The Adjacency-Jacobsthal-Hurwitz Type Numbers

Ömür Deveci ${ }^{\text {a }}$, Yeşim Aküzüm ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract

In this paper, we define the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind. Then we give the exponential, combinatorial, permanental and determinantal representations and the Binet formulas of the adjacency-Jacobsthal-Hurwitz numbers of the first and second kind by the aid of the generating functions and the generating matrices of the sequences defined.

1. Introduction

It is well-known that Jacobsthal sequence $\left\{J_{n}\right\}$ is defined recursively by the equation

$$
J_{n+1}=J_{n}+2 J_{n-1}
$$

for $n>0$, where $J_{0}=0, J_{1}=1$.
In [5], Deveci and Artun defined the adjacency-Jacobsthal sequence as follows:

$$
J_{m, n}(m n+k)=J_{m, n}(m n-n+k+1)+2 J_{m, n}(k)
$$

for $k \geq 1, m \geq 2$ and $n \geq 4$ with initial constants $J_{m, n}(1)=\cdots=J_{m, n}(m n-1)=0$ and $J_{m, n}(m n)=1$.
It is easy to see that the characteristic polynomial of the adjacency-Jacobsthal sequence is

$$
f(x)=x^{m n}-x^{m n-n+1}-2 .
$$

Suppose that the $(n+k)$ th term of a sequence is defined recursively by a linear combination of the preceding k terms:

$$
a_{n+k}=c_{0} a_{n}+c_{1} a_{n+1}+\cdots+c_{k-1} a_{n+k-1}
$$

where $c_{0}, c_{1}, \ldots, c_{k-1}$ are real constants. In [10], Kalman derived a number of closed-form formulas for the generalized sequence by the companion matrix method as follows:

Let the matrix A be defined by

[^0]\[

A=\left[a_{i, j}\right]_{k \times k}=\left[$$
\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
c_{0} & c_{1} & c_{2} & & c_{k-2} & c_{k-1}
\end{array}
$$\right]
\]

then

$$
A^{n}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right]=\left[\begin{array}{c}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{array}\right]
$$

for $n \geqslant 0$.
Let an nth degree real polynomial q be given by

$$
q(x)=c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n} .
$$

In [9], the Hurwitz matrix $H_{n}=\left[h_{i, j}\right]_{n \times n}$ associated to the polynomial q was defined as shown:

$$
H_{n}=\left[\begin{array}{ccccccccc}
c_{1} & c_{3} & c_{5} & \cdots & \cdots & \cdots & 0 & 0 & 0 \\
c_{0} & c_{2} & c_{4} & & & & \vdots & \vdots & \vdots \\
0 & c_{1} & c_{3} & & & & \vdots & \vdots & \vdots \\
\vdots & c_{0} & c_{2} & \ddots & & & 0 & \vdots & \vdots \\
\vdots & 0 & c_{1} & & \ddots & & c_{n} & \vdots & \vdots \\
\vdots & \vdots & c_{0} & & & \ddots & c_{n-1} & 0 & \vdots \\
\vdots & \vdots & 0 & & & & c_{n-2} & c_{n} & \vdots \\
\vdots & \vdots & \vdots & & & & c_{n-3} & c_{n-1} & 0 \\
0 & 0 & 0 & \cdots & \cdots & \cdots & c_{n-4} & c_{n-2} & c_{n}
\end{array}\right] .
$$

Recently, many authors have studied number theoretic properties such as these obtained from homogeneous linear recurrence relations relevant to this paper $[3,4,6-8,11,12,14,16-19]$. In this paper, we define the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind by using Hurwitz matrix for characteristic polynomial of the adjacency-Jacobsthal sequence of order $4 m$. Then we develop some their properties such as the generating function, exponential representations, the generating matrices and the combinatorial representations. Also, we give relationships among the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind and the permanents and the determinants of certain matrices which are produced by using the generating matrices of the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind. Finally, we obtain the Binet formulas for the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind by the aid of the roots of characteristic polynomials of the adjacency-JacobsthalHurwitz sequences of the first and second kind.

