Filomat 32:16 (2018), 5623–5632 https://doi.org/10.2298/FIL1816623D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Adjacency-Jacobsthal-Hurwitz Type Numbers

Ömür Deveci^a, Yeşim Aküzüm^a

^a Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract. In this paper, we define the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind. Then we give the exponential, combinatorial, permanental and determinantal representations and the Binet formulas of the adjacency-Jacobsthal-Hurwitz numbers of the first and second kind by the aid of the generating functions and the generating matrices of the sequences defined.

1. Introduction

It is well-known that Jacobsthal sequence $\{J_n\}$ is defined recursively by the equation

 $J_{n+1} = J_n + 2J_{n-1}$

for n > 0, where $J_0 = 0$, $J_1 = 1$.

In [5], Deveci and Artun defined the adjacency-Jacobsthal sequence as follows:

 $J_{m,n}(mn + k) = J_{m,n}(mn - n + k + 1) + 2J_{m,n}(k)$

for $k \ge 1$, $m \ge 2$ and $n \ge 4$ with initial constants $J_{m,n}(1) = \cdots = J_{m,n}(mn-1) = 0$ and $J_{m,n}(mn) = 1$. It is easy to see that the characteristic polynomial of the adjacency-Jacobsthal sequence is

$$f(x) = x^{mn} - x^{mn-n+1} - 2.$$

Suppose that the (n + k)th term of a sequence is defined recursively by a linear combination of the preceding *k* terms:

$$a_{n+k} = c_0 a_n + c_1 a_{n+1} + \dots + c_{k-1} a_{n+k-1}$$

where $c_0, c_1, \ldots, c_{k-1}$ are real constants. In [10], Kalman derived a number of closed-form formulas for the generalized sequence by the companion matrix method as follows:

Let the matrix *A* be defined by

Keywords. adjacency-Jacobsthal-Hurwitz sequence, Hurwitz matrix, representation

²⁰¹⁰ Mathematics Subject Classification. Primary 11K31; Secondary 11C20, 15A15

Received: 12 June 2017; Revised: 02 December 2017; Accepted: 04 December 2017

Communicated by Ljubiša D.R. Kočinac

This Project was supported by the Commission for the Scientific Research Projects of Kafkas University, the Project No. 2016-FM-23 *Email addresses:* odeveci36@hotmail.com (Ömür Deveci), yesim_036@hotmail.com (Yeşim Aküzüm)

$$A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{k \times k} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ c_0 & c_1 & c_2 & & c_{k-2} & c_{k-1} \end{bmatrix}_{j}$$

then

$$A^{n} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} a_{n} \\ a_{n+1} \\ \vdots \\ a_{n+k-1} \end{bmatrix}$$

for $n \ge 0$.

Let an *nth* degree real polynomial *q* be given by

 $q(x) = c_0 x^n + c_1 x^{n-1} + \dots + c_{n-1} x + c_n.$

In [9], the Hurwitz matrix $H_n = [h_{i,j}]_{n \times n}$ associated to the polynomial *q* was defined as shown:

	<i>c</i> ₁	С3	c_5	•••			0	0	0]
	<i>c</i> ₀	<i>c</i> ₂	c_4				÷	÷	÷
	0	c_1	c ₃				:	:	÷
	:	c_0	<i>c</i> ₂	·			0	÷	÷
$H_n =$:	0	c_1		·		C_n	÷	÷
	:	÷	<i>c</i> ₀			·	C_{n-1}	0	÷
	:	÷	0				C_{n-2}	C_n	:
	:	:	:				Cn_3	C_{n-1}	0
	0	0	0				C_{n-4}	C_{n-2}	c_n

Recently, many authors have studied number theoretic properties such as these obtained from homogeneous linear recurrence relations relevant to this paper [3, 4, 6–8, 11, 12, 14, 16–19]. In this paper, we define the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind by using Hurwitz matrix for characteristic polynomial of the adjacency-Jacobsthal sequence of order 4*m*. Then we develop some their properties such as the generating function, exponential representations, the generating matrices and the combinatorial representations. Also, we give relationships among the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind and the permanents and the determinants of certain matrices which are produced by using the generating matrices of the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind. Finally, we obtain the Binet formulas for the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind by the aid of the roots of characteristic polynomials of the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind.

