Korovkin Type Approximation Theorems Proved via Weighted $\alpha \beta$-equistatistical Convergence for Bivariate Functions

Hüseyin Aktuğlu ${ }^{\text {a }}$, Halil Gezer ${ }^{\text {b }}$
${ }^{a}$ Eastern Mediterranean University
${ }^{b}$ Cyprus International University

Abstract

Statistical convergence was extended to weighted statistical convergence in [24], by using a sequence of real numbers s_{k}, satisfying some conditions. Later, weighted statistical convergence was considered in [35] and [19] with modified conditions on s_{k}. Weighted statistical convergence is an extension of statistical convergence in the sense that, for $s_{k}=1$, for all k, it reduces to statistical convergence. A definition of weighted $\alpha \beta$-statistical convergence of order γ, considered in [25] does not have this property. To remove this extension problem the definition given in [25] needs some modifications. In this paper, we introduced the modified version of weighted $\alpha \beta$-statistical convergence of order γ, which is an extension of $\alpha \beta$-statistical convergence of order γ. Our definition, with $s_{k}=1$, for all k, reduces to $\alpha \beta$-statistical convergence of order γ. Moreover, we use this definition of weighted $\alpha \beta$-statistical convergence of order γ, to prove Korovkin type approximation theorems via, weighted $\alpha \beta$-equistatistical convergence of order γ and weighted $\alpha \beta$-statistical uniform convergence of order γ, for bivariate functions on $[0, \infty) \times[0, \infty)$. Also we prove Korovkin type approximation theorems via $\alpha \beta$-equistatistical convergence of order γ and $\alpha \beta$-statistical uniform convergence of order γ, for bivariate functions on $[0, \infty) \times[0, \infty)$. Some examples of positive linear operators are constructed to show that, our approximation results works, but its classical and statistical cases do not work. Finally, rates of weighted $\alpha \beta$-equistatistical convergence of order γ is introduced and discussed.

1. Introduction

Recall that the natural density of a subset K of \mathbb{N} is defined by

$$
\delta(K)=\lim _{n \rightarrow \infty} n^{-1}|\{k \in[1, n]: k \in K\}|
$$

provided that limit exists and $|K|$ represents the cardinality of the set K. The concept of statistical convergence which was introduced by Steinhaus [40] and Fast [17] independently, is based on this density function. A sequence x_{k} is called statistically convergent to L and denoted by st $-\lim _{n \rightarrow \infty} x_{n}=L$, if, for each $\varepsilon>0$, $\delta\left(\left\{k \in[1, n]:\left|x_{k}-L\right| \geq \varepsilon\right\}\right)=0$. Later, by using different density functions, λ - statistical convergence [34] and lacunary statistical convergence [18] are defined and studied.

[^0]In [10], Çolak introduced statistical convergence of order γ by using the following generalization of δ.

$$
\delta(K, \gamma)=\lim _{n \rightarrow \infty} n^{-\gamma}|\{k \in[1, n]: k \in K\}|
$$

where $0<\gamma \leq 1$.
Let α and β be two non-decreasing sequences of positive numbers such that,
i) $\beta(n)-\alpha(n) \geq 0$, for all n,
ii) $\lim _{n \rightarrow \infty}(\beta(n)-\alpha(n))=\infty$,
and let Λ be the set of all pairs (α, β) satisfying (i) and (ii). Then, for all $(\alpha, \beta) \in \Lambda, \delta^{\alpha, \beta}(K, \gamma)$ is introduced in [2] as follows

$$
\begin{equation*}
\delta^{\alpha, \beta}(K, \gamma)=\lim _{n \rightarrow \infty} \frac{|\{k \in[\alpha(n), \beta(n)]: k \in K\}|}{(\beta(n)-\alpha(n)+1)^{\gamma}} \tag{1}
\end{equation*}
$$

where $0<\gamma \leq 1$.
Remark 1.1. i) If $\alpha(n)=1$ and $\beta(n)=n$ then $\delta^{\alpha, \beta}(K, \gamma)=\delta(K, \gamma)$.
ii) If $\alpha(n)=1, \beta(n)=n$ and $\gamma=1$ then $\delta^{\alpha, \beta}(K, \gamma)=\delta(K)$.

Lemma 1.2. ([2]) Let K and M be two subsets of \mathbb{N} and $0<\gamma \leq 1$, then for all $(\alpha, \beta) \in \Lambda$, we have the following properties.
i) $\delta^{\alpha, \beta}(\phi, \gamma)=0$.
ii) $\delta^{\alpha, \beta}(\mathbb{N}, 1)=1$.
iii) If K is a finite set then $\delta^{\alpha, \beta}(K, \gamma)=0$.
iv) If $K \subset M \Rightarrow \delta^{\alpha, \beta}(K, \gamma) \leq \delta^{\alpha, \beta}(M, \gamma)$.
v) $\delta^{\alpha, \beta}(K \cup M, \gamma) \leq \delta^{\alpha, \beta}(K, \gamma)+\delta^{\alpha, \beta}(M, \gamma)$
vi) If $0<\gamma \leq \eta \leq 1$ then $\delta^{\alpha, \beta}(K, \eta) \leq \delta^{\alpha, \beta}(K, \gamma)$.

The $\alpha \beta$-statistical convergence of order $0<\gamma \leq 1$ was introduced in [2] as follows.
Definition 1.3. ([2]) A sequence x is said to be $\alpha \beta$-statistically convergent to L of order γ, and denoted by st $\psi_{\alpha \beta}^{\gamma}-$ $\lim _{n \rightarrow \infty} x_{n}=L$, if for every $\varepsilon>0$,

$$
\delta^{\alpha, \beta}\left(\left\{k \in[\alpha(n), \beta(n)]:\left|x_{k}-L\right| \geq \varepsilon\right\}, \gamma\right)=\lim _{n \rightarrow \infty} \frac{\left|\left\{k \in[\alpha(n), \beta(n)]:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{(\beta(n)-\alpha(n)+1)^{\gamma}}=0
$$

If $\gamma=1$, then $\alpha \beta$-statistical convergence of order γ is called $\alpha \beta$-statistical convergence.

2. Weighted $\alpha \beta$-statistical convergence of order γ

The concept of weighted statistical convergence was first introduced in [24]. Then Mursaleen et. al. [35] and Ghosal [19] considered modified forms of weighted statistical convergence. Recall that, a sequence x_{k} is said to be weighted statistically convergent of order γ to L (see [19],[20],[24],[35]), if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\left(S_{n}\right)^{\gamma}}\left|\left\{k \leq S_{n}: s_{k}\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

where $\left\{s_{n}\right\}$ is a sequence of real numbers such that

$$
\begin{equation*}
s_{n} \geq 0, s_{1}>0, \liminf _{n \rightarrow \infty} s_{n}>0 \text { and } S_{n}=\sum_{k=1}^{n} s_{k} \rightarrow \infty \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

Remark 2.1. 1) If $s_{n}=1$, for all n, then weighted statistical convergence of order γ, reduces to statistical convergence of order γ.
2) If $s_{n}=1$, for all n and $\gamma=1$ then weighted statistically convergence of order γ, reduces to statistical convergence.