2. The Main Results

It is readily seen that Hurwitz matrix for characteristic polynomial of the adjacency-Jacobsthal sequence of order $4 m, H_{4 m}^{J}=\left[h_{i, j}\right]_{4 m \times 4 m}$ is defined by

$$
h_{i, j}=\left\{\begin{array}{cc}
1 & \text { if } i=2 \imath \text { and } j=\imath \text { for } 1 \leq \imath \leq 2 m, \\
-1 & \text { if } i=1+2 \imath \text { and } j=2+\imath \text { for } 1 \leq \imath \leq 2 m-1, \\
-2 & \text { if } i=2 \imath \text { and } j=2 m+\imath \text { for } 1 \leq \imath \leq 2 m, \\
0 & \text { otherwise. }
\end{array}\right.
$$

By the aid of the matrix $H_{4 m}^{J}$, we define the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind, respectively by:

$$
\begin{equation*}
J_{m}^{1}(4 m+k)=J_{m}^{1}(2 m+k)-2 J_{m}^{1}(k) \text { for } k \geq 1 \text { and } m \geq 4 \tag{1}
\end{equation*}
$$

where

$$
J_{m}^{1}(1)=1, J_{m}^{1}(2)=\cdots=J_{m}^{1}(2 m)=0, J_{m}^{1}(2 m+1)=1, J_{m}^{1}(2 m+2)=\cdots=J_{m}^{1}(4 m)=0
$$

and

$$
\begin{equation*}
J_{m}^{2}(4 m+k)=J_{m}^{2}(k)-2 J_{m}^{2}(2 m+k) \text { for } k \geq 1 \text { and } m \geq 4 \tag{2}
\end{equation*}
$$

where

$$
J_{m}^{2}(1)=1, J_{m}^{2}(2)=\cdots=J_{m}^{2}(4 m-1)=0, J_{m}^{2}(4 m)=1 .
$$

Clearly, the generating functions of the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind are given by

$$
g^{1}(x)=\frac{1}{1-x^{2 m}+2 x^{4 m}}
$$

and

$$
g^{2}(x)=\frac{1+3 x^{2 m}}{1+2 x^{2 m}-x^{4 m}}
$$

respectively. It can be readily established that the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind have the following exponential representations, respectively:

$$
g^{1}(x)=\exp \left(\sum_{i=1}^{\infty} \frac{\left(x^{2 m}\right)^{i}}{i}\left(1-2 x^{2 m}\right)^{i}\right)
$$

and

$$
g^{2}(x)=\left(1+3 x^{2 m}\right) \exp \left(\sum_{i=1}^{\infty} \frac{\left(x^{2 m}\right)^{i}}{i}\left(x^{2 m}-2\right)^{i}\right)
$$

By equations (1) and (2), we can write the following companion matrices, respectively:

$$
C_{m}^{1}=\left[\begin{array}{cccccccc}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 & -2 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \ddots & \ddots & \ddots & & \vdots \\
\vdots & \vdots & & & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0
\end{array}\right]_{4 m \times 4 m}
$$

and

$$
C_{m}^{2}=\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & & & \ddots & \cdots & & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 0 & \ldots & 0 & -2 & 0 & \cdots & 0
\end{array}\right]_{4 m \times 4 m .}
$$

The companion matrices C_{m}^{1} and C_{m}^{2} are called the adjacency-Jacobsthal-Hurwitz matrices of the first and second kind, respectively. For detailed information about the companion matrices, see [13, 15]. Let $J_{m}^{1}(\alpha)$ and $J_{m}^{2}(\alpha)$ be denoted by $J_{m}^{1, \alpha}$ and $J_{m}^{2, \alpha}$. By mathematical induction on α, we derive

$$
\left(C_{m}^{1}\right)^{\alpha}=\left[\begin{array}{cccccccc}
J_{m}^{1, \alpha+1} & J_{m}^{1, \alpha+2} & \cdots & J_{m}^{1, \alpha+2 m} & -2 J_{m}^{1, \alpha-2 m+1} & \cdots & -2 J_{m}^{1, \alpha-1} & -2 J_{m}^{1, \alpha} \tag{3}\\
J_{m}^{1, \alpha} & J_{m}^{1, \alpha+1} & \cdots & J_{m}^{1, \alpha+2 m-1} & -2 J_{m}^{1, \alpha-2 m} & \cdots & -2 J_{m}^{1, \alpha-2} & -2 J_{m}^{1, \alpha-1} \\
\vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\
J_{m}^{1, \alpha-4 m+2} & J_{m}^{1, \alpha-4 m+3} & \cdots & J_{m}^{1, \alpha-2 m+1} & -2 J_{m}^{1, \alpha-6 m+2} & \cdots & -2 J_{m}^{1, \alpha-4 m} & -2 J_{m}^{1, \alpha-4 m+1}
\end{array}\right]_{4 m \times 4 m}
$$

