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Abstract. In this paper, we first give the modified version of the iteration process of Thakur et al. [15] which
is faster than Picard, Mann, Ishikawa, Noor, Agarwal et al. [2] and Abbas et al. [1] processes. Secondly, we
prove weak and strong convergence theorems of this iteration process for multivalued quasi nonexpansive
mappings in uniformly convex Banach spaces. Thirdly, we support our theorems with analytical examples.
Finally, we compare rates of convergence for multivalued version of iteration processes mentioned above
via a numerical example.

1. Introduction

Fixed point theory has an important role in modern mathematics because any problem can be turned
into a fixed point problem. Banach fixed-point theorem is the basis of this theory; it guarantees the existence
and uniqueness of fixed points of a contraction mapping defined on complete metric spaces and gives a
constructive method to find those fixed points. The multivalued version of Banach contraction principle
was first proved by Nadler [8] in 1969. Moreover, Lim [6] constructed the existence theorem for fixed
point of multivalued nonexpansive mappings in uniformly convex Banach spaces. Actually, the fixed point
theory for multivalued nonexpansive mappings is more difficult than the corresponding theory for single
valued nonexpansive mappings. But because of their applications in control theory, convex optimization,
differential inclusion and economics, many authors have been studied not only existence and uniqueness
of fixed point of multivalued nonexpansive mappings but also approximated fixed point of multivalued
nonexpansive mappings. Different iterative algorithms have been used to approximate the fixed points of
single or multivalued nonexpansive mappings in different spaces. Most known iterative algorithms are
Mann [7], Ishikawa [3] and Noor [9] iteration.

In 2009, Shahzad and Zegeye [13] studied convergence of the Mann and the Ishikawa iteration processes
for multivalued mappings in a nonempty closed convex subset of a uniformly convex Banach space. They
defined PT(x) = {y ∈ Tx : ‖x − y‖ = d(x,Tx)} for a multivalued mapping to do it well defined.

In 2007, Agarwal et al. [2] introduced a new iteration process which converges at a rate that is the
same as that of the Picard iteration and faster than the Ishikawa iteration for contractions. In [5], Khan and
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Yildirim modified this iteration process for multivalued nonexpansive mappings and proved strong and
weak convergence results for this iteration process.

Recently, Abbas et al. [1] introduced a new iteration process and proved some weak and strong
convergence theorems for two nonexpansive mappings. They showed that this process converges faster
than the Agarwal et al. [2] iteration process. Moreover, they found solutions of constrained minimization
problems and feasibility problems as applications of their results. In [4], Khan et al. used an iteration
to compute fixed points of multivalued quasi-nonexpansive mappings in Banach spaces. Motivated by
Agarwal et al. [2] and Abbas et al. [1], Thakur et al. [15] introduced a new three step iteration process for
computing fixed point of nonexpansive mappings in a uniformly convex Banach space. They also showed
that their iteration process converges faster than the iteration processes of the Agarwal et al. [2] and the
Abbas et al. [1].

Now, we will construct the above iteration processes for single valued mappings and multivalued
mappings in the sense of Shahzad and Zegeye [13] using PT(x) = {y ∈ Tx :

∥∥∥x − y
∥∥∥ = d(x,Tx)}.

Let K be a nonempty closed convex subset of a uniformly convex Banach space E and T be a single
valued or multivalued mapping. The above iteration processes generated by the following relation for
arbitrary chosen x1 ∈ K and sequences {αn},

{
βn

}
and

{
γn

}
in (0, 1).

Iteration Singlevalued Version Multivalued Version
Mann xn+1 = (1 − αn)xn + αnTxn xn+1 = (1 − αn)xn + αnun

Ishikawa
xn+1 = (1 − αn)xn + αnTyn
yn = (1 − βn)xn + βnTxn

xn+1 = (1 − αn)xn + αnvn
yn = (1 − βn)xn + βnun

Noor
xn+1 = (1 − αn)xn + αnTyn
yn = (1 − βn)xn + βnTzn
zn = (1 − γn)xn + γnTxn

xn+1 = (1 − αn)xn + αnvn
yn = (1 − βn)xn + βnwn
zn = (1 − γn)xn + γnun

Agarwal et al.
xn+1 = (1 − αn)Txn + αnTyn
yn = (1 − βn)xn + βnTxn

xn+1 = (1 − αn)un + αnvn
yn = (1 − βn)xn + βnun

Abbas et al.
xn+1 = (1 − αn)Tyn + αnTzn
yn = (1 − βn)Txn + βnTzn
zn = (1 − γn)xn + γnTxn

