

Some Results on Generalized Derivations and (σ, τ) - Lie Ideals

Evrim Güven ${ }^{\text {a }}$
${ }^{a}$ Kocaeli University, Faculty of Art and Sciences, Department of Mathematics, Kocaeli, Turkey

Abstract

Let R be a prime ring with characteristic not 2 and $\sigma, \tau, \alpha, \beta, \lambda, \mu, \gamma$ automorphisms of R. Let $h: R \longrightarrow R$ be a nonzero left(resp.right)-generalized (α, β)-derivation, $b \in R$ and $V \neq 0$ a left (σ, τ)-Lie ideal of R. The main object in this article is to study the situations. (1) $h(I) \subset C_{\lambda, \mu}(V)$, (2) bh(I) $\subset C_{\lambda, \mu}(V)$ or $h(I) b \subset C_{\lambda, \mu}(V),(3) h \lambda(V)=0$, (4) $h \lambda(V) b=0$ or $b h \lambda(V)=0$.

1. Introduction

Let R be a ring and σ, τ two mappings of R. For each $r, s \in R$ we set $[r, s]_{\sigma, \tau}=r \sigma(s)-\tau(s) r$ and $(r, s)_{\sigma, \tau}=$ $r \sigma(s)+\tau(s) r$. Let U be an additive subgroup of R. If $[U, R] \subset U$ then U is called a Lie ideal of R. The definition of (σ, τ)-Lie ideal of R is introduced in [7] as follows: (i) U is called a right $(\sigma, \tau)-$ Lie ideal of R if $[U, R]_{\sigma, \tau} \subset U$, (ii) U is called a left (σ, τ)-Lie ideal if $[R, U]_{\sigma, \tau} \subset U$. (iii) U is called a (σ, τ)-Lie ideal if U is both right and left (σ, τ)-Lie ideal of R. Every Lie ideal of R is a (1,1)-Lie ideal of R, where $1: R \rightarrow R$ is identity map. If $R=\left\{\binom{x}{0} \upharpoonleft x\right.$ and y are integers $\}, U=\left\{\binom{x}{0}\right.$ right $(\sigma, \tau)-$ Lie ideal but not a Lie ideal of R.

A derivation d is an additive mapping on R which satisfies $d(r s)=d(r) s+r d(s), \forall r, s \in R$. The notion of generalized derivation was introduced by Brešar [2] as follows. An additive mapping $h: R \rightarrow R$ is called a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that $h(x y)=h(x) y+x d(y)$,for all $x, y \in R$.

An additive mapping $d: R \rightarrow R$ is said to be a $(\sigma, \tau)-$ derivation if $d(r s)=d(r) \sigma(s)+\tau(r) d(s)$ for all $r, s \in R$. Every derivation $d: R \rightarrow R$ is a (1,1)-derivation. Chang [3] gave the following definition. Let R be a ring, σ and τ automorphisms of R and d a (σ, τ)-derivation of R. An additive mapping $h: R \rightarrow R$ is said to be a right generalized (σ, τ)-derivation of R associated with d if $h(x y)=h(x) \sigma(y)+\tau(x) d(y)$, for all $x, y \in R$ and h is said to be a left generalized (σ, τ)-derivation of R associated with d if $h(x y)=d(x) \sigma(y)+\tau(x) h(y)$, for all $x, y \in R$. h is said to be a generalized (σ, τ)-derivation of R associated with d if it is both a left and right generalized (σ, τ)-derivation of R associated with d.

According to Chang's definition, every $(\sigma, \tau)-$ derivation $d: R \rightarrow R$ is a generalized $(\sigma, \tau)-$ derivation associated with d and every derivation $d: R \rightarrow R$ is a generalized (1,1)-derivation associated with d. A generalized (1,1)-derivation is simply called a generalized derivation. The definition of generalized derivation given in Bresar [2] is a right generalized derivation associated with derivation d according to Chang's definition.

