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Abstract. In this paper, by taking a Frenet curve lying on a parametric or implicit hypersurface and
using the extended Darboux frame field of this curve, we give a new method for calculating the shape
operator’s matrix of the hypersurface depending on the extended Darboux frame curvatures. This new
method enables us to obtain the Gaussian and mean curvatures of the hypersurface depending on the
geodesic torsions of the curve and the normal curvatures of the hypersurface.

1. Introduction

In differential geometry, the shape of a geometric object (curve, surface, etc.) has always been a point
of interest. In Euclidean space, along a space curve we have only one direction to move. This direction is
determined by the tangent vector of the curve. The curvature of the curve measures the rate of change of
its tangent vector, and together with the torsion of the curve they give us some information to its shape.
However, along a surface we have different directions to move. These directions constitute a plane at a
point, called the tangent plane of the surface at that point. When we move along a given direction, the
tangent plane and thereby the normal vector of this plane, that is, the unit normal vector of the surface will
change its direction except for some special cases. It is well-known that the rate of change of the unit normal
vector of a surface has been measured by the shape operator. That’s why computing the shape operator
of a surface is important in surface theory. The calculation of the shape operator of a surface in Euclidean
3-space is well-known [3, 4]. The shape operator’s matrix of a surface can be expressed by depending on
the first and second fundamental form coefficients of the surface by using the Weingarten equations [3].

In this paper, we give a method which enables us to compute the shape operator of a hypersurface in
Euclidean 4-space. We consider a Frenet curve lying on a hypersurface, and use the extended Darboux
frame of the Frenet curve in Euclidean 4-space while constructing this new method. Our method includes
two cases in which one can obtain directly the shape operator’s matrix of a hypersurface along a Frenet
curve. The elements of obtained new matrix are composed of the geodesic torsions of first and second order
of the curve and the normal curvatures of the hypersurface.
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2. Preliminaries

Definition 2.1. Let M be an orientable hypersurface with the unit normal vector field N. The shape operator
S : χ(M) → χ(M) ofM is defined by S(X) = −DN

X for X ∈ χ(M), where D is the Riemannian connection of E4,
[5].

Definition 2.2. Let M be an orientable hypersurface in E4 and P be a point of M. Then K(P) = detSP and
H(P) = 1

3 trace(SP) are called the Gaussian and the mean curvatures ofM at P, respectively, [5].

Definition 2.3. Let M be an orientable hypersurface in E4, P be a point of M, and XP ∈ TP(M). The normal

curvature at P ofM in the direction of XP is defined by κn(XP) =
〈S(XP),XP〉

〈XP,XP〉
,[3].

Definition 2.4. Let {e1, e2, e3, e4} be the standard basis of R4. The ternary product of the vectors u =
4∑

i=1
uiei,

v =
4∑

i=1
viei, and w =

4∑
i=1

wiei is defined by the vector [7]

u ⊗ v ⊗w =

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

∣∣∣∣∣∣∣∣∣∣ ,
and satisfies the following properties:

x ⊗ y ⊗ (u ⊗ v ⊗w) =

∣∣∣∣∣∣∣∣
u v w
〈u,y〉 〈v,y〉 〈w,y〉
〈u, x〉 〈v, x〉 〈w, x〉

∣∣∣∣∣∣∣∣ ,
〈
x ⊗ y ⊗ z,u ⊗ v ⊗w

〉
=

∣∣∣∣∣∣∣∣
〈x,u〉 〈x,v〉 〈x,w〉
〈y,u〉 〈y,v〉 〈y,w〉
〈z,u〉 〈z,v〉 〈z,w〉

∣∣∣∣∣∣∣∣ .
2.1. Curves on a parametric hypersurface in E4

LetM be a regular hypersurface given by its parametric equation R = R(u1,u2,u3) and β : I ⊂ R →M
be a Frenet curve with arc-length parametrization. SinceM is regular, R1 ⊗ R2 ⊗ R3 , 0 at every point of
M, where Ri = ∂R

∂ui
. Then, the unit normal vector field ofM is given by

N =
R1 ⊗ R2 ⊗ R3

||R1 ⊗ R2 ⊗ R3||
. (1)