xn+1 = (1 − αn)vn + αnwn
yn = (1 − βn)un + βnwn
zn = (1 − γn)xn + γnun

Thakur et al.
xn+1 = (1 − αn)Tzn + αnTyn
yn = (1 − βn)zn + βnTzn
zn = (1 − γn)xn + γnTxn

xn+1 = (1 − αn)wn + αnvn
yn = (1 − βn)zn + βnwn
zn = (1 − γn)xn + γnun

where un ∈ PT(xn), vn ∈ PT(yn) and wn ∈ PT(zn).
Our aim in this paper is four fold. First is to show that multivalued version of the Thakur et al.

[15] process converges strongly and weakly to a fixed point of a multivalued nonexpansive mapping in
Banach spaces. Second is to provide validity of our theorem by giving some examples. Third is to see that
multivalued version of iteration processes given in the above table converges fixed point of a multivalued
mapping using a numerical example. Fourth is to compare rate of convergence of multivalued version of
iteration processes given in the above table by considering the numerical example.

Motivated by the previous iteration, we introduce a new modified iteration process to approximate
fixed points of multivalued quasi-nonexpansive mappings where the sequence {xn} is generated by x1 ∈ K
and 

xn+1 = (1 − αn)wn + αnvn

yn = (1 − βn)zn + βnwn

zn = (1 − γn)xn + γnun

(1)

where αn, βn, γn ∈ [0, 1] for all n ∈N, un ∈ PT(xn), vn ∈ PT(yn) and wn ∈ PT(zn).
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2. Preliminaries

Now, we give some concepts, definitions and lemmas which will be used through the proof of our main
results

Definition 2.1. [Proximinal] Let E be a real Banach space. A subset K is called proximinal if for each x ∈ E,
there exists an element k ∈ K such that

d(x, k) = inf{y ∈ K : ‖x − y‖ = d(x,K)}.

From now on, we assume that C(K), CB(K) and P(K) show compact subsets, closed and bounded subsets
and proximinal bounded subsets of K, respectively.

Definition 2.2. [Hausdorff metric] For every A,B ∈ CB(E),

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

denotes the Pompeiu-Hausdorff metric on CB(E) induced by the metric d.
A point x ∈ K is called a fixed point of a multivalued mapping T : K→ CB(K) if x ∈ Tx. A set of all fixed

points of T is denoted by F(T).

Definition 2.3. A multivalued mapping T : K→ CB(K) is said to be

• nonexpansive mapping if H(Tx,Ty) ≤ ‖x − y‖ for all x, y ∈ K,

• quasi-nonexpansive mapping if F(T) , ∅ and H(Tx, p) ≤ ‖x − p‖ for all x ∈ K and p ∈ F(T).

It is well known that every nonexpansive mapping with a nonempty fixed point set is quasi-nonexpansive
mapping. But converse is not true. This statement is valid not only for single valued mappings but also
multivalued mappings.

Definition 2.4. [Opial condition] ([10]) A Banach space E is said to satisfy Opial’s condition if for any
sequence {xn} in E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for all y ∈ E with y , x.
Hilbert spaces and all lp spaces (1 < p < ∞) satisfy Opial condition but, Lp[0, 2π] space with 1 < p , 2 fails
to satisfy Opial condition.

Definition 2.5. [Demiclosed mapping] A multivalued mapping T : K → CB(K) is called demiclosed at
y ∈ K if for any sequence {xn} in K weakly convergent to x and yn ∈ Txn strongly convergent to y, we have
y ∈ Tx.

The following lemmas have an important role in proof of our theorems.

Lemma 2.6. ([14]) Let T : K → P(K) be a multivalued mapping and PT(x) = {y ∈ Tx : ‖x − y‖ = d(x,Tx)}. Then
the following are equivalent

1. x ∈ F(T).
2. PT(x) = {x}.
3. x ∈ F(PT).

Moreover, F(T) = F(PT).

Lemma 2.7. ([11]) Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1 for all n ∈N. Suppose that {xn}

and {yn} are two sequences of E such that lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r and limn→∞ ‖tnxn+(1−tn)yn‖ =
r hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.
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3. Main Results

Before we give our main theorems, we give a useful lemma with its proof.