The mapping defined by $h(r)=[r, a]_{\sigma, \tau}, \forall r \in R$ is a right-generalized derivation associated with derivation $d(r)=[r, \sigma(a)], \forall r \in R$ and left-generalized derivation associated with derivation $d_{1}(r)=[r, \tau(a)], \forall r \in R$.

[^0]The mapping $h(r)=(a, r)_{\sigma, \tau}, \forall r \in R$ is a left-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $d_{1}(r)=[a, r]_{\sigma, \tau}, \forall r \in R$ and right-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $d(r)=$ $-[a, r]_{\sigma, \tau}, \forall r \in R$.

The following result is given in [5]. Let U be a nonzero left (σ, τ)-Lie ideal of R and $d: R \longrightarrow R$ a nonzero (α, β)-derivation. If $d(U)=0$ then $\sigma(v)+\tau(v) \in Z$ for all $v \in U$. We generalized this result as follows. Let $h: R \longrightarrow R$ be a nonzero left-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $d: R \longrightarrow R$ and V a nonzero left (σ, τ)-Lie ideal of R. If $h \lambda(V)=0$ then $\sigma(v)+\tau(v) \in Z, \forall v \in V$. Kyoo-Hong Park and Yong-Soo Jung [9] proved the following. Let R be a prime ring with characteristic different from two and d be a nonzero (α, β)-derivation of R. Let U be a left (σ, τ)-Lie ideal. If $d[R, U]_{\sigma, \tau}=0$ then $\sigma(u)+\tau(u) \in Z$ for all $u \in U$. Replacing d with a nonzero left-generalized (α, β)-derivation $h: R \longrightarrow R$ and a nonzero ideal I with R we generalized this result .

In this paper, we give some other results about left (resp. right)-generalized (α, β)-derivation on left (σ, τ)-Lie ideals of R.

Throughout the paper, R will be a prime ring with characteristic not 2 and $\sigma, \tau, \alpha, \beta, \lambda, \mu, \gamma$ automorphisms of R. We set $C_{\sigma, \tau}=\{c \in R \mid c \sigma(r)=\tau(r) c, \forall r \in R\}$, and shall use the following relations frequently:

$$
\begin{aligned}
{[r s, t]_{\sigma, \tau} } & =r[s, t]_{\sigma, \tau}+[r, \tau(t)] s=r[s, \sigma(t)]+[r, t]_{\sigma, \tau} s \\
{[r, s t]_{\sigma, \tau} } & =\tau(s)[r, t]_{\sigma, \tau}+[r, s]_{\sigma, \tau} \sigma(t) \\
(r s, t)_{\sigma, \tau} & =r(s, t)_{\sigma, \tau}-[r, \tau(t)] s=r[s, \sigma(t)]+(r, t)_{\sigma, \tau} s \\
(r, s t)_{\sigma, \tau} & =\tau(s)(r, t)_{\sigma, \tau}+[r, s]_{\sigma, \tau} \sigma(t)=-\tau(s)[r, t]_{\sigma, \tau}+(r, s)_{\sigma, \tau} \sigma(t)
\end{aligned}
$$

2. Results

Lemma 2.1. ([1, Lemma 1]) Let R be a prime ring and $d: R \longrightarrow R a(\sigma, \tau)$-derivation. If U is a right ideal of R and $d(U)=0$ then $d=0$.
Lemma 2.2. ([8, Lemma 4]) If a prime ring contains a nonzero commutative right ideal then R is commutative.
Lemma 2.3. ([6, Theorem 2]) Let V be a noncentral left (σ, τ)-Lie ideal of R. Then there exist a nonzero ideal M of R such that $\left([R, M]_{\sigma, \tau} \subset U\right.$ and $\left.[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right)$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Lemma 2.4. ([4, Lemma 7]) Let $h: R \longrightarrow R$ be a nonzero right-generalized ($\sigma, \tau)$-derivation associated with a nonzero (σ, τ)-derivation d and let I be a nonzero ideal of R. If $a, b \in R$ such that $[a h(I), b]_{\lambda, \mu}=0$ then $[a, \mu(b)] a=0$ or $d \sigma^{-1} \lambda(b)=0$.