and

$$
\left(C_{m}^{2}\right)^{\alpha}=\left[\begin{array}{cccccccc}
J_{m}^{2, \alpha} & J_{m}^{2, \alpha-1} & \cdots & J_{m}^{2, \alpha-2 m+1} & J_{m}^{2, \alpha+2 m} & \cdots & J_{m}^{2, \alpha+2} & J_{m}^{2, \alpha+1} \tag{4}\\
J_{m}^{2, \alpha+1} & J_{m}^{2, \alpha} & \cdots & J_{m}^{2, \alpha-2 m+2} & J_{m}^{2, \alpha+2 m+1} & \cdots & J_{m}^{2, \alpha+3} & J_{m}^{2, \alpha+2} \\
\vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\
J_{m}^{2, \alpha+4 m-1} & J_{m}^{2, \alpha+4 m-2} & \cdots & J_{m}^{2, \alpha+2 m} & J_{m}^{2, \alpha+6 m-1} & \cdots & J_{m}^{2, \alpha+4 m+1} & J_{m}^{2, \alpha+4 m}
\end{array}\right]_{4 m \times 4 m}
$$

for $\alpha \geq 1$. Note that $\operatorname{det}\left(C_{m}^{1}\right)^{\alpha}=(2)^{\alpha}$ and $\operatorname{det}\left(C_{m}^{2}\right)^{\alpha}=(-1)^{\alpha}$
Let $K\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ be a $v \times v$ companion matrix as follows:

$$
K\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\left[\begin{array}{cccc}
k_{1} & k_{2} & \cdots & k_{v} \\
1 & 0 & & 0 \\
\vdots & \ddots & & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right]
$$

Theorem 2.1. (Chen and Louck [2]) The (i, j) entry $k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ in the matrix $K^{n}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ is given by the following formula:

$$
\begin{equation*}
k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\sum_{\left(t_{1}, t_{2}, \ldots, t_{v}\right)} \frac{t_{j}+t_{j+1}+\cdots+t_{v}}{t_{1}+t_{2}+\cdots+t_{v}} \times\binom{ t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{v}} k_{1}^{t_{1} \cdots k_{v}^{t_{v}},} \tag{5}
\end{equation*}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+v t_{v}=n-i+j,\binom{t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{0}}=\frac{\left(t_{1}+\cdots+t_{0}\right)!}{\left.t_{1}!+t_{0}\right)}$ is a multinomial coefficient, and the coefficients in (5) are defined to be 1 if $n=i-j$.

Now we concentrate on finding combinatorial representations for the adjacency-Jacobsthal-Hurwitz numbers of the first and second kind.

Corollary 2.2. The following hold:
(i) $J_{m}^{1}(n)=\sum_{\left(t_{1}, t_{2} \ldots, t_{4 m}\right)} \frac{t_{a}+t_{a+1}+\cdots+t_{m m}}{t_{1}+t_{2}+\cdots+t_{4 m}} \times\binom{ t_{1}+\cdots+t_{t_{m}}}{t_{1}, \ldots, t_{4 m}}(-2)^{t_{m m}}$ for $1 \leq \alpha \leq 2 m$,
where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+(4 m) t_{4 m}=n-1$.
(ii) $J_{m}^{1}(n)=\sum_{\left(t_{1}, t_{2}, \ldots, t_{m m}\right.} \frac{t_{4 m}}{t_{1}+t_{2}+\cdots+t_{m m}} \times\binom{ t_{1}+\ldots+t_{m}}{t_{1}, \ldots+t_{m}}(-2)^{t_{t_{m}}}$,
where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+(4 m) t_{4 m}=n+4 m-1$.
(iii) $J_{m}^{2}(n)=\sum_{\left(t_{1}, t_{2}, \ldots, t_{4 m}\right.} \frac{t_{a}+t_{a+1}+\cdots+t_{m m}}{t_{1}+t_{2}+\cdots+t_{m}} \times\binom{ t_{1}+\cdots+t_{m m}}{t_{1}, \ldots t_{m}}(-2)^{t_{2 n+1}}$ for $1 \leq \alpha \leq 2 m$,
where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+(4 m) t_{4 m}=n$.
Proof. If we take $i=\alpha+1, j=\alpha$ such that $1 \leq \alpha \leq 2 m$ for case (i)., $i=1, j=4 m$ for case (ii) and $i=j=\alpha$ such that $1 \leq \alpha \leq 2 m$ for case (iii) in Theorem 2.1 , then we can directly see the conclusions from equations (3) and (4).