Lemma 3.1. Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let
T : K → P(K) be a multivalued mapping such that F(T) , ∅ and PT is a quasi-nonexpansive mapping. Let {xn} be
the sequence as defined in (1). Then limn→∞ ‖xn − p‖ exists for all p ∈ F(T) and limn→∞ d(xn,PT(xn)) = 0.

Proof. For a given p ∈ F(T), we have

‖zn − p‖ =‖(1 − γn)xn + γnun − p‖
≤(1 − γn)‖xn − p‖ + γn‖un − p‖
≤(1 − γn)‖xn − p‖ + γnH(PT(xn),PT(p))
≤(1 − γn)‖xn − p‖ + γn‖xn − p‖
≤‖xn − p‖. (2)

Next

‖yn − p‖ =‖(1 − βn)zn + βnwn − p‖
≤(1 − βn)‖zn − p‖ + βn‖wn − p‖
≤(1 − βn)‖xn − p‖ + βnH(PT(zn),PT(p))
≤(1 − βn)‖xn − p‖ + βn‖zn − p‖
≤(1 − βn)‖xn − p‖ + βn‖xn − p‖
≤‖xn − p‖, (3)

and by using (2) and (3) we get

‖xn+1 − p‖ =‖(1 − αn)wn + αnvn − p‖
≤(1 − α)‖wn − p‖ + αn‖vn − p‖
≤(1 − αn)H(PT(zn),PT(p)) + αnH(PT(yn),PT(p))
≤(1 − αn)‖zn − p‖ + αn‖yn − p‖
≤(1 − αn)‖xn − p‖ + αn‖xn − p‖
≤‖xn − p‖.

Hence limn→∞ ‖xn − p‖ exists for all p ∈ F(T). In order to prove the rest of the Lemma (3.1), we shall prove
that limn→∞ ‖xn − un‖ = 0. Assume that limn→∞ ‖xn − p‖ = c. From (2) and (3) we have

lim sup
n→∞

‖zn − p‖ ≤ c (4)

and

lim sup
n→∞

‖yn − p‖ ≤ c. (5)

Moreover, we have

‖un − p‖ ≤ H(PT(xn),PT(p)) ≤ ‖xn − p‖,
‖vn − p‖ ≤ H(PT(yn),PT(p)) ≤ ‖yn − p‖

and
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‖wn − p‖ ≤ H(PT(zn),PT(p)) ≤ ‖zn − p‖.
Taking limsup on both sides of above inequalities, we obtain

lim supn→∞ ‖un − p‖ ≤ c
lim supn→∞ ‖vn − p‖ ≤ c
lim supn→∞ ‖wn − p‖ ≤ c

(6)

and so
c = lim

n→∞
‖xn+1 − p‖ = lim

n→∞
‖(1 − αn)(wn − p) + αn(vn − p)‖.

From Lemma (2.7), we have
lim
n→∞
‖wn − vn‖ = 0.

Now
‖xn+1 − p‖ = ‖(1 − αn)wn + αnvn − p‖ ≤ ‖wn − p‖ + αn‖wn − vn‖

yields that

c ≤ lim inf
n→∞

‖wn − p‖. (7)

Next (6) and (7) give
lim
n→∞
‖wn − p‖ = c.

On the other hand, we have

‖wn − p‖ =‖wn − p + vn − vn‖ ≤ ‖wn − vn‖ + ‖vn − p‖
≤‖wn − vn‖ + ‖yn − p‖

and this yields that

c ≤ lim inf
n→∞

‖yn − p‖. (8)

From (5) and (8), we get

c = lim
n→∞
‖yn − p‖ = lim

n→∞
‖(1 − βn)(zn − p) + βn(wn − p)‖.

Using Lemma (2.7), from (4) and (6) we get

lim
n→∞
‖zn − wn‖ = 0.

Since

‖yn − p‖ =‖(1 − βn)zn + βnwn − p‖
≤‖zn − p‖ + βn‖wn − zn‖,

we obtain

c ≤ lim inf
n→∞

‖zn − p‖. (9)

So, from (4) and (9) we get
lim
n→∞
‖zn − p‖ = c.
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Consequently,

c = lim
n→∞
‖zn − p‖

= lim
n→∞
‖(1 − αn)xn + αnun − p‖

= lim
n→∞
‖(1 − αn)(xn − p) + αn(un − p)‖.