Lemma 2.5. Let I be a nonzero ideal of R and $a, b, c \in R$.
(i) If $b \gamma[I, a]_{\lambda, \mu}=0$ then $a \in Z$ or $b=0$.
(ii) If $c \gamma[I, a]_{\lambda, \mu} b=0$ then $c=0$ or $[b, \gamma \lambda(a)] b=0$.

Proof. (i) If $b \gamma[I, a]_{\lambda, \mu}=0$ then we have for all $r \in R, x \in I$

$$
0=b \gamma[x r, a]_{\lambda, \mu}=b \gamma(x) \gamma[r, \lambda(a)]+b \gamma[x, a]_{\lambda, \mu} \gamma(r)=b \gamma(x) \gamma[r, \lambda(a)] .
$$

That is

$$
b \gamma(I) \gamma[R, \lambda(a)]=0
$$

Since $\gamma(I)$ is a nonzero ideal of R then we obtain $b=0$ or $[R, \lambda(a)]=0$. That is $b=0$ or $a \in Z$.
(ii) If $c \gamma[I, a]_{\lambda, \mu} b=0$ then we get for all $x \in I$

$$
\begin{aligned}
0 & =c \gamma\left[x \gamma^{-1}(b), a\right]_{\lambda, \mu} b=c \gamma(x) \gamma\left[\gamma^{-1}(b), \lambda(a)\right] b+c \gamma[x, a]_{\lambda, \mu} b b \\
& =c \gamma(x) \gamma\left[\gamma^{-1}(b), \lambda(a)\right] b .
\end{aligned}
$$

That is

$$
c \gamma(I) \gamma\left[\gamma^{-1}(b), \lambda(a)\right] b=0
$$

This gives that $c=0$ or $[b, \gamma \lambda(a)] b=0$.

Lemma 2.6. Leth $: R \longrightarrow R$ be a nonzero left-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $d: R \longrightarrow R$ and I be a nonzero ideal of R. If $b \in R$ such that $h \gamma[I, b]_{\lambda, \mu}=0$ then $b \in Z$ or $d \gamma \mu(b)=0$.

Proof. If $h \gamma[I, b]_{\lambda, \mu}=0$ then we get for all $x \in I$

$$
\begin{aligned}
0 & =h \gamma[\mu(b) x, b]_{\lambda, \mu}=h \gamma\left(\mu(b)[x, b]_{\lambda, \mu}\right)=h\left(\gamma \mu(b) \gamma[x, b]_{\lambda, \mu}\right) \\
& =d \gamma \mu(b) \alpha \gamma[x, b]_{\lambda, \mu}+\beta \gamma \mu(b) h \gamma[x, b]_{\lambda, \mu}=d \gamma \mu(b) \alpha \gamma[x, b]_{\lambda, \mu} .
\end{aligned}
$$

That is

$$
d \gamma \mu(b) \alpha \gamma[I, b]_{\lambda, \mu}=0 .
$$

Using Lemma 2.5 (i) and the last relation we obtain that $d \gamma \mu(b)=0$ or $b \in Z$.
Theorem 2.7. Leth $: R \longrightarrow R$ be a nonzero left-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $d: R \longrightarrow R$ and I, M be nonzero ideals of R. Let V be a left $(\sigma, \tau)-$ Lie ideal of R.
(i) If $h \gamma[I, M]_{\lambda, \mu}=0$ then R is commutative.
(ii) If $h \lambda(V)=0$ then $\sigma(v)+\tau(v) \in Z, \forall v \in V$.
(iii) If $h \gamma[I, V]_{\lambda, \mu}=0$ then $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Proof. (i) If $h \gamma[I, m]_{\lambda, \mu}=0, \forall m \in M$ then using Lemma 2.6, for any $m \in M$ we get

