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Abstract. In this paper, we are going to obtain numerical solutions of the improved Boussinesq equation
with the aid of Galerkin quadratic B-spline finite element method. To test the accuracy and efficiency of
the current method, four test problems have been used. These are solitary wave movement, interaction of
two solitary waves, wave break-up and blow-up of solutions. Their results have been compared with those
available in the literature for different values of space and time steps. Also, the error norms L2 and L∞ have
been computed and presented in comparison.

1. Introduction

First, Joseph Boussinesq has proposed Boussinesq equation (Bq) in 1873. The equation has the char-
acteristics of being a fourth-order nonlinear partial differential equation belonging to the family of KdV
equations and it defines the movement of long waves in shallow water subject to gravity propagation in
bi-directional way. The equation has a wide range of usage in diverse fields of science such as physics,
chemistry, biology, mechanics, in particular nonlinear wave phenomena including ion-sound in plasma,
lattice waves [5, 12]. The common form of the Boussinesq equation can be given as follows

utt = uxx + quxxxx +
(
u2

)
xx

x ∈ [a, b], t ∈ [0,T] (1)

where q = 1 or q = −1. The original form of the equation utilized by Boussinesq in [2] had q = 1 in it. One can
find in the literature the Bq equation for q = −1 as good Boussinesq (GBq) equation, when q = 1 is known
as bad Boussinesq (BBq) equation. Bogolubsky [1] has proposed a new form of BBq equation, namely
improved Boussinesq (IBq) which is physically stable and also correct in the sense of Cauchy problem by
replacing the term uxxxx with uxxtt given in the following form

utt = uxx + uxxtt +
(
u2

)
xx

x ∈ [a, b], t ∈ [0,T]. (2)

There exist both analytical and numerical solutions of the IBq equation in the literature. Among others,
Bogolubsky [1] has investigated the dynamics of several initial wave packets, moreover he takes into
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consideration a modified version of the IBq equation where the term
(
u2

)
xx

has been changed with
(
u3

)
xx
.

Iskandar and Jain [9] have solved the problem using three-level finite difference scheme. Zoheiry [6] has
proposed a three-level iterative scheme derived from implicit compact difference scheme. Inc and Evans
[7] have used Adomian decomposition method to obtain the solutions in terms of convergent power series
for IBq. Wazwaz [16] has studied the variants of the equation both having positive and negative exponents
and also found out many sorts of exact solutions. Bratsos [3, 4] has utilized implicit finite-difference method
depending on rational approximants for numerical solution of the IBq equation. Lin and Wu [11] have used
finite element method with linear B-spline basis functions obtain the numerical solution of the equation.
Irk and Dag [8] have also obtained numerical solutions by using both finite difference and quintic B-spline
finite element collocation method. Shokri and Dehghan [14] by using collocation and radial basis functions
have obtained approximate solutions. Zhang and Lu [17] have devised a quadratic finite volume scheme
to solve the initial boundary value problem for the IBq.

1.1. Problem Statement
We are going to consider Eq.(2) with the initial conditions

u(x, 0) = f (x), ut(x, 0) = 1(x), x ∈ [a, b] (3)

and the boundary conditions

u(a, t) = u(b, t) = 0, t ∈ [0,T]
ux(a, t) = ux(b, t) = 0, t ∈ [0,T] (4)

in which f (x) and 1(x) are any given functions, u = u(x, t) is assumed to be sufficiently differentiable function,
here the subscripts t and x denote differentiation in terms of time and space, respectively. One can find in
the bibliography [1] that Eq.(2) has the following soliton type solutions where Amp is the amplitude, c is
the wave speed and x0 is the initial position of the solitary wave

u(x, t) = Amp sech2
(

1
c

√
Amp

6 (x − ct − x0)
)

c = ±

√
1 +

2Amp
3 .

(5)

Our aim is apply Galerkin quadratic B-spline finite element method to IBq equation given by Eq.(2) with its
corresponding initial (3) and boundary (4) conditions. For this purpose we split the original problem into
two different equation by applying ut = v. So Improved Boussinesq equation transform to following form

ut = v
vt = uxx + vxxt +

(
u2

)
xx
.

