Filomat 32:16 (2018), 5527–5535 https://doi.org/10.2298/FIL1816527G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Results on Generalized Derivations and (σ, τ) – Lie Ideals

Evrim Güven^a

^aKocaeli University, Faculty of Art and Sciences, Department of Mathematics, Kocaeli, Turkey

Abstract. Let *R* be a prime ring with characteristic not 2 and σ , τ , α , β , λ , μ , γ automorphisms of *R*. Let $h : R \longrightarrow R$ be a nonzero left(resp.right)-generalized (α , β)-derivation, $b \in R$ and $V \neq 0$ a left (σ , τ)-Lie ideal of *R*. The main object in this article is to study the situations. (1) $h(I) \subset C_{\lambda,\mu}(V)$, (2) $bh(I) \subset C_{\lambda,\mu}(V)$ or $h(I)b \subset C_{\lambda,\mu}(V)$, (3) $h\lambda(V) = 0$, (4) $h\lambda(V)b = 0$ or $bh\lambda(V) = 0$.

1. Introduction

Let *R* be a ring and σ , τ two mappings of *R*. For each $r, s \in R$ we set $[r, s]_{\sigma,\tau} = r\sigma(s) - \tau(s)r$ and $(r, s)_{\sigma,\tau} = r\sigma(s) + \tau(s)r$. Let *U* be an additive subgroup of *R*. If $[U, R] \subset U$ then *U* is called a Lie ideal of *R*. The definition of (σ, τ) -Lie ideal of *R* is introduced in [7] as follows: (i) *U* is called a right (σ, τ) -Lie ideal of *R* if $[U, R]_{\sigma,\tau} \subset U$, (ii) *U* is called a left (σ, τ) -Lie ideal of *R* if $[R, U]_{\sigma,\tau} \subset U$. (iii) *U* is called a (σ, τ) -Lie ideal if *U* is both right and left (σ, τ) -Lie ideal of *R*. Every Lie ideal of *R* is a (1, 1)-Lie ideal of *R*, where $1 : R \to R$ is identity map. If $R = \{ {x \ 0 \ 0 \ 0 \ 1} x$ and *y* are integers}, $U = \{ {x \ 0 \ 0 \ 0 \ 1} x$ is integer}, $\sigma {x \ 0 \ 0 \ 0} = {x \ 0 \ 0 \ 0}$ and $\tau {x \ 0 \ 0 \ 0} = {x - y \ 0 \ 0}$ then *U* is right (σ, τ) -Lie ideal but not a Lie ideal of *R*.

A derivation *d* is an additive mapping on *R* which satisfies d(rs) = d(r)s + rd(s), $\forall r, s \in R$. The notion of generalized derivation was introduced by Brešar [2] as follows. An additive mapping $h : R \to R$ is called a generalized derivation if there exists a derivation $d : R \to R$ such that h(xy) = h(x)y + xd(y), for all $x, y \in R$.

An additive mapping $d : R \to R$ is said to be a (σ, τ) -derivation if $d(rs) = d(r)\sigma(s) + \tau(r)d(s)$ for all $r, s \in R$. Every derivation $d : R \to R$ is a (1, 1)-derivation. Chang [3] gave the following definition. Let R be a ring, σ and τ automorphisms of R and d a (σ, τ) -derivation of R. An additive mapping $h : R \to R$ is said to be a right generalized (σ, τ) -derivation of R associated with d if $h(xy) = h(x)\sigma(y) + \tau(x)d(y)$, for all $x, y \in R$ and h is said to be a left generalized (σ, τ) -derivation of R associated with d if $h(xy) = d(x)\sigma(y) + \tau(x)h(y)$, for all $x, y \in R$. h is said to be a generalized (σ, τ) -derivation of R associated with d if i is both a left and right generalized (σ, τ) -derivation of R associated with d.

According to Chang's definition, every (σ, τ) -derivation $d : R \to R$ is a generalized (σ, τ) -derivation associated with d and every derivation $d : R \to R$ is a generalized (1,1)-derivation associated with d. A generalized (1,1)-derivation is simply called a generalized derivation. The definition of generalized derivation given in Bresar [2] is a right generalized derivation associated with derivation d according to Chang's definition.

The mapping defined by $h(r) = [r, a]_{\sigma,\tau}$, $\forall r \in R$ is a right-generalized derivation associated with derivation $d(r) = [r, \sigma(a)]$, $\forall r \in R$ and left-generalized derivation associated with derivation $d_1(r) = [r, \tau(a)]$, $\forall r \in R$.

Communicated by Ljubiša D.R. Kočinac

²⁰¹⁰ Mathematics Subject Classification. Primary 16W25; Secondary 16U80

Keywords. Prime ring, generalized derivation, (σ, τ) –Lie ideal

Received: 19 May 2017; Revised: 05 November 2017; Accepted: 30 November 2017

Email address: evrim@kocaeli.edu.tr (Evrim Güven)

The mapping $h(r) = (a, r)_{\sigma,\tau}$, $\forall r \in R$ is a left-generalized (σ, τ) -derivation associated with (σ, τ) -derivation $d_1(r) = [a, r]_{\sigma,\tau}$, $\forall r \in R$ and right-generalized (σ, τ) -derivation associated with (σ, τ) -derivation $d(r) = -[a, r]_{\sigma,\tau}$, $\forall r \in R$.

The following result is given in [5]. Let *U* be a nonzero left (σ, τ) -Lie ideal of *R* and $d : R \longrightarrow R$ a nonzero (α, β) -derivation. If d(U) = 0 then $\sigma(v) + \tau(v) \in Z$ for all $v \in U$. We generalized this result as follows. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation $d : R \longrightarrow R$ and *V* a nonzero left (σ, τ) -Lie ideal of *R*. If $h\lambda(V) = 0$ then $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. Kyoo-Hong Park and Yong-Soo Jung [9] proved the following. Let *R* be a prime ring with characteristic different from two and *d* be a nonzero (α, β) -derivation of *R*. Let *U* be a left (σ, τ) -Lie ideal. If $d[R, U]_{\sigma,\tau} = 0$ then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$. Replacing *d* with a nonzero left-generalized (α, β) -derivation $h : R \longrightarrow R$ and a nonzero ideal *I* with *R* we generalized this result .

