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Abstract. This paper is concerned with the existence and uniqueness of the positive solution for a multi-
order fractional nonlinear system with variable delays. The fractional derivative will be in the Caputo
sense. The obtained results are based on some fixed point theorems.

1. Introduction

Fractional Calculus is a three centuries-old mathematical topic, which generalizes the ordinary in-
tegration and differentiation to arbitrary non integer order. It is nowadays a growing interest area of
mathematics. For a long time, the theory of Fractional Calculus developed only as a theoretical field of
mathematics. However, in the last decades, it was shown that some fractional operators describe in a
better way some complex physical phenomena, especially when dealing with memory processes. It has
been proven that problems with fractional-order operators has more advantages than ordinary ones since
fractional-order derivative can provide an excellent instrument for description of memory and hereditary
properties of various materials and process.

Due to this, in the last three decades, a great interest has been devoted to the study of fractional differential
equations. Thus, fractional order differential equations play today a very important role describing many
practical problems such as in viscoelasticity, physics, chemistry, biology, medical science, etc ([1, 5, 6, 8, 9]
and the references therein).

On the other hand, the accurate modeling of dynamics of many engineering, physics, economy system
can be obtained using delayed equations. Many investigations have been done on the existence and
uniqueness of solutions for delay fractional differential systems. Some recent results on these equations can
be found in a series of papers [2, 7, 11, 12].

In [13], Ye et al. have studied the existence of a positive solution for a delay fractional differential
equation {

Dα [x (t) − x (0)] = x (t) f (t, xt) , t ∈ (0,T],
x (t) = φ (t) ≥ 0 , t ∈ [−r, 0] ,
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where α ∈ (0, 1), Dα is the Riemann-Liouville fractional derivative, and φ and f are continuous. By
using the sub- and super-solution method, they gave some sufficient conditions for the existence of positive
solutions.

In this paper, motivated by the above-cited paper, we study the existence and uniqueness of a positive
solution for the multi-order fractional differential system with variable delays

cDαi xi (t) = fi (t, x1(t), ..., xn (t) , x1 (t − τ1 (t)) , ..., xn (t − τn (t))) , i ∈ ~1,n�, t > 0. (1)

x(t) = Φ(t) ≥ 0, t ∈ [−τ, 0], (2)

where cDαi is the Caputo fractional derivative of order αi ∈ (0, 1), for i ∈ {1, ...,n}, x (t) = (x1 (t) , ..., xn (t))′ ,
where ′ denotes the transpose of the vector, fi : R+

× R2n
→ R are continuous functions for i ∈ ~1,n�,

Φ (t) = (φ1 (t) , ..., φn (t))′ is a given vector function defined on [−τ, 0] with values inRn, and τi are continuous
real-valued functions defined on R+ such that τ = max{supt∈R+ τi (t), i ∈ ~1,n�} > 0.

At first time, by using the sub- and super-solution method (on a cone), we establish the existence of
a positive solution to the problem (1)-(2), and then, we show the uniqueness of a positive solution of the
problem (1)-(2) by using the Banach fixed point theorem.

This paper is structured as follows. In Section 2, to make the paper self-contained, we give some
preliminary results from functional analysis and fractional calculus, which will be used throughout this
paper. In Section 3, after transforming the initial value problem (1)-(2) into an equivalent Volterra integral
equation (Lemma 3.1), we show the existence of a positive solution to the problem (1)-(2) (Theorem 3.3). In
the last section, we show the uniqueness of the positive solution to our considered problem (Theorem 4.1).

2. Preliminaries

In this section, we give some preliminary results from functional analysis and fractional calculus.

2.1. Fixed point theorem on a cone

In this part, we recall some definitions regarding cones in Banach spaces. More details may be found in
[3, 4].

Let E be a real Banach space.

Definition 2.1. A nonempty subset K ⊂ E is called a cone if it is convex, closed, and satisfies the conditions:

1. λK ⊂ K, for any real positive number λ,
2. x,−x ∈ K imply x = 0.

A cone K introduces a partial order ≤ in E in the following manner

x ≤ y if y − x ∈ K.

