Filomat 32:16 (2018), 5767–5786 https://doi.org/10.2298/FIL1816767E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Lightlike Hypersurfaces of an (ε)-Para Sasakian Manifold with a Semi-Symmetric Non-Metric Connection

Feyza Esra Erdoğan^a, Selcen Yüksel Perktaş^b

^aFaculty of Education, Adıyaman University, 02040, Adıyaman, Turkey ^bFaculty of Arts and Sciences, Department of Mathematics, Adıyaman University,02040, Adıyaman, Turkey

Abstract.

In the present paper, we study a lightlike hypersurface, when the ambient manifold is an (ε) -para Sasakian manifold endowed with a semi-symmetric non-metric connection. We obtain a condition for such a lightlike hypersurface to be totally geodesic. We define invariant and screen semi-invariant lightlike hypersurfaces of (ε) -para Sasakian manifolds with a semi-symmetric non-metric connection. Also, we obtain integrability conditions for the distributions $D \perp \langle \delta \rangle$ and $D' \perp \langle \delta \rangle$ of a screen semi-invariant lightlike hypersurface of an (ε) -para Sasakian manifolds with a semi-symmetric non-metric connection.

1. Introduction

The theory of submanifolds of semi-Riemannian manifolds is one of the most important topics in differential geometry. In case the induced metric on the submanifold of semi-Riemannian manifold is degenerate, the study becomes more difficult and is quite different from the study of non-degenerate submanifolds. The primary difference between the lightlike submanifolds and non-degenerate submanifolds arises due to the fact that in the first case the normal vector bundle has non-trivial intersection with the tangent vector bundle, and moreover in a lightlike hypersurface the normal vector bundle is contained in the tangent vector bundle. Lightlike submanifolds of semi-Riemannian manifolds were introduced by K. L. Duggal and A. Bejancu in [9] (see also [10]). Since then, many authors have focused to extend their ideas on this topic (for example, see [1–3, 11, 12, 16]).

The idea of semi-symmetric connection was introduced by A. Friedmann and J. A. Schouten [13] in 1924. A linear connection $\check{\nabla}$ on a Riemannian manifold (M^{n}, g) is called semi-symmetric, if its torsion \check{T} satisfies

 $\check{T}(W,Z) = \check{\eta}(Z)W - \check{\eta}(W)Z,$

where η is a non-zero 1-form associated with a vector fields δ defined by

 $\tilde{\eta}(W) = \tilde{g}(W, \delta).$

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25; Secondary 53C15, 53C40, 53C50

Keywords. (ε)-para Sasakian manifold, lightlike hypersurface, invariant lightlike hypersurface, screen semi-invariant lightlike hypersurface, semi-symmetric non-metric connection.

Received: 03 October 2017; Revised: 03 January 2018; Accepted: 16 January 2018 Communicated by Ljubiša D.R. Kočinac

Communicated by Ljubisa D.K. Kocinac

Email addresses: ferdogan@adiyaman.edu.tr (Feyza Esra Erdoğan), sperktas@adiyaman.edu.tr (Selcen Yüksel Perktaş)

In 1930, E. Bartolotti [5] gave geometrical meaning of such a connection. In 1932, H. A. Hayden [14] defined and studied semi-symmetric metric connection. In 1970, Yano [24] started the systematic study of semi-symmetric metric connection and this was further developed by various authors. In 1991, N. S. Agashe and M. R. Chafle [4] introduced a semi-symmetric connection ∇ satisfying $\nabla g \neq 0$ and called such a connection as semi-symmetric non-metric connection. They gave the relation between the curvature tensors of the manifold with respect to the semi-symmetric non-metric connection and the Riemannian connection.

An almost paracontact structure (ϕ, δ, η) satisfying $\phi^2 = I - \eta \otimes \delta$ and $\eta(\delta) = 1$ on a differentiable manifold was introduced by I. Sato [17] in 1976. The structure is an analogue of the almost contact structure [7, 20]. An almost contact manifold is always odd-dimensional but an almost paracontact manifold could be evendimensional as well. In 1969, T. Takahashi [22] initiated the study of almost contact manifolds equipped with an associated pseudo-Riemannian metric. In particular, he studied Sasakian manifolds equipped with an associated pseudo-Riemannian metric. These indefinite almost contact metric manifolds and indefinite Sasakian manifolds are also known as (ε) -almost contact metric manifolds and (ε) -Sasakian manifolds [6, 8]. Also, in 1989, K. Matsumoto replaced the structure vector field δ by $-\delta$ in an almost paracontact manifold and associated a Lorentzian metric with the resulting structure and called it Lorentzian almost paracontact manifold [18]. In a Lorentzian almost paracontact manifold given by K. Matsumoto, the semi-Riemann metric has only index 1 and the structure vector field δ is always timelike. In [23], the authors introduced (ε) - almost paracontact structures by associating almost paracontact structure with a semi-Riemannian metric, where the structure vector field δ is spacelike or timelike according as $\varepsilon = 1$ or $\varepsilon = -1$. Lightlike hypersurfaces of such an (ε) -para Sasakian manifolds were studied by S. Yüksel Perktaş et al. [26] (see also [21]).

In 2014, S.K. Pandey et al. [19] studied semi-symmetric non-metric connection in an indefinite para-Sasakian manifold. They obtained the relation between the semi-symmetric non-metric connection and Levi-Civita connection in an indefinite para-Sasakian manifold.

In this article, we study a lightlike hypersurface, when the ambient manifold is an (ε)- para Sasakian manifold with semi-symmetric non-metric connection. We obtain condition for such a lightlike hypersurface to be totally geodesic. Also, we find integrability conditions for the distributions of some special lightlike hypersurfaces. The paper is organized as follows. In Section 2, we give a brief account of lightlike hypersurfaces of a semi-Riemannian manifold, for later use. In Section 3, an (ε)- para Sasakian manifold with semi-symmetric non-metric connection is given. In Section 4, we investigate lightlike hypersurfaces of an (ε)- para Sasakian manifold with semi-symmetric non-metric connection. In Section 5, invariant lightlike hypersurfaces of such manifolds are studied. Finally, in Section 6 screen semi-invariant lightlike hypersurfaces of such manifolds are investigated and we find some necessary and sufficient conditions for integrability of distributions.

2. Lightlike Hypersurfaces

Let (\check{M}, \check{g}) be an (n + 2)-dimensional semi-Riemannian manifold of fixed index $q \in \{1, ..., n + 1\}$ and M a hypersurface of \check{M} . Assume that the induced metric $g = \check{g}|_M$ on hypersurface is degenerate on M. Then, there exist a vector field $\xi \neq 0$ on M such that

$$g(\xi, W) = 0$$

for all $W \in \Gamma(TM)$.

The radical space of $T_W M$, at each point $W \in M$, is defined by

$$Rad T_{W}M = \{\xi \in T_{W}M : q(\xi, W) = 0, W \in T_{W}M\},$$
(1)

whose dimension is called the nullity degree of g and (M, g) is called a lightlike hypersurface of (\check{M}, \check{g}) . Since g is degenerate and any null vector is perpendicular to itself, $T_W M^{\perp}$ is also degenerate and

$$Rad T_W M = T_W M \cap T_W M^{\perp}.$$
(2)

For a hypersurface *M*, dim $T_W M^{\perp} = 1$ implies that

$$\dim Rad T_W M = 1,$$

$$Rad T_W M = T_W M^{\perp}$$

We call *Rad TM* the radical distribution and it is spanned by the null vector field ξ .

Consider a complementary vector bundle *S*(*TM*) of *Rad TM* in *TM*. This means that

$$TM = S(TM) \perp Rad TM$$
,

where \perp denotes the orthogonal direct sum. The bundle *S*(*TM*) is called the screen distribution on *M*. Since the screen distribution *S*(*TM*) is non-degenerate, there exists a complementary orthogonal vector sub-bundle *S*(*TM*)^{\perp} to *S*(*TM*) in *T* \check{M} which is called the screen transversal bundle of dimension 2 [10].

