (UmV ) such that
V = WV \

⋃
i<mV

Xi. Since rmV (UmV ) ≺ UmV , there is some UV ∈ UmV such that WV ⊂ UV. Thus V ⊂ WV ⊂ UV

and UV ∈ U. So r(U) is a point-finite open refinement ofU by members of B.
(3) IfU andV are open covers of X andU ≺ V, thenUn ≺ Vn for each n ∈ ω. Thus rn(Un) ≺ rn(Vn).

So r(U) ≺ r(V).
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Thus X is monotonically base-metacompact.

Corollary 23. Let X be a monotonically base-metacompact space. If M ⊂ X is an Fσ-set of X with w(M) = w(X),
then M is monotonically base-metacompact.

Proof. Since M ⊂ X is an Fσ-set, we let M =
⋃

n∈ω
Mn, where Mn is closed for each n ∈ ω. By Theorem

20 each Mn is monotonically base-metacompact relative to X. Since w(M) = w(X), Mn is monotonically
base-metacompact relative to M. Thus M is monotonically base-metacompact by Theorem 22.
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