On the other hand, the weighted $\alpha \beta$-statistical convergence for sequences of real numbers is introduced and discussed in [25] as follows.
Definition 2.2. A sequence $x=\left(x_{k}\right)$ is said to be weighted $\alpha \beta$-statistically convergent oforder γ to lor $S_{\alpha \beta}^{\gamma}$-convergent, if for every $\varepsilon>0$,

$$
\begin{equation*}
\delta^{\alpha, \beta}\left(\left\{k: s_{k}\left|x_{k}-l\right| \geq \varepsilon\right\}, \gamma\right)=\lim _{n \rightarrow \infty} \frac{1}{S_{n}^{\gamma}}\left|\left\{k \leq S_{n}: s_{k}\left|x_{k}-l\right| \geq \varepsilon\right\}\right|=0, \tag{3}
\end{equation*}
$$

where s_{k} is a sequence of real numbers such that, $s_{0}>0$, and

$$
S_{n}=\sum_{k \in[\alpha(n), \beta(n)]} s_{k} \rightarrow \infty \text { as } n \rightarrow \infty
$$

It is natural to expect that, under the condition, $s_{k}=1$ for all k (or $s_{k}=1$ for all k and $\gamma=1$), the weighted $\alpha \beta$ statistical convergence of order γ will be $\alpha \beta$-statistical convergence of order γ (or $\alpha \beta$-statistical convergence). The following example show that, Definition 2.2, does not have this property. In other words, Definition 2.2, and Definition 1.3, are not the same under the condition that $s_{k}=1$ for all k. Therefore, Definition 2.2, is not an extension of $\alpha \beta$-statistical convergence of order γ. Moreover, it is well known that, for special choices of $\alpha(n)$ and $\beta(n)$, the $\alpha \beta$-statistical convergence reduces to λ-statistical convergence and lacunary statistical convergence (see [2]). If we use the same choices of $\alpha(n)$ and $\beta(n)$, Definition 2.2, does not have this property as well.
Example 2.3. Consider the sequence,

$$
x_{k}= \begin{cases}0, & k \in\left[2^{2 n-1}, 2^{2 n}-1\right] \text { for some } n=1,2,3, \ldots \\ 1, & \text { otherwise }\end{cases}
$$

and let $\alpha(n)=2^{2 n-1}$ and $\beta(n)=2^{2 n}-1$. Then

$$
\lim _{r \rightarrow \infty} \frac{\left|\left\{k \in\left[2^{2 n-1}, 2^{2 n}-1\right]:\left|x_{k}\right| \geq \varepsilon\right\}\right|}{\left(2^{2 n-1}\right)^{\gamma}}=0
$$

therefore st ${ }_{\alpha \beta}^{\prime \prime}-\lim x_{k}=0$.
On the other hand, by Definition 2.2, with $0<\varepsilon<1$, and $s_{k}=1$, we have $S_{n}=2^{2 n-1}$ and

$$
\frac{1}{\left(2^{2 n-1}\right)^{\gamma}}\left|\left\{k \leq 2^{2 n-1}:\left|x_{k}\right| \geq \varepsilon\right\}\right| \geq \frac{2^{2 n-2}}{\left(2^{2 n-1}\right)^{\gamma}} \geq \frac{\left(2^{2 n-2}\right)^{\gamma}}{\left(2^{2 n-1}\right)^{\gamma}}=\left(\frac{1}{2}\right)^{\gamma} \rightarrow 0,
$$

where $2^{2 n-2}$ is the number of 1 's in the last block before the interval $\left[2^{2 n-1}, 2^{2 n}-1\right]$.
The main motivation of the present section is to introduce the concept of weighted $\alpha \beta$-statistical convergence of order γ which is a natural extension of $\alpha \beta$-statistical convergence of order γ. In other words, weighted $\alpha \beta$-statistical convergence of order γ with $s_{k}=1$ for all k will be $\alpha \beta$-statistical convergence of order γ.

Let s_{n} be any sequence satisfying (2), then for any pair $(\alpha, \beta) \in \Lambda$, define,

$$
A_{n}=\frac{\alpha(n)}{[\alpha(n)]} \sum_{k=1}^{[\alpha(n)]} s_{k} \quad \text { and } \quad B_{n}=\frac{\beta(n)}{[\beta(n)]} \sum_{k=1}^{[\beta(n)]} s_{k}
$$

where $[r]$ is the integer part of r.
Now we introduce the following definition.

Definition 2.4. A sequence $x=\left(x_{k}\right)$ is said to be weighted $\alpha \beta$-statistically convergent of order γ to l, if for every $\varepsilon>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\left(B_{n}-A_{n}+1\right)^{\gamma}}\left|\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left|x_{k}-l\right| \geq \varepsilon\right\}\right|=0 \tag{4}
\end{equation*}
$$

where s_{k} is a sequence of real numbers satisfying (2).
Remark 2.5. Taking $s_{k}=1$ for all k, in (4), then $A_{n}=\alpha(n), B_{n}=\beta(n)$, and Definition 2.4 reduces to Definition 1.3.
Recall that, for special choices of $\alpha(n)$ and $\beta(n)$, the $\alpha \beta$-statistical convergence reduces to λ-statistical convergence and lacunary statistical convergence. If we use the same choices of $\alpha(n)$ and $\beta(n)$, in Definition 2.4, we get natural definitions of weighted λ-statistical convergence of order γ and weighted lacunary statistical convergence of order γ, satisfying the property that, taking $s_{k}=1$ for all k, they gives λ-statistical convergence of order γ and lacunary statistical convergence of order γ.

3. $\alpha \beta$-Equistatistical convergence of order γ for bivariate functions

The main objective of this section is to introduce and discuss $\alpha \beta$-statistical pointwise, $\alpha \beta$-statistical uniform and $\alpha \beta$-equistatistical convergence for bivariate functions. We construct examples to show the differences among these definitions. Now, replacing $\delta(K)$ by $\delta^{\alpha, \beta}(K, \gamma)$, we can introduce following definitions for bivariate functions.
Definition 3.1. $\left(f_{n}\right)$ is said to be $\alpha \beta$-statistically pointwise convergent to f of order γ on $X^{2}=X \times X \subset \mathbb{R}^{2}$ if for every $\varepsilon>0$ and for each $(x, y) \in X^{2}$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \in[\alpha(n), \beta(n)]:\left|f_{k}(x, y)-f(x, y)\right| \geq \varepsilon\right\}\right|}{(\beta(n)-\alpha(n)+1)^{\gamma}}=0
$$

then it is denoted by st $t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f$.
Definition 3.2. $\left(f_{n}\right)$ is said to be $\alpha \beta$-equistatistically convergent to f of order γ on $X^{2} \subset \mathbb{R}^{2}$ if for every $\varepsilon>0$, the sequence of real valued functions

$$
p_{r, \varepsilon, \gamma}(x, y):=\frac{\left|\left\{k \in[\alpha(r), \beta(r)]:\left|f_{k}(x, y)-f(x, y)\right| \geq \varepsilon\right\}\right|}{(\beta(r)-\alpha(r)+1)^{\gamma}}
$$

converges uniformly to zero funtion on X^{2} i.e $\left\|p_{r, \varepsilon, \gamma}(.)\right\|_{C\left(X^{2}\right)} \rightarrow 0$, where $\|f\|_{C\left(X^{2}\right)}=\sup _{(x, y) \in X^{2}}|f(x, y)|$. Then it is denoted by st ${ }_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f$.

Definition 3.3. $\left(f_{n}\right)$ is said to be $\alpha \beta$-statistically uniform convergent to f of order γ on $X^{2} \subset \mathbb{R}^{2}$ if for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \in[\alpha(n), \beta(n)]:\left\|f_{k}(x, y)-f(x, y)\right\|_{C\left(X^{2}\right)} \geq \varepsilon\right\}\right|}{(\beta(n)-\alpha(n)+1)^{\gamma}}=0
$$

Then it is denoted by st ${ }_{\alpha \beta}^{\gamma}-f_{n} \rightrightarrows f$.
Remark 3.4. 1) In the case $\gamma=1, \alpha \beta$-statistical pointwise convergence of order $\gamma, \alpha \beta$-equistatistical convergence of order γ and $\alpha \beta$-statistical uniform convergence of order γ are called $\alpha \beta$-statistical pointwise convergence, $\alpha \beta$-equistatistical convergence and $\alpha \beta$-statistical uniform convergence.
2) It is Obvious that, for any $0<\gamma \leq 1$,

$$
s t_{\alpha \beta}^{\gamma}-f_{n} \rightrightarrows f \Rightarrow s t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f \Rightarrow s t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f
$$

Example 3.5. Consider the sequence of continuous functions $h_{n}:[0, \infty) \times[0, \infty) \longrightarrow[0,1], n \in \mathbb{N}$, defined by

$$
h_{n}(x, y)= \begin{cases}-4 n^{2}(n+1)^{2}\left(x-\frac{1}{n}\right)\left(x-\frac{1}{n+1}\right) & , \text { if } x \in\left(\frac{1}{n+1}, \frac{1}{n}\right] \tag{5}\\ 0 & , \text { otherwise }\end{cases}
$$

and let $h(x, y)=0$. For a given $\varepsilon>0,0<\gamma \leq 1$ and for all $(\alpha, \beta) \in \Lambda$ we have,

$$
p_{r, \varepsilon, \gamma}(x, y)=\frac{\left|\left\{k \in[\alpha(r), \beta(r)]:\left|h_{k}(x, y)-h(x, y)\right| \geq \varepsilon\right\}\right|}{(\beta(r)-\alpha(r)+1)^{\gamma}} \leq \frac{1}{(\beta(r)-\alpha(r)+1)^{\gamma}} \rightarrow 0 \text { as } r \rightarrow \infty
$$

uniformly in (x, y) which gives that $s t_{\alpha \beta}^{\nu}-h_{n} \rightarrow h$. But st $t_{\alpha \beta}^{\nu}-h_{n} \rightrightarrows h$ does not hold since $\sup _{(x, y) \in[0, \infty) \times[0, \infty)}\left|h_{n}(x, y)\right|=1$ for all n.