Since *Rad TM* is a lightlike vector sub-bundle of $S(TM)^{\perp}$, therefore for any local section $\xi \in \Gamma$ (*Rad TM*) there exists a unique local section *N* of $S(TM)^{\perp}$ such that

$$g(N,N) = 0$$
 $g(\xi,N) = 1.$ (4)

Hence, *N* is not tangent to *M* and $\{\xi, N\}$ is a local frame field of $S(TM)^{\perp}$. Moreover, we have a 1-dimensional vector sub-bundle *ltrTM* of $T\check{M}$, namely lightlike transversal bundle, which is locally spanned by *N*. Then we set

 $S(TM)^{\perp} = Rad TM \oplus ltrTM,$

where the decomposition is not orthogonal. Thus we have the following decomposition of

$$TM = S(TM) \perp Rad TM \oplus ltrTM = TM \oplus ltrTM.$$
(5)

From the above decomposition of a semi-Riemannian manifold M along a lightlike hypersurface M, we may consider the following local quasi-orthonormal field of frames of M along M:

$$\{W_1, ..., W_n, \xi, N\},\$$

where $\{W_1, ..., W_n\}$ is an orthonormal basis of $\Gamma(S(TM))$. According to the decomposition given by (5), we have the following the Gauss and the Weingarten formulas, respectively:

$$\vec{\nabla}_W V = \nabla_W V + B(W, V)N,$$
(6)
$$\vec{\nabla}_W N = -A_N W + \tau(W)N,$$
(7)

where *B* is a symmetric (0, 2) tensor which is called the second fundamental form and *A* is an endomorphism of *TM* which is called the shape operator with respect to *N* and τ is a 1-form on *M*.

For each $W \in \Gamma(TM)$, we can write

$$W = SW + \alpha (W) \xi, \tag{8}$$

where *S* is projection of *TM* on *S*(*TM*) and α is a 1-form given by

$$\alpha(W) = \check{q}(W, N). \tag{9}$$

From (7), for all $W, V, U \in \Gamma(TM)$, we get

$$(\nabla_W q)(V, U) = B(W, V)\alpha(U) + B(W, U)\alpha(V),$$

which implies that the induced connection ∇ is a non-metric connection on *M*.

From (3), we have

$$\nabla_W S = \nabla^*_W S + C(W, S)\xi \tag{10}$$

$$\nabla_W \xi = -A_{\xi}^* W - \tau(W) \xi \tag{11}$$

5769

(3)

for all $W \in \Gamma(TM)$, $S \in \Gamma(S(TM))$, where C, A_{ξ}^* and ∇^* are the local second fundamental form, the local shape operator and the induced connection on S(TM), respectively. Note that $\nabla_W^* S$ and $A_{\xi}^* W$ belong to $\Gamma(S(TM))$. Also, we have the following

$$g(A_{\xi}^*W, V) = B(W, V), \ g(A_{\xi}^*W, N) = 0, \ B(W, \xi) = 0, \ g(A_NW, N) = 0.$$
(12)

Moreover, from the first and third equations of (12) we have [9]

$$A_{\xi}^{*}\xi = 0. \tag{13}$$

3. (ε)-para Sasakian Manifolds with a Semi-Symmetric Non-Metric Connection

Let \check{M} be an almost paracontact manifold equipped with an almost paracontact structure $(\check{\phi}, \delta, \check{\eta})$ consisting of a tensor field $\check{\phi}$ of type (1, 1), a vector field δ and 1-form $\check{\eta}$ satisfying

$$\begin{split} \dot{\phi}^2 &= I - \check{\eta} \otimes \delta, \quad (14) \\ \check{\eta}(\delta) &= 1, \quad (15) \\ \check{\phi}(\delta) &= 0, \quad (16) \end{split}$$

$$\check{\eta} \circ \check{\phi} = 0. \tag{17}$$

Let \check{M} be an *n*-dimensional almost paracontact manifold and \check{g} be a semi-Riemannian metric with *index* (\check{g}) = v, such that

$$\tilde{g}\left(\tilde{\phi}W,\tilde{\phi}V\right) = \tilde{g}\left(W,V\right) - \varepsilon\tilde{\eta}\left(W\right)\tilde{\eta}\left(V\right),\tag{18}$$

where $\varepsilon = \pm 1$. In this case, \check{M} is called an (ε)-almost paracontact metric manifold equipped with an (ε)-almost paracontact structure ($\check{\phi}, \delta, \check{\eta}, \check{g}$) [23].

In view of equations (15),(16) and (18), we have

$$\check{g}\left(\check{\phi}W,V\right) = \check{g}\left(W,\check{\phi}V\right) \tag{19}$$

and

$$\tilde{g}(W,\delta) = \varepsilon \tilde{\eta}(W), \qquad (20)$$

for all $W, V \in \Gamma(T\check{M})$. From equation (20), it follows that

 $\check{g}(\delta,\delta) = \varepsilon,\tag{21}$

i.e. the structure vector field δ is never lightlike. An (ε) –almost paracontact metric manifold (\check{M} , $\check{\phi}$, δ , $\check{\eta}$, \check{g} , ε) is said to be spacelike (ε)-almost paracontact metric manifold, if $\varepsilon = 1$ and \check{M} is said to be a \check{M} timelike (ε)-almost paracontact metric manifold if $\varepsilon = -1$.

An (ε)-almost paracontact metric structure is called an (ε)-para Sasakian structure [23] if

$$\left(\check{\nabla}_{W}\check{\phi}\right)(V) = -\check{g}\left(\check{\phi}W,\check{\phi}V\right)\delta - \delta\check{\eta}\left(V\right)\check{\phi}^{2}W, \quad \forall W, V \in \Gamma(T\check{M}),$$
(22)

where $\breve{\nabla}$ the Levi-Civita connection. A manifold \breve{M} endowed with an (ε)-para Sasakian structure is called an (ε)-para Sasakian manifold.

In an (ε)-para Sasakian manifold, we have

$$\breve{\nabla}_W \delta = \varepsilon \breve{\phi},\tag{23}$$

$$\Omega(W,V) = \varepsilon \breve{g}(\breve{\phi}W,V) = (\breve{\nabla}_W \breve{\eta})V, \tag{24}$$

for all $W, V \in \Gamma(T\check{M})$, where Ω is the fundamental 2-form.

The $\tilde{\nabla}$ on a semi-Riemannian manifold (\check{M}, \check{g}) is called semi-symmetric connection, if its torsion tensor \tilde{T} satisfies

$$\widetilde{\widetilde{T}}(W,V) = \widetilde{\eta}(V)W - \widetilde{\eta}(W)V,$$

$$\widetilde{\eta}(W) = \widetilde{g}(W,\delta).$$
(25)
(26)

Let $\tilde{\nabla}$ be a linear connection and $\check{\nabla}$ be a Levi-Civita connection of an (ε)-para Sasakian manifold \check{M} such

$$\tilde{\tilde{\nabla}}_W V = \check{\nabla}_W V + F(W, V), \tag{27}$$

where F is a tensor of type (1, 2).

For a semi-symmetric non-metric connection $\tilde{\nabla}$ in \check{M} , we have

$$F(W,V) = \frac{1}{2} \left[\tilde{\tilde{T}}(W,V) + \tilde{\tilde{T}^{*}}(W,V) + \tilde{\tilde{T}^{*}}(V,W) \right] + \check{g}(W,V)\,\delta,$$
(28)

where

 \approx

$$T^*(W,V) = \breve{\eta}(V)W - \breve{g}(W,V)\delta.$$
⁽²⁹⁾

Using (25) and (29) in equation (28), we get

$$F(W,V) = \breve{\eta}(V)W. \tag{30}$$

Hence in view of equations (27) and (30), a semi-symmetric connection on an (ε)-para Sasakian manifold \check{M} is given by

$$\widetilde{\nabla}_W V = \breve{\nabla}_W V + \breve{\eta} (V) W. \tag{31}$$

Also, we have

~

$$\left(\tilde{\widetilde{\nabla}}_{W}\breve{g}\right)(V,Z) = -\breve{\eta}(V)\,\breve{g}(W,Z) - \breve{\eta}(Z)\,\breve{g}(W,V)\,.$$
(32)

In a lightlike hypersurface, we have

$$\left(\widetilde{\nabla}_{W} \breve{g} \right) (V, Z) = B(W, V)g(N, Z) + B(W, Z)g(V, N) - \breve{\eta} (V)g(W, Z) - \breve{\eta} (Z)g(V, W).$$

$$(33)$$

In view of equations (25) and (32), we conclude that the connection $\tilde{\nabla}$ is a semi-symmetric non-metric connection. Thus equation (31) gives the relation between the Levi-Civita connection $\tilde{\nabla}$ and semi-symmetric connection $\tilde{\nabla}$ on an (ε)-para Sasakian manifold \check{M} .