(6)

2. The Quadratic B-Spline Finite Element Solution

Let us assume that the interval [a, b] of the problem is partitioned into N finite elements having equal
lengths defined as h by the nodal points a = xo < x1 < ... < xN−1 < xN = b. After this assumption, we have
the quadratic B-spline φm(x) functions at the nodal points xm described as [13]

φm(x) =
1
h2


(x − xm−1) 2, [xm−1, xm],
(x − xm−1) 2

− 3 (x − xm) 2, [xm, xm+1],
(x − xm−1) 2

− 3 (x − xm) 2 + 3 (x − xm+1) 2, [xm+1, xm+2],
0, otherwise,

(7)

which constitute a basis for all the functions defined over the interval [a, b]. Thus, we can now write the
global approximations UN(x, t) and VN(x, t) to the exact ones u(x, t) and v(x, t) in terms of those newly
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defined quadratic B-splines as follows

UN(x, t) =

N∑
j=−1

δ j(t)φ j(x) VN =

N∑
j=−1

σ j (t)φ j (x) (8)

where δ j are time dependent parameters which are going to be find out using the initial, boundary and
weighted residual conditions of the stated problem.

If we use the local coordinate transformation given as ξ = x − xm, 0 ≤ ξ ≤ h, then Eq.(7) can also be
stated as follows

φm−1
φm
φm+1

=
1
h2


(h − ξ)2,
h2 + 2hξ − 2ξ2, 0 ≤ ξ ≤ h
ξ2,

(9)

due to the fact that all the remaining quadratic B-splines are exactly zero on the element defined over
[xm, xm+1], we have the right to write the approximation (8) over this element in terms of the basis functions
(9) as follows

UN =

m+1∑
j=m−1

δ jφ j, VN =

m+1∑
j=m−1

σ jφ j. (10)

When Eqs. (9) and (10) are used, the nodal values Um, Vm and U′m, V′m and at the knot xm are easily got in
terms of the time-dependent element parameters δm as follows

U (xm) = Um = δm−1 + δm

V (xm) = Vm = σm−1 + σm

U′ (xm) = U′m =
2
h

(δm − δm−1)

V′ (xm) = V′m =
2
h

(σm − σm−1) .

Let us note that from now on and throughout the manuscript, the prime is going to denote differentiation
with respect to x. The corresponding weak form of the Improved Boussinesq equation can be stated by the
following integral equations

� xm+1

xm
W (Ut − V) dx = 0� xm+1

xm
(WVt + WxUx + WxVxt + 2WxUUx) dx = {WUx + WVxt + 2WUUx}|

xm+1
xm

(11)

where W is the weight function. Because of the method used in the solution process, if we take the weight
function W(x) as quadratic B-splines and replace (10) into Eq.(11) we result in∑m+1

j=m−1

{(� h
0 φiφ jdξ

)
δ̇e

j −
(� h

0 φiφ jdξ
)
σe

j

}
= 0

∑m+1
j=m−1

{(� h
0 φiφ jdξ

)
σ̇e

j +
(� h

0 φ
′

iφ
′

jdξ
)
δe

j +
(� h

0 φ
′

iφ
′

jdξ
)
σ̇e

j + 2
∑m+1

k=m−1

(� h
0 φ

′

iφ
′

jφkdξ
)
δe

jδ
e
k

}
=

∑m+1
j=m−1

{(
φiφ′j

)
δe

j +
(
φiφ′j

)
σ̇e

j + 2
∑m+1

k=m−1

(
φiφ′jφk

)
δe

jδ
e
k

}∣∣∣∣h
0

which can also be rearranged in a matrix form as follows

δ̇e
− σe = 0

Aeσ̇e + Beδe + Beσ̇e + Ce (δe) δe
−Deδe

−Deσ̇e
− Ee (δe) δe = 0. (12)
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Let us note that from now on and throughout the manuscript, the dot is going to denote differentiation with
respect to t, δe = (δm−1, δm, δm+1) and σe = (σm−1, σm, σm+1) are going to be treated as the element parameters,
and Ae, Be, Ce (δe) ,De and Ee (δe) are the element matrices given by the following integrals:

Ae
i j =

� h
0 φiφ jdξ,

Be
i j =

� h
0 φ

′

iφ
′

jdξ,

Ce
i jk (δe) = 2

� h
0 φ

′

iφ
′

jφkdξ,

De
i j = φiφ′j

∣∣∣∣h
0

Ee
i jk (δe) = 2

(
φiφ′jφk

)∣∣∣∣h
0

(13)

where i, j, k = m− 1,m,m + 1.After simple arrangements, the element matrices (13) can be found as follows