In this paper, we give some other results about left (resp. right)-generalized (α , β)-derivation on left (σ , τ)-Lie ideals of *R*.

Throughout the paper, *R* will be a prime ring with characteristic not 2 and σ , τ , α , β , λ , μ , γ automorphisms of *R*. We set $C_{\sigma,\tau} = \{c \in R \mid c\sigma(r) = \tau(r)c, \forall r \in R\}$, and shall use the following relations frequently:

$$\begin{split} & [rs,t]_{\sigma,\tau} = r[s,t]_{\sigma,\tau} + [r,\tau(t)]s = r[s,\sigma(t)] + [r,t]_{\sigma,\tau}s \\ & [r,st]_{\sigma,\tau} = \tau(s)[r,t]_{\sigma,\tau} + [r,s]_{\sigma,\tau}\sigma(t) \\ & (rs,t)_{\sigma,\tau} = r(s,t)_{\sigma,\tau} - [r,\tau(t)]s = r[s,\sigma(t)] + (r,t)_{\sigma,\tau}s \\ & (r,st)_{\sigma,\tau} = \tau(s)(r,t)_{\sigma,\tau} + [r,s]_{\sigma,\tau}\sigma(t) = -\tau(s)[r,t]_{\sigma,\tau} + (r,s)_{\sigma,\tau}\sigma(t) \end{split}$$

2. Results

Lemma 2.1. ([1, Lemma 1]) Let R be a prime ring and $d : R \longrightarrow R \ a(\sigma, \tau)$ -derivation. If U is a right ideal of R and d(U) = 0 then d = 0.

Lemma 2.2. ([8, Lemma 4]) If a prime ring contains a nonzero commutative right ideal then R is commutative.

Lemma 2.3. ([6, Theorem 2]) Let V be a noncentral left (σ, τ) -Lie ideal of R. Then there exist a nonzero ideal M of R such that $([R, M]_{\sigma,\tau} \subset U \text{ and } [R, M]_{\sigma,\tau} \nsubseteq C_{\sigma,\tau})$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Lemma 2.4. ([4, Lemma 7]) Let $h : R \longrightarrow R$ be a nonzero right-generalized (σ, τ) -derivation associated with a nonzero (σ, τ) -derivation d and let I be a nonzero ideal of R. If $a, b \in R$ such that $[ah(I), b]_{\lambda,\mu} = 0$ then $[a, \mu(b)]a = 0$ or $d\sigma^{-1}\lambda(b) = 0$.

Lemma 2.5. Let I be a nonzero ideal of R and $a, b, c \in R$. (i) If $b\gamma[I, a]_{\lambda,\mu} = 0$ then $a \in Z$ or b = 0. (ii) If $c\gamma[I, a]_{\lambda,\mu}b = 0$ then c = 0 or $[b, \gamma\lambda(a)]b = 0$.

Proof. (i) If $b\gamma[I, a]_{\lambda,\mu} = 0$ then we have for all $r \in R, x \in I$

$$0 = b\gamma[xr, a]_{\lambda, \mu} = b\gamma(x)\gamma[r, \lambda(a)] + b\gamma[x, a]_{\lambda, \mu}\gamma(r) = b\gamma(x)\gamma[r, \lambda(a)].$$

That is

 $b\gamma(I)\gamma[R,\lambda(a)] = 0.$

Since $\gamma(I)$ is a nonzero ideal of *R* then we obtain b = 0 or $[R, \lambda(a)] = 0$. That is b = 0 or $a \in Z$. (ii) If $c\gamma[I, a]_{\lambda,\mu}b = 0$ then we get for all $x \in I$

$$0 = c\gamma[x\gamma^{-1}(b), a]_{\lambda,\mu}b = c\gamma(x)\gamma[\gamma^{-1}(b), \lambda(a)]b + c\gamma[x, a]_{\lambda,\mu}bb$$

= $c\gamma(x)\gamma[\gamma^{-1}(b), \lambda(a)]b.$

That is

 $c\gamma(I)\gamma[\gamma^{-1}(b),\lambda(a)]b=0.$

This gives that c = 0 or $[b, \gamma \lambda(a)]b = 0$. \Box

Lemma 2.6. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation $d : R \longrightarrow R$ and I be a nonzero ideal of R. If $b \in R$ such that $h\gamma[I, b]_{\lambda,\mu} = 0$ then $b \in Z$ or $d\gamma\mu(b) = 0$.

Proof. If $h\gamma[I, b]_{\lambda,\mu} = 0$ then we get for all $x \in I$

 $0 = h\gamma[\mu(b)x, b]_{\lambda,\mu} = h\gamma(\mu(b)[x, b]_{\lambda,\mu}) = h(\gamma\mu(b)\gamma[x, b]_{\lambda,\mu})$ = $d\gamma\mu(b)\alpha\gamma[x, b]_{\lambda,\mu} + \beta\gamma\mu(b)h\gamma[x, b]_{\lambda,\mu} = d\gamma\mu(b)\alpha\gamma[x, b]_{\lambda,\mu}.$

That is

 $d\gamma\mu(b)\alpha\gamma[I,b]_{\lambda,\mu}=0.$

Using Lemma 2.5 (i) and the last relation we obtain that $d\gamma \mu(b) = 0$ or $b \in Z$.

Theorem 2.7. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation $d : R \longrightarrow R$ and I, M be nonzero ideals of R. Let V be a left (σ, τ) -Lie ideal of R.