$$
m \in \mathrm{Z} \text { or } d \gamma \mu(m)=0
$$

Let $K=\{m \in M \mid m \in Z\}$ and $L=\{m \in M \mid d \gamma \mu(m)=0\}$. Then K and L are additive proper subgroups of M moreover $M=K \cup L$. Then it must be $M=K$ or $M=L$. We have $M \subset Z$ or $d \gamma \mu(M)=0$. Since $\gamma \mu(M)$ is a nonzero ideal of R and d is a nonzero derivation then using Lemma 2.1, $d \gamma \mu(M) \neq 0$. Hence we obtain $M \subset Z$. This gives that R is commutative from Lemma 2.2.
(ii) If $V \subset Z$ then $\sigma(v)+\tau(v) \in Z$ for all $v \in V$. If $V \nsubseteq Z$ then using Lemma 2.3, there exist a nonzero ideal M of R such that

$$
\left([R, M]_{\sigma, \tau} \subset V \text { and }[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right) \text { or } \sigma(v)+\tau(v) \in Z, \forall v \in V
$$

If $[R, M]_{\sigma, \tau} \subset V$ then $h \lambda(V)=0$ implies that $h \lambda[R, M]_{\sigma, \tau}=0$. If we use (i) then we have R is commutative and so $V \subset Z$. This contradicts with $V \nsubseteq Z$. Hence finally we obtain that $\sigma(v)+\tau(v) \in Z, \forall v \in V$ for any cases.
(iii) If $h \gamma[I, V]_{\lambda, \mu}=0$ then for any $v \in V$, we have $v \in Z$ or $d \gamma \mu(v)=0$ from Lemma 2.6. Considering as in the proof of (i) we get $V \subset Z$ or $d \gamma \mu(V)=0$. It is clear that $V \subset Z$ gives that $\sigma(v)+\tau(v) \in Z, \forall v \in V$. On the other hand, since d is a nonzero (α, β)-derivation then d is a nonzero left (and right)-generalized (α, β)-derivation associated with d. Hence, if $d \gamma \mu(V)=0$ then we obtain that $\sigma(v)+\tau(v) \in Z, \forall v \in V$ by (ii).

Corollary 2.8. ([9, Corollary 5]) Let R be a prime ring with characteristic different from two, let d be a nonzero (θ, φ)-derivation of R and let U be a left (σ, τ)-Lie ideal. If $d[R, U]_{\sigma, \tau}=0$ then $\sigma(u)+\tau(u) \in Z$ for all $u \in U$.

Corollary 2.9. Let V be a left (σ, τ)-Lie ideal of R. If $a \in R$ such that $(a, \lambda(V))_{\alpha, \beta}=0$ then $a \in C_{\alpha, \beta}$ or $\sigma(v)+\tau(v) \in$ $Z, \forall v \in V$.

Proof. The mapping defined by $g(r)=(a, r)_{\alpha, \beta}, \forall r \in R$ is a left-generalized (α, β)-derivation associated with (α, β)-derivation $d(r)=[a, r]_{\alpha, \beta}, \forall r \in R$. If $g=0$ then we have $d=0$ and so $a \in C_{\alpha, \beta}$. Let $g \neq 0$ and $d \neq 0$. If $(a, \lambda(V))_{\alpha, \beta}=0$ then we can write $g \lambda(V)=0$. Using Theorem 2.7 (ii) we obtain that $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Lemma 2.10. Leth $: R \longrightarrow R$ be a nonzeroleft-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation d and I be a nonzero ideal of R. If $a, b \in R$ such that $h \lambda[I, a]_{\sigma, \tau} b=0$ then $d \lambda \tau(a)=0$ or $[b, \alpha \lambda \sigma(a)] b=0$.