Definition 2.3. A $u \times v$ real matrix $M=\left[m_{i, j}\right]$ is called a contractible matrix in the $k^{\text {th }}$ column (resp. row.) if the $k^{\text {th }}$ column (resp. row) contains exactly two non-zero entries.

Let $u_{1}, u_{2}, \ldots, u_{m n}$ be row vectors of the matrix M. If M is contractible in the $k^{\text {th }}$ column such that $m_{i, k} \neq 0, m_{j, k} \neq 0$ and $i \neq j$, then the $(u-1) \times(v-1)$ matrix $M_{i j ; k}$ obtained from M by replacing the $i^{\text {th }}$ row with $m_{i, k} x_{j}+m_{j, k} x_{i}$ and deleting the $j^{\text {th }}$ row. The $k^{\text {th }}$ column is called the contraction in the $k^{\text {th }}$ column relative to the $i^{\text {th }}$ row and the $j^{\text {th }}$ row.

If M is a real matrix of order $\alpha>1$ and N is a contraction of M, then $\operatorname{per}(M)=\operatorname{per}(N)$ which was proved in [1].

Now we consider relationships between the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind and the permanents of certain matrices which are obtained by using the generating matrices of these sequences.

Let $u \geqslant 4 m$ be a positive integer and suppose that $M_{m}^{1, u}=\left[m_{i, j}^{1, \mu, m}\right]$ and $M_{m}^{2, u}=\left[m_{i, j}^{2, u, m}\right]$ are the $u \times u$ super-diagonal matrices, defined by

$$
M_{m}^{1, u}=\left[\right]_{u \times u}
$$

and

$$
M_{m}^{2, u}=\left[\begin{array}{cccccccccccccc}
0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\vdots & & \ddots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & & & \vdots \\
0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-2 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & -2 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & & & \ddots & \ddots & \ddots & & \ddots & & \ddots & \vdots \\
0 & \cdots & 0 & -2 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 & \cdots & 0 & -2 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & -2 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & & \ddots & \ddots & \ddots & & & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0 & \cdots & 0 & -2 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & -2 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & -2 & 0 & \cdots & 0 & 0
\end{array}\right]_{u \times u .}
$$

Theorem 2.4. For $u \geqslant 4 m$,

$$
\operatorname{per}\left(M_{m}^{1, u}\right)=J_{m}^{1}(u+1) \text { and } \operatorname{per}\left(M_{m}^{2, u}\right)=J_{m}^{2}(u+4 m) .
$$

Proof. Let us consider the matrix $M_{m}^{1, u}$ and the adjacency-Jacobsthal-Hurwitz sequence of the first kind. We use induction on u. Now we assume that the equation holds for $u \geq 4 m$, then we show that the equation holds for $u+1$. If we expand the $\operatorname{per}\left(M_{m}^{1, u+1}\right)$ by the Laplace expansion of permanent according to the first row, then we obtain

$$
\operatorname{per}\left(M_{m}^{1, u+1}\right)=\operatorname{per}\left(M_{m}^{1, u-2 m+1}\right)-2 \operatorname{per}\left(M_{m}^{1, u-4 m+1}\right)
$$

Since $\operatorname{per}\left(M_{m}^{1, u-2 m+1}\right)=J_{m}^{1}(u-2 m+2)$ and $\operatorname{per}\left(M_{m}^{1, u-4 m+1}\right)=J_{m}^{1}(u-4 m+2)$, it is easy to see that $\operatorname{per}\left(M_{m}^{1, u+1}\right)=J_{m}^{1}(u-2 m+2)-2 J_{m}^{1}(u-4 m+2)=J_{m}^{1}(u+2)$. So we have the conclusion.