Definition 2.2. A cone K is said to be normal if there exists a constant c > 0 such that for all x, y ∈ E:

i f 0 ≤ x ≤ y then ‖x‖ ≤ c
∥∥∥y

∥∥∥ .
Definition 2.3. For x, y ∈ E the order interval

〈
x, y

〉
is defined as〈

x, y
〉

=
{
z ∈ E : x ≤ z ≤ y

}
.

Definition 2.4. Let D ⊂ E, an operator F : D→ E is called compact if for any bounded set S ⊂ D, F(S) is relatively
compact. Moreover, F is said to be completely continuous if it is continuous and compact.
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Definition 2.5. The functional h (t, x1, ..., xn) is nondecreasing on I × En, I ⊂ R, if for any
(
t, φ1, ..., φn

)
∈ I ×

En,
(
t, ψ1, ..., ψn

)
∈ I × En, such that φi ≤ ψi , i ∈ ~1,n�, the inequality h

(
t, φ1, ..., φn

)
≤ h

(
t, ψ1, ..., ψn

)
holds.

Following is our main tool. For the proof, the reader is referred to [3, 4].

Theorem 2.6. Let D be a subset of the cone K of a partially ordered space E, F : D→ E be nondecreasing. Suppose
that there exist x0, y0 ∈ D such that x0 ≤ y0,

〈
x0, y0

〉
⊂ D, satisfying x0 ≤ Fx0 and y0 ≥ Fy0. If P is normal and

F is completely continuous, then the equation x − F (x) = 0 has a minimal solution and a maximal solution x∗, y∗ in〈
x0, y0

〉
.

2.2. Compactness criterion
Here and in the sequel we denote by I the interval [−τ,+∞). Let θ : I→ (0,+∞) be a continuous function,

and let E be the linear space of all column n−vectors functions x, continuous on I and satisfying

n∑
i=1

sup
t∈I
{θ(t) |xi (t)|} < ∞.

We check easily that E equipped with the Bielecki’s type norm

‖x‖θ =

n∑
i=1

sup
t∈I
{θ(t) |xi (t)|} ,

is a Banach space.

In this paper, the functions that we are going to manipulate are defined on infinite intervals. Therefore,
in our case, the theorem of Arzelà-Ascoli is not applicable, so we need the following local property

Definition 2.7. Let X a family of functions defined on the infinite interval I. X is said to be almost equicontinuous
on I, if it is equicontinuous on each interval [−τ,T], −τ < T < ∞.

The following compactness result is an adaptation of Zima’s compactness theorem [14] to the case of
systems.

Lemma 2.8. Let Ω ⊂ E. If Ω is almost equicontinuous on I and uniformly bounded in (E, ‖.‖θ∗ ), where the weight
function θ∗ is positive and continuous on I, and

θ(t) = o(θ∗(t)), as t→ +∞,

then Ω is relatively compact in (E, ‖.‖θ).

Proof. Let {xk
}
k∈N = {xk

i }
k∈N
i=i,n

a sequence of Ω. We will show that it has a convergent subsequence in (E, ‖.‖θ∗ ).
We have, by assumption, Ω is uniformly bounded in (E, ‖.‖θ∗ ), that is, there exists a positive constant M
such that, ∀k ∈N, ∥∥∥xk

∥∥∥
θ∗

=

n∑
i=1

sup
t∈I

{
θ∗(t)

∣∣∣xk
i (t)

∣∣∣} ≤M.

This estimate helds on I, and in particularly on any subinterval [−τ,T] of I for T > −τ. That is, ∀T > −τ,

n∑
i=1

max
t∈[−τ,T]

{
θ∗(t)

∣∣∣xk
i (t)

∣∣∣} ≤M. (3)

Moreover, by assumption, Ω, and then {xk
}, is equicontinuous on each subinterval [−τ,T] of I. Therefore,

by applying the Arzelà-Ascoli theorem and a diagonalization process, for each i ∈ ~1,n�, there exists a
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susbsequence {yk
i } defined on I, converging uniformly, on each interval [−τ,T] of I, to a some limit function

yi. Namely,

max
t∈[−τ,T]