Moreover, since the curve β(s) lies onM, we may write β(s) = R
(
u1(s),u2(s),u3(s)

)
. Then we have

β′(s) =

3∑
i=1

Riu′i , (2)

β′′(s) =

3∑
i=1

Riu′′i +

3∑
i, j=1

Ri ju′i u
′

j, (3)

β′′′(s) =

3∑
i=1

Riu′′′i + 3
3∑

i, j=1

Ri ju′′i u′j +

3∑
i, j,k=1

Ri jku′i u
′

ju
′

k,

where Ri j = ∂2R
∂u j∂ui

, and Ri jk = ∂3R
∂uk∂u j∂ui

, 1 ≤ i, j, k ≤ 3.
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2.2. Curves on an implicit hypersurface in E4

Let M be a regular hypersurface given by f (x, y, z,w) = 0, and β(s) = (x(s), y(s), z(s),w(s)) be a Frenet
curve onM. SinceM is regular, at every point ofMwe have N(s) =

∇ f
||∇ f || (s) for the unit normal vector field

ofM along β. Besides, we have [1]

〈∇ f , β′〉 = 0,

〈∇ f , β′′〉 = −β′H f
(
β′

)t , (4)

〈∇ f , β′′′〉 = −3β′H f
(
β′′

)t
− β′

d(H f )
ds

(
β′

)t ,

where β′ = [x′ y′ z′ w′], β′′ = [x′′ y′′ z′′ w′′], β′′′ = [x′′′ y′′′ z′′′ w′′′], ∇ f = [ fx fy fz fw], and

H f =


fxx fxy fxz fxw
fyx fyy fyz fyw
fzx fzy fzz fzw
fwx fwy fwz fww

 ,
d
(
H f

)
ds

=
[

∂H f

∂x
(
β′

)t
· · ·

∂H f

∂w
(
β′

)t
]
,

∂H f

∂x
=


fxxx fxyx fxzx fxwx
fyxx fyyx fyzx fywx
fzxx fzyx fzzx fzwx
fwxx fwyx fwzx fwwx

 , · · ·, ∂H f

∂w
=


fxxw fxyw fxzw fxww
fyxw fyyw fyzw fyww
fzxw fzyw fzzw fzww
fwxw fwyw fwzw fwww

 .
2.3. The extended Darboux frame(ED-frame) field in E4

LetM ⊂ E4 be an orientable hypersurface and β : I ⊂ R → M be a Frenet curve in Euclidean 4-space
E4. Let T and N denote the unit tangent vector field of the curve β and the unit normal vector field of
M restricted to the curve β, respectively. Then the extended Darboux frame (ED-frame) field along β is
denoted by {T,E,D,N} [2], where

E =
β′′ − 〈β′′,N〉N
||β′′ − 〈β′′,N〉N||

, if {N,T, β′′} is linearly independent (Case 1), (5)

E =
β′′′ − 〈β′′′,N〉N − 〈β′′′,T〉T
||β′′′ − 〈β′′′,N〉N − 〈β′′′,T〉T||

, if {N,T, β′′} is linearly dependent (Case 2)

and

D = N ⊗ T ⊗ E, in both cases.

The differential equations for ED-frame field have the form
T′

E′

D′

N′

 =


0 κ1

1 0 κn

−κ1
1 0 κ2

1 τ1
1

0 −κ2
1 0 τ2

1

−κn −τ1
1 −τ

2
1 0




T
E
D
N

 (Case 1),


T′

E′

D′

N′

 =


0 0 0 κn
0 0 κ2

1 τ1
1

0 −κ2
1 0 0

−κn −τ1
1 0 0




T
E
D
N

 (Case 2),

where κi
1 and τi

1 are the geodesic curvature and the geodesic torsion of order i, (i = 1, 2), respectively [2].
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3. Shape Operator’s Matrix of a Hypersurface

Let us consider an orientable hypersurfaceM in 4-dimensional Euclidean space and take a Frenet curve
β(s) lying on this hypersurface. Let us denote the extended Darboux frame field along βwith {T,E,D,N}. It
is obvious from the definition that {T,E,D} constitutes a basis for χ(M) along β. Our aim is now to obtain
the matrix of the shape operator along the curve and to give the Gaussian and the mean curvatures of the
hypersurface depending on the geodesic torsions of first and second order of the curve and the normal
curvatures in the directions of E, D and E + D of the hypersurface for each case.