There is a similar proof for the matrix $M_{m}^{2, u}$ and the adjacency-Jacobsthal-Hurwitz sequence of the second kind.

Let $v \geq 4 m$ be a positive integer and suppose that the matrices $A_{m}^{1, v}=\left[a_{i, j}^{1, v, m}\right]_{v \times v}$ and $A_{m}^{2, v}=\left[a_{i, j}^{2, v, m}\right]_{v \times v}$ are defined, respectively, by

$$
a_{i, j}^{1, v, m}=\left\{\begin{array}{cc}
& \text { if } i=\imath \text { and } j=\imath+2 m-1 \text { for } 1 \leq \imath \leq v-2 m+1 \\
\text { and } \\
1 & i=\imath+1 \text { and } j=\imath \text { for } 1 \leq \imath \leq v-2 m, \\
-1 & \text { if } i=1+\imath \text { and } j=\imath \text { for } v-2 m+1 \leq \imath \leq v-1, \\
-2 & \text { if } i=\imath \text { and } j=4 m+\imath-1 \text { for } 1 \leq \imath \leq v-4 m+1, \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
a_{i, j}^{2, v, m}=\left\{\begin{array}{cc}
& \text { if } i=\imath+2 m-1 \text { and } j=\imath+2 m \text { for } 1 \leq \imath \leq v-2 m \\
\text { and } \\
1 & \begin{array}{c}
i=\imath+4 m-1 \text { and } j=\imath \text { for } 1 \leq \imath \leq v-4 m+1 \\
-1
\end{array} \\
\text { if } i=\imath \text { and } j=\imath+1 \text { for } 1 \leq \imath \leq 2 m-1, \\
-2 & \text { if } i=\imath+2 m-1 \text { and } j=\imath \text { for } 1 \leq \imath \leq v-2 m+1, \\
0 & \text { otherwise. }
\end{array}\right.
$$

Then we can give the permanental representations other than the above by the following theorem.
Theorem 2.5. For $v \geq 4 m$,

$$
\operatorname{per}\left(A_{m}^{1, v}\right)=-J_{m}^{1}(v+1) \text { and } \operatorname{per}\left(A_{m}^{2, v}\right)=-J_{m}^{2}(v+4 m) .
$$

Proof. Let us consider the matrix $A_{m}^{2, v}$ and the adjacency-Jacobsthal-Hurwitz sequence of the second kind. The assertion may be proved by induction on v. Let the equation be hold for $v \geq 4 m$, then we show that the equation holds for $v+1$. If we expand the $\operatorname{per}\left(A_{m}^{2, v+1}\right)$ by the Laplace expansion of permanent according to the first row, then we obtain

$$
\begin{aligned}
\operatorname{per}\left(A_{m}^{2, v+1}\right)=\operatorname{per}\left(A_{m}^{2, v-4 m+1}\right)- & 2 \operatorname{per}\left(A_{m}^{2, v-2 m+1}\right) \\
& =-J_{m}^{2}(v+1)-2\left(-J_{m}^{2}(v+2 m+1)\right)=-J_{m}^{2}(v+4 m+1) .
\end{aligned}
$$

Thus we have the conclusion.
There is a similar proof for the matrix $A_{m}^{1, v}$ and the adjacency-Jacobsthal-Hurwitz sequence of the first kind.

Now we define a $v \times v$ matrix B_{m}^{v} as in the following form:

$$
B_{m}^{v}=\left[\begin{array}{cccccc}
-1 & \cdots & -1 & 0 & \cdots & 0 \\
-1 & & & & & \\
0 & & & A_{m}^{1, v-1} & & \\
\vdots & & & & & \\
0 & & & & &
\end{array}\right],
$$

then we have the following result:
Corollary 2.6. For $v>4 m+1$,

$$
\operatorname{per}_{m}^{v}=\sum_{i=1}^{v-1} J_{m}^{1}(i)
$$

Proof. If we extend the $\operatorname{per} B_{m}^{v}$ with respect to the first row, we obtain

$$
\operatorname{per} B_{m}^{v}=\operatorname{per} B_{m}^{v-1}+\operatorname{per} A_{m}^{1, v-1}
$$

From Theorem 2.4, Theorem 2.5 and induction on v, the proof follows directly.
A matrix M is called convertible if there is an $n \times n(1,-1)$-matrix K such that $\operatorname{det}(M \circ K)=p e r M$, where $M \circ K$ denotes the Hadamard product of M and K.