Now by using Lemma (2.7), (6) and because of limn→∞ ‖xn − p‖ = c, we obtain

lim
n→∞
‖xn − un‖ = 0 (10)

which yields that limn→∞ d(xn,PT(xn)) = 0 as desired.

Now we give our convergence theorems with examples which are satisfied.

Theorem 3.2. Let E be a uniformly convex Banach space and K be a nonempty compact convex subset of E. Let
T : K → P(K) be a multivalued mapping such that F(T) , ∅ and PT be a quasi-nonexpansive mapping. Let {xn} be
the sequence as defined in (1). Then {xn} converges strongly to a fixed point of T.

Proof. As we proved that limn→∞ ‖xn−p‖ exists for all p ∈ F(T). Because of the compactness of K there exists
a subsequence {xnk } of {xn} such that limk→∞ ‖xnk − q‖ = 0 for some q ∈ K. Then

d(q,PT(q)) ≤d(xnk , q) + d(xnk ,PT(xnk )) + H(PT(xnk ),PT(q))
≤‖xnk − q‖ + ‖xnk − unk‖ + ‖xnk − q‖ → 0

as n→∞. From Lemma (3.1) we have limn→∞ ‖xnk − unk‖ = 0.
So we get d(q,PT(q)) = 0.Hence q is a fixed point of PT. Since F(T) = F(PT) by Lemma (2.6), {xn} converges

strongly to a fixed point of T.

Now we give an example to satisfy the Theorem (3.2).

Example 3.3. Let (R, ‖.‖) be a normed space with usual norm and K = [0, 2]. Define T : K→ P(K) as:

Tx =
[
0,

x + 1
2

]
.

It is clear that K is a compact convex subset of R. Moreover F(T) = [0, 1] , ∅. Let αn = βn = γn =
1
2n . If

x ∈ [0, 1] observe that PT(x) = {x}. If x < [0, 1], then

PT(x) =
{
y ∈ Tx : |y − x| = d(x, [0,

x + 1
2

])
}

=
{
y ∈ Tx : |y − x| =

∣∣∣x − x + 1
2

∣∣∣ =
∣∣∣x − 1

2

∣∣∣}
=
{
y ∈ Tx : |y − x| =

x − 1
2

}
=
{
y =

x + 1
2

}
.

Now we show that PT(x) is a quasi-nonexpansive mapping for all x ∈ K. If x ∈ [0, 1], it is clear since

PT(x) = {x}. If x < [0, 1], we get H(PT(x),PT(p)) = H(
x + 1

2
, p) =

∣∣∣x + 1
2
− p

∣∣∣ ≤ |x − p|. So PT(x) is a quasi-
nonexpansive mapping. Thus T satisfies conditions of above theorem. We generate a sequence {xn} as
defined in (1).
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Choose x1 =
3
2
∈ K = [0, 2]. Then PT(x1) =

{x1 + 1
2

}
=

{ 3
2 + 1

2

}
=

{
1 +

1
4

}
and u1 ∈ PT(x1) = {1 +

1
4
}. That is,

u1 = 1 +
1
4
. Then

z1 = (1 − γ1)x1 + γ1u1 = (1 −
1
2

).
3
2

+
1
2
.(1 +

1
4

) = 1 +
3
8

and

PT(z1) =
{z1 + 1

2

}
=

{1 + 3
8 + 1
2

}
= {1 +

3
16
}.

Choose w1 ∈ PT(z1) = {1 +
3

16
}, that is, w1 = 1 +

3
16
. Then

y1 = (1 − β1)z1 + β1w1 = (1 −
1
2

).(1 +
3
8

) +
1
2
.(1 +

3
16

) = 1 +
9

32

and

PT(y1) = {
y1 + 1

2
} =

{1 + 9
32 + 1
2

}
= {1 +

9
64
}.

Choose v1 ∈ PT(y1) = {1 +
9
64
}, v1 = 1 +

9
64
. Then

x2 = (1 − α1)w1 + α1v1 = (1 −
1
2

).(1 +
3
16

) +
1
2
.(1 +

9
64

) = 1 +
21

128
< 1 +

1
4

and

PT(x2) = {
x2 + 1

2
} =

{1 + 21
128 + 1
2

}
= {1 +

21
256
}.