Example 3.6. Consider the sequence of functions $f_{n}:[0, \infty) \times[0, \infty) \rightarrow[0,1)$,

$$
\begin{equation*}
f_{n}(x, y)=\left(\frac{x}{x+1}\right)^{n}\left(\frac{y}{y+1}\right)^{n} \tag{6}
\end{equation*}
$$

Since $f(x, y)=0$ is the pointwise limit of the sequence $f_{n}(x, y)$ in the ordinary sense it is obvious that $f_{n} \rightarrow f(\alpha \beta-$ stat $)$ for all $(\alpha, \beta) \in \Lambda$. On the other hand choose $\varepsilon=\frac{1}{4}$, then for all $k \in[\alpha(n), \beta(n)]$ and $(x, y) \in\left(\frac{1}{\sqrt[\beta(n)]{2}-1}, \infty\right) \times\left(\frac{1}{\sqrt[\beta(n)]{2}-1}, \infty\right)$ we have,

$$
f_{k}(x, y)=\left(\frac{x}{1+x}\right)^{k}\left(\frac{y}{1+y}\right)^{k} \geq\left(\frac{1}{\sqrt[\beta(n)]{2}}\right)^{k}\left(\frac{1}{\sqrt[\beta(n)]{2}}\right)^{k} \geq\left(\frac{1}{\sqrt[\beta(n)]{2}}\right)^{\beta(n)}\left(\frac{1}{\sqrt[\beta(n)]{2}}\right)^{\beta(n)}=\frac{1}{4}
$$

which implies that st ${ }_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f$ does not hold for any $0<\gamma \leq 1$.
In the following example, we also show that $\alpha \beta$-statistical uniform convergence does not imply statistical uniform convergence or ordinary uniform convergence for functions of two variables.

Example 3.7. Let $g_{k}: D=[0, \infty) \times[0, \infty) \rightarrow\{0,1\}$, be such that

$$
g_{k}(x, y)= \begin{cases}0, & k \in\left[2^{2 n-1}, 2^{2 n}-1\right] \text { for some } n=1,2,3, \ldots \\ 1, & \text { otherwise }\end{cases}
$$

for all (x, y) and let $\alpha(n)=2^{2 n-1}$ and $\beta(n)=2^{2 n}-1$. Then

$$
\lim _{r \rightarrow \infty} \frac{\left|\left\{k \in\left[2^{2 r-1}, 2^{2 r}-1\right]:\left\|g_{k}(x, y)-g(x, y)\right\|_{C(D)} \geq \varepsilon\right\}\right|}{\left(2^{2 r-1}\right)}=0
$$

where $g(x, y)=0$ for all (x, y). Therefore st ${ }_{\alpha \beta}-g_{n} \rightrightarrows g$. But since $\delta\left(\left\{1 \leq k \leq n:\left\|g_{k}(x, y)-g(x, y)\right\|_{C(D)} \geq \varepsilon\right\}\right)$ does not exist, g_{k} is not uniformly convergent to g in the statistical and ordinary sense.

4. Weighted $\alpha \beta$-equistatistical convergence of order γ

Recently, weighted statistical pointwise, weighted statistical uniform and weighted equistatistical convergence are introduced and studied in [1] for functions of one variable, by using the modified form of weighted statistical convergence given in [19]. A Korovkin type approximation theorem, via weighted $\alpha \beta$-statistical uniform convergence of order γ on compact subset of \mathbb{R}, using Definition 2.2, is considered in [25].

In this section we extend Definition 2.4, to functions of two variables and we introduce and discuss, the weighted $\alpha \beta$-statistical pointwise convergence of order γ, the weighted $\alpha \beta$-statistical uniform convergence of order γ and the weighted $\alpha \beta$-equistatistical convergence of order γ, for sequences of real valued functions of two variables. Since Definition 2.4, is the natural extension of $\alpha \beta$-statistical convergence of order γ, following definitions includes λ-statistical and lacunary statistical versions.

Definition 4.1. $\left(f_{n}\right)$ is said to be weighted $\alpha \beta$-statistically pointwise convergent of order γ to f on $X \times X \subset \mathbb{R}^{2}$ if for every $\varepsilon>0$ and for each $(x, y) \in X^{2}$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left|f_{k}(x, y)-f(x, y)\right| \geq \varepsilon\right\}\right|}{\left(B_{n}-A_{n}+1\right)^{\gamma}}=0
$$

then it is denoted by $w-s t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f$
Definition 4.2. $\left(f_{n}\right)$ is said to be weighted $\alpha \beta$-equistatistically convergent of order γ to f on $X^{2} \subset \mathbb{R}^{2}$ if for every $\varepsilon>0$, the sequence of real valued functions

$$
p_{r, \varepsilon, \gamma}(x, y):=\frac{\left|\left\{k \in\left[A_{r}, B_{r}\right]: s_{k}\left|f_{k}(x, y)-f(x, y)\right| \geq \varepsilon\right\}\right|}{\left(B_{r}-A_{r}+1\right)^{\gamma}}
$$

converges uniformly to zero funtion on X^{2} i.e $\left\|p_{r, \varepsilon, \gamma}(.)\right\|_{C\left(X^{2}\right)} \rightarrow 0$, where $\|f\|_{C_{\left(X^{2}\right)}}=\sup _{(x, y) \in X^{2}}|f(x, y)|$ Then it is denoted by $w-s t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f$.
Definition 4.3. $\left(f_{n}\right)$ is said to be weighted $\alpha \beta$-statistically uniform convergent of order γ to f on $X^{2} \subset \mathbb{R}^{2}$ if for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left\|f_{k}(x, y)-f(x, y)\right\|_{C\left(X^{2}\right)} \geq \varepsilon\right\}\right|}{\left(B_{n}-A_{n}+1\right)^{\gamma}}=0 .
$$

Then it is denoted by $w-s t_{\alpha \beta}^{\gamma}-f_{n} \rightrightarrows f$.
Lemma 4.4. For any $0<\gamma \leq 1, w-s t_{\alpha \beta}^{\gamma}-f_{n} \rightrightarrows f \Rightarrow w-s t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f \Rightarrow w-s t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f$.
Example 4.5. Consider the sequence of continuous functions $h_{n}:[0, \infty) \times[0, \infty) \longrightarrow[0,1], n \in \mathbb{N}$, defined by

$$
h_{n}(x, y)= \begin{cases}-4 n^{2}(n+1)^{2}\left(x-\frac{1}{n}\right)\left(x-\frac{1}{n+1}\right) & , \text { if } x \in\left(\frac{1}{n+1}, \frac{1}{n}\right] \tag{7}\\ 0 & , \text { otherwise }\end{cases}
$$

and let $h(x, y)=0, s_{k}=k,(\alpha, \beta) \in \Lambda$, such that $\alpha(n)=1$ and $\beta(n) \in \mathbb{N}$ for all n. Then, $A_{n}=1$ and $B_{n}=\frac{\beta(n)(\beta(n)+1)}{2}$. For a given $\varepsilon>0$, and for any $0<\gamma \leq 1$ we have,