{
θ∗(t)

∣∣∣yk
i (t) − yi(t)

∣∣∣}→ 0, as k→ +∞. (4)

To achieve the proof, we show that {yk
} converges to y in (E, ‖.‖θ). We have∥∥∥yk

− y
∥∥∥
θ

= {sup
t∈I

θ(t)
θ∗(t)

}

n∑
i=1

sup
t∈I

{
θ∗(t)

∣∣∣yk
i (t) − yi(t)

∣∣∣}
≤ { max

t∈[−τ,T]

θ(t)
θ∗(t)

}

n∑
i=1

max
t∈[−τ,T]

{
θ∗(t)

∣∣∣yk
i (t) − yi(t)

∣∣∣}
+ {sup

t>T

θ(t)
θ∗(t)

}

n∑
i=1

sup
t>T

{
θ∗(t)

∣∣∣yk
i (t) − yi(t)

∣∣∣}
≤ { max

t∈[−τ,T]

θ(t)
θ∗(t)

}

n∑
i=1

max
t∈[−τ,T]

{
θ∗(t)

∣∣∣yk
i (t) − yi(t)

∣∣∣}
+ {sup

t>T

θ(t)
θ∗(t)

}

n∑
i=1

sup
t>T

{
θ∗(t)

[∣∣∣yk
i (t)

∣∣∣ +
∣∣∣yi(t)

∣∣∣]} .
Thus, by using (3) and the fact that θ/θ∗ is continuous on [−τ,T],∥∥∥yk

− y
∥∥∥
θ
≤ CT

n∑
i=1

max
t∈[−τ,T]

{
θ∗(t)

∣∣∣yk
i (t) − yi(t)

∣∣∣} + 2nM{sup
t>T

θ(t)
θ∗(t)

}.

Consequently, by using (4) and the fact that θ(t) = o(θ∗(t)), as t → +∞, we deduce that
∥∥∥yk
− y

∥∥∥
θ
→ 0,

ask→ +∞.

2.3. Fractional calculus
In this part, we give the basic definitions and properties of fractional integral and Caputo fractional

derivative, which will be used throughout this paper. The reader interested on more details about fractional
calculus is referred to [5, 10].

Definition 2.9. For all T > 0, the Riemann–Liouville fractional integral of order α ∈ R+ of a function f ∈ L1[0,T]
is given by:

Iα f (t) :=
1

Γ (α)

∫ t

0
(t − s)α−1 f (s) ds, t ∈ [0,T]

where Γ is the gamma function. For α = 0, we set I0 := Id, the identity operator.

Definition 2.10. The Caputo fractional derivative of order α ∈ R+ of the function f with Dn f ∈ L1[0,T] is defined
by

cDα f (t) = In−αDn f (t) =
1

Γ (n − α)

∫ t

0
(t − s)n−α−1 f (n) (s) ds, t ≥ 0,

where n = [α] + 1, [α] denotes the integer part of number α and D = d
dt .

Obviously, the Caputo derivative of a constant is equal to zero.

Lemma 2.11. Let α > 0. Then
cDαIα f (t) = f (t) . (5)
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3. Existence of positive solution

In this section, we give sufficient conditions for the existence of positive solutions.

Lemma 3.1. The vector function x (t) := (x1 (t) , ..., xn (t)) is a solution of the problem (1) − (2) if and only if

xi (t) =

{
φi (0) + Iαi fi (t, x1(t), ..., xn(t), x1 (t − τ1 (t)) , ..., xn (t − τn (t))) , t > 0,
φi (t) , t ∈ [−τ, 0], i ∈ ~1,n�.

Proof. For t > 0, the equation (1) can be written as

I1−αi Dxi (t) = fi (t, x1(t), ..., xn(t), x1 (t − τ1 (t)) , ..., xn (t − τn (t))) .

Applying the operator Iαi on both sides,

IDxi (t) = Iαi fi (t, x1(t), ..., xn(t), x1 (t − τ1 (t)) , ..., xn (t − τn (t))) .
xi (t) − xi (0) = Iαi fi (t, x1(t), ..., xn(t), x1 (t − τ1 (t)) , ..., xn (t − τn (t))) .