3.1. Case 1

Proposition 3.1. LetM be an orientable hypersurface, β be a Frenet curve lying onM, and {T,E,D,N} denotes the
ED-frame field of β. Then, the shape operator’s matrix ofM along β with respect to the basis {T,E,D} is obtained by

S =


κn(T) τ1

1 τ2
1

τ1
1 κn(E) Ψ

τ2
1 Ψ κn(D)

 , (6)

where

Ψ = κn(E + D) −
1
2

(
κn(E) + κn(D)

)
. (7)

Proof. Let
S(T) = a11T + a12E + a13D
S(E) = a21T + a22E + a23D
S(D) = a31T + a32E + a33D

. (8)

Then, we obtain

a11 = 〈S(T),T〉 = κn(T), a22 = 〈S(E),E〉 = κn(E), a33 = 〈S(D),D〉 = κn(D),

a12 = a21 = 〈S(T),E〉 = 〈E′,N〉 = τ1
1, a13 = a31 = 〈S(T),D〉 = 〈D′,N〉 = τ2

1.

On the other hand, we may write

〈S(E + D),E + D〉 = 〈S(E),E〉 + 〈S(D),D〉 + 2〈S(E),D〉

i.e.

2κn(E + D) = κn(E) + κn(D) + 2〈S(E),D〉.

Thus, we have

a23 = a32 = 〈S(E),D〉 = κn(E + D) −
1
2

(
κn(E) + κn(D)

)
=: Ψ.

Substituting the obtained results into (8), we find the shape operator’s matrix S as desired.

The computations of κn(T), τ1
1 and τ2

1 are known for not only parametric hypersurfaces [6] but also for
implicit hypersurfaces [2] in Euclidean 4-space. To make the matrix of the shape operator in the Proposition
3.1 understandable, we now show how the normal curvatures in the directions of E, D and E + D can be
obtained for both parametric and implicit hypersurfaces.
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Lemma 3.2. LetM be an orientable hypersurface given by R(u1,u2,u3) and β(s) = R(u1(s),u2(s),u3(s)) be a Frenet
curve lying onM. Denoting the ED-frame field of β by {T,E,D,N}, the normal curvature ofM in the direction of T
is (also in Case 2) given by [6]

κn(T) =

3∑
i, j=1

hi ju′i u
′

j,

where hi j = 〈Ri j,N〉, (1 ≤ i, j ≤ 3), denotes the second fundamental form coefficients ofM.

Lemma 3.3. LetM be an orientable hypersurface given by R(u1,u2,u3), and β(s) = R(u1(s),u2(s),u3(s)) be a Frenet
curve with its ED-frame field {T,E,D,N}. Then, the normal curvature ofM in the direction of E is found as

κn(E) =

3∑
i, j=1

hi jaia j, (9)

where

ai =
1

∆2

{
(1 j j1kk − 1

2
jk)〈Ri,E〉 + (1ik1 jk − 1i j1kk)〈R j,E〉 + (1i j1 jk − 1ik1 j j)〈Rk,E〉

}
, (10)

i,j,k=1,2,3 (cyclic),

∆2 = ‖R1 ⊗ R2 ⊗ R3‖
2 = 111122133 + 2112113123 − 1111

2
23 − 1221

2
13 − 1331

2
12, (11)

〈Rm,E〉 =
1
µ

{ 3∑
i=1

1imu′′i +

3∑
i, j=1

〈Ri j,Rm〉u′i u
′

j

}
, m = 1, 2, 3,

µ =
{ 3∑

i, j=1

1i ju′′i u′′j + 2
3∑

i, j,k=1

〈Ri j,Rk〉u′i u
′

ju
′′

k +

3∑
i, j,k,`=1

〈Ri j,Rk`〉u′i u
′

ju
′

ku′` −
( 3∑

i, j=1

hi ju′i u
′

j

)2} 1
2
,

and 1i j = 〈Ri,R j〉, (1 ≤ i, j ≤ 3), denotes the first fundamental form coefficients ofM.