Ae
i j =

� h

0
φiφ jdξ =

h
30

 6 13 1
13 54 13
1 13 6

 ,
Be

i j =

� h

0
φ′iφ

′

jdξ =
2
3h

 2 −1 −1
−1 2 −1
−1 −1 2

 ,
De

i j = φiφ
′

j

∣∣∣∣h
0

=
2
h

 1 −1 0
1 −2 1
0 −1 1

 ,

Ce
i jk (δe) =

h
15

 (24,−18,−6)δ (52,−24,−28)δ (4, 2,−6)δ
(−18, 16, 2)δ (−24, 48,−24)δ (2, 16,−18)δ

(−6, 2, 4)δ (−28,−24, 52)δ (−6,−18, 24)δ


Ee

i jk (δe) =
4
h

 (1,−1, 0)δ (1,−1, 0)δ (0, 0, 0)δ
(1,−1, 0)δ (1,−2, 1)δ (0,−1, 1)δ
(0, 0, 0)δ (0,−1, 1)δ (0,−1, 1)δ

 .
If we combine all the contributions coming from all those elements lying in the solution domain of the
problem, Eq.(12) results in the system of equations

δ̇ − σ = 0
(A + B −D)σ̇ + (B −D + C (δ) − E (δ))δ = 0 (14)

where vectors of the global element parameters are δ = (δ−1, δ0, ..., δN−1, δN)T, σ = (σ−1, σ0, ..., σN−1, σN)T and
A, B, D, C (δ), E (δ) are global matrices and each generalized mth row of the global matrices is as follows

A : h
30 (1, 26, 66, 26, 1),

B : 2
3h (−1,−2, 6,−2,−1),

D : 2
h (0, 0, 0, 0, 0)

C (δ) : h
15 ((−6, 2, 4, 0, 0) δ, (−28,−42, 68, 2, 0) δ, (−6,−42, 96,−42,−6) δ, (0, 2, 68,−42,−28) δ, (0, 0, 4, 2,−6) δ),

E (δ) : 4
h ((0, 0, 0, 0, 0) δ, (0, 0, 0, 0, 0) δ, (0, 0, 0, 0, 0) δ, (0, 0, 0, 0, 0) δ, (0, 0, 0, 0, 0) δ).

Finally, if we utilize the boundary conditions in (4) the system results in a N ×N matrix system. Now, the
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initial conditions of the problem for (14) are obtained by taking (3). In that case,we easily obtain

UN(x, 0) =

N∑
j=−1

δ0
jφ j, VN(x, 0) =

N∑
j=−1

σ0
jφ j

As a result, we will have the system of ordinary differential equations (14) with extra conditions, which can
be obtained from u′(x0, 0) = U′N(x0, 0) and v′(x0, 0) = V′N(x0, 0). Thanks to the reality that the first derivative
of the approximate initial conditions are going to be in harmony with those of the exact ones, the initial
vectors δ0

j and σ0
j can be respectively obtained from the following matrix equations:

−2
h

2
h

1 1
1 1

.
.
.

1 1





δ−1
δ0
δ1
.
.
.

δN


=



U′0
U0
U1
.
.
.

UN


and 

−2
h

2
h

1 1
1 1

.
.
.

1 1





σ−1
σ0
σ1
.
.
.

σN


=



V′0
V0
V1
.
.
.

VN


.

Consequently, the approximate solution functions for u(x, t) and v(x, t) are going to be derived from δn and
σn by utilizing Eq. (14) which can be also be handled out using a classical fourth-order Runge-Kutta method
by taking time steps as ∆t.

3. Stability Analysis

The evolution of dynamical system is a fixed phenomenon for describing the state of system in the future.
For determining behaviour of the systems, stability is probably the first and most important problem to
dealt with it. Stability plays a significant role for studying on numerical approaches. Especially, for a
discreating scheme, numerical stability is the most important concept.For this reason, the purpose of this
section is to investigate stability analysis of RK4 which is used to solve IBq. Before consider stability on
IBq, let us recall stability theory for a given initial value problem which is expressed in form

dy
dt

= Ãy; y (t0) = y0 (15)

where Ã is coefficients of right side of the differential equation system expressed as matrix which has N
column and N rows. λ js are eigenvalues of matrix Ã for j = 1, 2, 3, ...,N. The linear stability analysis of
time-step methods which applied to (15) is considered in the ∆tλ plane. So, the eigenvalues of matrix Ã
determine stability character of the system given in (15). The system is stable if the parameter ∆tλ lies on
stability region for RK4 illustrated in Fig. 1 (a)[10].
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Figure 1: Stability analysis