$$
p_{r, \varepsilon, \gamma}(x, y)=\frac{\left|\left\{k \in[1, B(r)]: s_{k}\left|h_{k}(x, y)-h(x, y)\right| \geq \varepsilon\right\}\right|}{B_{r}^{\gamma}} \leq \frac{1}{B_{r}^{\gamma}} \rightarrow 0 \text { as } r \rightarrow \infty
$$

uniformly in (x, y) which gives that $w-s t_{\alpha \beta}^{\gamma}-h_{n} \rightarrow h$. But $w-s t_{\alpha \beta}^{\gamma}-h_{n} \rightrightarrows h$ does not hold since $\sup _{(x, y) \in[0, \infty) \times[0, \infty)}\left|h_{n}(x, y)\right|=1$ for all n.
Example 4.6. Consider the sequence of functions $f_{n}:[0, \infty) \times[0, \infty) \rightarrow[0,1)$,

$$
\begin{equation*}
f_{n}(x, y)=\left(\frac{x}{x+1}\right)^{n}\left(\frac{y}{y+1}\right)^{n} \tag{8}
\end{equation*}
$$

and let $s_{k}=2 k,(\alpha, \beta) \in \Lambda$, such that $\alpha(n)=1$ and $\beta(n) \in \mathbb{N}$ for all n. Then for all n, we have $A_{n}=1$ and $B_{n}=\beta(n)(\beta(n)+1)$. On the other hand since $f(x, y)=0$ is the pointwise limit of the sequence $f_{n}(x, y)$ in the ordinary sense it is obvious that $w-f_{n} \rightarrow f(\alpha \beta-$ stat $)$. Now choose $\varepsilon=\frac{1}{4}$, then for all $k \in\left[1, B_{n}\right]$ and $(x, y) \in\left(\frac{1}{\sqrt[B y]{2}-1}, \infty\right) \times\left(\frac{1}{\sqrt[B]{2}-1}, \infty\right)$ we have,

$$
f_{k}(x, y)=\left(\frac{x}{1+x}\right)^{k}\left(\frac{y}{1+y}\right)^{k} \geq\left(\frac{1}{\sqrt[B_{n}]{2}}\right)^{k}\left(\frac{1}{\sqrt[B_{n}]{2}}\right)^{k} \geq\left(\frac{1}{\sqrt[B_{n}]{2}}\right)^{B_{n}}\left(\frac{1}{\sqrt[B_{n}]{2}}\right)^{B_{n}}=\frac{1}{4}
$$

which implies that $w-s t_{\alpha \beta}^{\gamma}-f_{n} \rightarrow f$ does not hold for any $0<\gamma \leq 1$.

5. Korovkin Type Approximation Theorems

Korovkin type approximation theory was initiated by P.P. Korovkin in [30] and used by many researchers. Later, Korovkin type approximation theorems by means of statistical convergence, A-statistical convergence, statistical C_{1} summabilty, equistatistical convergence, $\alpha \beta$-statistical convergence etc. are considered in [2], [3], [4], [5], [6], [7], [12], [13], [14], [16], [20], [21], [22], [23], [25],[27],[27], [28], [29], [31], [32], [36], [37], [38] and [39]. Recently, a Korovkin type approximation theorem is considered via weighted equistatistical convergence in [1]. The main purpose of this section is to prove different Korovkin type approximation theorems in the sense of $\alpha \beta$-equistatistical convergence of order γ, weighted $\alpha \beta$-equistatistical convergence of order $\gamma, \alpha \beta$-statistical uniform convergence of order γ and weighted $\alpha \beta$-statistical uniform convergence of order γ, for bivariate functions on the set $D=[0, \infty) \times[0, \infty)$.

Let $C_{B}(D)$ be the space of all continuous and bounded functions on D, which is equipped with the usual norm

$$
\|f\|_{C_{B}(D)}=\sup _{(x, y) \in D}|f(x, y)|
$$

for $f \in C_{B}(D)$. Throughout the paper, we consider the space $H_{\omega_{2}}$ of real-valued functions, defined on D and satisfying

$$
|f(u, v)-f(x, y)| \leq \omega_{2}\left(f ;\left|\frac{u}{1+u}-\frac{x}{1+x}\right|,\left|\frac{v}{1+v}-\frac{y}{1+y}\right|\right) .
$$

where ω_{2} is a non-negative function on $D=[0, \infty) \times[0, \infty)$, which is increasing for both variables and satisfying;
i) $\omega_{2}\left(f ; \delta_{1}+\delta_{2}, \delta\right) \leq \omega_{2}\left(f ; \delta_{1}, \delta\right)+\omega_{2}\left(f ; \delta_{2}, \delta\right)$.
ii) $\omega_{2}\left(f ; \delta, \delta_{1}+\delta_{2}\right) \leq \omega_{2}\left(f ; \delta, \delta_{1}\right)+\omega_{2}\left(f ; \delta, \delta_{2}\right)$.
iii) $\lim _{\delta_{1} \rightarrow 0, \delta_{2} \rightarrow 0} \omega_{2}\left(f ; \delta_{1}, \delta_{2}\right)=0$.

Theorem 5.1. Let $L_{n}: H_{w_{2}} \rightarrow C_{B}(D)$ be a sequence of positive linear operators, $0<\gamma \leq 1$ and let $(\alpha, \beta) \in \Lambda$. Then for all $f \in H_{w_{2}}$

$$
\begin{equation*}
s t_{\alpha \beta}^{v}-L_{n}(f ; x, y) \rightarrow f(x, y) \tag{9}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
s t_{\alpha \beta}^{\gamma}-L_{n}\left(\varphi_{i} ; x, y\right) \rightarrow \varphi_{i}(x, y) \tag{10}
\end{equation*}
$$

for $i=0,1,2,3$ where $\varphi_{0}(u, v)=1, \varphi_{1}(u, v)=\frac{u}{1+u}, \varphi_{2}(u, v)=\frac{v}{1+v}, \varphi_{3}(u, v)=\varphi_{1}^{2}(u, v)+\varphi_{2}^{2}(u, v)$.
Proof. Suppose that (10) holds, $f \in H_{w_{2}}$ is an arbitrary element and $(x, y) \in D$ is arbitrary but a fixed point. By the assumption, for every $\varepsilon>0$, there exits δ_{1}, δ_{2} such that $|f(u, v)-f(x, y)|<\varepsilon$ holds for all $(u, v) \in D$ satisfying $\left|\frac{u}{1+u}-\frac{x}{1+x}\right|<\delta_{1}$ and $\left|\frac{v}{1+v}-\frac{y}{1+y}\right|<\delta_{2}$.
Let

$$
D_{\delta_{1}, \delta_{2}}=\left\{(u, v) \in D:\left|\frac{u}{1+u}-\frac{x}{1+x}\right|<\delta_{1} \text { and }\left|\frac{v}{1+v}-\frac{y}{1+y}\right|<\delta_{2}\right\} .
$$

Then,

$$
\begin{aligned}
|f(u, v)-f(x, y)| & =|f(u, v)-f(x, y)| \chi_{D_{\delta_{1}, \delta_{2}}}(u, v)+|f(u, v)-f(x, y)| \chi_{D \backslash D_{\delta_{1}, \delta_{2}}}(u, v) \\
& <\varepsilon+2 M \chi_{D \backslash D_{\delta_{1}, \delta_{2}}}(u, v),
\end{aligned}
$$

where χ_{D} denotes the characteristic function of the set D and $M=\|f\|_{C_{B}(K)}$. On the other hand,

$$
\chi_{D \backslash D_{\delta_{1}, \delta_{2}}}(u, v) \leq \frac{1}{\delta_{1}^{2}}\left(\frac{u}{1+u}-\frac{x}{1+x}\right)^{2}+\frac{1}{\delta_{2}^{2}}\left(\frac{v}{1+v}-\frac{y}{1+y}\right)^{2} .
$$

Now take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ in the last two inequalities we have,

$$
\begin{equation*}
|f(u, v)-f(x, y)| \leq \varepsilon+\frac{2 M}{\delta^{2}}\left\{\left(\frac{u}{1+u}-\frac{x}{1+x}\right)^{2}+\left(\frac{v}{1+v}-\frac{y}{1+y}\right)^{2}\right\} \tag{11}
\end{equation*}
$$