(i) If $h\gamma[I, M]_{\lambda,\mu} = 0$ then R is commutative. (ii) If $h\lambda(V) = 0$ then $\sigma(v) + \tau(v) \in Z, \forall v \in V$. (iii) If $h\gamma[I, V]_{\lambda,\mu} = 0$ then $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Proof. (i) If $h\gamma[I, m]_{\lambda,\mu} = 0$, $\forall m \in M$ then using Lemma 2.6, for any $m \in M$ we get

 $m \in Z$ or $d\gamma \mu(m) = 0$.

Let $K = \{m \in M \mid m \in Z\}$ and $L = \{m \in M \mid d\gamma\mu(m) = 0\}$. Then K and L are additive proper subgroups of M moreover $M = K \cup L$. Then it must be M = K or M = L. We have $M \subset Z$ or $d\gamma\mu(M) = 0$. Since $\gamma\mu(M)$ is a nonzero ideal of R and d is a nonzero derivation then using Lemma 2.1, $d\gamma\mu(M) \neq 0$. Hence we obtain $M \subset Z$. This gives that R is commutative from Lemma 2.2.

(ii) If $V \subset Z$ then $\sigma(v) + \tau(v) \in Z$ for all $v \in V$. If $V \not\subseteq Z$ then using Lemma 2.3, there exist a nonzero ideal *M* of *R* such that

$$([R, M]_{\sigma, \tau} \subset V \text{ and } [R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}) \text{ or } \sigma(v) + \tau(v) \in Z, \forall v \in V.$$

If $[R, M]_{\sigma,\tau} \subset V$ then $h\lambda(V) = 0$ implies that $h\lambda[R, M]_{\sigma,\tau} = 0$. If we use (i) then we have R is commutative and so $V \subset Z$. This contradicts with $V \not\subseteq Z$. Hence finally we obtain that $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ for any cases.

(iii) If $h\gamma[I, V]_{\lambda,\mu} = 0$ then for any $v \in V$, we have $v \in Z$ or $d\gamma\mu(v) = 0$ from Lemma 2.6. Considering as in the proof of (i) we get $V \subset Z$ or $d\gamma\mu(V) = 0$. It is clear that $V \subset Z$ gives that $\sigma(v) + \tau(v) \in Z, \forall v \in V$. On the other hand, since *d* is a nonzero (α, β) -derivation then *d* is a nonzero left (and right)-generalized (α, β) -derivation associated with *d*. Hence, if $d\gamma\mu(V) = 0$ then we obtain that $\sigma(v) + \tau(v) \in Z, \forall v \in V$ by (ii). \Box

Corollary 2.8. ([9, Corollary 5]) Let *R* be a prime ring with characteristic different from two, let *d* be a nonzero (θ, φ) -derivation of *R* and let *U* be a left (σ, τ) - Lie ideal. If $d[R, U]_{\sigma,\tau} = 0$ then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Corollary 2.9. Let V be a left (σ, τ) -Lie ideal of R. If $a \in R$ such that $(a, \lambda(V))_{\alpha,\beta} = 0$ then $a \in C_{\alpha,\beta}$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Proof. The mapping defined by $g(r) = (a, r)_{\alpha,\beta}$, $\forall r \in R$ is a left-generalized (α, β) -derivation associated with (α, β) -derivation $d(r) = [a, r]_{\alpha,\beta}$, $\forall r \in R$. If g = 0 then we have d = 0 and so $a \in C_{\alpha,\beta}$. Let $g \neq 0$ and $d \neq 0$. If $(a, \lambda(V))_{\alpha,\beta} = 0$ then we can write $g\lambda(V) = 0$. Using Theorem 2.7 (ii) we obtain that $\sigma(v) + \tau(v) \in Z$ for all $v \in V$. \Box

Lemma 2.10. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation d and I be a nonzero ideal of R. If $a, b \in R$ such that $h\lambda[I, a]_{\sigma,\tau}b = 0$ then $d\lambda\tau(a) = 0$ or $[b, \alpha\lambda\sigma(a)]b = 0$.

Proof. If $h\lambda[I, a]_{\sigma,\tau}b = 0$ then we have for all $x \in I$

$$0 = h\lambda[\tau(a)x, a]_{\sigma,\tau}b = h(\lambda\tau(a)\lambda[x, a]_{\sigma,\tau})b$$

= $d\lambda\tau(a)\alpha\lambda[x, a]_{\sigma,\tau}b + \beta\lambda\tau(a)h\lambda[x, a]_{\sigma,\tau}b = d\lambda\tau(a)\alpha\lambda[x, a]_{\sigma,\tau}b$

That is $d\lambda \tau(a) \alpha \lambda [I, a]_{\sigma, \tau} b = 0$.

Using Lemma 2.5 (ii) we obtain that $d\lambda \tau(a) = 0$ or $[b, \alpha\lambda\sigma(a)]b = 0$.

Lemma 2.11. Let V be a left (σ, τ) -Lie ideal of R and $a, b \in R$. If $[a, \lambda(V)]_{\alpha,\beta}b = 0$ then $a \in C_{\alpha,\beta}$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Proof. If $V \subset Z$ then $\sigma(v) + \tau(v) \in Z$ for all $v \in V$. If $V \nsubseteq Z$ then using Lemma 2.3, there exist a nonzero ideal *M* of *R* such that

 $([R, M]_{\sigma, \tau} \subset V \text{ and } [R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}) \text{ or } \sigma(v) + \tau(v) \in Z, \forall v \in V.$

Let $[R, M]_{\sigma,\tau} \subset V$. The mapping $d(r) = [a, r]_{\alpha,\beta}, \forall r \in R$ is a (α, β) -derivation and so left (and right)-generalized (α, β) -derivation with *d*. If d = 0 then $a \in C_{\alpha,\beta}$ is obtained. Let $d \neq 0$.