The concept of linear analysis depend on eigenvalues of linearizing the nonlinear problem. In order
to consider linear stability analysis of (14), we linearize the problem by treating the nonlinear term u as a
scalar α = max

0≤i≤N−1
{ui}. So, we get

δ̇ = σ
σ̇ = −(A + B −D)−1((1 + 2α) (B −D))δ (16)

If the coefficient matrix of (16) is symbolized via a matrix K,

K =

[
0 1

−(A + B −D)−1((1 + 2α) (B −D)) 0

]
N×N

we can rewrite (16) as follows

d
dt

{
δ
σ

}
= K

{
δ
σ

}
.

Thus, stability of the linearized system are formulated in terms of the eigenvalues of the matrix K . After
calculation of eigenvalues of matrix K , we find that big amount of eigenvalues associated with matrix K
are complex valued. The place of this eigenvalues illustrated in Fig.1 (b) for N = 44 and ∆t = 0.001.

It can be seen from the fig. 1 (b) that complex eigenvalues lie on the stability region of RK4. However,
some of them have small positive real parts which lie between the stability region and ∆tλ ≤ 4.10−19. In these
case, as it referent in [10], if eigenvalues of coefficient matrix have enough small positive real parts, there
can be a tolerance for stability. Therefore, the results show that RK4 method which applied to numerical
scheme (16) is stable.

4. Numerical Examples and Results

In this section, the equation (2) corresponding to Eqs. (3)-(4) after applying the present method was
solved numerically using fourth order Runge-Kutta method for four test problems with various initial
and boundary conditions. To be able to demonstrate how good the obtained numerical solutions when
compared with the exact ones, we are going to use the error norms L2 and L∞ described by

L2 =

√
h
∑N

j=0

∣∣∣u j − (UN) j

∣∣∣2,
L∞ = ‖u −UN‖∞ = max0≤ j≤N

∣∣∣u j − (UN) j

∣∣∣ .
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Table 1: The error norms L∞and L2 of obtained numerical solutions of IBq equation for different values of
A, ∆t and h.

Amp h = 0.1 h = 0.2 h = 0.25 h = 0.5
∆t L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103

0.2 0.001 0.002031 0.007553 0.004577 0.011671 0.000991 0.004031 0.001579 0.010850
0.025 0.002907 0.011037 0.002941 0.008618 0.002871 0.008348 0.002093 0.005628
0.05 0.011855 0.033356 0.012045 0.032400 0.011965 0.032269 0.011224 0.029730
0.1 0.048605 0.129915 0.048796 0.129233 0.048826 0.129263 0.047817 0.126512
0.25 0.305993 0.808817 0.306056 0.808038 0.306006 0.807795 0.304154 0.805242

0.25 0.001 0.002390 0.010282 0.000639 0.001858 0.000980 0.003809 0.002178 0.006369
0.025 0.005591 0.018199 0.005647 0.015802 0.005557 0.015296 0.004167 0.011082
0.05 0.022888 0.061957 0.022985 0.060652 0.022962 0.060590 0.021512 0.056025
0.1 0.092733 0.242742 0.092827 0.241996 0.092767 0.241793 0.090906 0.237292
0.25 0.580247 1.510986 0.580579 1.511266 0.580728 1.510769 0.576718 1.506435

0.5 0.001 0.003711 0.009214 0.008204 0.052424 0.001400 0.00488 0.015424 0.036146
0.025 0.042973 0.111140 0.042469 0.106918 0.041959 0.104440 0.034386 0.080297
0.05 0.169141 0.419592 0.168548 0.415189 0.167993 0.413469 0.160190 0.389052
0.1 0.674561 1.658423 0.673786 1.654639 0.672754 1.653118 0.664029 1.627687
0.25 4.186985 10.277500 4.183889 10.273220 4.178461 10.271300 4.170167 10.246360

4.1. Solitary Wave Movement

In this example, we are going to take following solitary type solution of Eq.(2) into consideration

u(x, t) = Amp sech2

1
c

√
Amp

6
(x − ct − x0)

 ; c = ±

√
1 +

2Amp
3

(17)

in which Amp is amplitude of the pulse which is initially centered at x = x0 moving with a velocity of c. We
have chosen the initial conditions by setting t = 0 as follows

u(x, 0) = Amp sech2
(

1
c

√
Amp

6 (x − x0)
)

ut(x, 0) = v(x, 0) = 2Amp
√

Amp
6 sech2

(
1
c

√
Amp

6 (x − x0)
)

tanh
(

1
c

√
Amp

6 (x − x0)
)
.