Then

xi (t) = φi (0) + Iαi fi (t, x1(t), ..., xn(t), x1 (t − τ1 (t)) , ..., xn (t − τn (t))) . (6)

The converse follows by direct computation. This ends the proof of Lemma.

In the upcoming analysis, we set the appropriate functional framework. We denote by E the Banach space
of all column vector-valued functions x, continuous on I and satisfying

n∑
i=1

sup
t∈I

{
e−ρt
|xi (t)|

}
< ∞,

with the norm

‖x‖ρ =

n∑
i=1

sup
t∈I

{
e−ρt
|xi (t)|

}
, x ∈ E,

where ρ ∈ R+ will be chosen later. In the space E, we define the set

K = {x ∈ E : xi (t) ≥ 0, t ∈ I, i ∈ ~1,n�}.

It is clear that K is a normal cone in E. Let

D = {x ∈ K : x (t) = Φ (t) , −τ ≤ t ≤ 0} ⊂ K.

We define the integral operator F, for i ∈ ~1,n�, by

Fxi =

{
φi (t) , t ∈ [−τ, 0]
φi (0) + Iαi fi (t, x1(t), ..., xn(t), x1 (t − τ1 (t)) , ..., xn (t − τn (t))) , t > 0. (7)

In order to establish our results, we set the following hypotheses:

(H1) There exist 1i j, hi j : R+
→ R+ continuous and bounded, such that

fi (t,u1, ...,un, v1, ..., vn) ≤
n∑

j=1

1i j

(
u j

)
+

n∑
j=1

hi j

(
v j

)
, for i ∈ ~1,n�.
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(H2) For i ∈ ~1,n� : fi : R+
×R2n

+ → R
+ is continuous and nondecreasing function.

(H3) There exist u0 =
(
u1

0, ...,u
n
0

)′
, v0 =

(
v1

0, ..., v
n
0

)′
which are respectively sub-solution and super-solution

of the problem (1)-(2) , satisfying u0 (t) ≤ v0 (t) , t ∈ [0,+∞).

Lemma 3.2. Assume that (H1) holds. Then, the operator F : D→ E is completely continuous.

Proof. The operator F : D→ E is continuous in view of the assumption of continuity of f . Next, if G ⊂ D is
bounded, then for each x ∈ G, we have, for i ∈ ~1,n�:

|Fxi (t)| ≤
∣∣∣φi (0)

∣∣∣ +

∫ t

0

(t − s)αi−1

Γ (αi)

∣∣∣ fi (s, x1(s), ..., xn(s), x1 (s − τ1 (s)) , ..., xn (s − τn (s)))
∣∣∣ ds

≤

∣∣∣φi (0)
∣∣∣ +

n∑
j=1

∫ t

0

(t − s)αi−1

Γ (αi)
1i j

(
x j (s)

)
ds

+

n∑
j=1

∫ t

0

(t − s)αi−1

Γ (αi)
hi j

(
x j

(
s − τ j (s)

))
ds.

Hence, for µ > 0, we have

e−µt
|Fxi (t)| ≤ e−µt

∣∣∣φi (0)
∣∣∣ +

n∑
j=1

∫ t

0

(t − s)αi−1

Γ (αi)
e−µ(t−s)e−µs1i j

(
x j (s)

)
ds +

+

n∑
j=1

∫ t

0

(t − s)αi−1

Γ (αi)
e−µ(t−s+τ j(s))e−µ(s−τ j(s))

∣∣∣∣hi j

(
x j

(
s − τ j (s)

))∣∣∣∣ ds

≤ e−µt
∣∣∣φi (0)

∣∣∣ +

n∑
j=1

sup
ξ∈I
{e−µξ

∣∣∣∣1i j

(
x j (ξ)

)∣∣∣∣}∫ t

0

(t − s)αi−1

Γ (αi)
e−µ(t−s)ds +

+

n∑
j=1

∫ t

0

(t − s)αi−1

Γ (αi)
e−µ(t−r j(s))e−µr j(s)

∣∣∣∣hi j

(
x j

(
r j (s)