If $[a, \lambda(V)]_{\alpha,\beta}b = 0$ then we have $d\lambda(V)b = 0$ and so $d\lambda[R, M]_{\sigma,\tau}b = 0$. Using Lemma 2.10, this gives that for any $m \in M$

 $d\lambda\tau(m) = 0$ or $[b, \alpha\lambda\sigma(m)]b = 0$.

Considering as in the proof of Theorem 2.7 (i) we obtain that

 $d\lambda\tau(M) = 0$ or $[b, \alpha\lambda\sigma(M)]b = 0$.

Since $\lambda \tau(M)$ is a nonzero ideal of *R* and *d* is a nonzero derivation then using by Lemma 2.1, $d\lambda \tau(M) \neq 0$. On the other hand, if $[b, \alpha \lambda \sigma(M)]b = 0$ then we get for all $m, m_1 \in M$

 $0 = [b, \alpha \lambda \sigma(mm_1)]b = \alpha \lambda \sigma(m)[b, \alpha \lambda \sigma(m_1)]b + [b, \alpha \lambda \sigma(m)]\alpha \lambda \sigma(m_1)b$ = $[b, \alpha \lambda \sigma(m)]\alpha \lambda \sigma(m_1)b.$

That is

 $[b, \alpha \lambda \sigma(M)] \alpha \lambda \sigma(M) b = 0.$

Since $\alpha \lambda \sigma(M)$ is a nonzero ideal of *R* then we have $b \in Z$. Finally we obtain that $a \in C_{\alpha,\beta}$ or $b \in Z$ or for all $v \in V$, $\sigma(v) + \tau(v) \in Z$ for all case. \Box

Corollary 2.12. Let V be a left (σ, τ) -Lie ideal of R and $a, b \in R$. If $[a, \lambda(V)]b = 0$ then $a \in Z$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Proof. Taking $\alpha = \beta = 1$ an identity map of *R* in Lemma 2.11 we get the required result. \Box

Theorem 2.13. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) -derivation associated with (α, β) -derivation d and let V be a left (σ, τ) -Lie ideal of R. If $b \in R$ such that $h\lambda(V)b = 0$ then $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Proof. If $h\lambda(V)b = 0$ then we have $h\lambda[R, V]_{\sigma,\tau}b = 0$. Using Lemma 2.10, for any $v \in V$, we obtain that $d\lambda\tau(v) = 0$ or $[b, \alpha\lambda\sigma(v)]b = 0$. Let $K = \{v \in V \mid d\lambda\tau(v) = 0\}$ and $L = \{v \in V \mid [b, \alpha\lambda\sigma(v)]b = 0\}$. Considering as in the proof of Theorem 2.7 (i), we get

 $d\lambda\tau(V) = 0$ or $[b, \alpha\lambda\sigma(V)]b = 0$.

Since *d* is a (α, β) -derivation then left-generalized (α, β) -derivation with *d*. If $d\lambda\tau(V) = 0$ then using Theorem 2.7 (ii), we have $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. On the other hand if $[b, \alpha\lambda\sigma(V)]b = 0$ then using Corollary 2.12, we obtain that $b \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$. \Box

Corollary 2.14. Let $h : R \longrightarrow R$ be a nonzero left-generalized derivation associated with derivation d and let V be a left (σ, τ) -Lie ideal of R. If $b \in R$ such that h(V)b = 0 then $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Proof. Taking $\alpha = \beta = \lambda = 1$ an identity map of *R* in Theorem 2.13, we get the required result. \Box

Remark 2.15. Let *M* be a nonzero ideal of *R*. If $b[b, \lambda(M)] = 0$ then $b \in Z$.

Proof. If $b[b, \lambda(M)] = 0$ then for all $m \in M, r \in R$

 $0 = b[b, \lambda(mr)] = b\lambda(m)[b, \lambda(r)] + b[b, \lambda(m)]\lambda(r) = b\lambda(m)[b, \lambda(r)].$

That is $b\lambda(M)[b, R] = 0$. This gives that $b \in Z$.

Lemma 2.16. Let $h : R \longrightarrow R$ be a nonzero right-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation $d : R \longrightarrow R$. Let I be a nonzero ideal of R and $a, b \in R$. If $bh\lambda[I, a]_{\sigma,\tau} = 0$ then $b[b, \beta\lambda\tau(a)] = 0$ or $d\lambda\sigma(a) = 0$.

Proof. If $bh\lambda[I, a]_{\sigma,\tau} = 0$ then we have for all $x \in I$

$$0 = bh\lambda[x\sigma(a), a]_{\sigma,\tau} = b\{h(\lambda[x, a]_{\sigma,\tau}\lambda\sigma(a))\} = bh\lambda[x, a]_{\sigma,\tau}\alpha\lambda\sigma(a) + b\beta\lambda[x, a]_{\sigma,\tau}d\lambda\sigma(a).$$

That is

$$b\beta\lambda[x,a]_{\sigma,\tau}d\lambda\sigma(a) = 0, \forall x \in I.$$
(1)

Replacing *x* by $\lambda^{-1}\beta^{-1}(b)x$ in (1) we get for all $x \in I$

 $0 = b\beta\lambda[\lambda^{-1}\beta^{-1}(b)x, a]_{\sigma,\tau}d\lambda\sigma(a)$ = $bb\beta\lambda[x, a]_{\sigma,\tau}d\lambda\sigma(a) + b\beta\lambda[\lambda^{-1}\beta^{-1}(b), \tau(a)]\beta\lambda(x)d\lambda\sigma(a)$ = $b\beta\lambda[\lambda^{-1}\beta^{-1}(b), \tau(a)]\beta\lambda(x)d\lambda\sigma(a).$

That is

 $b\beta\lambda[\lambda^{-1}\beta^{-1}(b),\tau(a)]\beta\lambda(I)d\lambda\sigma(a) = 0.$

Since $\beta\lambda(I)$ an ideal of *R* then we have $b\beta\lambda[\lambda^{-1}\beta^{-1}(b), \tau(a)] = 0$ or $d\lambda\sigma(a) = 0$. That is $b[b, \beta\lambda\tau(a)] = 0$ or $d\lambda\sigma(a) = 0$. \Box

Corollary 2.17. Let $h : R \longrightarrow R$ be a nonzero right-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation d and M be a nonzero ideal of R. If $b \in R$ such that $bh\lambda[R, M]_{\sigma,\tau} = 0$ then $b \in Z$.