By linearity and positivity of the operators L_{n} we have,

$$
\begin{aligned}
\left|L_{n}(f ; x, y)-f(x, y)\right| & \leq L_{n}(|f(u, v)-f(x, y)| ;) \\
& +|f(x, y)|\left|L_{n}\left(\varphi_{0} ; x, y\right)-\varphi_{0}(x, y)\right| \\
& \leq \varepsilon L_{n}\left(\varphi_{0} ; x, y\right)+\frac{2 M}{\delta^{2}} L_{n}\left(\left(\frac{u}{1+u}-\frac{x}{1+x}\right)^{2} ; x, y\right) \\
& +L_{n}\left(\left(\frac{v}{1+v}-\frac{y}{1+y}\right)^{2} ; x, y\right)+M\left|L_{n}\left(\varphi_{0} ; x, y\right)-\varphi_{0}(x, y)\right| .
\end{aligned}
$$

Using the boundedness of f and (11) we get,

$$
\begin{aligned}
\left|L_{n}(f ; x, y)-f(x, y)\right| & \leq \varepsilon+(\varepsilon+M)\left|L_{n}\left(\varphi_{0}(x, y)\right)\right| \\
& +\frac{2 M}{\delta^{2}}\left\{L_{n}\left(\varphi_{3} ; x, y\right)-\frac{2 x}{1+x} L_{n}\left(\varphi_{1} ; x, y\right)\right. \\
& -\frac{2 y}{1+y} L_{n}\left(\varphi_{2} ; x, y\right) \\
& \left.+\left(\left(\frac{x}{1+x}\right)^{2}+\left(\frac{y}{1+y}\right)^{2}\right) L_{n}\left(\varphi_{0} ; x, y\right)\right\} \\
& =\varepsilon+(\varepsilon+M)\left|L_{n}\left(\varphi_{0} ;, x, y\right)-\varphi_{0}(x, y)\right| \\
& +\frac{2 M}{\delta^{2}}\left(L_{n}\left(\varphi_{3} ; x, y\right)-\varphi_{3}(x, y)\right) \\
& -\frac{4 M}{\delta^{2}}\left(\frac{x}{1+x}\right)\left(L_{n}\left(\varphi_{1} ; x, y\right)-\varphi_{1}(x, y)\right) \\
& -\frac{4 M}{\delta^{2}}\left(\frac{y}{1+y}\right)\left(L_{n}\left(\varphi_{2} ; x, y\right)-\varphi_{2}(x, y)\right) \\
& +\frac{2 M}{\delta^{2}}\left(\left(\frac{x}{1+x}\right)^{2}+\left(\frac{y}{1+y}\right)^{2}\right)\left(L_{n}\left(\varphi_{0} ; x, u\right)-\varphi_{0}(x, y)\right) \\
& \leq \varepsilon+\left(\varepsilon+M+\frac{4 M}{\delta^{2}}\right)\left|L_{n}\left(\varphi_{0} ; x, y\right)-\varphi_{0}(x, y)\right| \\
& +\frac{4 M}{\delta^{2}}\left\{\left|L_{n}\left(\varphi_{1} ; x, y\right)-\varphi_{1}(x, y)\right|+\left|L_{n}\left(\varphi_{2} ; x, y\right)-\varphi_{2}(x, y)\right|\right\} \\
& +\frac{2 M}{\delta^{2}}\left|L_{n}\left(\varphi_{3} ; x, y\right)-\varphi_{3}(x, y)\right| .
\end{aligned}
$$

Let $B=\varepsilon+M+\frac{4 M}{\delta^{2}}$, then we have

$$
\begin{equation*}
\left|L_{n}(f ; x, y)-f(x, y)\right| \leq \varepsilon+B \sum_{i=0}^{3}\left|L_{n}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right| \tag{12}
\end{equation*}
$$

Now for a given s, choose $0<\varepsilon<s$ and define the following sets :

$$
\begin{aligned}
& U_{s}(x, y)=\left\{k \in[\alpha(n), \beta(n)]:\left|L_{k}(f ; x, y)-f(x, y)\right| \geq s\right\} \\
& U_{s}^{i}(x, y)=\left\{k \in[\alpha(n), \beta(n)]:\left|L_{k}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right| \geq \frac{s-\varepsilon}{4 B}\right\}
\end{aligned}
$$

for $i=0,1,2,3$. It is obvious that

$$
\begin{equation*}
U_{s}(x, y) \subset \bigcup_{i=0}^{3} U_{s}^{i}(x, y) \tag{13}
\end{equation*}
$$

Also define the following real valued functions:

$$
p_{m, s, \gamma}(x, y)=\frac{1}{(\beta(m)-\alpha(m)+1)^{\gamma}}\left|\left\{k \in[\alpha(m), \beta(m)]:\left|L_{k}(f ; x, y)-f(x, y)\right| \geq \frac{s-\varepsilon}{4 B}\right\}\right|
$$

and

$$
p_{m, s, \gamma}^{i}(x, y)=\frac{1}{(\beta(m)-\alpha(m)+1)^{\gamma}}\left|\left\{k \in[\alpha(m), \beta(m)]:\left|L_{k}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right| \geq \frac{s-\varepsilon}{4 B}\right\}\right|
$$

for $i=0,1,2,3$ and $0<\gamma \leq 1$. Then as a consequence of (13) we have

$$
\begin{equation*}
p_{m, s, \gamma}(x, y) \leq \sum_{i=0}^{3} p_{m, s, \gamma}^{i}(x, y) \tag{14}
\end{equation*}
$$

for all $(x, y) \in D$. Taking supremum on both sides of (14) we get,

$$
\begin{equation*}
\left\|p_{m, s, \gamma}(\cdot)\right\|_{C_{B}(D)} \leq \sum_{i=0}^{3}\left\|p_{m, S, \gamma}^{i}(\cdot)\right\|_{C_{B}(D)} \tag{15}
\end{equation*}
$$

Applying limit to both sides of (15) as $m \rightarrow \infty$ and using (10) we obtain (9) which completes the proof of $(10) \Rightarrow(9)$. The implication $(9) \Rightarrow(10)$ is obvious.

Theorem 5.2. Let $L_{n}: H_{w_{2}} \rightarrow C_{B}(D), 0<\gamma \leq 1$ and let $(\alpha, \beta) \in \Lambda$. Then for all $f \in H_{w_{2}}$

$$
\begin{equation*}
s t_{\alpha \beta}^{\gamma}-L_{n}(f ; x, y) \rightrightarrows f(x, y) \tag{16}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
s t_{\alpha \beta}^{\prime}-L_{n}\left(\varphi_{i} ; x, y\right) \rightrightarrows \varphi_{i}(x, y) \tag{17}
\end{equation*}
$$

for $i=0,1,2,3$ where $\varphi_{0}(u, v)=1, \varphi_{1}(u, v)=\frac{u}{1+u}, \varphi_{2}(u, v)=\frac{v}{1+v}, \varphi_{3}(u, v)=\varphi_{1}(u, v)^{2}+\varphi_{2}(u, v)^{2}$.
Proof. Using the same steps of the proof of Theorem 5.1 and taking supremum over $(x, y) \in D$ from (12) we get the following inequality;

$$
\left\|L_{n} f-f\right\| \leq B\left\{\left\|L_{n} \varphi_{0}-f_{0}\right\|+\left\|L_{n} \varphi_{1}-\varphi_{1}\right\|+\left\|L_{n} \varphi_{2}-\varphi_{2}\right\|+\left\|L_{n} \varphi_{3}-\varphi_{3}\right\|\right\}+\varepsilon
$$

where $B=\varepsilon+M+\frac{4 M}{\delta^{2}}$. Now for a given $t>0$, choose $0<\varepsilon<t$ and define the following sets:

$$
\begin{aligned}
& V^{\alpha, \beta}: \\
&=\left\{k \in[\alpha(n), \beta(n)]:\left\|L_{k}(f ; x, y)-f(x, y)\right\|_{C_{B}(D)} \geq t\right\} \\
& V_{i}^{\alpha, \beta}:=\left\{k \in[\alpha(n), \beta(n)]:\left\|L_{k}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right\|_{C_{B}(D)} \geq \frac{t-\varepsilon}{4 B}\right\} \quad i=0,1,2,3
\end{aligned}
$$

Then, we have

$$
V^{\alpha, \beta} \subset \bigcup_{i=0}^{3} V_{i}^{\alpha, \beta}
$$

This implies that,

$$
\begin{equation*}
\delta^{\alpha, \beta}\left(V^{\alpha, \beta}, \gamma\right) \leq \sum_{i=0}^{3} \delta^{\alpha, \beta}\left(V_{i}^{\alpha, \beta}, \gamma\right) \tag{18}
\end{equation*}
$$

using (17), completes the proof. The implication (16) \Rightarrow (17) is obvious.