2. The Main Results

It is readily seen that Hurwitz matrix for characteristic polynomial of the adjacency-Jacobsthal sequence of order 4m, $H_{4m}^J = [h_{i,j}]_{4m \times 4m}$ is defined by

$$h_{i,j} = \begin{cases} 1 & \text{if } i = 2i \text{ and } j = i \text{ for } 1 \le i \le 2m, \\ -1 & \text{if } i = 1 + 2i \text{ and } j = 2 + i \text{ for } 1 \le i \le 2m - 1, \\ -2 & \text{if } i = 2i \text{ and } j = 2m + i \text{ for } 1 \le i \le 2m, \\ 0 & \text{otherwise.} \end{cases}$$

By the aid of the matrix H_{4m}^{J} , we define the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind, respectively by:

$$J_m^1(4m+k) = J_m^1(2m+k) - 2J_m^1(k) \text{ for } k \ge 1 \text{ and } m \ge 4,$$
(1)

where

$$J_m^1(1) = 1, J_m^1(2) = \dots = J_m^1(2m) = 0, J_m^1(2m+1) = 1, J_m^1(2m+2) = \dots = J_m^1(4m) = 0$$

and

$$J_m^2(4m+k) = J_m^2(k) - 2J_m^2(2m+k) \text{ for } k \ge 1 \text{ and } m \ge 4,$$
(2)

where

$$J_m^2(1) = 1, J_m^2(2) = \dots = J_m^2(4m-1) = 0, J_m^2(4m) = 1.$$

Clearly, the generating functions of the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind are given by

$$g^{1}(x) = \frac{1}{1 - x^{2m} + 2x^{4m}}$$

and

$$g^{2}(x) = \frac{1 + 3x^{2m}}{1 + 2x^{2m} - x^{4m}},$$

respectively. It can be readily established that the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind have the following exponential representations, respectively:

$$g^{1}(x) = \exp\left(\sum_{i=1}^{\infty} \frac{(x^{2m})^{i}}{i} (1 - 2x^{2m})^{i}\right)$$

and

$$g^{2}(x) = \left(1 + 3x^{2m}\right) \exp\left(\sum_{i=1}^{\infty} \frac{\left(x^{2m}\right)^{i}}{i} \left(x^{2m} - 2\right)^{i}\right).$$

5625

By equations (1) and (2), we can write the following companion matrices, respectively:

$$C_m^1 = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & -2 \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \end{bmatrix}_{4m \times 4m}$$

and

$$C_m^2 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \ddots & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & \cdots & 0 & -2 & 0 & \cdots & 0 \end{bmatrix}_{4m \times 4m.}$$

$$\uparrow$$

$$(2m+1) \text{ th}$$

The companion matrices C_m^1 and C_m^2 are called the adjacency-Jacobsthal-Hurwitz matrices of the first and second kind, respectively. For detailed information about the companion matrices, see [13, 15]. Let $J_m^1(\alpha)$ and $J_m^2(\alpha)$ be denoted by $J_m^{1,\alpha}$ and $J_m^{2,\alpha}$. By mathematical induction on α , we derive

$$(C_m^1)^{\alpha} = \begin{bmatrix} J_m^{1,\alpha+1} & J_m^{1,\alpha+2} & \cdots & J_m^{1,\alpha+2m} & -2J_m^{1,\alpha-2m+1} & \cdots & -2J_m^{1,\alpha-1} & -2J_m^{1,\alpha} \\ J_m^{1,\alpha} & J_m^{1,\alpha+1} & \cdots & J_m^{1,\alpha+2m-1} & -2J_m^{1,\alpha-2m} & \cdots & -2J_m^{1,\alpha-2} & -2J_m^{1,\alpha-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ J_m^{1,\alpha-4m+2} & J_m^{1,\alpha-4m+3} & \cdots & J_m^{1,\alpha-2m+1} & -2J_m^{1,\alpha-6m+2} & \cdots & -2J_m^{1,\alpha-4m} & -2J_m^{1,\alpha-4m+1} \end{bmatrix}_{4m \times 4m}$$
(3)