For reasons of comparison with the works in [8] we have taken interval [−80, 140] at which the boundary
values have been taken to fit u ≈ 0. Table 1 shows errors norms L2 and L∞ with various amplitudes and
mesh sizes at t = 72. Figure 2 illustrates the solutions of the solitary wave for h = 0.5, ∆t = 0.001 and
Amp = 0.5 at different time levels. It can clearly be seen from the figure that the solitary wave moves to the
right at a constant velocity and almost an unchanged amplitude with increasing time. The amplitude is 0.5
at t = 0 which is located at x = 0, while it is 0.499398 at t = 72 which is located at x = 83. The computed
velocity of the wave at t = 72 is 1.152778, which is in good agreement with the theoretical value 1.154701.
Table 2 shows a comparison of the error norms L∞ obtained by the present method with those of Ref. [8].
From the table, we can observe that error norms L∞ obtained by the present method are more less than M1,
M2 and M3 method and in good agreement with those obtained by M4 in Ref. [8].

4.2. Interaction of Two Solitary Waves

Now, in the second numerical experiment the interaction of two solitary waves is studied by using the
following initial conditions;
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Figure 2: Solitary Wave Movement: Amp = 0.5, ∆t = 0.001, h = 0.5 and x0 = 0

Table 2: Numerical comparison of L∞ with those in Ref. [8] for values of x0 = 0 and h = 0.2, ∆t = 0.001 at
t = 72

present [8]
Amp L∞ × 103 M1 × 103 M2 × 103 M3 × 103 M4 × 103

0.25 0.000639 0.27403 0.00164 0.27290 0.00011
0.5 0.008204 1.02472 0.02404 1.004074 0.00080
0.75 0.003077 2.93470 0.13309 2.807873 0.00376
0.9 0.002708 5.00921 0.28976 4.73146 0.00785

u(x, 0) = Amp1 sech2
(

1
c1

√
Amp1

6

(
x − x1

0

))
+ Amp2 sech2

(
1
c2

√
Amp2

6

(
x − x2

0

))
ut(x, 0) = v(x, 0) = 2Amp1 sech2

(
1
c1

√
Amp1

6

(
x − x1

0

))
tanh

(
1
c1

√
Amp1

6

(
x − x1

0

)) √
Amp1

6

+2Amp2 sech2
(

1
c2

√
Amp2

6

(
x − x2

0

))
tanh

(
1
c2

√
Amp2

6

(
x − x2

0

)) √
Amp2

6

in which c1 =

√
1 +

2Amp1

3 and c2 = −

√
1 +

2Amp2

3 represent two solitary waves, respectively. The first one
initially located at x = x1

0 and moves to the right side with a velocity of c1 and amplitude Amp1, while the
second one is initially located x = x2

0 and moves to the left side with a velocity of c2 and amplitude Amp2.
In Figure 3, we have investigated interaction for two situation, the first is for equal amplitudes and the

second one is for unequal amplitudes. Then, we have illustrated the interaction for values x ∈ [−80, 140],
t ∈ [0, 72], ∆t = 0.001 and h = 0.1.

For equal amplitudes, we have taken the amplitudes as Amp1 = Amp2 = 0.1 and Amp1 = Amp2 = 2 then
we have drawn the results in Figs. 3(a)-(b). As, it is seen from these figures that initially waves do not
detect each others presence at the beginning. In time, they overlap gradually. After interaction, two waves
are seem again then continue traveling. Also, there exists negligible secondary waves behind the solitary
waves when amplitude is taken less than or equal to 0.5. However, when the amplitude is taken greater
than 0.5, we have also investigated visible the secondary waves(see in Fig. 3(b)).

For unequal amplitudes, Amp1 = 0.2, Amp2 = 0.4 and Amp1 = 0.4, Amp2 = 1.5 have chosen and drawn
the results in Figs. 3(c)-(d). Waves exhibit similar interaction behavior and similar elasticity results as equal
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(a) Interaction of two solitary waves: Amp1 = 0.1,
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(b) Interaction of two solitary waves: Amp1 = 2,
Amp2 = 2,∆t = 0.001, h = 0.1, x1

0 = −20 and
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(c) Interaction of two solitary waves: Amp1 = 0.4,
Amp2 = 1.5,∆t = 0.001, h = 0.1, x1

0 = 0 and x2
0 =

40.