Now, consider the following Bleiman, Butzer and Hahn operators [9]

$$
B_{n}(f, x, y)=\frac{1}{(1+x)^{n}(1+y)^{n}} \sum_{k=0}^{n} \sum_{l=0}^{n} f\left(\frac{k}{n-k+1}, \frac{l}{n-l+1}\right)\binom{n}{k}\binom{n}{l} x^{k} y^{l}
$$

where $D=[0, \infty) \times[0, \infty), f \in H_{w_{2}},(x, y) \in D$ and $n \in \mathbb{N}$. By using $B_{n}(f, x, y)$ we can define following positive linear operators;

$$
\begin{equation*}
T_{n}(f ; x, y)=\left(1+h_{n}(x, y)\right) B_{n}(f ; x, y) \tag{19}
\end{equation*}
$$

where $h_{n}(x, y)$ is the sequence of functions given in Example 3.5.
It is easy to see that

$$
\begin{aligned}
T_{n}\left(\varphi_{0} ; x, y\right) & =1+h_{n}(x, y) \\
T_{n}\left(\varphi_{1} ; x, y\right) & =\left(1+h_{n}(x, y)\right)\left(\frac{n}{1+n}\right)\left(\frac{x}{1+x}\right) \\
T_{n}\left(\varphi_{2} ; x, y\right) & =\left(1+h_{n}(x, y)\right)\left(\frac{n}{1+n}\right)\left(\frac{y}{1+y}\right) \\
T_{n}\left(\varphi_{3} ; x, y\right) & =\left(1+h_{n}(x, y)\right)\left\{\frac{n(n-1)}{(n+1)^{2}} \frac{x^{2}}{(1+x)^{2}}+\frac{n}{(n+1)^{2}} \frac{x}{1+x}\right. \\
& \left.+\frac{n(n-1)}{(n+1)^{2}} \frac{y^{2}}{(1+y)^{2}}+\frac{n}{(n+1)^{2}} \frac{y}{1+y}\right\} .
\end{aligned}
$$

and since, $s t_{\alpha \beta}^{\gamma}-h_{n} \rightarrow 0, T_{n}$ satisfies the conditions (10), hence by Theorem 5.1, we have

$$
\begin{equation*}
s t_{\alpha \beta}^{\gamma}-T_{n}(f ; x, y) \rightarrow f(x, y) . \tag{20}
\end{equation*}
$$

Moreover, $s t_{\alpha \beta}^{\gamma}-h_{n} \nRightarrow 0$ and T_{n} does not satisfy conditions (17), therefore

$$
s t_{\alpha \beta}^{\gamma}-T_{n}(f ; x, y) \rightrightarrows f(x, y)
$$

does not hold. In other words, $\alpha \beta$-equistatistical convergence of order γ can not be replaced by $\alpha \beta$-statistical uniform convergence of order γ, in (20).

Theorem 5.3. Let $L_{n}: H_{w_{2}} \rightarrow C_{B}(D), 0<\gamma \leq 1,(\alpha, \beta) \in \Lambda$ and let s_{n} be a sequence satisfying (2). Then for all $f \in H_{w_{2}}$

$$
\begin{equation*}
w-s t_{\alpha \beta}^{\gamma}-L_{n}(f ; x, y) \rightarrow f(x, y) \tag{21}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
w-s t_{\alpha \beta}^{\gamma}-L_{n}\left(\varphi_{i} ; x, y\right) \rightarrow \varphi_{i}(x, y) \tag{22}
\end{equation*}
$$

for $i=0,1,2,3$ where $\varphi_{0}(u, v)=1, \varphi_{1}(u, v)=\frac{u}{1+u}, \varphi_{2}(u, v)=\frac{v}{1+v}, \varphi_{3}(u, v)=\varphi_{1}(u, v)^{2}+\varphi_{2}(u, v)^{2}$.
Proof. By equation (12) we have,

$$
\left|L_{n}(f ; x, y)-f(x, y)\right| \leq \varepsilon+B \sum_{i=0}^{3}\left|L_{n}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right|
$$

Now for a given s, choose $0<\varepsilon<s$ and define the following sets :

$$
H_{s}(x, y)=\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left|L_{k}(f ; x, y)-f(x, y)\right| \geq s\right\}
$$

$$
H_{s}^{i}(x, y)=\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left|L_{k}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right| \geq \frac{s-\varepsilon}{4 B}\right\}
$$

for $i=0,1,2,3$. It is obvious that

$$
\begin{equation*}
H_{s}(x, y) \subset \bigcup_{i=0}^{3} H_{s}^{i}(x, y) \tag{23}
\end{equation*}
$$

Now define the following real valued functions:

$$
h_{m, s, \gamma}(x, y)=\frac{1}{\left(B_{n}-A_{n}+1\right)^{\gamma}}\left|\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left|L_{k}(f ; x, y)-f(x, y)\right| \geq \frac{s-\varepsilon}{4 B}\right\}\right|
$$

and

$$
h_{m, s, \gamma}^{i}(x, y)=\frac{1}{\left(B_{n}-A_{n}+1\right)^{\gamma}}\left|\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left|L_{k}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right| \geq \frac{s-\varepsilon}{4 B}\right\}\right|
$$

for $i=0,1,2,3$ and $0<\gamma \leq 1$. Then as a consequence of (23) we have

$$
\begin{equation*}
h_{m, s, \gamma}(x, y) \leq \sum_{i=0}^{3} h_{m, s, \gamma}^{i}(x, y) \tag{24}
\end{equation*}
$$

for all $(x, y) \in D$. Taking supremum on both sides of (24) we get,

$$
\begin{equation*}
\left\|h_{m, s, \gamma}(\cdot)\right\|_{C_{B}(D)} \leq \sum_{i=0}^{3}\left\|h_{m, s, \gamma}^{i}(\cdot)\right\|_{C_{B}(D)} . \tag{25}
\end{equation*}
$$

Applying limit to both sides of (25) as $m \rightarrow \infty$ and using (22) we obtain (21) which completes the proof of $(22) \Rightarrow(21)$. The inverse implication $(21) \Rightarrow(22)$ is obvious.

Theorem 5.4. Let $L_{n}: H_{w_{2}} \rightarrow C_{B}(D), 0<\gamma \leq 1,(\alpha, \beta) \in \Lambda$ and let s_{n} be a sequence satisfying (2). Then for all $f \in H_{w_{2}}$

$$
\begin{equation*}
w-s t_{\alpha \beta}^{\gamma}-L_{n}(f ; x, y) \rightrightarrows f(x, y) \tag{26}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
w-s t_{\alpha \beta}^{\gamma}-L_{n}\left(\varphi_{i} ; x, y\right) \rightrightarrows \varphi_{i}(x, y) \tag{27}
\end{equation*}
$$

for $i=0,1,2,3$ where $\varphi_{0}(u, v)=1, \varphi_{1}(u, v)=\frac{u}{1+u}, \varphi_{2}(u, v)=\frac{v}{1+v}, \varphi_{3}(u, v)=\varphi_{1}(u, v)^{2}+\varphi_{2}(u, v)^{2}$.
Proof. Taking supremum over $(x, y) \in D$ from (12) we get the following inequality;

$$
\left\|L_{n} f-f\right\| \leq B\left\{\left\|L_{n} \varphi_{0}-f_{0}\right\|+\left\|L_{n} \varphi_{1}-\varphi_{1}\right\|+\left\|L_{n} \varphi_{2}-\varphi_{2}\right\|+\left\|L_{n} \varphi_{3}-\varphi_{3}\right\|\right\}+\varepsilon
$$

where $B=\varepsilon+M+\frac{4 M}{\delta^{2}}$. Now for a given $t>0$, choose $0<\varepsilon<t$ and define the following sets:

$$
\begin{aligned}
& G^{\alpha, \beta}:=\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left\|L_{k}(f ; x, y)-f(x, y)\right\|_{C_{B}(D)} \geq t\right\} \\
& G_{i}^{\alpha, \beta}:=\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left\|L_{k}\left(\varphi_{i} ; x, y\right)-\varphi_{i}(x, y)\right\|_{C_{B}(D)} \geq \frac{t-\varepsilon}{4 B}\right\} \quad i=0,1,2,3
\end{aligned}
$$