In view of equation (31), we have

$$\left(\widetilde{\widetilde{\nabla}}_{W}\breve{\phi}\right)(V) = \widetilde{\widetilde{\nabla}}_{W}\breve{\phi}(V) - \breve{\phi}\left(\widetilde{\widetilde{\nabla}}_{W}V\right),$$

i.e.,

$$\left(\widetilde{\nabla}_{W}\breve{\phi}\right)(V) = \left(\breve{\nabla}_{W}\breve{\phi}\right)(V) - \breve{\eta}(V)\breve{\phi}(W).$$
(34)

Replacing *W* and *V* by $\check{\phi}W$ and $\check{\phi}V$ and using equation (17), we find

$$\left(\tilde{\nabla}_{\breve{\phi}W}\breve{\phi}\right)\left(\breve{\phi}V\right) = \left(\breve{\nabla}_{\breve{\phi}W}\breve{\phi}\right)\left(\breve{\phi}V\right) = -\breve{g}\left(\breve{\phi}^2W,\breve{\phi}^2V\right)\delta,\tag{35}$$

for all $W, V \in T\check{M}$ [19].

Example 3.1. Let us assume the manifold R_q^{2m+1} with

$$\begin{split} &\breve{\eta} = \frac{1}{2} \left(dz - \sum_{i=1}^{m} y^{i} dx^{i} \right), \\ &\delta = 2\partial z, \\ &\breve{g} = \breve{\eta} \otimes \breve{\eta} + \frac{1}{4} \left(-\sum_{i=1}^{\frac{q}{2}} dx^{i} \otimes dx^{i} + dy^{i} \otimes dy^{i} + \sum_{i=\frac{q}{2}+1}^{m} dx^{i} \otimes dx^{i} + dy^{i} \otimes dy^{i} \right), \\ &\breve{\phi} \left(\sum_{i=1}^{m} \left(X_{i} \partial x_{i} + Y_{i} \partial y_{i} \right) + Z\partial z \right) = \sum_{i=1}^{m} \left(Y_{i} \partial x_{i} + X_{i} \partial y_{i} \right) + \sum_{i=1}^{m} Y_{i} y^{i} \partial z, \end{split}$$

where (x^i, y^i, z) are the cartesian coordinates on R_q^{2m+1} . Then $(R_q^{2m+1}, \check{g}, \check{\phi}, \check{\eta}, \delta)$ is a usual para-Sasakian manifold [21].

Example 3.2. Let R^3 be the 3-dimensional real number space with a coordinate system (x, y, z). We define

$$\begin{split} \breve{\eta} &= dz, \\ \delta &= \frac{\partial}{\partial z}, \\ \breve{\phi}(\frac{\partial}{\partial x}) &= \frac{\partial}{\partial x}, \breve{\phi}(\frac{\partial}{\partial y}) = -\frac{\partial}{\partial y}, \breve{\phi}(\frac{\partial}{\partial z}) = 0 \\ \breve{g} &= e^{-2z} (dx)^2 + e^{2z} (dy)^2 - (dz)^2. \end{split}$$

Then $(\check{\phi}, \check{g}, \check{\eta}, \delta)$ is an (ε) -para Sasakian structure. Let $\check{\nabla}$ and $\overset{\approx}{\nabla}$ denote the Levi-Civita connection and a linear connection on R^3 , respectively. Then we have

$$\begin{split} \breve{\nabla}_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} &= -e^{-2z} \frac{\partial}{\partial z}, \ \breve{\nabla}_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} = 0, \ \breve{\nabla}_{\frac{\partial}{\partial x}} \frac{\partial}{\partial z} = -\frac{\partial}{\partial x}, \\ \breve{\nabla}_{\frac{\partial}{\partial y}} \frac{\partial}{\partial x} &= 0, \ \breve{\nabla}_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} = e^{2z} \frac{\partial}{\partial z}, \ \breve{\nabla}_{\frac{\partial}{\partial y}} \frac{\partial}{\partial z} = \frac{\partial}{\partial y}, \\ \breve{\nabla}_{\frac{\partial}{\partial z}} \frac{\partial}{\partial x} &= -\frac{\partial}{\partial x}, \ \breve{\nabla}_{\frac{\partial}{\partial z}} \frac{\partial}{\partial y} = \frac{\partial}{\partial y}, \ \breve{\nabla}_{\frac{\partial}{\partial z}} \frac{\partial}{\partial z} = 0. \end{split}$$
(36)

If we define

$$\tilde{\nabla}_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} = -e^{2z} \frac{\partial}{\partial z}, \quad \tilde{\nabla}_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} = 0, \quad \tilde{\nabla}_{\frac{\partial}{\partial x}} \frac{\partial}{\partial z} = 0,$$

$$\tilde{\nabla}_{\frac{\partial}{\partial y}} \frac{\partial}{\partial x} = 0, \quad \tilde{\nabla}_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} = e^{2z} \frac{\partial}{\partial z}, \quad \tilde{\nabla}_{\frac{\partial}{\partial y}} \frac{\partial}{\partial z} = 2 \frac{\partial}{\partial y},$$

$$\tilde{\nabla}_{\frac{\partial}{\partial z}} \frac{\partial}{\partial x} = -\frac{\partial}{\partial x}, \quad \tilde{\nabla}_{\frac{\partial}{\partial z}} \frac{\partial}{\partial y} = \frac{\partial}{\partial y}, \quad \tilde{\nabla}_{\frac{\partial}{\partial z}} \frac{\partial}{\partial z} = \frac{\partial}{\partial z}.$$

$$(37)$$

then by using (36) and (37) we see that

$$\tilde{\tilde{T}}(W,V) = \tilde{\eta}(V)W - \tilde{\eta}(W)V,$$

which implies that $\overset{\tilde{\nabla}}{\nabla}$ is a semi-symmetric non-metric connection.

4. Lightlike Hypersurfaces of an (ε)- para Sasakian Manifold with a Semi-Symmetric Non-Metric Connection

Let *M* be a lightlike hypersurface of an (ε)- para Sasakian manifold with a semi-symmetric non-metric connection. In this case, if we take into account the fact that \breve{V} is a Levi-Civita connection, we can write the Gauss and Weingarten formulas as given by (6) and (7), respectively, where ∇ denotes the induced connection on *M* from Levi-Civita connection $\breve{\nabla}$.

Assume that $\tilde{\nabla}$ is a semi-symmetric connection on \check{M} . If we denote the induced connection from $\tilde{\nabla}$ on *TM* by $\mathring{\nabla}$, we can write

$$\tilde{\tilde{\nabla}}_{W}V = \tilde{\nabla}_{W}V + m(W, V)N,$$

$$\tilde{\tilde{\nabla}}_{W}V = \tilde{\nabla}_{W}V + m(W, V)N,$$

$$(38)$$

$$\nabla_W N = -A_N W + w(W) N. \tag{39}$$

Therefore, from (31) and above equations, we find

$$\mathring{\nabla}_W V = \nabla_W V + \check{\eta} (V) W, \tag{40}$$

$$m(W, V) = B(W, V),$$

$$w(W) = \tau(W).$$
(41)
(42)

Since ∇ is not a metric connection, then from (40), we obtain

$$\begin{pmatrix} \mathring{\nabla}_{W}g \end{pmatrix}(V,Z) = B(W,V)\theta(Z) + B(W,Z)\theta(V) -$$

$$\mathring{\eta}(V)g(W,Z) - \mathring{\eta}(Z)g(V,W),$$

$$(43)$$

which implies that $\mathring{\nabla}$ is a non-metric connection. Also, we have

$$\mathring{T}(W,V) = \check{\eta}(V)W - \check{\eta}(W)V.$$
(44)

As an adaptation of [25], we have:

Proposition 4.1. Let M be a lightlike hypersurface of an (ε) - para Sasakian manifold \check{M} with a semi-symmetric non-metric connection. Then M have a semi-symmetric non metric connection. Hence,

$$\begin{split} \mathring{T}(W,V) &= \check{\eta}(V)W - \check{\eta}(W)V, \\ \mathring{\nabla}_{W}V &= \nabla_{W}V + \check{\eta}(V)W, \\ &\left(\mathring{\nabla}_{W}g\right)(V,Z) &= B(W,V)\theta(Z) + B(W,Z)\theta(V) \\ &-\check{\eta}(V)g(W,Z) - \check{\eta}(Z)g(V,W). \end{split}$$

Now, replacing the Levi-Civita connection $\breve{\nabla}$ by semi-symmetric non-metric connection $\breve{\nabla}$ in (22), the equation is reformed to

$$\left(\tilde{\tilde{\nabla}}_{W}\check{\phi}\right)(V) = \left(\check{\nabla}_{W}\check{\phi}\right)(V) - \check{\eta}(V)\check{\phi}(W), \qquad (45)$$

$$\begin{pmatrix} \tilde{\nabla}_{W} \check{\phi} \end{pmatrix} (V) = -\check{g} (\check{\phi} W, \check{\phi} V) \delta - \varepsilon \check{\eta} (V) W + \varepsilon \check{\eta} (V) \check{\eta} (W) \delta - \check{\eta} (V) \check{\phi} (W).$$

$$(46)$$

5773

(14)

Replacing *V* by δ in (46) and using (16), $\tilde{\eta}(\check{\nabla}_W \delta) = 0$, we find

$$\overset{\approx}{\nabla}_{W}\delta = W + \varepsilon \check{\phi}(W) \,. \tag{47}$$

Let (M, g) be a lightlike hypersurface of (\check{M}, \check{g}) . For local sections ξ and N of *Rad TM* and *ltrTM*, respectively, in view of (26) and (14), we have

$$\check{\eta}(\xi) = 0, \check{\eta}(N) = 0,$$
(48)

$$\check{\phi}^2 \xi = 0, \, \check{\phi}^2 N = 0. \tag{49}$$

For $W \in \Gamma$ (*TM*), we can write

$$\check{\phi}W = \phi W + h(W)N,\tag{50}$$

where $\phi W \in \Gamma(TM)$ and

$$h(W) = g(\check{\phi}W,\xi) = g(W,\check{\phi}\xi).$$
(51)

Proposition 4.2. Let $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ be an (ε) - para Sasakian manifold with a semi-symmetric non-metric connection and M be a lightlike hypersurface of \check{M} , such that structure vector field δ is tangent to M. Then we have

$$g(\phi\xi,\xi) = 0,$$

$$g(\check{\phi}\xi,N) = g(\xi,\check{\phi}N) = \varepsilon g(\delta,A_N\xi),$$
(52)
(53)

where ξ is a local section of Rad TM and N is a local section of ltrTM.

Proof. From (47) and (13), we get

$$g(\check{\phi}\xi,\xi) = \varepsilon g\left(\tilde{\widetilde{\nabla}}_{\xi}\delta - \xi,\xi\right)$$
$$= -\varepsilon g\left(\delta,\nabla_{\xi}\xi\right)$$
$$= 0,$$

and

$$g(\check{\phi}\xi, N) = \varepsilon g\left(\tilde{\nabla}_{\xi}\delta - \xi, N\right)$$
$$= -\varepsilon g\left(\delta, \tilde{\nabla}_{\xi}N\right)$$
$$= \varepsilon g\left(\delta, A_N\xi\right) = g\left(\xi, \check{\phi}N\right)$$

Also, we find

$$g\left(\check{\phi}\xi,\check{\phi}N\right)=1.$$

This completes the proof. \Box

From the proposition above, we can say that there is no component of $\check{\phi}\xi$ in *ltrTM*, thus $\check{\phi}\xi \in \Gamma(TM)$. Moreover, there may be a component of $\check{\phi}\xi$ in *Rad TM*.

Therefore, for any lightlike hypersurface M of (ε)- para Sasakian manifolds with a semi-symmetric non-metric connection M, from the decomposition

$$D = S(TM) \perp Rad TM \perp \check{\phi}(Rad TM)$$

5775

and

$$D' = \check{\phi} \left(ltrTM \right),$$

we have

$$TM = D \oplus D'. \tag{54}$$

Consider two null vector field *H* and *K* and their 1-forms *h* and *k*, such that

$$H = \check{\phi}N, \quad h(W) = g(W,K),$$
(55)

$$K = \check{\phi}\xi, \quad k(W) = g(W,H).$$
(56)

Denote the projection morphism of *TM* on *D* by *S*. Any vector field *W* on *TM* is expressed by

$$W = SW + h(W)H.$$
(57)

Applying $\check{\phi}$ to the both sides of the last equation, we have

$$\begin{split} \check{\phi}W &= \check{\phi}SW + h(W)\check{\phi}H, \\ \check{\phi}W &= \phiW + h(W)N, \end{split}$$
(58)

where ϕ is a tensor field of type (1, 1) globally defined on *M* by $\phi W = \check{\phi}SW$.

If we apply $\check{\phi}$ to (58) and using (14)–(17) with (55) and (56), we get

$$\begin{split} \check{\phi}^2 W &= \check{\phi} \phi W + h\left(W\right) \check{\phi} N, \\ W - \check{\eta}\left(W\right) \delta &= \phi^2 W + h\left(W\right) H, \end{split}$$

which imply

$$\phi^2 W = W - \breve{\eta}(W)\,\delta - h(W)\,H + h\Big(\phi W\Big)N. \tag{59}$$

Using (32), (25), (19) and (58), we obtain

$$\begin{pmatrix} \mathring{\nabla}_W g \end{pmatrix}(V, Z) = B(W, V)g(N, Z) + B(W, Z)g(V, N) - \breve{\eta}(V)g(W, Z) - \breve{\eta}(Z)g(V, W).$$

$$(60)$$

Also, we have

$$\mathring{T}(W,V) = \check{\eta}(V)W - \check{\eta}(W)V, \tag{61}$$

for $W, V \in \Gamma(TM)$.

Proposition 4.3. Let $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ be an (ε) - para Sasakian manifold with a semi-symmetric non-metric connection and M be a lightlike hypersurface of \check{M} , such that structure vector field δ is tangent to M. Then we have

$$B(W, V) - B(V, W) = -\varepsilon \left(\breve{\eta} \otimes h \right) (W, V) g \left(\delta, A_N \xi \right), \tag{62}$$

$$B(W,V) = g\left(A_{\xi}^{*}W,V\right) + \breve{\eta}\left(V\right)h(W),\tag{63}$$

 $C(W, PV) = g(PV, A_N W) + \breve{\eta} (PV) k(W), \qquad (64)$

$$g(A_N W, \delta) = -(1+\varepsilon)k(W).$$
(65)

Proof. For all $W, V, \delta \in \Gamma(TM)$, using (38) and (57), we obtain

$$\check{\eta}(V) g(W, \xi) - \check{\eta}(W) g(V, \xi) = B(W, V) - B(V, W),$$

 $\varepsilon \left[\breve{\eta} \left(V \right) h(W) - \breve{\eta} \left(W \right) h(V) \right] g\left(\delta, A_N \xi \right) = B(W, V) - B(V, W),$

which imply

$$B(W, V) - B(V, W) = -\varepsilon \left(\breve{\eta} \otimes h \right) (W, V) g \left(\delta, A_N \xi \right).$$

Also using (38) and (41), we find that the local second fundamental forms are related to their shape operators by

$$B(W, V) = g\left(\tilde{\nabla}_W V, \xi\right)$$

= $-g(V, \nabla_W \xi) + \check{\eta}(V) h(W)$
= $g\left(A_{\xi}^* W, V\right) + \check{\eta}(V) h(W).$

For a projection morphism P to S(TM) from M, we get

$$\begin{split} C\left(W,PV\right) &= g\left(\tilde{\tilde{\nabla}}_{W}PV,N\right) \\ &= -g\left(PV,\tilde{\nabla}_{W}N\right) + \check{\eta}\left(PV\right)k\left(W\right) \\ &= g\left(PV,A_{N}W\right) + \check{\eta}\left(PV\right)k\left(W\right). \end{split}$$