Proof. If $bh\lambda[R, m]_{\sigma,\tau} = 0$, $\forall m \in M$ then using Lemma 2.16 we have for any $m \in M$

 $b[b, \beta \lambda \tau(m)] = 0 \text{ or } d\lambda \sigma(m) = 0.$

Let $K = \{m \in M \mid b[b, \beta\lambda\tau(m)] = 0\}$ and $L = \{m \in M \mid d\lambda\sigma(m) = 0\}$. Considering as in the proof of Theorem 2.7 (i) we obtain $b[b, \beta\lambda\tau(M)] = 0$ or $d\lambda\sigma(M) = 0$. Since *d* is a nonzero derivation then $d\lambda\sigma(M) \neq 0$ from Lemma 2.1. If $b[b, \beta\lambda\tau(M)] = 0$ then using Remark 2.15, $b \in Z$ is obtained. \Box

Lemma 2.18. Let V be a left (σ, τ) -Lie ideal of R and $a, b \in R$. If $b[a, \lambda(V)]_{\alpha,\beta} = 0$ then $a \in C_{\alpha,\beta}$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Proof. If $V \subset Z$ then $\sigma(v) + \tau(v) \in Z$ for all $v \in V$. If $V \nsubseteq Z$ then using Lemma 2.3, there exist a nonzero ideal *M* of *R* such that

 $([R, M]_{\sigma, \tau} \subset V \text{ and } [R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}) \text{ or } \sigma(v) + \tau(v) \in Z, \forall v \in V.$

Let $[R, M]_{\sigma,\tau} \subset V$. The mapping $d(r) = [a, r]_{\alpha,\beta}$, $\forall r \in R$ is a (α, β) -derivation and so right (and left)-generalized (α, β) -derivation associated with d. If d = 0 then $a \in C_{\alpha,\beta}$ is obtained. Assume that d is a nonzero derivation. If $b[a, \lambda(V)]_{\alpha,\beta} = 0$ then we have $bd\lambda(V) = 0$ and so $bd\lambda[R, M]_{\sigma,\tau} = 0$. This gives that by Lemma 2.16, for any $m \in M$

 $d\lambda\sigma(m) = 0$ or $b[b, \beta\lambda\tau(m)] = 0$.

Considering as in the proof of Theorem 2.7 (i), we obtain that

 $d\lambda\sigma(M) = 0$ or $b[b, \beta\lambda\tau(M)] = 0$.

Since $\lambda \sigma(M)$ is a nonzero ideal of *R* and *d* is a nonzero derivation then $d\lambda \sigma(M) \neq 0$ by Lemma 2.1. On the other hand, if $b[b, \beta\lambda\tau(M)] = 0$ then using Remark 2.15, we have $b \in Z$.

Finally we obtain that $a \in C_{\alpha,\beta}$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ for all case. \Box

Corollary 2.19. Let V be a left (σ, τ) -Lie ideal of R and $a, b \in R$. If $b[a, \lambda(V)] = 0$ then $a \in Z$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Proof. Taking $\alpha = \beta = 1$ an identity map of *R* in Lemma 2.18, we get the required result. \Box

Theorem 2.20. Let $h : R \longrightarrow R$ be a nonzero right-generalized (α, β) -derivation associated with nonzero (α, β) -derivation d and $a, b \in R$. Let V be a left (σ, τ) -Lie ideal and $I \neq 0$ an ideal of R. (i) If $bh\lambda(V) = 0$ then $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. (ii) If $bh\lambda[I, V]_{\sigma,\tau} = 0$ then $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Proof. (i) If $V \subset Z$ then it is clear that $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. If $V \nsubseteq Z$ then using Lemma 2.3, there exist a nonzero ideal M of R such that $([R, M]_{\sigma,\tau} \subset V \text{ and } [R, M]_{\sigma,\tau} \nsubseteq C_{\sigma,\tau})$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. If $[R, M]_{\sigma,\tau} \subset V$ then $bh\lambda(V) = 0$ means that $bh\lambda[R, M]_{\sigma,\tau} = 0$. Using Corollary 2.17, we get $b \in Z$.

Finally we obtain that $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ for any case.

(ii) If $bh\lambda[I, v]_{\sigma,\tau} = 0, \forall v \in V$ then using Lemma 2.16, we have for any $v \in V$

 $b[b, \beta \lambda \tau(v)] = 0 \text{ or } d\lambda \sigma(v) = 0.$

Let $K = \{v \in V \mid b[b, \beta \lambda \tau(v)] = 0\}$ and $L = \{v \in V \mid d\lambda \sigma(v) = 0\}$. Considering as the proof of Theorem 2.7 (i), we obtain

 $b[b, \beta \lambda \tau(V)] = 0 \text{ or } d\lambda \sigma(V) = 0.$

Since *d* is a (α, β) -derivation then *d* is a left-generalized (α, β) -derivation with *d*. Hence $d\lambda\sigma(V) = 0$ implies that $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ from Theorem 2.7(ii). On the other hand,

if $b[b, \beta\lambda\tau(V)] = 0$ then using Corollary 2.19, we get $b \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Corollary 2.21. Let $h : R \longrightarrow R$ be a nonzero right-generalized derivation associated with nonzero derivation d and $a, b \in R$. Let V be a left (σ, τ) -Lie ideal and $I \neq 0$ an ideal of R. If bh(V) = 0 then $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Proof. Taking $\alpha = \beta = \lambda = 1$ an identity map of *R* in Theorem 2.20 (i), we get the required result.