and

$$\left(C_{m}^{2}\right)^{\alpha} = \begin{bmatrix} J_{m}^{2,\alpha} & J_{m}^{2,\alpha-1} & \cdots & J_{m}^{2,\alpha-2m+1} & J_{m}^{2,\alpha+2m} & \cdots & J_{m}^{2,\alpha+2} & J_{m}^{2,\alpha+1} \\ J_{m}^{2,\alpha+1} & J_{m}^{2,\alpha} & \cdots & J_{m}^{2,\alpha-2m+2} & J_{m}^{2,\alpha+2m+1} & \cdots & J_{m}^{2,\alpha+3} & J_{m}^{2,\alpha+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ J_{m}^{2,\alpha+4m-1} & J_{m}^{2,\alpha+4m-2} & \cdots & J_{m}^{2,\alpha+2m} & J_{m}^{2,\alpha+6m-1} & \cdots & J_{m}^{2,\alpha+4m+1} & J_{m}^{2,\alpha+4m} \end{bmatrix}_{4m \times 4m.}$$
(4)

for $\alpha \ge 1$. Note that det $(C_m^1)^{\alpha} = (2)^{\alpha}$ and det $(C_m^2)^{\alpha} = (-1)^{\alpha}$ Let $K(k_1, k_2, ..., k_v)$ be a $v \times v$ companion matrix as follows:

$$K(k_1, k_2, \dots, k_v) = \begin{bmatrix} k_1 & k_2 & \cdots & k_v \\ 1 & 0 & & 0 \\ \vdots & \ddots & & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix}_{.}$$

Theorem 2.1. (Chen and Louck [2]) *The* (i, j) *entry* $k_{i,j}^{(n)}(k_1, k_2, ..., k_v)$ *in the matrix* $K^n(k_1, k_2, ..., k_v)$ *is given by the following formula:*

$$k_{i,j}^{(n)}(k_1, k_2, \dots, k_v) = \sum_{(t_1, t_2, \dots, t_v)} \frac{t_j + t_{j+1} + \dots + t_v}{t_1 + t_2 + \dots + t_v} \times \binom{t_1 + \dots + t_v}{t_1, \dots, t_v} k_1^{t_1} \cdots k_v^{t_v},$$
(5)

where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \cdots + vt_v = n - i + j$, $\binom{t_1 + \cdots + t_v}{t_1, \dots, t_v} = \frac{(t_1 + \cdots + t_v)!}{t_1! \cdots t_v!}$ is a multinomial coefficient, and the coefficients in (5) are defined to be 1 if n = i - j.

Now we concentrate on finding combinatorial representations for the adjacency-Jacobsthal-Hurwitz numbers of the first and second kind.

Corollary 2.2. *The following hold:*

(i) $J_m^1(n) = \sum_{(t_1,t_2,...,t_{4m})} \frac{t_\alpha + t_{\alpha+1} + \cdots + t_{4m}}{t_1 + t_2 + \cdots + t_{4m}} \times {\binom{t_1 + \cdots + t_{4m}}{t_1,...,t_{4m}}} (-2)^{t_{4m}} \text{ for } 1 \le \alpha \le 2m,$ where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \cdots + (4m) t_{4m} = n - 1.$

(*ii*) $J_m^1(n) = \sum_{(t_1, t_2, ..., t_{4m})} \frac{t_{4m}}{t_1 + t_2 + \dots + t_{4m}} \times {\binom{t_1 + \dots + t_{4m}}{t_1, \dots, t_{4m}}} (-2)^{t_{4m}}$, where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \dots + (4m) t_{4m} = n + 4m - 1$.

(iii) $J_m^2(n) = \sum_{(t_1, t_2, \dots, t_{4m})} \frac{t_\alpha + t_{\alpha+1} + \dots + t_{4m}}{t_1 + t_2 + \dots + t_{4m}} \times \begin{pmatrix} t_1 + \dots + t_{4m} \\ t_1, \dots, t_{4m} \end{pmatrix} (-2)^{t_{2m+1}} \text{ for } 1 \le \alpha \le 2m,$ where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \dots + (4m) t_{4m} = n.$

Proof. If we take $i = \alpha + 1$, $j = \alpha$ such that $1 \le \alpha \le 2m$ for case (i)., i = 1, j = 4m for case (ii) and $i = j = \alpha$ such that $1 \le \alpha \le 2m$ for case (iii) in Theorem 2.1, then we can directly see the conclusions from equations (3) and (4). \Box

Definition 2.3. A $u \times v$ real matrix $M = \lfloor m_{i,j} \rfloor$ is called a contractible matrix in the k^{th} column (resp. row.) if the k^{th} column (resp. row) contains exactly two non-zero entries.