Proof. We may write

E =

3∑
i=1

Riai. (12)

Taking the scalar product both hand sides of (12) with R j, j = 1, 2, 3, we obtain the linear equations

〈R j,E〉 =
3∑

i=1
1i jai. These equations constitute a linear system which has nonzero coefficients determinant

∆2 = ‖R1 ⊗ R2 ⊗ R3‖
2. By solving this system, we find the scalars ai as

ai =
1

∆2

{
(1 j j1kk − 1

2
jk)〈Ri,E〉 + (1ik1 jk − 1i j1kk)〈R j,E〉 + (1i j1 jk − 1ik1 j j)〈Rk,E〉

}
,

i,j,k=1,2,3 (cyclic). If we use (5) and (3), we get

〈Rm,E〉 =
1
µ

{ 3∑
i=1

1imu′′i +

3∑
i, j=1

〈Ri j,Rm〉u′i u
′

j

}
, 1 ≤ m ≤ 3,

where

µ = ‖β′′ − 〈β′′,N〉N‖ = {〈β′′, β′′〉 − 〈β′′,N〉2}
1
2

=
{ 3∑

i, j=1
1i ju′′i u′′j + 2

3∑
i, j,k=1
〈Ri j,Rk〉u′i u

′

ju
′′

k +
3∑

i, j,k,`=1
〈Ri j,Rk`〉u′i u

′

ju
′

ku′` −
( 3∑

i, j=1
hi ju′i u

′

j

)2} 1
2
.

Since κn(E) = 〈S(E),E〉, using Lemma 3.2, the normal curvature ofM in the direction of E is obtained as
desired.
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Lemma 3.4. LetM be an orientable hypersurface given by R(u1,u2,u3) and β(s) = R(u1(s),u2(s),u3(s)) be a Frenet
curve lying onM. Denoting the ED-frame field of β by {T,E,D,N}, the normal curvature ofM in the direction of D
is obtained by

κn(D) =

3∑
i, j=1

hi jAiA j, (13)

where

Ai =
1
∆

〈R j,E〉
3∑

m=1

1kmu′m − 〈Rk,E〉
3∑

m=1

1 jmu′m

 , i, j, k = 1, 2, 3(cyclic). (14)

Proof. Let D =
3∑

i=1
RiAi. Since D = N ⊗ T ⊗ E, using (1) we get

D =
1
∆

3∑
i=1

{
〈R j,E〉〈Rk,T〉 − 〈R j,T〉〈Rk,E〉

}
Ri, i, j, k = 1, 2, 3(cyclic).

Then, using (2), we find Ai as given in (14). So, Lemma 3.2 yields the desired normal curvature.

Lemma 3.5. LetM be an orientable hypersurface given by R(u1,u2,u3), and β(s) = R(u1(s),u2(s),u3(s)) be a Frenet
curve with the ED-frame field {T,E,D,N} lying onM. Then, the normal curvature ofM in the direction of E + D is
given by

κn(E + D) =
1
2

3∑
i, j=1

hi jBiB j, (15)

where Bi = ai + Ai.

Proof. We may write E + D =
3∑

i=1
Ri(ai + Ai) =

3∑
i=1

RiBi. Then it follows from

κn(E + D) =
1
2
〈S(E + D),E + D〉.

Lemma 3.6. LetM : f (x, y, z,w) = 0 be an orientable hypersurface and β(s) be a Frenet curve lying onM. Denoting
the ED-frame field of β by {T,E,D,N}, the normal curvature ofM in the direction of T is given by [2]

κn(T) =
−1
||∇ f ||

β′H f (β′)t,

where H f denotes the Hessian of f .