Proof. If $h \lambda[I, a]_{\sigma, \tau} b=0$ then we have for all $x \in I$

$$
\begin{aligned}
0 & =h \lambda[\tau(a) x, a]_{\sigma, \tau} b=h\left(\lambda \tau(a) \lambda[x, a]_{\sigma, \tau}\right) b \\
& =d \lambda \tau(a) \alpha \lambda[x, a]_{\sigma, \tau} b+\beta \lambda \tau(a) h \lambda[x, a]_{\sigma, \tau} b=d \lambda \tau(a) \alpha \lambda[x, a]_{\sigma, \tau} b .
\end{aligned}
$$

That is $d \lambda \tau(a) \alpha \lambda[I, a]_{\sigma, \tau} b=0$.
Using Lemma 2.5 (ii) we obtain that $d \lambda \tau(a)=0$ or $[b, \alpha \lambda \sigma(a)] b=0$.
Lemma 2.11. Let V be a left (σ, τ)-Lie ideal of R and $a, b \in R$. If $[a, \lambda(V)]_{\alpha, \beta} b=0$ then $a \in C_{\alpha, \beta}$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Proof. If $V \subset Z$ then $\sigma(v)+\tau(v) \in \mathrm{Z}$ for all $v \in V$. If $V \nsubseteq \mathrm{Z}$ then using Lemma 2.3, there exist a nonzero ideal M of R such that

$$
\left([R, M]_{\sigma, \tau} \subset V \text { and }[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right) \text { or } \sigma(v)+\tau(v) \in Z, \forall v \in V
$$

Let $[R, M]_{\sigma, \tau} \subset V$. The mapping $d(r)=[a, r]_{\alpha, \beta}, \forall r \in R$ is a $(\alpha, \beta)-$ derivation and so left (and right)generalized (α, β)-derivation with d. If $d=0$ then $a \in C_{\alpha, \beta}$ is obtained. Let $d \neq 0$.

If $[a, \lambda(V)]_{\alpha, \beta} b=0$ then we have $d \lambda(V) b=0$ and so $d \lambda[R, M]_{\sigma, \tau} b=0$. Using Lemma 2.10, this gives that for any $m \in M$

$$
d \lambda \tau(m)=0 \text { or }[b, \alpha \lambda \sigma(m)] b=0
$$

Considering as in the proof of Theorem 2.7 (i) we obtain that

$$
d \lambda \tau(M)=0 \text { or }[b, \alpha \lambda \sigma(M)] b=0
$$

Since $\lambda \tau(M)$ is a nonzero ideal of R and d is a nonzero derivation then using by Lemma 2.1, $d \lambda \tau(M) \neq 0$. On the other hand, if $[b, \alpha \lambda \sigma(M)] b=0$ then we get for all $m, m_{1} \in M$

$$
\begin{aligned}
0 & =\left[b, \alpha \lambda \sigma\left(m m_{1}\right)\right] b=\alpha \lambda \sigma(m)\left[b, \alpha \lambda \sigma\left(m_{1}\right)\right] b+[b, \alpha \lambda \sigma(m)] \alpha \lambda \sigma\left(m_{1}\right) b \\
& =[b, \alpha \lambda \sigma(m)] \alpha \lambda \sigma\left(m_{1}\right) b .
\end{aligned}
$$

That is

$$
[b, \alpha \lambda \sigma(M)] \alpha \lambda \sigma(M) b=0
$$

Since $\alpha \lambda \sigma(M)$ is a nonzero ideal of R then we have $b \in Z$. Finally we obtain that $a \in C_{\alpha, \beta}$ or $b \in Z$ or for all $v \in V, \sigma(v)+\tau(v) \in Z$ for all case.