))∣∣∣∣ ds, r j (s) = s − τ j (s)

≤ e−µt
∣∣∣φi (0)

∣∣∣ +

n∑
j=1

sup
ξ∈I
{e−µξ

∣∣∣∣1i j

(
x j (ξ)

)∣∣∣∣}∫ t

0

(t − s)αi−1

Γ (αi)
e−µ(t−s)ds +

+

n∑
j=1

sup
ξ∈I
{e−µξ

∣∣∣∣hi j

(
x j (ξ)

)∣∣∣∣}∫ µt

0

uαi−1

µαiΓ (αi)
e−ue−µτ j

(
t− u

µ

)
du

From the hypothesis (H1), there exist L j,L
′

j such that L j = supt∈I{e
−µt

∣∣∣∣1i j

(
x j (t)

)∣∣∣∣}, L′j = supt∈I{e
−µt

∣∣∣∣hi j

(
x j (t)

)∣∣∣∣},
for i, j ∈ ~1,n�. Then

e−µt
|Fxi (t)| ≤ e−µt

∣∣∣φi (0)
∣∣∣ +

n∑
j=1

L j

∫ µt

0

uαi−1

µαiΓ (αi)
e−udu

+

n∑
j=1

L
′

j

∫ µt

0

uαi−1

µαiΓ (αi)
e−ue−µτ j

(
t− u

µ

)
du

≤ C +

∑n
j=1

(
L j + L′j

)
µαi , ∀t > 0.
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Hence, FG is uniformly bounded.
Next, we will show that FG is almost equicontinuous. There are three possible cases for i ∈ ~1,n�:

Case 1. For each x ∈ G, εi > 0,∀T ∈]0,+∞), t1, t2 ∈ [0,T], t1 < t2. Let δi =

 εiΓ(αi+1)

2
∑n

j=1

(
c j+c′j

)


1
αi

, then when

t2 − t1 < δi, we have:

|Fxi (t1) − Fxi (t2)|

≤

∫ t1

0

(t1 − s)αi−1
− (t2 − s)αi−1

Γ (αi)

∣∣∣ fi (s, x1(s), ..., xn(s), x1 (s − τ1 (s)) , ..., xn (s − τn (s)))
∣∣∣ ds

+

∫ t2

t1

(t2 − s)αi−1

Γ (αi)

∣∣∣ fi (s, x1(s), ..., xn(s), x1 (s − τ1 (s)) , ..., xn (s − τn (s)))
∣∣∣ ds

≤

n∑
j=1

1
Γ (αi)

∫ t1

0

(
(t1 − s)αi−1

− (t2 − s)αi−1
) (
1i j

(
x j (s)

)
+ hi j

(
x j

(
s − τ j (s)

)))
ds +

+

n∑
j=1

∫ t2

t1

(t2 − s)αi−1

Γ (αi)

(
1i j

(
x j (s)

)
+ hi j

(
x j

(
s − τ j (s)

)))
ds.

Since G is bounded, then, ∃C > 0 such that for x ∈ G, ‖x‖µ ≤ C. Hence,
∣∣∣x j (t)

∣∣∣ ≤ Ceµt
≤ CeµT. Furthermore,

the functions 1i j(x j) and hi j(x j) bounded, so ∃ c j, c′j : c j = supt∈[0,T]

∣∣∣∣1i j

(
x j (t)

)∣∣∣∣ , c′j = supt∈[0,T]

∣∣∣∣hi j

(
x j

(
t − τ j(t)

))∣∣∣∣,
for i, j ∈ ~1,n�. Consequently,

|Fxi (t1) − Fxi (t2)|

≤

n∑
j=1

1
Γ (αi)

∫ t1

0

(
(t1 − s)αi−1

− (t2 − s)αi−1
) (

c j + c′j
)

ds +

+

n∑
j=1

∫ t2

t1

(t2 − s)αi−1

Γ (αi)

(
c j + c′j

)
ds

≤

n∑
j=1

c j + c′j
Γ (αi)

{∫ t1

0

(
(t1 − s)αi−1

− (t2 − s)αi−1
)

ds +

∫ t2

t1

(t2 − s)αi−1 ds
}

≤

n∑
j=1

c j + c′j
αiΓ (αi)

{
(t2 − t1)αi + tαi

1 − tαi
2 + (t2 − t1)αi

}

< 2
n∑

j=1

c j + c′j
Γ (αi + 1)

(t2 − t1)αi

< 2
n∑

j=1

c j + c′j
Γ (αi + 1)

δαi
i = εi.