Theorem 2.22. Let V be a nonzero left (σ, τ) -Lie ideal of R. and $a, b \in R$. (i) If $b[V, a]_{\alpha,\beta} = 0$ or $[V, a]_{\alpha,\beta} b = 0$ then $a \in Z$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$. (ii) If $(a, V)_{\alpha,\beta}b = 0$ then $a \in C_{\alpha,\beta}$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$ (iii) If $(V, a)_{\alpha,\beta}b = 0$ then $a \in Z$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$. *Proof.* (i) Let us consider the mapping defined by $h(r) = [r, a]_{\alpha,\beta}$, $\forall r \in R$. Then h is a right(left resp.)-generalized derivation associated with derivation $d_1(r) = [r, \alpha(a)]$, $\forall r \in R$ and derivation $d_2 = [r, \beta(a)]$, $\forall r \in R$ respectively. Because

$$h(rs) = [rs, a]_{\alpha, \beta} = r [s, \alpha(a)] + [r, a]_{\alpha, \beta} s = h(r)s + rd_1(s), \forall r, s \in R,$$

$$h(rs) = [rs, a]_{\alpha,\beta} = r [s, a]_{\alpha,\beta} + [r, \beta(a)] s = d_2(r)s + rh(s), \forall r, s \in \mathbb{R}.$$

If h = 0 then $d_1 = 0$ and $d_2 = 0$ and so $a \in Z$ is obtained. Let $h \neq 0$, $d_1 \neq 0$ and $d_2 \neq 0$.

If $b[V, a]_{\alpha,\beta} = 0$ then we have bh(V) = 0. Since *h* is a right-generalized derivation associated with derivation d_1 then using Corollary 2.21, we get $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Similarly if $[V, a]_{\alpha,\beta} b = 0$ then we write h(V)b = 0. Since h is a left-generalized derivation associated with derivation d_2 then using Corollary 2.14 we have $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. Finally we obtain that $a \in Z$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. Finally we obtain that $a \in Z$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ for two case.

(ii) Let $g(r) = (a, r)_{\alpha,\beta}$, $\forall r \in R$ and $d_3(r) = [a, r]_{\alpha,\beta}$, $\forall r \in R$. Then *g* is a left-generalized (α, β) -derivation associated with (α, β) -derivation d_3 . Because for all $r, s \in R$

$$g(rs) = (a, rs)_{\alpha,\beta} = \beta(r)(a, s)_{\alpha,\beta} + [a, r]_{\alpha,\beta}\alpha(s) = d_3(r)\alpha(s) + \beta(r)g(s).$$

If g = 0 then we have $d_3 = 0$ and so $a \in C_{\alpha,\beta}$ is obtained. Let $g \neq 0$ and $d_3 \neq 0$.

If $(a, V)_{\alpha,\beta}b = 0$ then we have g(V)b = 0. Since g is a nonzero left-generalized (α, β) -derivation associated with (α, β) -derivation d_3 then considering Theorem 2.13, we get $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. Finally we obtain that $a \in C_{\alpha,\beta}$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ for two case.

(iii) The mapping $f(r) = (r, a)_{\alpha,\beta}$, $\forall r \in R$ is a left-generalized derivation associated with derivation $d_4(r) = -[r, \beta(a)]$, $\forall r \in R$. Because for all $r, s \in R$

$$f(rs) = (rs, a)_{\alpha,\beta} = r(s, a)_{\alpha,\beta} - [r, \beta(a)]s = d_4(r)s + rf(s).$$

If f = 0 then $d_4 = 0$ and so $a \in Z$ is obtained.

Let $f \neq 0$ and $d_4 \neq 0$. If $(V, a)_{\alpha,\beta}b = 0$ then we have f(V)b = 0. This gives that $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ by Corollary 2.14. \Box

Lemma 2.23. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation $d : R \longrightarrow R$. Let V be a nonzero left (σ, τ) -Lie ideal of R and I be a nonzero ideal of R. If $a, b \in R$ such that $[h(I)b, a]_{\lambda,\mu} = 0$ then $d\beta^{-1}\mu(a) = 0$ or $b[b, \lambda(a)] = 0$.

Proof. If $[h(x)b, a]_{\lambda,\mu} = 0, \forall x \in I$ then we have

$$h(x)[b, \lambda(a)] + [h(x), a]_{\lambda, \mu} b = 0, \forall x \in I.$$
(2)

Replacing *x* by $sx, s \in R$ in (2) and using (2), we get for all $x \in I, s \in R$

$$\begin{split} 0 &= h(sx)[b, \lambda(a)] + [h(sx), a]_{\lambda,\mu}b \\ &= d(s)\alpha(x)[b, \lambda(a)] + \beta(s)h(x)[b, \lambda(a)] + [d(s)\alpha(x) + \beta(s)h(x), a]_{\lambda,\mu}b \\ &= d(s)\alpha(x)[b, \lambda(a)] + \beta(s)h(x)[b, \lambda(a)] + d(s)[\alpha(x), \lambda(a)]b \\ &+ [d(s), a]_{\lambda,\mu}\alpha(x)b + \beta(s)[h(x), a]_{\lambda,\mu}b + [\beta(s), \mu(a)]h(x)b \\ &= d(s)\alpha(x)[b, \lambda(a)] + d(s)[\alpha(x), \lambda(a)]b + [d(s), a]_{\lambda,\mu}\alpha(x)b + [\beta(s), \mu(a)]h(x)b. \end{split}$$

If we take $\beta^{-1}\mu(a)$ instead of *s* and say that $k = d\beta^{-1}\mu(a)$ then the last relation gives that

$$k\alpha(x)[b,\lambda(a)] + k[\alpha(x),\lambda(a)]b + [k,a]_{\lambda,\mu}\alpha(x)b = 0, \forall x \in I.$$

Replacing *x* by $x\alpha^{-1}(b)$ in (3) we have for all $x \in I$

$$0 = k\alpha(x)b[b, \lambda(a)] + k\alpha(x)[b, \lambda(a)]b + k[\alpha(x), \lambda(a)]bb + [k, a]_{\lambda,\mu}\alpha(x)bb = k\alpha(x)b[b, \lambda(a)]$$

and so $k\alpha(I)b[b, \lambda(a)] = 0$.