Lemma 3.7. Let M : f (x, y, z,w) = 0 be an orientable hypersurface, β(s) be a Frenet curve lying on M and
{T,E,D,N} denotes the ED-frame field of β. Then the normal curvature ofM in the direction of E is obtained by

κn(E) =
−1

δ2||∇ f ||

{
β′′H f (β′′)t + λβ′′H f (∇ f )t + λ∇ f H f (β′′)t + λ2

∇ f H f (∇ f )t
}
,

where

λ =
1
||∇ f ||2

β′H f (β′)t, δ2 = β′′(β′′)t
− λ2
||∇ f ||2.
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Proof. If we substitute N =
∇ f
||∇ f || into (5), and use (4), we find

E =
1
δ

(β′′ + λ∇ f ), (16)

where

λ = −
1
||∇ f ||2

〈β′′,∇ f 〉 =
1
||∇ f ||2

β′H f (β′)t,

δ2 = 〈β′′, β′′〉 − 〈β′′,N〉2 = β′′(β′′)t
− λ2
||∇ f ||2.

Then, the desired result is obtained from Lemma 3.6.

Lemma 3.8. LetM : f (x, y, z,w) = 0 be an orientable hypersurface and {T,E,D,N} denotes the ED-frame field of
the Frenet curve β(s) = (β1(s), β2(s), β3(s), β4(s)) lying onM. Then, the normal curvature ofM in the direction of D
is found as

κn(D) =
−1

δ2||∇ f ||3
ΦH f Φ

t,

where Φ = [φ1 φ2 φ3 φ4], ∇ f = ( f1, f2, f3, f4), and

φi = (−1) j f j

(
β′kβ
′′

` − β
′′

k β
′

`

)
+ (−1)k fk

(
β′jβ
′′

` − β
′′

j β
′

`

)
+ (−1)` f`

(
β′jβ
′′

k − β
′′

j β
′

k

)
,

i, j, k, ` = 1, 2, 3, 4(cyclic).

Proof. Substituting N =
∇ f
||∇ f ||

and E =
1
δ

(β′′ + λ∇ f ) into D = N ⊗ T ⊗ E gives

D =
1

δ||∇ f ||
∇ f ⊗ T ⊗ β′′ =

1
δ||∇ f ||

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3 e4
f1 f2 f3 f4
β′1 β′2 β′3 β′4
β′′1 β′′2 β′′3 β′′4

∣∣∣∣∣∣∣∣∣∣ =
1

δ||∇ f ||
Φ, (17)

where Φ = [φ1 φ2 φ3 φ4]. Then, the normal curvature ofM in the direction of D follows from Lemma
3.6.

Lemma 3.9. Let M : f (x, y, z,w) = 0 be an orientable hypersurface, β(s) be a Frenet curve lying on M and
{T,E,D,N} denotes the ED-frame field of β. Then the normal curvature ofM in the direction of E + D is obtained by

κn(E + D) =
−1

2δ2||∇ f ||
ΩH f Ω

t,

where

Ω = β′′ + λ∇ f +
1
||∇ f ||

Φ.

Proof. The result can be seen by using (16) and (17).
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3.2. Case 2

The proofs of the following results can be done similar to the proofs given in Case 1.

Proposition 3.10. LetM be an orientable hypersurface, β be a Frenet curve lying onM, and {T,E,D,N} denotes
the ED-frame field of β. Then, the shape operator’s matrix ofM along β with respect to the basis {T,E,D} is found as

S =


κn(T) τ1

1 0
τ1
1 κn(E) Ψ

0 Ψ κn(D)

 , (18)

where Ψ = κn(E + D) − 1
2

(
κn(E) + κn(D)

)
.

Lemma 3.11. LetM be an orientable hypersurface given by R(u1,u2,u3), and β(s) = R(u1(s),u2(s),u3(s)) be a Frenet
curve with its ED-frame field {T,E,D,N}. Then, the normal curvature ofM in the direction of E is given by

κn(E) =

3∑
i, j=1

hi jaia j,

where ai and ∆2 are as given in (10) and (11),

〈Rn,E〉 = 1
ν

{ 3∑
i=1
1inu′′′i + 3

3∑
i, j=1
〈Ri j,Rn〉u′′i u′j +

3∑
i, j,k=1
〈Ri jk,Rn〉u′i u

′

ju
′

k

−

3∑
i=1
1inu′i

( 3∑
i, j=1
1i ju′′′i u′j + 3

3∑
i, j,k=1
〈Ri j,Rk〉u′′i u′ju

′

k +
3∑

i, j,k,`=1
〈Ri jk,R`〉u′i u

′

ju
′

ku′`
)}
,

(19)

n = 1, 2, 3, and

ν = ||β′′′ − 〈β′′′,N〉N − 〈β′′′,T〉T|| = {〈β′′′, β′′′〉 − 〈β′′′,N〉2 − 〈β′′′,T〉2}
1
2