Case 2. For each x ∈ G, εi > 0, t1 ∈ [−τ, 0], t2 ∈ [0,T],∀T ∈]0,+∞). Sinceφi ∈ C[−τ, 0],∃δ′ :
∣∣∣φi (t1) − φi (0)

∣∣∣ < εi
2
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when 0− t1 < δ′. When t2 − t1 < δi, δi = min

δ′,
 εiΓ(αi+1)

2
∑n

j=1

(
c j+c′j

)


1
αi

 , we have:

|Fxi (t1) − Fxi (t2)|

≤

∣∣∣φi (t1) − φi (0)
∣∣∣ +

∫ t2

0

(t2 − s)αi−1

Γ (αi)

∣∣∣ fi (s, x1(s), ..., xn(s), x1 (s − τ1 (s)) , ..., xn (s − τn (s)))
∣∣∣ ds

≤
εi

2
+

∫ t2

0

(t2 − s)αi−1

Γ (αi)

n∑
j=1

{
1i j

(
x j (s)

)
+

∣∣∣∣hi j

(
x j

(
s − τ j (s)

))∣∣∣∣} ds

<
εi
2

+

n∑
j=1

c j + c′j
αiΓ (αi)

tαi
2

<
εi

2
+

n∑
j=1

c j + c′j
Γ (αi + 1)

δαi
i

<
εi

2
+
εi

2
= εi

Case 3. For each x ∈ G, εi > 0, t1, t2 ∈ [−τ, 0]. In fact by continuity of φi, when t2 − t1 < δi, we have

|Fxi (t1) − Fxi (t2)| =
∣∣∣φi (t1) − φi (t2)

∣∣∣ < εi.

Therefore, FG is equicontinuous in each bounded interval. Taking θ(t) = e−ρt and θ∗(t) = e−µt, where
0 < µ < ρ, in Lemma 2.8, we conclude that FG is relatively compact. Hence the operator F is completely
continuous. This completes the proof.

The main result of this paper is the following theorem, which provides sufficient conditions for the problem
(1.1)-(1.2) to have at least one solution that is positive on (0,+∞).

Theorem 3.3. Assume that (H1)-(H3) hold. Then the problem (1)-(2) has at least a positive solution.

Proof. By Lemma 3.1 the problem (1)-(2) is equivalent to the fixed point problem x = Fx. Furthermore, by
Lemma (3.2), we have F : D→ E is completely continuous. By (H2), if x, y ∈ D, x ≤ y,we have for i ∈ ~1,n�:

Fxi (t) = xi (0) + Iαi fi (t, x1(t), ..., xn(t), x1 (t − τ1 (t)) , ..., xn (t − τn (t)))
≤ yi (0) + Iαi fi

(
t, y1(t), ..., yn(t), y1 (t − τ1 (t)) , ..., yn (t − τn (t))

)
≤ Fyi (t) .

Hence F is a nondecreasing operator. Clearly, for j ∈ ~1,n�: u j
0 ≤ Fu j

0, v j
0 ≥ Fv j

0. Hence, by Theorem 2.6,
x = Fx has a fixed point x ∈ 〈u0, v0〉.

Corollary 3.4. Assume that (H1), (H2) are satisfied, and

(H4) There exists a positive function Ψ (t) =
(
ψ1 (t) , ..., ψn (t)

)′ , t ≥ 0, such that

fi (t, x1 (t) , ..., xn (t) , x1 (t − τ1 (t)) , ..., xn (t − τn (t))) ≤ ψi (t) , t ≥ 0, i ∈ ~1,n�,

provided that for all t ≥ 0 :
∫ t

0
(t − s)αi−1 ψi (s) ds < ∞. Then, problem (1)-(2) has at least a positive solution.
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Proof. Since fi ≤ ψi, the solutions of the following problems, for i ∈ ~1,n�,{
cDαi ui