Next, take u2 ∈ PT(x2) = {1 +
21

256
}, that is u2 = 1 +

21
256

. Then

z2 = (1 − γ2)x2 + γ2u2 = (1 −
1
4

).(1 +
21

128
) +

1
4
.(1 +

21
256

) = 1 +
147

1024
.

Choose w2 ∈ PT(z2) = {1 +
147

2048
}, that is w2 = 1 +

147
2048

. Then

y2 = (1 − β2)z2 + β2w2 = (1 −
1
4

).(1 +
147
1024

) +
1
4
.(1 +

147
2048

) = 1 +
1029
8192

and

PT(y2) = {
y2 + 1

2
} =

{1 + 1029
8192 + 1
2

}
= {1 +

1029
16384

}.

Choose v2 ∈ PT(y2) = {1 +
1029
16384

}, v2 = 1 +
1029

16384
. Then

x3 = (1 − α2)w2 + α2v2 = (1 −
1
4

).(1 +
147
2048

) +
1
4
.(1 +

1029
16384

) = 1 +
4557
65536

< 1 +
1
6
.

In a similar way, x4 < 1 +
1
8

, x5 < 1 +
1

10
, . . . , xn < 1 +

1
2n
. This shows that {xn} converges strongly to a

point of FT = [0, 1].

It is known that the condition (I) is weaker than compactness of K. So we now prove our strong
convergence theorem by using condition (I) which was originally given by Senter and Dotson [12].
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Definition 3.4. [Condition (I)] ([12]) A multivalued nonexpansive mapping T : K→ CB(K) is said to satisfy
Condition (I), if there exists a continuous non-decreasing function f : [0,∞)→ [0,∞) with f (0) = 0, f (r) > 0
for all r ∈ (0,∞) such that d(x,Tx) ≥ f (d(x,F(T)) for all x ∈ K.

Theorem 3.5. Let E be a uniformly convex Banach space, let K be a non-empty closed and convex subset of E and let
T : K→ P(K) be a multivalued mapping satisfying condition (I) such that F(T) , ∅ and let PT be a quasi-nonexpansive
mapping. Then the sequence {xn} as defined in (1) converges strongly to a fixed point of T.

Proof. We show that limn→∞ ‖xn−p‖ exists for all p ∈ F(T) = F(PT) in Lemma (3.1). In case limn→∞ ‖xn−p‖ = 0
the proof is over. So we take limn→∞ ‖xn−p‖ = c > 0. In Lemma (3.1), we also prove that ‖xn+1−p‖ ≤ ‖xn−p‖.
Thus

d(xn+1,F(T)) ≤ d(xn,F(T)).

This inequality goes to limn→∞ d(xn+1,F(T)) exists.
Now, we focus to prove that limn→∞ d(xn+1,F(T)) = 0. Assume that limn→∞ d(xn+1,F(T)) = b > 0. For all

n ∈N, choose

tn =
un − p
‖xn − p‖

, t′n =
xn − p
‖xn − p‖

Since ‖un − p‖ ≤ H(PT(xn),PT(p)) ≤ ‖xn − p‖, then ‖tn| ≤ 1 and

‖t′n‖ =
∥∥∥∥ xn − p
‖xn − p‖

∥∥∥∥ = 1.

Now from condition (I), we have

‖t′n − tn‖ =
∥∥∥∥ xn − p
‖xn − p‖

−
un − p
‖xn − p‖

∥∥∥∥
=
∥∥∥∥ xn − un

‖xn − p‖

∥∥∥∥
=
‖xn − un‖

‖xn − p‖

≥
d(xn,Txn)
‖xn − p‖

≥
f (d(xn,F(T))
‖xn − p‖

.

Since f is a continuous function

lim inf
n→∞

‖t′n − tn‖ ≥
f (b)
c

> 0

for all n ∈N. In Lemma (3.1), we showed that limn→∞ ‖xn − p‖ = c and limn→∞ ‖zn − p‖ = c. Next,

lim
n→∞
‖(1 − γn)t′n + γntn‖ = lim

n→∞

∥∥∥∥(1 − γn).
xn − p
‖xn − p‖

+ γn
un − p
‖xn − p‖

∥∥∥∥
= lim

n→∞

∥∥∥∥ (1 − γn)xn + γnun − p
‖xn − p‖

∥∥∥∥
=

limn→∞ ‖zn − p‖
limn→∞ ‖xn − p‖

=
c
c

= 1.