Then, we have

$$
G^{\alpha, \beta} \subset \bigcup_{i=0}^{3} G_{i}^{\alpha, \beta}
$$

This implies that,

$$
\begin{equation*}
\delta^{\alpha, \beta}\left(G^{\alpha, \beta}, \gamma\right) \leq \sum_{i=0}^{3} \delta^{\alpha, \beta}\left(G_{i}^{\alpha, \beta}, \gamma\right) \tag{28}
\end{equation*}
$$

which completes the proof of $(27) \Rightarrow(26)$. The inverse implication is obvious.
Let $T_{n}^{*}(f ; x, y)$ be the positive linear operator,

$$
\begin{equation*}
T_{n}^{*}(f ; x, y)=\left(1+h_{n}(x, y)\right) B_{n}(f ; x, y) \tag{29}
\end{equation*}
$$

where $h_{n}(x, y)$ is the sequence of functions considered in Example 4.5. If $s_{n}=n, \alpha(n)=1, \beta(n) \in \mathbb{N}$ for all n, then for any $0<\gamma \leq 1$, the sequence of positive linear operators T_{n}^{*} satisfies the conditions (22) (see Example 4.5) hence by Theorem 5.3, we have

$$
w-s t_{\alpha \beta}^{\gamma}-T_{n}^{*}(f ; x, y) \rightarrow f(x, y)
$$

But since T_{n}^{*} does not satisfy conditions (27)

$$
s t_{\alpha \beta}^{\gamma}-T_{n}^{*}(f ; x, y) \nRightarrow f(x, y)
$$

6. Rates of weighted $\alpha \beta$-equi statistical convergence of order γ

In this section we study the rates of weighted $\alpha \beta$-equistatistical convergence of order γ of a sequence L_{n} of positive linear operators defined on $H_{w_{2}}$ by using the modulus of continuity.
Definition 6.1. Let a_{n} be a non-increasing sequence then f_{n} is called weighted $\alpha \beta$-equistatistical convergent of order γ to function f with the rate of a_{n} and denoted by $w-\left(f_{n}-f\right)=o\left(a_{n}, \gamma\right)(\alpha \beta-$ equistat) if for every $\varepsilon>0$ we have,

$$
\frac{\mid\left\{k \in\left[A_{r}, B_{r}\right]: s_{k}\left|f_{k}(x, y)-f(x, y)\right| \geq \varepsilon \mid\right\}}{\left(B_{r}-A_{r}+1\right)^{\gamma} a_{r}} \rightarrow 0
$$

uniformly, with respect to $(x, y) \in D$, where s_{k} is a sequence satisfying (2).
Lemma 6.2. Assume that f_{n} and g_{n} are two sequences in $H_{w_{2}}$ such that $w-\left(f_{n}-f\right)=o\left(a_{n}, \gamma\right)(\alpha \beta-$ equistat $)$ and $w-\left(g_{n}-g\right)=o\left(b_{n}, \gamma\right)(\alpha \beta-$ equistat $)$ then,
i) $w-\left(\left(f_{n}+g_{n}\right)-(f+g)\right)=o\left(c_{n}, \gamma\right)(\alpha \beta-$ equistat $)$.
ii) $w-\left(\left(f_{n}-f\right)\left(g_{n}-g\right)\right)=o\left(a_{n} b_{n}, \gamma\right)(\alpha \beta-$ equistat $)$.
iii) $w-\left(M\left(f_{n}-f\right)\right)=o\left(a_{n}, \gamma\right)(\alpha \beta-$ equistat $)$, for any scalar M.
iv) $w-\left(\sqrt{f_{n}-f}\right)=o\left(a_{n}, \gamma\right)(\alpha \beta-$ equistat $)$.
where, $c_{n}=\max \left\{a_{n}, b_{n}\right\}$.
Proof. i) Assume that $w-\left(f_{n}-f\right)=o\left(a_{n}, \gamma\right)(\alpha \beta-$ equistat $)$ and $w-\left(g_{n}-g\right)=o\left(b_{n}, \gamma\right)(\alpha \beta-$ equistat $)$ on D. For any $\varepsilon>0$ and $(\alpha, \beta) \in \Lambda$ consider the following sets,

$$
\begin{aligned}
& K_{n, \alpha, \beta}(x, y, \varepsilon)=\mid\left\{k \in\left[A_{n}, B_{n}\right]: s_{k}\left|\left(f_{k}+g_{k}\right)(x, y)-(f+g)(x, y)\right| \geq \varepsilon \mid\right\} . \\
& K_{n, \alpha, \beta}^{1}(x, y, \varepsilon)=\left\lvert\,\left\{k \in\left[A_{n}, B_{n}\right]: \left.s_{k}\left|f_{k}(x, y)-f(x, y)\right| \geq \frac{\varepsilon}{2} \right\rvert\,\right\} .\right. \\
& K_{n, \alpha, \beta}^{2}(x, y, \varepsilon)=\left\lvert\,\left\{k \in\left[A_{n}, B_{n}\right]: \left.s_{k}\left|g_{k}(x, y)-g(x, y)\right| \geq \frac{\varepsilon}{2} \right\rvert\,\right\} .\right.
\end{aligned}
$$

It is obvious that,

$$
\begin{equation*}
\frac{K_{n, \alpha, \beta}(x, y, \varepsilon)}{\left(B_{n}-A_{n}+1\right)^{\gamma} c_{n}} \leq \frac{K_{n, \alpha, \beta}^{1}(x, y, \varepsilon)}{\left(B_{n}-A_{n}+1\right)^{\gamma} a_{n}}+\frac{K_{n, \alpha, \beta}^{2}(x, y, \varepsilon)}{\left(B_{n}-A_{n}+1\right)^{\gamma} b_{n}} . \tag{30}
\end{equation*}
$$

If we apply limit to both sides of (30) as $n \rightarrow \infty$ and using the hypotheses of Lemma 6.2 , we complete the proof for section i). Since (ii)-(iv) can be proved in a same way we omit them.

Theorem 6.3. Let $L_{n}: H_{w_{2}} \rightarrow C(D)$ be a sequence of positive linear operators. Assume that the following conditions hold:
i) $L_{n}\left(f_{0} ; x, y\right)-f_{0}=o\left(a_{n}, \gamma\right)\left(w-s t_{\alpha \beta} \alpha \beta-\right.$ equistat $)$
ii) $\omega\left(f, \delta_{n}\right)=o\left(b_{n}, \gamma\right)\left(\alpha \beta-\right.$ equistat) where $\left.\delta_{n}=\sqrt{L_{n}\left(\phi^{2} ; x, y\right.}\right)$ with $\left(\phi^{2} ; x, y\right)=(u-x)^{2}+(v-y)^{2}$.

Then, for all $f \in H_{w_{2}}$ we have,

$$
\left.L_{n}(f ; x, y)-f=o\left(c_{n}, \gamma\right)(\alpha \beta-\text { equistat })\right)
$$

where $c_{n}=\max \left\{a_{n}, b_{n}\right\}$.
Proof. Let f be any element of $H_{w_{2}}$ and let (x, y) be a fixed point of D then it is well known that

$$
\begin{aligned}
\left|L_{n}(f ; x, y)-f(x, y)\right| \leq & \|f(x, y)\|_{H_{w_{2}}}\left|L_{n}\left(f_{0} ; x, y\right)-f_{0}(x, y)\right|+2 \omega\left(f, \delta_{n}\right)\left|L_{n}\left(f_{0} ; x, y\right)-f_{0}(x, y)\right| \\
& +\omega\left(f, \delta_{n}\right) \sqrt{\left|L_{n}\left(f_{0} ; x, y\right)-f_{0}(x, y)\right| .}
\end{aligned}
$$

Using the hypothesis, and Lemma 6.2, in the above inequality, completes the proof.