0 (t) = 0, t ≥ 0
ui

0 (t) = φi (t) , − τ ≤ t ≤ 0, and
{

cDαi ui
0 (t) = ψi(t), t ≥ 0

ui
0 (t) = φi (t) , − τ ≤ t ≤ 0,

are, respectively, the sub-solutions and super-solutions of the problem (1)-(2). A simple computation shows
that they are given by

ui
0(t) =

{
φi(0), t ≥ 0,
φi(t), −τ ≤ t ≤ 0 and vi

0(t) =

{
φi (0) + (Γ(αi))−1

∫ t

0
(t − s)αi−1 ψi (s) ds, t ≥ 0,

φi(t), −τ ≤ t ≤ 0.

Thus, (H3) is hold, and then Theorem 3.3 gives the desired result.

Here is an illustrative example:

Example 3.5. Consider the problem

(P)



D
1
2 x1 (t) = e−t

[
π + arctan

(
x1

(
t − 1

t+1 − 2
))] 1

2 x2(t)

(t+1)
√

1+x2
2(t)
, t > 0,

D
1
3 x2 (t) = (2t + 1)−1

[
π
2 + arctan (x1 (t))

]
+ e−3t x2

2(t−cos2(t))
2+x2

2(t−cos2(t)) , t > 0,

x1 (t) = 4 + t, t ∈ [−3, 0]
x2 (t) = t2, t ∈ [−3, 0] .

We have

α1 =
1
2
, α2 =

1
3
, τ1 (t) = 2 +

1
t + 1

, τ2 (t) = cos2 (t) , τ = 3,

and

f1 (t,u1,u2, v1, v2) = e−t [π + arctan v1]
1
2

u2

(t + 1)
√

1 + u2
2

,

f2 (t,u1,u2, v1, v2) = (2t + 1)−1
[
π
2

+ arctan u1

]
+ e−3t v2

2

2 + v2
2

,

which can be estimated as follows:

f1 (t,u1,u2, v1, v2) ≤ e−2t [π + arctan v1] +
u2

2

(t + 1)2
(
1 + u2

2

)
≤ π + arctan v1 +

u2
2

1 + u2
2

,

and

f2 (t,u1,u2, v1, v2) ≤
π
2

+ arctan u1 +
v2

2

2 + v2
2

.

Thus,

111 (u1) = 0, 112 (u2) =
u2

2

1 + u2
2

, h11 (v1) = π + arctan v1, h12 (v2) = 0,

121 (u1) =
π
2

+ arctan u1, 122 (u2) = 0, h21 (v1) = 0, h22 (v2) =
v2

2

2 + v2
2

.
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Moreover, there exist ψ1 and ψ2 such that

f1 (t,u1,u2, v1, v2) ≤
3π
2

e−t +
1

(t + 1)2 = ψ1 (t) ,

f2 (t,u1,u2, v1, v2) ≤
π

2t + 1
+ e−3t = ψ2 (t) .

We check easily that
∫ +∞

0 (t − s)−1/2ψ1 (s) ds and
∫ +∞

0 (t − s)−2/3ψ2 (s) ds are finite. Thus, all hypotheses of Theorem
3.3 are fulfilled and so the problem (P) has at least positive solution.

4. Uniqueness of solution

In this section, we discuss the uniqueness of solution.

Theorem 4.1. Let fi : R+
×R2n

→ R+ be continuous and satisfy the Lipschitz condition for i ∈ ~1,n�:∣∣∣ fi (t,u1, ...,un,U1, ...,Un) − fi (t, v1, ..., vn,V1, ...,Vn)
∣∣∣ ≤∑n

j=1
li j

∣∣∣u j − v j

∣∣∣ +
∑n

j=1
ki j

∣∣∣U j − V j

∣∣∣ .
Then the problem (1)-(2) has a unique positive solution.