Let u_1, u_2, \ldots, u_{mn} be row vectors of the matrix M. If M is contractible in the k^{th} column such that $m_{i,k} \neq 0, m_{j,k} \neq 0$ and $i \neq j$, then the $(u - 1) \times (v - 1)$ matrix $M_{ij,k}$ obtained from M by replacing the i^{th} row with $m_{i,k}x_j + m_{j,k}x_i$ and deleting the j^{th} row. The k^{th} column is called the contraction in the k^{th} column relative to the i^{th} row and the j^{th} row.

If *M* is a real matrix of order $\alpha > 1$ and *N* is a contraction of *M*, then *per*(*M*) = *per*(*N*) which was proved in [1].

Now we consider relationships between the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind and the permanents of certain matrices which are obtained by using the generating matrices of these sequences.

Let $u \ge 4m$ be a positive integer and suppose that $M_m^{1,u} = [m_{i,j}^{1,u,m}]$ and $M_m^{2,u} = [m_{i,j}^{2,u,m}]$ are the $u \times u$ super-diagonal matrices, defined by

				(2m)	th		(4 <i>m</i>) tl	n					
				\downarrow				\downarrow						
	0	•••	0	1	0	•••	0	-2	0	•••	0	0	0	1
	1	0	•••	0	1	0	•••	0	-2	0	•••	0	0	
	0	1	0	•••	0	1	0	•••	0	-2	0	• • •	0	
	:	۰.	·	·		۰.	۰.	·		·	·	۰.	÷	
$M_m^{1,u} =$	0		0	1	0	•••	0	1	0	•••	0	-2	0	
	0	0	•••	0	1	0	•••	0	1	0	•••	0	-2	
	0	0	0	•••	0	1	0	•••	0	1	0	• • •	0	
	:	·	·	·		۰.	·	·		·	·	·	÷	
	0	0	0	0		0	0	1	0		0	1	0	$u \times u$

and

Theorem 2.4. For $u \ge 4m$,

$$per(M_m^{1,u}) = J_m^1(u+1) \text{ and } per(M_m^{2,u}) = J_m^2(u+4m).$$

Proof. Let us consider the matrix $M_m^{1,u}$ and the adjacency-Jacobsthal-Hurwitz sequence of the first kind. We use induction on u. Now we assume that the equation holds for $u \ge 4m$, then we show that the equation holds for u + 1. If we expand the $per(M_m^{1,u+1})$ by the Laplace expansion of permanent according to the first row, then we obtain

$$per(M_m^{1,u+1}) = per(M_m^{1,u-2m+1}) - 2per(M_m^{1,u-4m+1})$$

Since $per(M_m^{1,u-2m+1}) = J_m^1(u-2m+2)$ and $per(M_m^{1,u-4m+1}) = J_m^1(u-4m+2)$, it is easy to see that $per(M_m^{1,u+1}) = J_m^1(u-2m+2) - 2J_m^1(u-4m+2) = J_m^1(u+2)$. So we have the conclusion.

There is a similar proof for the matrix $M_m^{2,u}$ and the adjacency-Jacobsthal-Hurwitz sequence of the second kind. \Box

Let $v \ge 4m$ be a positive integer and suppose that the matrices $A_m^{1,v} = [a_{i,j}^{1,v,m}]_{v \times v}$ and $A_m^{2,v} = [a_{i,j}^{2,v,m}]_{v \times v}$ are defined, respectively, by

$$a_{i,j}^{1,v,m} = \begin{cases} \text{if } i = i \text{ and } j = i + 2m - 1 \text{ for } 1 \le i \le v - 2m + 1 \\ 1 & \text{and} \\ i = i + 1 \text{ and } j = i \text{ for } 1 \le i \le v - 2m, \\ -1 & \text{if } i = 1 + i \text{ and } j = i \text{ for } v - 2m + 1 \le i \le v - 1, \\ -2 & \text{if } i = i \text{ and } j = 4m + i - 1 \text{ for } 1 \le i \le v - 4m + 1, \\ 0 & \text{otherwise} \end{cases}$$

and

$$a_{i,j}^{2,v,m} = \begin{cases} \text{if } i = i + 2m - 1 \text{ and } j = i + 2m \text{ for } 1 \le i \le v - 2m \\ 1 & \text{and} \\ i = i + 4m - 1 \text{ and } j = i \text{ for } 1 \le i \le v - 4m + 1, \\ -1 & \text{if } i = i \text{ and } j = i + 1 \text{ for } 1 \le i \le 2m - 1, \\ -2 & \text{if } i = i + 2m - 1 \text{ and } j = i \text{ for } 1 \le i \le v - 2m + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then we can give the permanental representations other than the above by the following theorem.