Since $\alpha(I)$ is a nonzero ideal of *R* then we obtain $d\beta^{-1}\mu(a) = 0$ or $b[b, \lambda(a)] = 0$. \Box

(3)

Theorem 2.24. Let $h : \mathbb{R} \longrightarrow \mathbb{R}$ be a nonzero left-generalized (α, β) -derivation associated with a nonzero (α, β) -derivation $d : \mathbb{R} \longrightarrow \mathbb{R}$. Let V be a nonzero left (σ, τ) -Lie ideal of \mathbb{R} and I be a nonzero ideal of \mathbb{R} . If $b \in \mathbb{R}$ such that $h(I)b \subset C_{\lambda,\mu}(V)$ then $b \in \mathbb{Z}$ or $\sigma(v) + \tau(v) \in \mathbb{Z}$, $\forall v \in V$.

Proof. If $h(I)b \subset C_{\lambda,\mu}(V)$ then we have $[h(x)b, v]_{\lambda,\mu} = 0, \forall v \in V, x \in I$. Using Lemma 2.23, we get $d\beta^{-1}\mu(v) = 0$ or $b[b, \lambda(v)] = 0$.

Let $K = \{v \in V \mid b[b, \lambda(v)] = 0\}$ and $L = \{v \in V \mid d\beta^{-1}\mu(v) = 0\}$. Considering as in the proof of Theorem 2.7 (i) we obtain

 $d\beta^{-1}\mu(V) = 0 \text{ or } b[b, \lambda(V)] = 0.$

If $d\beta^{-1}\mu(V) = 0$ then using Theorem 2.7 (ii), we have $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. On the other hand using Corollary 2.19, $b[b, \lambda(V)] = 0$ means that $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. \Box

Corollary 2.25. Let V be a nonzero left (σ, τ) -Lie ideal of R and $a, b \in R$. If $(a, I)_{\sigma,\tau}b \subset C_{\lambda,\mu}(V)$ then $a \in C_{\sigma,\tau}$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Proof. The mapping defined by $h(r) = (a, r)_{\sigma,\tau}$, $\forall r \in R$ is a left-generalized (σ, τ) -derivation associated with (σ, τ) -derivation $d(r) = [a, r]_{\sigma,\tau}$, $\forall r \in R$. If h = 0 then d = 0 and so we have $a \in C_{\sigma,\tau}$. Let $h \neq 0$ and $d \neq 0$. If $(a, I)_{\sigma,\tau} b \subset C_{\lambda,\mu}(V)$ then we can write $h(I)b \subset C_{\lambda,\mu}(V)$. Using Theorem 2.24, we get $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. \Box

Theorem 2.26. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) -derivation associated with nonzero (α, β) -derivation $d : R \longrightarrow R$ and I be a nonzero ideal of R. Let V be a nonzero left (σ, τ) -Lie ideal of R. If $h(I) \subset C_{\lambda,\mu}(V)$ then $\sigma(v) + \tau(v) \in Z, \forall v \in V.$

Proof. If $h(I) \subset C_{\lambda,\mu}(V)$ then we have $[h(x), v]_{\lambda,\mu} = 0, \forall x \in I, v \in V$. Let us consider the following relations

 $[rs, t]_{\lambda,\mu} = r[s, \lambda(t)] + [r, t]_{\lambda,\mu}s, \forall r, s, t \in R \text{ and}$ $[rs, t]_{\lambda,\mu} = r[s, t]_{\lambda,\mu} + [r, \mu(t)]s, \forall r, s, t \in R.$

Using the hypothesis and the above relations we get for all $v \in V, x \in I, s \in R$

 $\begin{aligned} 0 &= [h(sx), v]_{\lambda,\mu} = [d(s)\alpha(x) + \beta(s)h(x), v]_{\lambda,\mu} \\ &= [d(s)\alpha(x), v]_{\lambda,\mu} + [\beta(s)h(x), v]_{\lambda,\mu} \\ &= d(s)[\alpha(x), \lambda(v)] + [d(s), v]_{\lambda,\mu}\alpha(x) + \beta(s)[h(x), v]_{\lambda,\mu} + [\beta(s), \mu(v)]h(x) \\ &= d(s)[\alpha(x), \lambda(v)] + [d(s), v]_{\lambda,\mu}\alpha(x) + [\beta(s), \mu(v)]h(x) \end{aligned}$

and so

$$d(s)[\alpha(x), \lambda(v)] + [d(s), v]_{\lambda,\mu}\alpha(x) + [\beta(s), \mu(v)]h(x) = 0, \forall v \in V, x \in I, s \in \mathbb{R}.$$
(4)

If we take $\beta^{-1}\mu(v)$ instead of *s* in (4) and say that $k(v) = d\beta^{-1}\mu(v)$ then we obtain

$$k(v)[\alpha(x), \lambda(v)] + [k(v), v]_{\lambda,\mu}\alpha(x) = 0, \forall v \in V, x \in I.$$
(5)

Replacing *x* by $xr, r \in R$ in (5) and using (5) we have for all $v \in V, x \in I, r \in R$

$$0 = k(v)\alpha(x)[\alpha(r), \lambda(v)] + k(v)[\alpha(x), \lambda(v)]\alpha(r) + [k(v), v]_{\lambda,\mu}\alpha(x)\alpha(r)$$
$$= k(v)\alpha(x)[\alpha(r), \lambda(v)]$$

and so

 $k(v)\alpha(I)[R,\lambda(v)] = 0, \forall v \in V.$

(6)

For any $v \in V$, the relation (6) gives that $d\beta^{-1}\mu(v) = 0$ or $v \in Z$.