Now assume that the matrices $T=\left[t_{i, j}\right]_{u \times u}$ and $S=\left[s_{i, j}\right]_{v \times v}$ are defined by

$$
T=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
-1 & 1 & 1 & \cdots & 1 & 1 \\
1 & -1 & 1 & \cdots & 1 & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & -1 & 1 & 1 \\
1 & \cdots & 1 & 1 & -1 & 1
\end{array}\right]
$$

and

$$
S=\left[\begin{array}{cccccc}
1 & -1 & 1 & 1 & \cdots & 1 \\
1 & 1 & -1 & 1 & \cdots & 1 \\
\vdots & \vdots & & \ddots & & \vdots \\
1 & 1 & \cdots & 1 & -1 & 1 \\
1 & 1 & \cdots & 1 & 1 & -1 \\
1 & 1 & \cdots & 1 & 1 & 1
\end{array}\right]
$$

Then we give relationships between the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind and the determinants of the Hadamard products $M_{m}^{1, u} \circ T, A_{m}^{1, v} \circ T, M_{m}^{2, u} \circ S$ and $A_{m}^{2, v} \circ S$.
Theorem 2.7. Let $u, v \geq 4 m$, then

$$
\begin{aligned}
& \operatorname{det}\left(M_{m}^{1, u} \circ T\right)=J_{m}^{1}(u+1) \\
& \operatorname{det}\left(A_{m}^{1, v} \circ T\right)=-J_{m}^{1}(v+1) \\
& \operatorname{det}\left(M_{m}^{2, u} \circ S\right)=J_{m}^{2}(u+4 m)
\end{aligned}
$$

and

$$
\operatorname{det}\left(A_{m}^{2, v} \circ S\right)=-J_{m}^{2}(v+4 m)
$$

Proof. Sincedet $\left(M_{m}^{1, u} \circ T\right)=\operatorname{per}\left(M_{m}^{1, u}\right), \operatorname{det}\left(A_{m}^{1, v} \circ T\right)=\operatorname{per}\left(A_{m}^{1, v}\right), \operatorname{det}\left(M_{m}^{2, u} \circ S\right)=\operatorname{per}\left(M_{m}^{2, u}\right)$ and $\operatorname{det}\left(A_{m}^{2, v} \circ S\right)$ $=\operatorname{per}\left(A_{m}^{2, u}\right)$ for $u, v \geq 4 m$, by Theorem 2.4 and Theorem 2.5 , we have the conclusion

Now we concentrate on finding the Binet formulas for the adjacency-Jacobsthal numbers.
Clearly, the characteristic equations of the matrices $M_{m}^{1, u}$ and $M_{m}^{2, u}$ are

$$
x^{4 m}-x^{2 m}+2=0
$$

and

$$
x^{4 m}+2 x^{2 m}-1=0
$$

respectively. It is easy to see that the above equations do not have multiple roots. Let $\left\{\beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{4 m}^{(1)}\right\}$ and $\left\{\beta_{1}^{(2)}, \beta_{2}^{(2)}, \ldots, \beta_{4 m}^{(2)}\right\}$ be the sets of the eigenvalues of the matrices $M_{m}^{1, u}$ and $M_{m}^{2, u}$, respectively and let $V_{m}^{(\lambda)}$ be $(4 m) \times(4 m)$ Vandermonde matrix as follows:

$$
V_{m}^{(\lambda)}=\left[\begin{array}{cccc}
\left(\beta_{1}^{(\lambda)}\right)^{4 m-1} & \left(\beta_{2}^{(\lambda)}\right)^{4 m-1} & \cdots & \left(\beta_{4 m}^{(\lambda)}\right)^{4 m-1} \\
\left(\beta_{1}^{(\lambda)}\right)^{4 m-2} & \left(\beta_{2}^{(\lambda)}\right)^{4 m-2} & \cdots & \left(\beta_{4 m}^{(\lambda)}\right)^{4 m-2} \\
\vdots & \vdots & & \vdots \\
\beta_{1}^{(\lambda)} & \beta_{2}^{(\lambda)} & & \beta_{4 m}^{(\lambda)} \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