Theorem 2.5. For $v \ge 4m$,

$$per(A_m^{1,v}) = -J_m^1(v+1) \text{ and } per(A_m^{2,v}) = -J_m^2(v+4m).$$

Proof. Let us consider the matrix $A_m^{2,v}$ and the adjacency-Jacobsthal-Hurwitz sequence of the second kind. The assertion may be proved by induction on v. Let the equation be hold for $v \ge 4m$, then we show that the equation holds for v + 1. If we expand the $per(A_m^{2,v+1})$ by the Laplace expansion of permanent according to the first row, then we obtain

$$per(A_m^{2,v+1}) = per(A_m^{2,v-4m+1}) - 2per(A_m^{2,v-2m+1})$$
$$= -J_m^2(v+1) - 2(-J_m^2(v+2m+1)) = -J_m^2(v+4m+1).$$

Thus we have the conclusion.

There is a similar proof for the matrix $A_m^{1,v}$ and the adjacency-Jacobsthal-Hurwitz sequence of the first kind. \Box

Now we define a $v \times v$ matrix B_m^v as in the following form:

$$B_m^v = \begin{bmatrix} -1 & \cdots & -1 & 0 & \cdots & 0 \\ -1 & & & & \\ 0 & & A_m^{1,v-1} & & \\ \vdots & & & & \\ 0 & & & & \end{bmatrix},$$

then we have the following result:

Corollary 2.6. *For* v > 4m + 1*,*

$$perB_{m}^{v} = \sum_{i=1}^{v-1} J_{m}^{1}(i)$$
.

Proof. If we extend the $perB_m^v$ with respect to the first row, we obtain

 $per B_m^v = per B_m^{v-1} + per A_m^{1,v-1}.$

From Theorem 2.4, Theorem 2.5 and induction on v, the proof follows directly. \Box

A matrix *M* is called convertible if there is an $n \times n$ (1, -1)-matrix *K* such that det ($M \circ K$) = *perM*, where $M \circ K$ denotes the Hadamard product of *M* and *K*.

Now assume that the matrices $T = \begin{bmatrix} t_{i,j} \end{bmatrix}_{u \times u}$ and $S = \begin{bmatrix} s_{i,j} \end{bmatrix}_{v \times v}$ are defined by

	[1]	1	1	•••	1	1]
	-1	1	1	•••	1	1
-	1	-1	1	•••	1	1
1 =	÷	·	·	·	·	÷
	1	•••	1	-1	1	1
	1	•••	1	1	-1	1

and

	1	-1 1	1 -1	1 1	· · · ·	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
<i>S</i> =	: 1 1 1	: 1 1 1	· · · · · · ·	·. 1 1 1	-1 1 1	: 1 -1 1

Then we give relationships between the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind and the determinants of the Hadamard products $M_m^{1,u} \circ T$, $A_m^{1,v} \circ T$, $M_m^{2,u} \circ S$ and $A_m^{2,v} \circ S$.

Theorem 2.7. Let $u, v \ge 4m$, then

$$det\left(M_m^{1,u}\circ T\right) = J_m^1\left(u+1\right),$$
$$det\left(A_m^{1,v}\circ T\right) = -J_m^1\left(v+1\right),$$
$$det\left(M_m^{2,u}\circ S\right) = J_m^2\left(u+4m\right)$$

and

$$\det\left(A_m^{2,v}\circ S\right) = -J_m^2\left(v+4m\right)$$

Proof. Since det $(M_m^{1,u} \circ T) = per(M_m^{1,u})$, det $(A_m^{1,v} \circ T) = per(A_m^{1,v})$, det $(M_m^{2,u} \circ S) = per(M_m^{2,u})$ and det $(A_m^{2,v} \circ S) = per(A_m^{2,u})$ for $u, v \ge 4m$, by Theorem 2.4 and Theorem 2.5, we have the conclusion \Box

Now we concentrate on finding the Binet formulas for the adjacency-Jacobsthal numbers. Clearly, the characteristic equations of the matrices $M_m^{1,u}$ and $M_m^{2,u}$ are