Applying $\overset{\approx}{\nabla}_W$ to $g(\delta, N) = 0$ and using (60), (47), (56) and (39), we have

$$\begin{split} g\left(W + \varepsilon \check{\phi} W, N\right) &= g\left(\delta, -A_N W + \tau\left(W\right)N\right), \\ k\left(W\right) + \varepsilon k\left(W\right) &= -g\left(A_N W, \delta\right), \\ g\left(A_N W, \delta\right) &= -(1 + \varepsilon) k\left(W\right). \end{split}$$

This completes the proof. \Box

Now, applying $\tilde{\nabla}_W$ to (50), we obtain

$$\begin{split} \tilde{\nabla}_{W}\check{\phi}V &= \tilde{\nabla}_{W}\phi V + \left(\tilde{\nabla}_{W}h\right)(V)N + h(V)\tilde{\nabla}_{W}N, \\ \begin{pmatrix} -g(W,V)\delta + 2\varepsilon\check{\eta}(W)\check{\eta}(V)\delta - \varepsilon\check{\eta}(V)W\\ -\check{\eta}(V)\phi W - \check{\eta}(V)h(W)N + h(\nabla_{W}V)N\\ + B(W,V)H \end{pmatrix} &= \begin{pmatrix} \left(\nabla_{W}\phi\right)V + B(W,\phi V)N + \check{\eta}(\phi V)W\\ \left(\tilde{\nabla}_{W}h\right)(V)N - h(V)A_{N}W - h(V)\tau(W)N \end{pmatrix}. \end{split}$$

 \sim

~

Then, we have

$$\left(\nabla_{W} \phi \right) V = -g \left(W, V \right) \delta + 2\varepsilon \breve{\eta} \left(W \right) \breve{\eta} \left(V \right) \delta$$

$$-\varepsilon \breve{\eta} \left(V \right) W - \breve{\eta} \left(V \right) \phi W + \breve{\eta} \left(\phi V \right) W$$

$$+ h(V) A_{N} W + B(W, V) H$$

$$(66)$$

$$\left(\tilde{\nabla}_{W}h\right)(V) = h(V)\tau(W) - \check{\eta}(V)h(W) + h(\nabla_{W}V) - B(W,\phi V).$$
(67)

From (33), we have

$$\left(\tilde{\nabla}_{W}h\right)(V) = \varepsilon B\left(W,V\right)g\left(\delta,A_{N}\xi\right) - \check{\eta}\left(V\right)h\left(W\right).$$
(68)

If we use (68) in (67), we arrive at

$$h(\nabla_W V) = h(V)\tau(W) - B(W, \phi V) - \varepsilon B(W, V)g(\delta, A_N\xi).$$
⁽⁶⁹⁾

Theorem 4.4. A lightlike hypersurface M of an (ε)- para Sasakian manifold with a semi-symmetric non-metric connection is totally geodesic if and only if

$$\left(\nabla_{W} \phi \right) V = -g \left(W, V \right) \delta + 2\varepsilon \breve{\eta} \left(W \right) \breve{\eta} \left(V \right) \delta$$

$$-\varepsilon \breve{\eta} \left(V \right) W - \breve{\eta} \left(V \right) \phi W + \breve{\eta} \left(\phi V \right) W,$$
 (70)

$$A_N W = \left(\nabla_W \phi\right) H + g\left(W, H\right) \delta,\tag{71}$$

where $V \in \Gamma(D)$.

Proof. For any $V \in \Gamma(D)$, we have h(V) = 0. Then, (66) is reduced to

$$\left(\nabla_{W} \phi \right) V = -g \left(W, V \right) \delta + 2\varepsilon \check{\eta} \left(W \right) \check{\eta} \left(V \right) \delta -\varepsilon \check{\eta} \left(V \right) W - \check{\eta} \left(V \right) \phi W + \check{\eta} \left(\phi V \right) W - B(W, V) H.$$

On the other hand, replacing V by H in (66), we also obtain

$$\left(\nabla_{W} \phi \right) H = -g \left(W, H \right) \delta + 2\varepsilon \breve{\eta} \left(W \right) \breve{\eta} \left(H \right) \delta$$

$$-\varepsilon \breve{\eta} \left(H \right) W - \breve{\eta} \left(H \right) \phi W + \breve{\eta} \left(\phi H \right) W$$

$$+ h(H) A_{N} W - B(W, H) H,$$

$$(72)$$

where

$$\check{\eta}(H) = 0,$$
(73)

 $h(H) = 1.$
(74)

$$\tilde{\eta}(\phi H) = 0. \tag{75}$$

If taking into account (73)-(75) with (72), we find

$$\left(\nabla_{W}\phi\right)H = -g\left(W,H\right)\delta - B(W,H)H + A_{N}W,$$

which yields

$$A_N W = \left(\nabla_W \phi\right) H + g\left(W, H\right) \delta + B(W, H) H.$$
(76)

As a result, if we assume that *M* is totally geodesic, then (76) is reduced (71). The converse is clear. Thus, we complete the proof. \Box

Proposition 4.5. Let *M* be a lightlike hypersurface of an (ε) - para Sasakian manifold \check{M} with a semi-symmetric non-metric connection . Then, for any $W \in \Gamma(TM)$,

i) *if the vector field H is parallel, then we have*

 $A_N W = \breve{\eta} (A_N W) \delta + h (A_N W) H,$

ii) if the vector field K is parallel, then we have

$$\begin{split} A^*_{\xi}W - \breve{\eta} \left(A^*_{\xi}W \right) \delta &= 0, \\ \tau \left(W \right) &= 0, \\ h \left(\phi A^*_{\xi}W \right) + h \left(A^*_{\xi}W \right) &= 0. \end{split}$$

Proof. i) Applying ϕ to (76) and using (59), we find

$$\begin{split} \phi A_N W &= \phi \left(\left(\nabla_W \phi \right) H \right) + g \left(W, H \right) \phi \delta + B(W, H) \phi H \\ &= \phi \left[\nabla_W \phi H - \phi \left(\nabla_W H \right) \right] + g \left(W, H \right) \left[\check{\phi} \delta - h(\delta) N \right] \\ &+ B(W, H) \left[\check{\phi} H - h(H) N \right] \\ &= -\phi^2 \left(\nabla_W H \right) \\ &= -\nabla_W H + \check{\eta} \left(\nabla_W H \right) \delta + h \left(\nabla_W H \right) H + h \left(\phi \nabla_W H \right) N, \end{split}$$

for all $W \in \Gamma(TM)$. If *H* is parallel, i.e. $\nabla_W H = 0$, then this equation reduced to

$$\phi A_N W = 0.$$

From this equation and (58), we get

 $\check{\phi}(A_N W) = h(A_N W) N.$

Applying $\check{\phi}$ to this equation and using (14), we obtain

 $A_N W = \breve{\eta} (A_N W) \delta + h (A_N W) H.$

ii) Suppose that the vector field *K* is parallel. Replacing *V* by ξ in (66) and using (12), we have

$$\left(\nabla_W\phi\right)\xi=0.$$

Hence, we find

$$\begin{aligned} \left(\nabla_{W} \phi \right) \xi &= \nabla_{W} \phi \xi - \phi \left(\nabla_{W} \xi \right) \\ 0 &= -\nabla_{W} K + \phi \left(A_{\xi}^{*} W \right) + \tau \left(W \right) K \\ \phi \left(A_{\xi}^{*} W \right) &= -\tau \left(W \right) K. \end{aligned}$$

Applying ϕ to this equation and using (59), we get

$$\phi^2\left(A_{\xi}^*W\right) = -\tau\left(W\right)\phi K$$

$$h\left(\phi A_{\xi}^{*}W\right)N + A_{\xi}^{*}W - \breve{\eta}\left(A_{\xi}^{*}W\right)\delta - h\left(A_{\xi}^{*}W\right)H = -\tau\left(W\right)\phi K,$$

which completes the proof. \Box

Theorem 4.6. Let *M* be a lightlike hypersurface of an (ε) -para Sasakian manifold \check{M} with a semi-symmetric nonmetric connection. Then, the screen distribution of *M* is integrable if and only if

$$\begin{array}{lll} C(W,\delta) &=& C(\delta,W),\\ C(W,\delta) &=& \varepsilon g\left(\phi W,N\right),\\ g\left(\phi W,N\right) &=& g\left(W,\phi N\right). \end{array}$$