Proof. Let u, v ∈ D, then:

|Fui (t) − Fvi (t)| ≤
n∑

j=1

∫ t

0

(t − s)αi−1

Γ (αi)

{
li j

∣∣∣u j (s) − v j (s)
∣∣∣ + ki j

∣∣∣∣u j

(
s − τ j (s)

)
− v j

(
s − τ j (s)

)∣∣∣∣} ds

Let l =
n∑

i=1
|li| =

n∑
j=1

max∀i

∣∣∣li j

∣∣∣ , k =
n∑

i=1
|ki| =

n∑
j=1

max∀i

∣∣∣ki j

∣∣∣. Then

e−ρt
|Fui (t) − Fvi (t)|

≤ li
n∑

j=1

∫ t

0

(t − s)αi−1

Γ (αi)
e−ρ(t−s)e−ρs

∣∣∣u j (s) − v j (s)
∣∣∣ ds +

+ ki

n∑
j=1

∫ t

0

(t − s)αi−1

Γ (αi)
e−ρ(t−s+τ j(s))e−ρ(s−τ j(s))

∣∣∣∣u j

(
s − τ j (s)

)
− v j

(
s − τ j (s)

)∣∣∣∣ ds.

≤ li
n∑

j=1

∫ t

0

(t − s)αi−1

Γ (αi)
e−ρ(t−s)

∣∣∣u j (s) − v j (s)
∣∣∣ ds +

+ ki

n∑
j=1

∫ t

0

(t − s)αi−1

Γ (αi)
e−ρ(t−r j(s))e−ρr j(s)

∣∣∣∣u j

(
r j (s)

)
− v j

(
r j (s)

)∣∣∣∣ ds, r j (s) = s − τ j (s)

≤ li
n∑

j=1

sup
ξ∈R+

{
e−ρξ

∣∣∣u j (ξ) − v j (ξ)
∣∣∣} ∫ t

0

(t − s)αi−1

Γ (αi)
e−ρ(t−s)ds +

+ ki

n∑
j=1

sup
ξ∈R+

{
e−ρξ

∣∣∣u j (ξ) − v j (ξ)
∣∣∣} ∫ t

0

(t − s)αi−1

Γ (αi)
e−ρ(t−r j(s))ds

≤ li
n∑

j=1

sup
ξ∈R+

{
e−ρξ

∣∣∣u j (ξ) − v j (ξ)
∣∣∣} 1
ραi

∫ ρt

0

uαi−1e−u

Γ (αi)
du +
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+ ki

n∑
j=1

sup
ξ∈R+

{
e−ρξ

∣∣∣u j (ξ) − v j (ξ)
∣∣∣} ∫ ρt

0

uαi−1e−u

ραiΓ (αi)
e−ρτ j(t− u

ρ )du.

Consequently,

e−ρt
|Fui (t) − Fvi (t)|

≤ li
n∑

j=1

sup
ξ∈R+

{
e−ρξ

∣∣∣u j (ξ) − v j (ξ)
∣∣∣} 1
ραi

∫ ρt

0

uαi−1e−u

Γ (αi)
du +

+ ki

n∑
j=1

sup
ξ∈R+

{
e−ρξ

∣∣∣u j (ξ) − v j (ξ)
∣∣∣} ∫ ρt

0

uαi−1e−u

ραi Γ (αi)
du

≤
nli
ραi
‖u − v‖ρ +

nki

ραi
‖u − v‖ρ

≤ n
li + ki

ραi
‖u − v‖ρ .

Hence

‖Fu − Fv‖ρ =

n∑
i=1

sup
t∈I

e−ρt
|Fui (t) − Fvi (t)|

≤

n∑
i=1

n
li + ki

ραi
‖u − v‖ρ

≤ n
l + k
ρα
‖u − v‖ρ ,

where α = max1≤i≤n αi. Therefore,

‖Fu − Fv‖ρ ≤ n
l + k
ρα
‖u − v‖ρ .

We choose ρ large enough such that n l+k
ρα < 1, then, by Banach fixed point theorem, F has a unique fixed

point in D, which is the unique positive solution.

Acknowledgements: The authors would like to thank the referee for many helpful comments and
suggestions.
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