So, from Lemma (2.7), ‖tn‖ ≤ 1 and ‖t′(n)‖ = 1, we get limn→∞ ‖t′n − tn‖ = 0. But we just established
lim infn→∞ ‖t′n − tn‖ > 0, so this is a contradiction. Now we have limn→∞ d(xn+1,F(T)) = 0 and this follows
that

lim
n→∞
‖xn − p‖ = 0.

Thus the sequence {xn} converges to a fixed point p of T.
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Now we give an example to support Theorem 3.5.

Example 3.6. Choose K = [a, b]; for a, b ∈ R+. It is clear that K is a non-empty closed and convex subset of
R. Define T : K→ P(K) as

Tx =
[
a, a +

x
b

]
for 0 < a < b − 1. Then FT = [a,

ab
b − 1

] and FT , ∅. Let αn = βn = γn =
1
2
. Define a continuous and

non-decreasing function f : [0,∞)→ [0,∞) by f (r) =
r

2b/(b − 1)
. First we show that d(x,Tx) ≥ f (d(x,FT)) for

all x ∈ K. Obviously if x ∈ FT =
[
a,

ab
b − 1

]
, then d(x,Tx) = 0 = f (d(x,FT)). When x ∈

[ ab
b − 1

, b
]
, we have

d(x,Tx) = d(x, [a, a +
x
b

]) = |x − (a +
x
b

)| =
|(b − 1)x − ab|

b

and so

f (d(x,FT)) = f
(
d(x,

[
a,

ab
b − 1

])
= f

(∣∣∣x − ab
b − 1

∣∣∣) =
|(b − 1)x − ab|

2b
.

Thus d(x,Tx) ≥ f (d(x,FT)) for all x ∈ K.As we show in the previous example, PT(x) = {x}when x ∈
[
a,

ab
b − 1

]
.

If x ∈
[ ab
b − 1

, b
]
, then

PT(x) =
{
y ∈ Tx : |y − x| = d(x,

[
a, a +

x
b

]
)
}

{
y ∈ Tx : |y − x| = |x − (a +

x
b

)|
}

{
y ∈ Tx : |y − x| =

|(b − 1)x − ab|
b

}
{
y = a +

x
b

}
.

Now, we show that PT is a quasi-nonexpansive mapping for all x ∈ K. If x ∈ FT, then PT(x) = {x}. So,

H(PT(x), p) = H({x}, p) = |x − p|.

If we take x ∈
[ ab
b − 1

, b
]
, then

H(PT(x),PT(p)) = H({a +
x
b
}, {p}) = |a +

x
b
− p| ≤ |x − p|.

Finally, we generate a sequence {xn} as defined in (1) and show that it converges strongly to a fixed point of
T.
Choose a = 1 and b = 3 thus Tx =

[
1, 1 +

x
3

]
and FT =

[
1,

3
2

]
, ∅.

Take x1 =
9
4
∈ K = [1, 3], PT(x1) = {1 +

x1

3
} = {

7
4
}. That is, u1 =

7
4
. Then

z1 = (1 − γ1)x1 + γ1u1 =
1
2
.
9
4

+
1
2
.
7
4

= 2

and

PT(z1) = {1 +
z1

3
} = {1 +

2
3
} = {

5
3
}.
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Choose w1 ∈ PT(z1) = {
5
3
}. That is, w1 =

5
3
. Then

y1 = (1 − β1)z1 + β1w1 =
1
2
.2 +

1
2
.
5
3

=
11
6

and

PT(y1) = {1 +
y1

3
} = {1 +

11
18
} = {

29
18
}.

Choose v1 ∈ PT(y1) = {
29
18
}, v1 =

29
18

. Then

x2 = (1 − α1)w1 + α1v1 =
1
2
.
5
3

+
1
2
.
29
18

=
54
36

+
5
36

<
3
2

+
1
4
.

Continuing in this way, we get xn <
3
2

+
1

2n
. This shows that {xn} converges strongly to a fixed point of T in

FT = [1,
3
2

].

Now we also show that our new iteration process is faster than the Mann [7], the Ishikawa [3], the Noor
[9], the Agarwal [2] and the Abbas and Nazir [1] iteration processes, by giving a numerical example.