Proof. For all $W, V \in \Gamma(S(TM))$, $N \in \Gamma(ltrTM)$ the screen distribution is integrable if and only if

$$g([W, V], N) = 0$$

$$g(W, N) + \varepsilon g(W, \check{\phi}N) - g(\nabla_{\delta}W, N) = 0$$

$$C(W, \delta) = \varepsilon g(W, \check{\phi}N)$$

$$C(W, \delta) = \varepsilon g(\phi W, N).$$

Also we can write screen distribution is integrable if and only if

$$g\left([W, V], N\right) = 0$$

$$g\left(\tilde{\nabla}_{W}\delta - \tilde{\nabla}_{\delta}W - \tilde{\eta}\left(\delta\right)W - \tilde{\eta}\left(W\right)\delta, N\right) = 0$$

$$g\left(\nabla_{W}\delta, N\right) - g\left(\nabla_{\delta}W, N\right) = 0$$

$$C(W, \delta) - C(\delta, W) = 0$$

$$C(W, \delta) = C(\delta, W)$$

$$g\left(\phi W, N\right) = g\left(W, \phi N\right).$$

This completes the proof. \Box

5. Invariant Lightlike Hypersurfaces of an (ε)-para Sasakian Manifold with a Semi-Symmetric Non-Metric Connection

Definition 5.1. Let $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ be an (n + 2)-dimensional (ε) -almost paracontact metric manifold endowed a semi-symmetric non-metric connection and M be a lightlike hypersurface of \check{M} . If

 $\check{\phi}(S(TM)) = S(TM)$

then, M is called an invariant lightlike hypersurface of \breve{M} [26].

Theorem 5.2. Let $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ be an (n + 2)-dimensional (ε) -almost paracontact metric manifold endowed semisymmetric non-metric connection. Then M is an invariant lightlike hyprsurface of \check{M} if and only if

 $\check{\phi}(Rad TM) = Rad TM,$ $\check{\phi}(ltrTM) = ltrTM.$

Proof. Let *M* be an invariant lightlike hyprsurface of *M*. From $\check{\phi}E = \phi E = P\phi E + \theta(\phi E)E$, for any $W \in \Gamma(TM)$, we get

$$\breve{g}(\breve{\phi}E,W) = \breve{g}(E,\phi W + h(w)N) = h(w),$$
(77)

$$\breve{g}(\breve{\phi}E,W) = \breve{g}(\breve{\phi}E,PW + h(w)H) = \breve{g}(\breve{\phi}E,PW) + h(w).$$
⁽⁷⁸⁾

From (77) and (78), we find

 $\breve{g}(\breve{\phi}E, PW) = 0,$

namely, there is not any component of $\check{\phi}E$ in *S*(*TM*) and $\check{\phi}(Rad TM) = Rad TM$. For any local section *N* of *ltrTM*, we can write

 $\check{\phi}N = P\phi N + \check{g}\left(\check{\phi}N, N\right)E + \check{g}\left(\check{\phi}N, E\right)N.$

Then, for any $W \in \Gamma(TM)$, we have

$$\begin{split} \breve{g}(\breve{\phi}N,W) &= \breve{g}(\breve{\phi}N,PW+h(w)H) \\ &= \breve{g}(\breve{\phi}N,PW) \\ &= \breve{g}(N,\breve{\phi}PW), \end{split}$$

where $PW \in S(TM)$. Since *M* is an invariant lightlike hypersurface, $\check{\phi}PW \in S(TM)$, then we get

$$\breve{g}(\breve{\phi}N,W) = \breve{g}(N,\breve{\phi}PW) = 0.$$

5779

Hence, there is no component of ϕN in *S*(*TM*).

Also if we apply $\check{\phi}$ to $\check{\phi}N = P\phi N + \check{g}(\check{\phi}N, N)E + \check{g}(\check{\phi}N, E)N$, then we find that $P\phi N = 0$. Therefore we have

$$\check{\phi}N = \check{g}\left(\check{\phi}N,N\right)E + \check{g}\left(\check{\phi}N,E\right)N$$

which implies

$$\breve{g}(\breve{\phi}N,N) = \breve{g}(\breve{\phi}N,E) = 0$$

Since ker $\check{\phi} = Span\{\delta\}$, we find $\check{g}(\check{\phi}N, N) = 0$. Thus $\check{\phi}N = \check{g}(\check{\phi}N, E)N$, that is $\check{\phi}(ltrTM) = ltrTM$. Conversely, let $\check{\phi}(RadTM) = RadTM$ and $\check{\phi}(ltrTM) = ltrTM$. For any $W \in S(TM)$, we have

 $\breve{g}(E,\breve{\phi}W) = \breve{g}(\breve{\phi}E,W) = 0.$

Thus there is no component of $\check{\phi}W$ in *ltrTM*. Similarly, we get

 $\breve{g}(\breve{\phi}N,W) = \breve{g}(N,\breve{\phi}W) = 0,$

which implies that there is no component of $\check{\phi}W$ in *Rad TM*. This completes the proof. \Box

Example 5.3. Let $(R_2^5, \check{g}, \check{\phi}, \check{\eta}, \delta)$ be an (ε) -para Sasakian manifold given in Example 3.1., where \check{g} is of signature (-, +, -, + +) with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial y_1, \partial y_2, \partial z\}$. Suppose M is a hypersurface of R_2^5 given by

$$\begin{array}{rcl}
-x^1 &=& y^1 = u_1, \\
x^2 &=& u_2, \\
y^2 &=& u_3, \\
z &=& u_4.
\end{array}$$

Then $Rad TM = span \{ E = -2\partial x_1 - 2\partial x_2 + 2\partial y_1 + 2\partial y_2 - (y^1 + y^2) \partial z \}$ and ltr(TM) is spanned by

$$N = \frac{1}{2} \left(\partial x_1 - \partial x_2 - \partial y_1 + \partial y_2 + \left(y^1 - y^2 \right) \partial z \right).$$

It can be easily checked that $\check{\phi}E = -E$, $\check{\phi}N = -N$. Thus *M* is an invariant lightlike hypersurface of R_2^5 .

Theorem 5.4. Let $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ be an (ε) -almost paracontact metric manifold endowed semi-symmetric non-metric connection and M be an invariant lightlike hypersurface of \check{M} . Then $(M, \phi, \delta, \check{\eta}, g, \varepsilon)$ is an (ε) -almost paracontact metric manifold with a semi-symmetric non-metric connection.

Proof. Let *M* be an invariant lightlike hypersurface of \check{M} and $W, V \in \Gamma(TM)$. From (58) and $\phi W = \check{\phi}SW$, where *S* denotes the projection morphism of *TM* on *D*, we have

$$\check{\phi}W = \phi W = \check{\phi}SW. \tag{79}$$

If we apply $\check{\phi}$ to (79), we can write

$$\phi^2 W = W - \eta(W)\delta. \tag{80}$$

Also from (79), it follows that

$$\check{\phi}\delta = \phi\delta = 0. \tag{81}$$

5781

In view of (80) and (81), we can see that

$$\vec{\eta} \circ \vec{\phi} = \vec{\eta} \circ \phi$$

$$\vec{\eta} (\delta) = 1.$$
(82)
(83)

Moreover, from (19), we find

$$g(\phi W, V) = g(W, \phi V), \tag{84}$$

and from (18), we obtain

 $g(\phi W, \phi V) = g(W, V) - \varepsilon \breve{\eta}(W) \,\breve{\eta}(V) \,. \tag{85}$

Therefore from (80)-(85), we completes proof. \Box

Proposition 5.5. Let *M* be an invariant lightlike hypersurface of an (ε) -para Sasakian manifold $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ endowed with a semi-symmetric non-metric connection. Then we have

$$g(\delta, A_N P W) = \theta(W)(1 + \varepsilon),$$

for $W \in \Gamma(TM)$.