 $x^{4m} - x^{2m} + 2 = 0$

and

$$x^{4m} + 2x^{2m} - 1 = 0,$$

respectively. It is easy to see that the above equations do not have multiple roots. Let $\{\beta_1^{(1)}, \beta_2^{(1)}, \dots, \beta_{4m}^{(1)}\}$ and $\{\beta_1^{(2)}, \beta_2^{(2)}, \dots, \beta_{4m}^{(2)}\}$ be the sets of the eigenvalues of the matrices $M_m^{1,\mu}$ and $M_m^{2,\mu}$, respectively and let $V_m^{(\lambda)}$ be $(4m) \times (4m)$ Vandermonde matrix as follows:

$$V_{m}^{(\lambda)} = \begin{bmatrix} \left(\beta_{1}^{(\lambda)}\right)^{4m-1} & \left(\beta_{2}^{(\lambda)}\right)^{4m-1} & \cdots & \left(\beta_{4m}^{(\lambda)}\right)^{4m-1} \\ \left(\beta_{1}^{(\lambda)}\right)^{4m-2} & \left(\beta_{2}^{(\lambda)}\right)^{4m-2} & \cdots & \left(\beta_{4m}^{(\lambda)}\right)^{4m-2} \\ \vdots & \vdots & & \vdots \\ \beta_{1}^{(\lambda)} & \beta_{2}^{(\lambda)} & & \beta_{4m}^{(\lambda)} \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

where $\lambda = 1, 2$. Now assume that

$$W_{m}^{(\lambda)}(i) = \begin{bmatrix} \left(\beta_{1}^{(\lambda)}\right)^{\alpha+4m-i} \\ \left(\beta_{2}^{(\lambda)}\right)^{\alpha+4m-i} \\ \vdots \\ \left(\beta_{4m}^{(\lambda)}\right)^{\alpha+4m-i} \end{bmatrix}$$

and $V_m^{(\lambda)}(i, j)$ is a $(4m) \times (4m)$ matrix obtained from $V_m^{(\lambda)}$ by replacing the *j*th column of $V_m^{(\lambda)}$ by $W_m^{(\lambda)}(i)$.

Theorem 2.8. For $\alpha \ge 1$ and $\lambda = 1, 2$,

$$c_{i,j}^{m,\lambda,\alpha} = \frac{\det\left(V_m^{(\lambda)}\left(i,j\right)\right)}{\det\left(V_m^{(\lambda)}\right)},$$

where $\left(C_m^{\lambda}\right)^{\alpha} = \begin{bmatrix} c_{i,j}^{m,\lambda,\alpha} \end{bmatrix}.$

Proof. Let us consider λ as 1. Since the equation $x^{4m} - x^{2m} + 2 = 0$ does not have multiple roots, $\beta_1^{(1)}, \beta_2^{(1)}, \dots, \beta_{4m}^{(1)}$ are distinct and so the matrix $M_m^{1,u}$ is diagonalizable. Then, it is readily seen that $C_m^1 V_m^{(1)} = V_m^{(1)} \Omega_m^1$, where $\Omega_m^1 = (\beta_1^{(1)}, \beta_2^{(1)}, \dots, \beta_{4m}^{(1)})$. Since the Vandermonde matrix $V_m^{(1)}$ is invertible, we can write $(V_m^{(1)})^{-1} C_m^1 V_m^{(1)} = \Omega_m^1$. Thus, we easily see that the matrix C_m^1 is similar to Ω_m^1 . Then, we have $(C_m^1)^{\alpha} V_m^{(1)} = V_m^{(1)} (\Omega_m^1)^{\alpha}$ for $\alpha \ge 1$. So we obtain the following linear system of equations:

$$\left\{ \begin{array}{c} c_{i,1}^{m,1,\alpha} \left(\beta_{1}^{(1)}\right)^{4m-1} + c_{i,2}^{m,1,\alpha} \left(\beta_{1}^{(1)}\right)^{4m-2} + \dots + c_{i,4m}^{m,1,\alpha} = \left(\beta_{1}^{(1)}\right)^{\alpha+4m-i} \\ c_{i,1}^{m,1,\alpha} \left(\beta_{2}^{(1)}\right)^{4m-1} + c_{i,2}^{m,1,\alpha} \left(\beta_{2}^{(1)}\right)^{4m-2} + \dots + c_{i,4m}^{m,1,\alpha} = \left(\beta_{2}^{(1)}\right)^{\alpha+4m-i} \\ \vdots \\ c_{i,1}^{m,1,\alpha} \left(\beta_{4m}^{(1)}\right)^{4m-1} + c_{i,2}^{m,1,\alpha} \left(\beta_{4m}^{(1)}\right)^{4m-2} + \dots + c_{i,4m}^{m,1,\alpha} = \left(\beta_{4m}^{(1)}\right)^{\alpha+4m-i}. \end{array} \right.$$