where $\lambda=1,2$. Now assume that

$$
W_{m}^{(\lambda)}(i)=\left[\begin{array}{c}
\left(\beta_{1}^{(\lambda)}\right)^{\alpha+4 m-i} \\
\left(\beta_{2}^{(\lambda)}\right)^{\alpha+4 m-i} \\
\vdots \\
\left(\beta_{4 m}^{(\lambda)}\right)^{\alpha+4 m-i}
\end{array}\right]
$$

and $V_{m}^{(\lambda)}(i, j)$ is a $(4 m) \times(4 m)$ matrix obtained from $V_{m}^{(\lambda)}$ by replacing the j th column of $V_{m}^{(\lambda)}$ by $W_{m}^{(\lambda)}(i)$.

Theorem 2.8. For $\alpha \geq 1$ and $\lambda=1,2$,

$$
c_{i, j}^{m, \lambda, \alpha}=\frac{\operatorname{det}\left(V_{m}^{(\lambda)}(i, j)\right)}{\operatorname{det}\left(V_{m}^{(\lambda)}\right)}
$$

where $\left(C_{m}^{\lambda}\right)^{\alpha}=\left[c_{i, j}^{m, \lambda, \alpha}\right]$.
Proof. Let us consider λ as 1 . Since the equation $x^{4 m}-x^{2 m}+2=0$ does not have multiple roots, $\beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{4 m}^{(1)}$ are distinct and so the matrix $M_{m}^{1, u}$ is diagonalizable. Then, it is readily seen that $C_{m}^{1} V_{m}^{(1)}=V_{m}^{(1)} \Omega_{m}^{1}$, where $\Omega_{m}^{1}=\left(\beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{4 m}^{(1)}\right)$. Since the Vandermonde matrix $V_{m}^{(1)}$ is invertible, we can write $\left(V_{m}^{(1)}\right)^{-1} C_{m}^{1} V_{m}^{(1)}=\Omega_{m}^{1}$. Thus, we easily see that the matrix C_{m}^{1} is similar to Ω_{m}^{1}. Then, we have $\left(C_{m}^{1}\right)^{\alpha} V_{m}^{(1)}=V_{m}^{(1)}\left(\Omega_{m}^{1}\right)^{\alpha}$ for $\alpha \geq 1$. So we obtain the following linear system of equations:

$$
\left\{\begin{array}{c}
c_{i, 1}^{m, 1, \alpha}\left(\beta_{1}^{(1)}\right)^{4 m-1}+c_{i, 2}^{m, 1, \alpha}\left(\beta_{1}^{(1)}\right)^{4 m-2}+\cdots+c_{i, 4 m}^{m, 1, \alpha}=\left(\beta_{1}^{(1)}\right)^{\alpha+4 m-i} \\
c_{i, 1}^{m, 1, \alpha}\left(\beta_{2}^{(1)}\right)^{4 m-1}+c_{i, 2}^{m, 1, \alpha}\left(\beta_{2}^{(1)}\right)^{4 m-2}+\cdots+c_{i, 4 m}^{m, 1, \alpha}=\left(\beta_{2}^{(1)}\right)^{\alpha+4 m-i} \\
\vdots \\
c_{i, 1}^{m, 1, \alpha}\left(\beta_{4 m}^{(1)}\right)^{4 m-1}+c_{i, 2}^{m, 1, \alpha}\left(\beta_{4 m}^{(1)}\right)^{4 m-2}+\cdots+c_{i, 4 m}^{m, 1, \alpha}=\left(\beta_{4 m}^{(1)}\right)^{\alpha+4 m-i}
\end{array}\right.
$$

Then, for each $i, j=1,2, \ldots, 4 m$, we derive $c_{i, j}^{m, 1, \alpha}$ as

$$
\frac{\operatorname{det}\left(V_{m}^{(1)}(i, j)\right)}{\operatorname{det}\left(V_{m}^{(1)}\right)}
$$