Example 3.7. Let K = [0, 3] and let T : K→ P(K) as

Tx = [0,
3x + 8

11
]

for all x ∈ K. It is clear that T is a multivalued mapping and PT is a quasi-nonexpansive multivalued
mapping with FT = [0, 1] , ∅. Choose αn = βn = γn = 0.83, with the initial value x1 = 2.5. We give the first
30 terms of multivalued version of iteration processes mentioned above. Then all sequences converges to
p = 1 ∈ FT = [0, 1].
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Step Mann Ishikawa Noor Agarwal Abbas New iter.
1 2.500000000 2.500000000 2.500000000 2.500000000 2.500000000 2.500000000
2 1.594545454 1.389583471 1.343187532 1.204128925 1.144047630 1.080909283
3 1.235656198 1.101183521 1.078518455 1.027779079 1.013833147 1.004364208
4 1.093405548 1.026279618 1.017964370 1.003780342 1.001328422 1.000235404
5 1.037022562 1.006825403 1.004110099 1.000514452 1.000127570 1.000012697
6 1.014674397 1.001772710 1.000940356 1.000070010 1.000012251 1.000000685
7 1.005816397 1.000460413 1.000215146 1.000009527 1.000001176 1.000000038
8 1.002305408 1.000119579 1.000049224 1.000001297 1.000000113 1.000000002
9 1.000913780 1.000031057 1.000011262 1.000000176 1.000000011 1.000000000

10 1.000362189 1.000008066 1.000002577 1.000000024 1.000000001 1.000000000
11 1.000143559 1.000002095 1.000000590 1.000000004 1.000000000 1.000000000
12 1.000056901 1.000000544 1.000000135 1.000000001 1.000000000 1.000000000
13 1.000022553 1.000000142 1.000000031 1.000000000 1.000000000 1.000000000
14 1.000008939 1.000000036 1.000000007 1.000000000 1.000000000 1.000000000
15 1.000003543 1.000000009 1.000000002 1.000000000 1.000000000 1.000000000
16 1.000001404 1.000000002 1.000000000 1.000000000 1.000000000 1.000000000
17 1.000000557 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
18 1.000000221 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
19 1.000000087 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
20 1.000000035 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
21 1.000000014 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
22 1.000000006 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
23 1.000000003 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
24 1.000000001 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
25 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
26 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
27 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
28 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
29 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
30 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

Note that convergence of all iteration processes given in above table are proved in [7], [3], [9], [2] and
[1]. Also the mapping PT(x) = {y ∈ Tx : ‖x− y‖ = ‖x−Tx‖} defined by Shahzad and Zegeye [13] guaranteed
all iteration processes converges same fixed point of T.

We now demonstrate the convergence behaviours of the Mann [7], the Ishikawa [3], the Noor [9], the
Agarwal et al. [2], the Abbas et al. [1] and the new iteration for the mapping T which is given in Example
3.7.



B. Gunduz et al. / Filomat 32:16 (2018), 5665–5677 5676

V
a
lu

e
 o

f 
x
n

Number of !terat!on

Finally, we give weak convergence theorem of the sequence as defined in (1) by using Opial’s condition.

Theorem 3.8. Let E be a uniformly convex Banach space satisfying Opial’s condition and K be a non-empty closed
convex subset of E. Let T : K→ P(K) be a multivalued mapping such that F(T) , ∅ and PT is a quasi-nonexpansive
mapping. Let {xn} be the sequence as defined in (1). Let I − PT be demiclosed with respect to zero, then {xn} converges
weakly to a fixed point of T.

Proof. Let p ∈ F(T) = F(PT). We established that limn→∞ ‖xn − p‖ exists for all p ∈ F(T) in Lemma (3.1).
Choose z1 and z2 to be weak limits of the subsequences {xni } and {xn j } of {xn}, respectively. From (10), there
exists limn→∞ ‖xn − un‖ = 0 satisfying un ∈ Txn. Since I − PT is demiclosed with respect to zero, thus we get
z1 ∈ F(PT) = F(T). In a similar way, we can see that z2 ∈ F(T).

Now, we prove z1 = z2. Suppose on contrary that z1 , z2. Then using Opial’s condition, we get

lim
n→∞
‖xn − z1‖ = lim

ni→∞
‖xni − z1‖

< lim
ni→∞

‖xni − z2‖

= lim
n→∞
‖xn − z2‖

= lim
n j→∞

‖xn j − z2‖

< lim
n j→∞

‖xn j − z1‖

= lim
n→∞
‖xn − z1‖.

So this is a contradiction. Thus z1 = z2 and {xn} converges to a point in F(T).
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