=
{ 3∑

i, j=1
1i ju′′′i u′′′j + 6

3∑
i, j,k=1
〈Ri j,Rk〉u′′′i u′′j u′k + 9

3∑
i, j,k,`=1

〈Ri j,Rk`〉u′′i u′′j u′ku′`

+2
3∑

i, j,k,`=1

〈Ri jk,R`〉u′′′i u′ju
′

ku′` + 6
3∑

i, j,k,`,m=1

〈Ri jk,R`m〉u′′i u′ju
′

ku′`u
′

m

+

3∑
i, j,k,`,m,n=1

〈Ri jk,R`mn〉u′i u
′

ju
′

ku′`u
′

mu′n −
(
3

3∑
i, j=1

hi ju′′i u′j +

3∑
i, j,k=1

〈Ri jk,N〉u′i u
′

ju
′

k

)2

−

( 3∑
i, j=1

1i ju′′′i u′j + 3
3∑

i, j,k=1

〈Ri j,Rk〉u′′i u′ju
′

k +

3∑
i, j,k,`=1

〈Ri jk,R`〉u′i u
′

ju
′

ku′`
)2} 1

2
.

Lemma 3.12. LetM be an orientable hypersurface given by R(u1,u2,u3) and β(s) = R(u1(s),u2(s),u3(s)) be a Frenet
curve lying onM. {T,E,D,N} denotes ED-frame field of β, then the normal curvature ofM in the direction of D is
obtained by

κn(D) =

3∑
i, j=1

hi jAiA j,

where Ai is as given in (14), and 〈R j,E〉 is as given in (19).
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Lemma 3.13. LetM be an orientable hypersurface given by R(u1,u2,u3), and β(s) = R(u1(s),u2(s),u3(s)) be a Frenet
curve lying onM. Let {T,E,D,N} denotes the ED-frame field of β. Then, the normal curvature ofM in the direction
of E + D is found as

κn(E + D) =
1
2

3∑
i, j=1

hi jBiB j,

where Bi = ai + Ai.

Lemma 3.14. Let M : f (x, y, z,w) = 0 be an orientable hypersurface, β(s) be a Frenet curve lying on M and
{T,E,D,N} denotes the ED-frame field of β. Then the normal curvature ofM in the direction of E is given by

κn(E) =
−1

ε2||∇ f ||

{
β′′′H f (β′′′)t + ζ1β

′′′H f (∇ f )t + ζ2β
′′′H f (β′)t + ζ1∇ f H f (β′′′)t

+ζ2
1∇ f H f (∇ f )t + ζ1ζ2∇ f H f (β′)t + ζ2β

′H f (β′′′)t + ζ1ζ2β
′H f (∇ f )t + ζ2

2β
′H f (β′)t

}
,

where

ζ1 =
1
||∇ f ||2

(
3β′H f (β′′)t + β′

d(H f )
ds

(β′)t
)
,

ζ2 = −β′(β′′′)t,

ε2 = β′′′(β′′′)t
− ζ2

1||∇ f ||2 − ζ2
2.

Lemma 3.15. LetM : f (x, y, z,w) = 0 be an orientable hypersurface and {T,E,D,N} denotes the ED-frame field of
the Frenet curve β(s) = (β1(s), β2(s), β3(s), β4(s)) lying onM. Then the normal curvature ofM in the direction of D
is found as

κn(D) =
−1

ε2||∇ f ||3
ΓH f Γ

t,

where Γ = [γ1 γ2 γ3 γ4] and γi = (−1) j f j

(
β′kβ
′′′

` − β
′′′

k β
′

`

)
+ (−1)k fk

(
β′jβ
′′′

` − β
′′′

j β
′

`

)
+ (−1)` f`

(
β′jβ
′′′

k − β
′′′

j β
′

k

)
,

i, j, k, ` = 1, 2, 3, 4(cyclic).