7. Concluding Remarks

It should be mentioned that, Definition 2.4 is an extension of $\alpha \beta$-statistical convergence of order γ. Therefore, for special choices of $\alpha(n)$ and $\beta(n)$ (see [2]), results obtained in this paper can be restated in the sense of weighted λ-statistical convergence of order γ and weighted lacunary statistical convergence of order γ.

References

[1] S. Akdağ, Weighted Equi-Statistical Convergence of the Korovkin type approximation theorems, Results in Math., 72 (2017) 1073-1085.
[2] H. Aktuğlu, Korovkin type approximation theorems proved via $\alpha \beta$-statistical convergence, Journal of Computational and Applied Mathematics 259 (2014) 174-181
[3] H. Aktuğlu, M. A. Özarslan, H. Gezer, A-Equistatistical Convergence of Positive Linear Operators, Journal of Computational analysis and Applications 12 (2010) 24-36.
[4] H. Aktuğlu, H. Gezer, Lacunary equistatistical convergence of positive linear operators ,Cent. Eur. J. Math. 7(3) (2009) 558-567.
[5] F. Altomere, M. Campiti, Korovkin type approximation theory and its applictions, de Gruyter Stud. Math. (Berlin: de Gruyter) (1994) vol. 17.
[6] G. A. Anastassiou and M.A. Khan, Korovkin type statistical approximation theorem for a function of two variables, Journal of Computational Analysis and Applications (2017) 21176-1184.
[7] G. A. Anastassiou, M. Mursaleen, S. A. Mohiuddine, Some approximation theorems for functions of two variables through almost convergence of double sequences, J. of Computational Analaysis and Applications, 13, n,1 (2011) 37-46 .
[8] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequence of fuctions, J. Math. Anal. Appl. 328 (2007) 715-729.
[9] G. Bleiman, P. L. Butzer, L. Hahn, A Bernstein type operator approximating continuous functions on semiaxis, Indag. Mayh., 42 (1980) 255-262.
[10] R. Çolak, Statistical Convergence of Order α, Modern Methods in Analysis and Its Applications. Anamaya Pub.,NewDelhi(2010) 121-129.
[11] M. Çinar, M. Karakas, M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory Appl, (2013), 2013: 33 https://doi.org/10.1186/1687-1812-2013-33
[12] K. Demirci, S. Karakus, Korovkin-type approximation theorem for double sequences of positive linear operators via statistical A-summabilty, Results in Mathematics, 63, n.1-2 (2013) 1-13.
[13] F. Dirik, K. Demirci, Korovkin type approximation theorem for functions of two variables in statistical sense ,Turk J Math 34 (2010) 73-83.
[14] F. Dirik, K. Demirci, A korovkin type approximation theorem for double sequneces of positive linear operators of two variables in A-statistical sense, Bull. of the Korean Math, Soc., 47 n. 4 (2010) 825-837.
[15] O. Duman, C. Orhan, μ-statistically convergent function sequences, Czechislovak Math. J. 54 (2004) 413-422.
[16] E. Erkuş, O. Duman, A-statistical extension of the Korovkin type approximation theorem, Proc. Indian Acad Sci. (Math. Sci.) Vol. 115, no. 4 (2005) 499-508.
[17] H. Fast, Sur la convegence statistique, Colloq. Math. 2 (1951) 241-244.
[18] J. A. Fridy, and C. Orhan, Lacunary Statistical Convergence, Pacific Journal of Mathematics 160 (1993) 45-51.
[19] S. Ghosal, Weighted statistical convergence of order α and its applications. Journal of the Egyptian Mathematical Society, 24 (2016) 60-67.
[20] S. Ghosal, M Banerjee, and A.Ghosh, Weighted modulus S_{θ}-convergence of order α in probability, Arab. J. Math. Sci. 23 (2017) 242-257.
[21] U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q)-gamma function and its applications to approximation theorems, Jornal of Mathematical Analysis and Applications 48(2) (2017) 1633-1650.
[22] U. Kadak, On relative weighted summability in modular function spaces and associated approximation theorems, Positivity, 21(4) (2017) 1593-1614.
[23] U. Kadak, Braha, N. L. and Srivastava, H. M, Statistical weighted B-summability and its applications to approximation theorems, Applied Mathematics and Computation, 302 (2017) 80-96.
[24] V. Karakaya, and T.A. Chiristi, Weighted Statistical Convergence, Iran. Journal Sci. Technol. Trans. A Sci. 33 (2009) 219-223.
[25] V. Karakaya, and A. Karaisa, Korovkin type approximation theorems for weighted $\alpha \beta$-statistical convergence, Bull. Math. Sci. 5 (2015) 159-169.
[26] S. Karakuş, K. Demirci, O. Duman, Equi-statistical convergence of positive linear operators ,Journal of Mathematical Analysis and Applications. 339 (2008) 1065-1072.
[27] S. Karakuş, K. Demirci, K., Equi-statistical convergence of the Korovkin Type Approximation Theorem, Turk J Math 33 (2009) 159-168.
[28] S. Karakuş, K. Demirci, Equi-statistical σ-convergence of positive linear operators,Computers and Mathematics with Appl. 60 (2010) 2212-2218.
[29] Y. Kaya and N. Gönül, A Generalization of Lacunary Equistatistical Convergence of Positive Linear Operators, Abstract and Applied Analysis, 2013
[30] P.P. Korovkin, Linear operators and the theory of approximation, India, Delhi, 1960.
[31] S. A. Mohiuddine, A. Alotaibi, Statistical convergence and approximation theorems for functions of two variables, J. of Computational Analaysis and Applications, 15 n. 2 (2013) 218-223.
[32] S. A. Mohiuddine, Statistical weighted A-summability with application to Korovkins type approximation theorem Journal of Inequalities and Applications, 1, (2016).
[33] S. A. Mohiuddine, A. Alotaibi and B. Hazarika: Weighted A-statistical convergence for sequences of positive linear operators, The scientific World J. 437863, 8, (2014).
[34] M. Mursaleen, λ-statistical convergence, Math. Slovaca, 50 (2000) 111-115.
[35] M. Mursaleen, V. Karakaya, M. Ertrk, and F. Grsoy.: Weighted statistical convergence and its applications to Korovkin type approximationtheorem, Appl. Math. Comput. 218 (2012) 9132-9137.
[36] M. Mursaleen, S. A. Mohiuddine, Korovkin type approximation theorem for functions of two variables via statistical summability $(C, 1)$ Acta Scientiarum. Technology, 37 n. 2 (2015) 237-243.
[37] M. Mursaleen, A. Alotaibi, "Korovkin type approximation theorem for functions of two variables through statistical Asummability", Advances in Difference Equations (2012).
[38] M. Mursaleen, A. Alotaibi, Korovkin type approximation theorem for statistical A-summability of double sequences, J. of Computational Analaysis and Applications, 15 n. 6 (2013) 1036-1045.
[39] H. Srivastava, M. Mursaleen, A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Mathematical and Computer Modelling 55 (2012) 2040-2051.
[40] H. Steinhaus, Surla convergence ordinaire et la convergence asymptotique, Colloq.Math., 2 (1951) 73-74.

[^0]: 2010 Mathematics Subject Classification. Primary 41A25 ; Secondary 41A36, 40A35.
 Keywords. Statistical convergence, $\alpha \beta$-statistical convergence, equistatistical convergence, weighted statistical convergence, Positive linear operators, Korovkin type approximation theorem, rates of convergence.

 Received: 25 April 2018; Accepted: 27 August 2018
 Communicated by Ivana Djolović
 Email addresses: huseyin. aktuglu@emu.edu.tr (Hüseyin Aktuğlu), hgezer@ciu.edu.tr (Halil Gezer)