Let $K = \{v \in V \mid d\beta^{-1}\mu(v) = 0\}$ and $L = \{v \in V \mid v \in Z\}$. Considering as in the proof of Theorem 2.7 (i), we get $d\beta^{-1}\mu(V) = 0$ or $V \subset Z$.

If $V \subset Z$ then $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. On the other hand, since *d* is a (α, β) -derivation and so a leftgeneralized (α, β) -derivation associated with *d* then $d\beta^{-1}\mu(V) = 0$ means that $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$ by Theorem 2.7 (ii). \Box

Corollary 2.27. Let V be a nonzero left (σ, τ) -Lie ideal of R and $b \in R$. If $(b, I)_{\alpha,\beta} \subset C_{\lambda,\mu}(V)$ then $b \in C_{\alpha,\beta}$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$.

Proof. Let us consider the mappings defined by $h(r) = (b, r)_{\alpha,\beta}, \forall \in \mathbb{R}$ and $d(r) = [b, r]_{\alpha,\beta}, \forall r \in \mathbb{R}$. Since

 $h(rs) = (b, rs)_{\alpha,\beta} = \tau(r)(b, s)_{\alpha,\beta} + [b, r]_{\alpha,\beta}\sigma(s) = d(r)\sigma(s) + \tau(r)h(s), \forall r, s \in \mathbb{R}.$

Then *h* is a left-generalized (α, β) – derivation associated with (α, β) – derivation *d*. If h = 0 then d = 0 and so $b \in C_{\alpha,\beta}$ is obtained.

If $(b, I)_{\alpha,\beta} \subset C_{\lambda,\mu}(V)$ then we have $h(I) \subset C_{\lambda,\mu}(V)$. Let $h \neq 0$ and $d \neq 0$. Using Theorem 2.26, we obtain $\sigma(v) + \tau(v) \in Z, \forall v \in V$. \Box

Theorem 2.28. Let $h : R \longrightarrow R$ be a nonzero right-generalized (α, β) -derivation associated with (α, β) -derivation $0 \neq d : R \longrightarrow R$. Let V be a nonzero left (σ, τ) -Lie ideal of R and I be a nonzero ideal of R. If $b \in R$ such that $bh(I) \subset C_{\lambda,\mu}(V)$ then $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$.

Proof. If $bh(I) \subset C_{\lambda,\mu}(V)$ then $[bh(I), v]_{\lambda,\mu} = 0, \forall v \in V$. Using Lemma 2.4, for any $v \in V$, we obtain that $[b, \mu(v)]b = 0$ or $d\alpha^{-1}\lambda(v) = 0$.

Let $K = \{v \in V \mid [b, \mu(v)]b = 0\}$ and $L = \{v \in V \mid d\alpha^{-1}\lambda(v) = 0\}$. Considering as in the proof of Theorem 2.7 (i), we have

 $[b, \mu(V)]b = 0 \text{ or } d\alpha^{-1}\lambda(V) = 0.$

If $d\alpha^{-1}\lambda(V) = 0$ then $\sigma(v) + \tau(v) \in Z, \forall v \in V$ is obtained by Theorem 2.7 (ii). On the other hand $[b, \mu(V)]b = 0$ means that $b \in Z$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$ by Corollary 2.12. \Box

Corollary 2.29. Let I be a nonzero ideal of R and $a, b \in R$. If $b(a, I)_{\sigma,\tau} \subset C_{\lambda,\mu}(V)$ then $a \in C_{\sigma,\tau}$ or $b \in Z$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$.

Proof. The mapping defined by $h(r) = (a, r)_{\sigma,\tau}$, $\forall r \in R$ is a right-generalized (σ, τ) -derivation associated with (σ, τ) -derivation $d(r) = [a, r]_{\sigma,\tau}$, $\forall r \in R$. If h = 0 then d = 0 and so we have $a \in C_{\sigma,\tau}$. Assume that h and d are nonzero.

If $b(a, I)_{\sigma,\tau} \subset C_{\lambda,\mu}(V)$ then we have $bh(I) \subset C_{\lambda,\mu}(V)$. Since *h* is right-generalized (σ, τ) -derivation then using Theorem 2.2, we get $b \in Z$ or $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. \Box

References

- [1] N. Aydın, K. Kaya, Some generalizations in prime rings with (σ , τ)-derivation, Doğa-Tr. J. Math. 16, (1992) 169–176.
- [2] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991) 89–93. [3] J.C. Chang., On the identity h(x) = af(x) + g(x)b, Taiwanese J. Math. 7 (2003) 103–113.
- [4] E. Güven, One sided (σ , τ)-Lie ideals and generalized derivations in prime rings, Palestine J. Math. 7 (2018) 479–486.
- [5] E. Güven, K. Kaya, M. Soytürk, Some results on (σ , τ)–Lie ideals, Math. J. Okayama Univ. 49 (2007) 59–64.
- [6] K. Kaya, N. Aydın, Some results on generalized Lie ideals, Albasapr Sci. J. (Jordan Univ. for Woman) 3:1 (1999) 53-61.
- [7] K. Kaya, (σ, τ) –Lie ideals in prime rings, Anal. Univ Timisoara Ser. Stiinte Math. (1992) 251–255.
- [8] J.H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984) 122-126.
- [9] K.H. Park, Y.S. Jung, Some result concerning (θ, φ)-derivations on prime rings, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 10:4 (2003) 207–215.