Then, for each i, j = 1, 2, ..., 4m, we derive $c_{i,j}^{m,1,\alpha}$ as

$$\frac{\det\left(V_m^{(1)}\left(i,j\right)\right)}{\det\left(V_m^{(1)}\right)}.$$

There is a similar proof for $\lambda = 2$. \Box

As an immediate consequence of this we have

Corollary 2.9. *For* $\alpha \ge 1$ *,*

$$J_{m}^{1}(\alpha) = \frac{\det\left(V_{m}^{1}(k+1,k)\right)}{\det\left(V_{m}^{(1)}\right)} \text{ for } 1 \le k \le 2m ,$$
$$J_{m}^{1}(\alpha) = -\frac{\det\left(V_{m}^{1}(1,4m)\right)}{2\det\left(V_{m}^{(1)}\right)},$$

and

$$J_m^2(\alpha) = \frac{\det\left(V_m^2(k,k)\right)}{\det\left(V_m^{(2)}\right)} \text{ for } 1 \le k \le 2m.$$

References

- R.A. Brualdi, P.M. Gibson, Convex polyhedra of doubly stochastic matrices I: applications of permanent function, J. Combin. Theory, Series A 22 (1977) 194–230.
- [2] W.Y.C. Chen, J.D. Louck, The combinatorial power of the companion matrix, Linear Algebra Appl. 232 (1996) 261–278.
- [3] O. Deveci, The Pell-circulant sequences and their applications, Maejo Int. J. Sci. Technol. 10 (2016) 284–293.
- [4] O. Deveci, E. Karaduman, The Lehmer sequences in finite groups, Ukrainian Math. J. 68 (2016) 193–202.
- [5] O Deveci, G. Artun, The adjacency-Jacobsthal numbers, submitted.

- [6] G.B. Djordjevic, Generalizations of the Fibonacci and Lucas polynomials, Filomat 23:3 (2009) 291–301.
- [7] D.D. Frey, J.A. Sellers, Jacobsthal numbers and alternating sign matrices, J. Integer Seq. 3, Article 00.2.3, 2000.
- [8] N. Gogin, A.A. Myllari, The Fibonacci-Padovan sequence and MacWilliams transform matrices, Programing and Computer Software, published in Programmirovanie 33:2 (2007) 74–79.
- [9] A. Huwitz, Ueber die Bedingungen unter welchen eine gleichung nur Wurzeln mit negative reellen teilen besitzt, Math. Ann. 46 (1895) 273–284.
- [10] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982) 73–76.
- [11] E. Kilic, The Binet formula, sums and representations of generalized Fibonacci p-numbers, European J. Combin. 29 (2008) 701–711.
- [12] E.G. Kocer, N. Tuglu, A.P. Stakhov, On the *m*-extension of the Fibonacci and Lucas *p*-numbers, Chaos, Solitons Fractals 40 (2009) 1890–1906.
- [13] P. Lancaster, M. Tismenetsky, The Theory of Matrices (2nd ed.): with Applications, Elsevier, 1985.
- [14] G-Y. Lee, k-Lucas numbers and associated bipartite graphs, Linear Algebra Appl. 320 (2000) 51-61.
- [15] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ Press, 1994.
- [16] K. Lü, J. Wang, *k*-Step Fibonacci sequence modulo *m*, Util. Math. 71 (2006) 169–177.
- [17] A.G. Shannon, L. Bernstein, The Jacobi-Perron algorithm and the algebra of recursive sequences, Bull. Australian Math. Soc. 8 (1973) 261–277.
- [18] A.G. Shannon, A.F. Horadam, P.G. Anderson, The auxiliary equation associated with plastic number, Notes Number Theory Disc. Math. 12 (2006) 1-12.
- [19] D. Tasci, M.C. Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modell. 52 (2010) 1763–1770.