Lemma 3.16. Let M : f (x, y, z,w) = 0 be an orientable hypersurface, β(s) be a Frenet curve lying on M and
{T,E,D,N} denotes the ED-frame field of β. Then the normal curvature ofM in the direction of E + D is obtained by

κn(E + D) =
−1

2ε2||∇ f ||
ΛH f Λ

t,

where Λ = β′′′ + ζ1∇ f + ζ2β′ + 1
||∇ f ||Γ.

If we use the matrices for the shape operator in each case, we may give the following corollaries:

Corollary 3.17. LetM be an orientable hypersurface, β be a Frenet curve lying onM, and {T,E,D,N} denotes the
ED-frame field of β. Then, the Gaussian curvature and the mean curvature of the hypersurface along β can be given
by

Case 1: Kβ(s) = κn(T)κn(E)κn(D) −Ψ2κn(T) − (τ2
1)

2κn(E) − (τ1
1)

2κn(D) + 2τ1
1τ

2
1Ψ,

Case 2: Kβ(s) = κn(T)κn(E)κn(D) −Ψ2κn(T) − (τ1
1)

2κn(D),

and in both cases

Hβ(s) =
1
3

(
κn(T) + κn(E) + κn(D)

)
.
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Corollary 3.18. Let M be an orientable hypersurface, β be a line of curvature on M. Then T corresponds to the
principal direction, i.e. S(T) = k1T. If the principal curvature k1 , 0 and E, D correspond to principal directions,
then we have Ψ = 0 in each case. In this case, κn(E + D) corresponds to the arithmetic mean of the normal curvatures
κn(E) and κn(D).

4. Examples

In this part, we calculate the Gaussian curvatures and the mean curvatures of the hypersurfaces de-
pending on the ED-frame curvatures by finding the matrices of the shape operators of hypersurfaces given
by parametric or implicit equations.

Example 4.1. Let us consider the hypercylinderMgiven by its parametric equation R(u1,u2,u3) = (cos u1 cos u2,

sin u1 cos u2, sin u2,u3) and the curve β(s) = R
(

s
√

2
, s
√

2
, cos s

√
2

)
lying onM. Since Case 1 is valid along β, at

the point β(0) = (1, 0, 0, 1) we obtain κn(T) = −1, τ1
1 = τ2

1 = 0 [6]. We also find ∆ = 1, 〈R1,E〉 = 〈R2,E〉 = 0,
〈R3,E〉 = −1. Substituting these values into (10) gives a1 = a2 = 0, a3 = −1. So, from (9) we obtain κn(E) = 0.
If we use (14), we get A1 = −A2 = 1

√
2
, A3 = 0. Then, from (13) we have κn(D) = −1. Besides, we find

B1 = −B2 = 1
√

2
, B3 = −1 and from (15), we get κn(E + D) = − 1

2 . So, from (7) we obtain Ψ = 0.
Finally, the shape operator’s matrix ofM at β(0) = (1, 0, 0, 1) is obtained from (6) as

Sβ(0) =

 −1 0 0
0 0 0
0 0 −1


which yields the Gaussian curvature and mean curvature ofM as K(β(0)) = 0 and H(β(0)) = − 2

3 , respectively.

Example 4.2. Let us consider the unit speed curve α(s) =
( √3

2
cos

( s
2

)
,

1
2

cos
( s
2

)
, sin

( s
2

)
,

√
3

2
s
)

lying on the

hypercylinderM given by its implicit equation x2 + y2 + z2 = 1. Since Case 2 is valid along α, at the point

α(0) =
( √3

2
,

1
2
, 0, 0

)
we have

τ1
1 = −

√
3

4
, κn(T) = −

1
4
, κn(E) = −

3
4
, κn(D) = −1, κn(E + D) = −

7
8
, Ψ = 0.

The shape operator’s matrix is then follows from (18) as

Sα(0) =


−

1
4 −

√
3

4 0
−

√
3

4 −
3
4 0

0 0 −1

 .
We again have

K(α(0)) = 0, H(α(0)) = −
2
3
.
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