100

50

0

-50

0102030405060

0.4

0

0.2

x

t

U
N

(x,t)

(d) Interaction of two solitary waves:Amp1 = 0.2,
Amp2 = 0.4,∆t = 0.001, h = 0.1, x1

0 = 0 and x2
0 =

40.

Figure 3: The numerical solutions of two solitary waves during interaction

amplitudes,i.e, if values of amplitudes less than 0.5, the waves act as solitary waves so we can refer that
the interaction is clear. For values Amp > 0.5, due to the secondary waves which spreads between the
interaction area, interaction is not clear. For two situation, we can conclude the nature of wave interaction
depends on the amplitudes of interacting waves.

In the literature, there are many article consist of solitary wave interaction for improved Boussinesq
equation various choosing of different and equal amplitudes. In Refs. [6, 9] the interactions have discussed
for Amp� 1 and Amp > 1. In contrary of the references, we can conclude that for Amp ≤ 0.5 is clear and for
Amp > 0.5 is not clear. The newly obtained results are same agreement with those studies in [4, 11, 15, 17].

Besides, in all the conducted experiments, it is also found out that the value of maximum joint amplitude
at interaction time is less than the twice of the maximum amplitude of the individual soliton waves in the
interaction, as clearly stated in the [4, 6, 9, 11, 15, 17] .

4.3. Wave Break-up
As a third example, we are going to consider the numerical solutions of IBq equation with f (x) the

same as defined in Section 4.1 for the first experiment and 1(x) = 0. The problem is examined on interval
xε[−80, 140] and tε[0, 72]. The initial location of the wave having an amplitude of Amp = 0.5 is x0 = 30.
Figure 4 illustrates the break-up of the initial stationary wave into two smaller, symmetric solitary waves
moving in the opposite directions by leaving oscillating tail behind them. The break-up happens completely
at nearly t = 10 and the amplitudes of the waves are nearly equal to Amp = 0.26.

4.4. Solution Blow-up
In this example, we consider the blow-up solution of Eq.(2) also discussed in [11, 18, 19]. The problem

is taken into account on the interval x ∈ [0, 1] and with the initial conditions
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Figure 4: Wave Break up: The numerical solutions when t ∈ [0, 70].

f (x) = −3 sin(πx)
1(x) = − sin(πx).

When these conditions are assumed, it is known from [18] that there exists a T0 > 0 such that a unique local
solution uεC2([0,T0) : H2(0, 1) ∩H1

0(0, 1)) exists with the following conditions

‖u(., t)‖L2(0,1) → +∞ as t→ T0

and

I(t) =

1�

0

u(x, t)sin(πx)dx→ −∞ as t→ T0.

First of all, since the solution changes in large quantities, we have divided the solution interval [0, 1] of
the problem into length h = 0.005 and have set the time step ∆t = 0.00001, just to generate sensible results
until the time t = 1.8. The numerical solutions at different times have been demonstrated in Fig. 5. As it is
seen from the figure that although there is a small reduction between the times 1.4 and 1.6, this reduction
becomes more visible between the times 1.6 and 1.7. In fact, after the time 1.7 there is a huge reduction in
the amplitude of wave known also as Blow-up.

0 0.2 0.4 0.6 0.8 1
−600

−500

−400

−300

−200

−100

0

100

t=1.4

t=1.5

t=1.6

t=1.7

(a)
0 0.2 0.4 0.6 0.8 1

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

5

t=1.7

t=1.8

(b)

Figure 5: Blow-up solutions: The numerical solutions when t ∈ (1.4, 1.6) and t ∈ (1.7, 1.8), respectively.
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5. Conclusion

In the present paper, the authors have used Galerkin quadratic B-spline finite element method in order
to obtain numerical solutions of Improved Boussinesq equation effectively and efficiently. To show the
accuracy of the method, four test problems have been solved using the proposed method. The results
also are compared with those available in the literature obtained by different methods and techniques.
The comparison shows that the presented results show fairly good agreement with those avaliable in the
literature. Thus, the proposed method can also be used to solve a wide range of similar partial differential
equations.
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