Proof. Since $\breve{g}(\delta, N) = 0$ and using (47), we write

$$\breve{g}(W,N) + \varepsilon \breve{g}(\breve{\phi}W,N) = \breve{g}(\delta,A_NW).$$
(86)

For any $W \in \Gamma(TM)$, from (86), we find

$$\begin{split} \breve{g}\left(PW + \theta\left(W\right), N\right) + \varepsilon \breve{g}\left(W, \breve{\phi}N\right) &= \breve{g}\left(\delta, A_N PW\right) \\ \theta\left(W\right) \left(1 + \varepsilon\right) &= g\left(\delta, A_N PW\right). \end{split}$$

г		
L		
L		

Corollary 5.6. Let *M* be an invariant lightlike hypersurface of a timelike (resp., spacelike) (ε)-para Sasakian manifold $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ endowed with a semi-symmetric non-metric connection. Then we have $g(\delta, A_N PW) = 0$ (resp., $g(\delta, A_N PW) = 2\theta(W)$).

Theorem 5.7. An invariant lightlike hypersurface of an (ε) -para Sasakian manifold with semi-symmetric non metric connection is also an (ε) -para Sasakian manifold endowed with a semi-symmetric non-metric connection. Furthermore, we have

$$B(W,\phi V)N - B(W,V)\phi N = 0, \tag{87}$$

$$\phi(A_N W) = A_{\phi N} W - \theta(W) \,\delta,\tag{88}$$

for any $W, V \in \Gamma(TM)$.

Proof. From (38) and (41), we find

$$\left(\tilde{\nabla}_{W} \breve{\phi} \right) (V) = \mathring{\nabla}_{W} \breve{\phi} V + B(W, \breve{\phi} V)$$
$$- \breve{\phi} \mathring{\nabla}_{W} V - B(W, V) \breve{\phi} N.$$

From the definition of an invariant lightlike hypersurface, we have

$$\left(\tilde{\tilde{\nabla}}_{W}\check{\phi}\right)(V) = \left(\tilde{\nabla}_{W}\check{\phi}\right)V + B(W,\phi V)N - B(W,V)\check{\phi}N.$$

Using (46), we get

$$\begin{pmatrix} -\breve{g}(\phi W, \phi V)\delta - \varepsilon \breve{\eta}(V)W \\ +\varepsilon \breve{\eta}(V)\breve{\eta}(W)\delta - \breve{\eta}(V)\phi(W) \end{pmatrix} = \begin{pmatrix} (\mathring{\nabla}_W \breve{\phi})V + B(W, \phi V)N \\ -B(W, V)\breve{\phi}N \end{pmatrix}.$$

Equating tangential parts of above equation provides

$$\left(\mathring{\nabla}_{W}\check{\phi}\right)V = -\check{g}\left(\phi W, \phi V\right)\delta - \varepsilon\check{\eta}\left(V\right)W + \varepsilon\check{\eta}\left(V\right)\check{\eta}\left(W\right)\delta - \check{\eta}\left(V\right)\phi\left(W\right).$$

which implies that *M* is an (ε)-para Sasakian manifold with semi-symmetric non metric connection via Theorem 5.1. Also, equating transversal parts of above equation gives equation (87).

Next using (46) and (39) with (34), we obtain

$$\left(\widetilde{\widetilde{\nabla}}_{W}\breve{\phi}\right)N = \widetilde{\widetilde{\nabla}}_{W}\breve{\phi}N - \breve{\phi}\left(\widetilde{\widetilde{\nabla}}_{W}N\right),$$

which implies (88) and τ (*W*) = 0. This completes the proof. \Box

6. Screen Semi-Invariant Lightlike Hypersurfaces of an (ε)-para Sasakian Manifold with a Semi-Symmetric Non-Metric Connection

Definition 6.1. Let $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$ be an (n + 2)-dimensional (ε) -almost paracontact metric manifold endowed with a semi-symmetric non-metric connection and M be a lightlike hypersurface of \check{M} . If

 $\check{\phi}(Rad\ TM) \subset S(TM), \\ \check{\phi}(ltrTM) \subset S(TM),$

then M will be called a screen semi-invariant lightlike hypersurface of M. (see also

Example 6.2. Let $(R_2^5, \check{g}, \check{\phi}, \check{\eta}, \delta)$ be an (ε) -para Sasakian manifold given in Example 3.1., where \check{g} is of signature (-, +, -, + +) with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial y_1, \partial y_2, \partial z\}$. Suppose M is a hypersurface of R_2^5 given by

 $x^2 = y^2 = u_2,$ $x^1 = u_1,$ $y^1 = u_3,$ $z = u_4$

Then $Rad TM = span \left\{ 2\partial x_1 + \sqrt{2}\partial x_2 - 2\partial y_1 + \sqrt{2}\partial y_2 + \left(2 + 2y^1 + \sqrt{2}y^2\right)\partial z \right\}$ and ltr(TM) is spanned by $N = \sqrt{2}\partial x_1 + \sqrt{2}\partial y_1 + \left(2 + \sqrt{2}y^1\right)\partial z$. We easily check that

$$\begin{split} \check{\phi}E &= -2\partial x_1 + \sqrt{2}\partial x_2 + 2\partial y_1 + \sqrt{2}\partial y_2 + \left(2y^1 + \sqrt{2}y^2\right)\partial z \in \Gamma(S(TM)),\\ \check{\phi}N &= \sqrt{2}\partial x_1 + \sqrt{2}\partial y_1 + \sqrt{2}y^1\partial z \in \Gamma(S(TM)), \end{split}$$

thus *M* is a screen semi invariant lightlike hypersurface of R_2^5 .

Proposition 6.3. A screen semi-invariant lightlike hypersurface of an (ε) -para Sasakian manifold with semi-symmetric non-metric connection is (ε) -para Sasakian manifold, if

$$\left(\tilde{\widetilde{\nabla}}_{W}\breve{\phi}\right)(V) = -\breve{g}\left(\phi W, \phi V\right)\delta - \breve{\eta}\left(V\right)\phi^{2}W - \breve{\eta}\left(V\right)\phi W.$$

5782

In view of (55) and (56), we can find

$$\check{q}(H,K) = 1. \tag{89}$$

Therefore $\langle H \rangle \oplus \langle K \rangle$ is a non-degenerate vector bundle of S(TM) with rank2. Since δ belong to S(TM) and $\check{g}(H, \delta) = \check{g}(K, \delta) = 0$. Hence, there exists a non-degenerate distribution D_{\circ} of rank n - 3 on M such that

 $S(TM) = D_{\circ} \perp \{ \langle H \rangle \oplus \langle K \rangle \} \perp \langle \delta \rangle,\$

we note that D_{\circ} is invariant distribution with $\check{\phi}$, that is $\check{\phi}D_{\circ} = D_{\circ}$. Denoting

 $D = D_{\circ} \perp Rad TM \perp \langle K \rangle$

and

 $D'=\langle H\rangle$

then, we have

 $TM = D \oplus D' \perp \langle \delta \rangle.$

Thus, every $W \in \Gamma(TM)$ can be expressed as

$$W = RW + QW + \breve{\eta}(W)\,\delta,$$

where R and Q are projections of TM into D and D', respectively. Hence, we may write

$\phi W = \dot{q}$	φ̃RW,	(90)
1 1		

 $W \in \Gamma$ (*TM*). If we use (15), (50) and (51), we obtain

$$\check{\phi}^2 W = \phi^2 W + h(\phi W) N + h(W) H.$$
⁽⁹¹⁾

By comparing the tangential and transversal parts above equation, we find

ϕ^2	=	$I - \breve{\eta} \otimes \delta - h \otimes H,$	(92)
$h \otimes \phi$	=	0,	(93)
$\phi\delta$	=	0,	(94)
$h(\delta)$	=	0,	(95)

as well as

 $\check{\eta}(H) = 0, \check{\eta}(\delta) = 1$ (96) $\check{\eta} \circ \phi = 0.$ (97)

Therefore we have

Proposition 6.4. Let M be a screen semi-invariant lightlike hyprsurface of an (ε) -almost paracontact metric manifold with semi-symmetric non-metric connection. Then M possesses a para $(\phi, \delta, \eta, H, h)$ -structure, namely, equations (92)-(97) are provided.

