Based on the S-type eigenvalue localization set developed by Li et al. (Linear Algebra Appl. 493 (2016) 469-483) for tensors, a modified S-type eigenvalue localization set for tensors is established in this paper by excluding some sets from the existing S-type eigenvalue localization set developed by Huang et al. (arXiv: 1602.07568v1, 2016). The proposed set containing all eigenvalues of tensors is much sharper compared with that employed by Li et al. and Huang et al. As its applications, a criteria, which can be utilized for identifying the nonsingularity of tensors, is developed. In addition, we provide new upper and lower bounds for the spectral radius of nonnegative tensors and the minimum H-eigenvalue of weakly irreducible strong M-tensors. These bounds are superior to some previous results, which is illustrated by some numerical examples.