There is a similar proof for $\lambda=2$.
As an immediate consequence of this we have
Corollary 2.9. For $\alpha \geq 1$,

$$
\begin{aligned}
& J_{m}^{1}(\alpha)=\frac{\operatorname{det}\left(V_{m}^{1}(k+1, k)\right)}{\operatorname{det}\left(V_{m}^{(1)}\right)} \text { for } 1 \leq k \leq 2 m, \\
& J_{m}^{1}(\alpha)=-\frac{\operatorname{det}\left(V_{m}^{1}(1,4 m)\right)}{2 \operatorname{det}\left(V_{m}^{(1)}\right)},
\end{aligned}
$$

and
$J_{m}^{2}(\alpha)=\frac{\operatorname{det}\left(V_{m}^{2}(k, k)\right)}{\operatorname{det}\left(V_{m}^{(2)}\right)}$ for $1 \leq k \leq 2 m$.

References

[1] R.A. Brualdi, P.M. Gibson, Convex polyhedra of doubly stochastic matrices I: applications of permanent function, J. Combin. Theory, Series A 22 (1977) 194-230.
[2] W.Y.C. Chen, J.D. Louck, The combinatorial power of the companion matrix, Linear Algebra Appl. 232 (1996) 261-278.
[3] O. Deveci, The Pell-circulant sequences and their applications, Maejo Int. J. Sci. Technol. 10 (2016) 284-293.
[4] O. Deveci, E. Karaduman, The Lehmer sequences in finite groups, Ukrainian Math. J. 68 (2016) 193-202.
[5] O Deveci, G. Artun, The adjacency-Jacobsthal numbers, submitted.
[6] G.B. Djordjevic, Generalizations of the Fibonacci and Lucas polynomials, Filomat 23:3 (2009) 291-301.
[7] D.D. Frey, J.A. Sellers, Jacobsthal numbers and alternating sign matrices, J. Integer Seq. 3, Article 00.2.3, 2000.
[8] N. Gogin, A.A. Myllari, The Fibonacci-Padovan sequence and MacWilliams transform matrices, Programing and Computer Software, published in Programmirovanie 33:2 (2007) 74-79.
[9] A. Huwitz, Ueber die Bedingungen unter welchen eine gleichung nur Wurzeln mit negative reellen teilen besitzt, Math. Ann. 46 (1895) 273-284.
[10] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982) 73-76.
[11] E. Kilic, The Binet formula, sums and representations of generalized Fibonacci p-numbers, European J. Combin. 29 (2008) $701-711$.
[12] E.G. Kocer, N. Tuglu, A.P. Stakhov, On the m-extension of the Fibonacci and Lucas p-numbers, Chaos, Solitons Fractals 40 (2009) 1890-1906.
[13] P. Lancaster, M. Tismenetsky, The Theory of Matrices (2nd ed.): with Applications, Elsevier, 1985.
[14] G-Y. Lee, k-Lucas numbers and associated bipartite graphs, Linear Algebra Appl. 320 (2000) 51-61.
[15] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ Press, 1994.
[16] K. Lü, J. Wang, k-Step Fibonacci sequence modulo m, Util. Math. 71 (2006) 169-177.
[17] A.G. Shannon, L. Bernstein, The Jacobi-Perron algorithm and the algebra of recursive sequences, Bull. Australian Math. Soc. 8 (1973) 261-277.
[18] A.G. Shannon, A.F. Horadam, P.G. Anderson, The auxiliary equation associated with plastic number, Notes Number Theory Disc. Math. 12 (2006) 1-12.
[19] D. Tasci, M.C. Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modell. 52 (2010) 1763-1770.

[^0]: 2010 Mathematics Subject Classification. Primary 11K31; Secondary 11C20, 15A15
 Keywords. adjacency-Jacobsthal-Hurwitz sequence, Hurwitz matrix, representation
 Received: 12 June 2017; Revised: 02 December 2017; Accepted: 04 December 2017
 Communicated by Ljubiša D.R. Kočinac
 This Project was supported by the Commission for the Scientific Research Projects of Kafkas University, the Project No. 2016-FM-23
 Email addresses: odeveci36@hotmail.com (Ömür Deveci), yesim_036@hotmail.com (Yeşim Aküzüm)