Now, using equation (45), we write

$$\left(\tilde{\widetilde{\nabla}}_{W}\breve{\phi}\right)(V) = \left(\breve{\nabla}_{W}\breve{\phi}\right)(V) - \breve{\eta}(V)\breve{\phi}(W).$$

Then, if we use (90) and (91), we have

Proposition 6.5. A screen semi-invariant lightlike hypersurface of an (ε) -para Sasakian manifold with semi-symmetric non-metric connection is an (ε) -para Sasakian manifold, if

$$\begin{pmatrix} \widetilde{\nabla}_{W} \breve{\phi} \end{pmatrix} (V) = -\breve{g} (\phi W, \phi V) \delta + h(V) \breve{g} (\phi W, N) \delta \\ + h(W) \breve{g} (\phi V, N) \delta - \varepsilon \breve{\eta} (V) \phi^{2} W \\ -\varepsilon \breve{\eta} (V) h(\phi W) N - \varepsilon \breve{\eta} (V) h(W) H \\ -\breve{\eta} (V) \phi W - \breve{\eta} (V) h(V) N. \end{pmatrix}$$

Also, we have

Theorem 6.6. Let *M* be a screen semi-invariant lightlike hyprsurface of an (ε) -para Sasakian manifold with a semi-symmetric non-metric connection $(\check{M}, \check{\phi}, \delta, \check{\eta}, \check{g}, \varepsilon)$. Then, we have

$$\mathring{\nabla}_{W}K + \phi\left(A_{N}W\right) - \tau\left(W\right)K = 0,$$

 $B(W,K) = -h(A_N W).$

Proof. From (46), we have $\left(\tilde{\nabla}_W \check{\phi}\right)(N) = 0$. Further, from the Gauss and Weingarten formulas and (58), we find

$$\left(\tilde{\nabla}_{W} \check{\phi} \right)(N) = \left(\begin{array}{c} \tilde{\nabla}_{W} K + B(W, K)N + \phi \left(A_{N} W \right) \\ + h \left(A_{N} W \right) N - \tau \left(W \right) K \end{array} \right) = 0$$

which completes the proof. \Box

6.1. Integrability of $D \perp \langle \delta \rangle$

Theorem 6.7. Let *M* be a screen semi-invariant lightlike hyprsurface of an (ε) -para Sasakian manifold with a semi-symmetric non-metric connection. Then, the distribution $D \perp \langle \delta \rangle$ is integrable if and only if

$$B(\phi W,V)=B(W,\phi V),$$

for all $W, V \in \Gamma(D)$.

Proof. We note that $W \in \Gamma(D \perp \langle \delta \rangle)$ if and only if h(W) = g(W, K) = 0. Now from (52), (65) and (69), we have

$$h[W, V] = h(V)\tau(W) - h(W)\tau(V)$$

+ h(W) $\breve{\eta}(V) - h(V) \,\breve{\eta}(W)$
- B(W, ϕV) + B(V, ϕW).

In view of h(W) = h(V) = 0, we obtain

$$h[W,V] = B(\phi W, V) - B(W, \phi V),$$

for all $W, V \in \Gamma(D \perp \langle \delta \rangle)$. Hence, we complete the proof. \Box

6.2. Integrability of $D' \perp \langle \delta \rangle$

Theorem 6.8. Let *M* be a screen semi-invariant lightlike hyprsurface of an (ε) -para Sasakian manifold with a semisymmetric non-metric connection. Then the distribution $D' \perp \langle \delta \rangle$ is integrable if and only if

 $A_N\delta + \varepsilon H = 0.$

Proof. $W \in D' \perp \langle \delta \rangle$ if and only if $\phi W = 0$. For all $W, V \in \Gamma(TM)$ and in view of (66), we have

$$\left(\nabla_{W} \phi \right) V = -g \left(W, V \right) \delta + 2\varepsilon \breve{\eta} \left(W \right) \breve{\eta} \left(V \right) \delta -\varepsilon \breve{\eta} \left(V \right) W - \breve{\eta} \left(V \right) \phi W + \breve{\eta} \left(\phi V \right) W + h(V) A_{N} W + B(W, V) H.$$

Then, we can write

$$\begin{split} \phi \left[W, V \right] &= \phi \nabla_W V - \phi \nabla_V W - \varepsilon \check{\eta} \left(V \right) W \\ &+ \varepsilon \check{\eta} \left(W \right) V + \check{\eta} \left(\phi V \right) W - \check{\eta} \left(\phi W \right) V \\ &+ h(V) A_N W + h(W) A_N V \\ &+ B(W, V) H + B(V, W) H. \end{split}$$

In particular from $\phi W = \phi V = 0$, for $W, V \in D' \perp \langle \delta \rangle$, we have

$$\phi[W, V] = -\varepsilon \breve{\eta}(V) W + \varepsilon \breve{\eta}(W) V + h(V)A_N W + h(W)A_N V$$

Hence $D' \perp \langle \delta \rangle$ integrable if and only if

 $\phi[H,\delta] = 0,$

namely

$$A_N\delta + \varepsilon H = 0.$$

This completes the proof. \Box

References

- [1] B.E. Acet, S.Yüksel Perktaş, E. Kılıç, On lightlike geometry of para-Sasakian manifolds, Scientific Work J., Article ID 696231 (2014).
- [2] B.E. Acet, S. Yüksel Perktaş, Screen slant radical transversal lightlike submanifolds of para-Sasakian manifolds, Facta Univ. 31 (2016) 543-557
- [3] B.E. Acet, S. Yüksel Perktas, On geodesic paracontact CR-lightlike submanifolds, British J. Math. Comp. Sci. 14 (2016) 1–11.
- [4] N.S. Agashe, M.R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1991) 399-409.
- [5] E. Bartolotti, Sulla Geometrica dello variata a connection affine, Ann. di Math. 4 (1930) 53-101.
- [6] A. Bejancu, K.L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math Math. Sci. 16 (1993) 545–556.
- [7] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifold, Progress in Mathematics 203, Birkhauser Boston, Inc., Boston, MA, 2002.
- [8] K.L. Duggal, Space time manifolds and contact structures, Int. J. Math Math. Sci. 13 (1990) 545–554.
- [9] K.L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and its Applications, Kluwer, Dordrecht 1996.
- [10] K.L. Duggal, B. Şahin, Differential Geometry of Lightlike Submanifolds , Frontiers in Mathematics, 2010.
- [11] K.L. Duggal, B. Şahin, Lightlike submanifolds of indefinite Sasakian manifolds, Int. J. Math Math. Sci. (2007) Article ID 57585.
- [12] K.L. Duggal, B. Şahin, Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds, Acta Math. Hungarica 112 (2006) 107–130.
- [13] A. Friedmann, J.A. Schouten, Uber die geometric der halb-symmetrischen Ubertragum, Math. Z. 21 (1924) 211–233.
- [14] H.A. Hayden, Subspace of space with torsion, Proc. London Math. Soc. 34 (1932) 27-54.
- [15] D.H. Jin, Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat 30 (2016) 1919–1930.
- [16] F. Massamba, Symmetries of null goemetry in indefinite Kenmotsu manifolds, Mediter. J. Math. 10 (2013) 1079–1099.
- [17] I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976) 219-224.
- [18] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci. 12 (1989) 151-156.
- [19] S.K. Pandey, G. Pandey, K. Tiwari, R.N. Singh, On a semi-symmetric non-metric connection in an indefinite para Sasakian manifold, J. Math. Comp. Sci. 12 (2014) 159-172.
- [20] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J. 12 (1960) 459-476.
- [21] S.S. Shukla, A. Yadev, Radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds, Demonstr. Math. XVLVII (2014) 994-1011.
- [22] T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 21 (1969) 644-653.

- [23] M. M. Tripathi, E. Kılıç, S. Yüksel Perktaş, S. Keleş, Indefinite almost paracontact metric manifolds, Int. J. Math Math. Sci. (2010) Article ID 846195, 19 pages.
- [24] K. Yano, On semi-symmetric connection, Revue Roumanie Math. Pures Appl. 15 (1970) 1579–1581.
- [25] E. Yaşar, A. Ceylan Çöken, A. Yücesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102 (2008) 253–264.
- [26] S. Yüksel Perktaş, E. Kılıç, M.M. Tripathi, Lightlike hypersurfaces of an (ε)-para Sasakian manifold, ArXiv:1412.6902, (2014).