Corollary 2.12. Let V be a left (σ, τ)-Lie ideal of R and $a, b \in R$. If $[a, \lambda(V)] b=0$ then $a \in Z$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Proof. Taking $\alpha=\beta=1$ an identity map of R in Lemma 2.11 we get the required result.
Theorem 2.13. Let $h: R \longrightarrow R$ be a nonzero left-generalized (α, β)-derivation associated with (α, β)-derivation d and let V be a left (σ, τ)-Lie ideal of R. If $b \in R$ such that $h \lambda(V) b=0$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. If $h \lambda(V) b=0$ then we have $h \lambda[R, V]_{\sigma, \tau} b=0$. Using Lemma 2.10, for any $v \in V$, we obtain that $d \lambda \tau(v)=0$ or $[b, \alpha \lambda \sigma(v)] b=0$. Let $K=\{v \in V \mid d \lambda \tau(v)=0\}$ and $L=\{v \in V \mid[b, \alpha \lambda \sigma(v)] b=0\}$. Considering as in the proof of Theorem 2.7 (i), we get

$$
d \lambda \tau(V)=0 \text { or }[b, \alpha \lambda \sigma(V)] b=0
$$

Since d is a (α, β)-derivation then left-generalized (α, β)-derivation with d. If $d \lambda \tau(V)=0$ then using Theorem 2.7 (ii), we have $\sigma(v)+\tau(v) \in Z, \forall v \in V$. On the other hand if $[b, \alpha \lambda \sigma(V)] b=0$ then using Corollary 2.12, we obtain that $b \in \mathrm{Z}$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Corollary 2.14. Let $h: R \longrightarrow R$ be a nonzero left-generalized derivation associated with derivation d and let V be a left (σ, τ)-Lie ideal of R. If $b \in R$ such that $h(V) b=0$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. Taking $\alpha=\beta=\lambda=1$ an identity map of R in Theorem 2.13, we get the required result.
Remark 2.15. Let M be a nonzero ideal of R. If $b[b, \lambda(M)]=0$ then $b \in Z$.
Proof. If $b[b, \lambda(M)]=0$ then for all $m \in M, r \in R$

$$
0=b[b, \lambda(m r)]=b \lambda(m)[b, \lambda(r)]+b[b, \lambda(m)] \lambda(r)=b \lambda(m)[b, \lambda(r)] .
$$

That is $b \lambda(M)[b, R]=0$. This gives that $b \in Z$.
Lemma 2.16. Let $h: R \longrightarrow R$ be a nonzero right-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $d: R \longrightarrow R$. Let I be a nonzero ideal of R and $a, b \in R$. If bh $\lambda[I, a]_{\sigma, \tau}=0$ then $b[b, \beta \lambda \tau(a)]=0$ or $d \lambda \sigma(a)=0$.

Proof. If $b h \lambda[I, a]_{\sigma, \tau}=0$ then we have for all $x \in I$

$$
0=b h \lambda[x \sigma(a), a]_{\sigma, \tau}=b\left\{h\left(\lambda[x, a]_{\sigma, \tau} \lambda \sigma(a)\right)\right\}=b h \lambda[x, a]_{\sigma, \tau} \alpha \lambda \sigma(a)+b \beta \lambda[x, a]_{\sigma, \tau} d \lambda \sigma(a) .
$$

That is

$$
\begin{equation*}
b \beta \lambda[x, a]_{\sigma, \tau} d \lambda \sigma(a)=0, \forall x \in I \tag{1}
\end{equation*}
$$

Replacing x by $\lambda^{-1} \beta^{-1}(b) x$ in (1) we get for all $x \in I$

$$
\begin{aligned}
0 & =b \beta \lambda\left[\lambda^{-1} \beta^{-1}(b) x, a\right]_{\sigma, \tau} d \lambda \sigma(a) \\
& =b b \beta \lambda[x, a]_{\sigma, \tau} d \lambda \sigma(a)+b \beta \lambda\left[\lambda^{-1} \beta^{-1}(b), \tau(a)\right] \beta \lambda(x) d \lambda \sigma(a) \\
& =b \beta \lambda\left[\lambda^{-1} \beta^{-1}(b), \tau(a)\right] \beta \lambda(x) d \lambda \sigma(a) .
\end{aligned}
$$

That is

$$
b \beta \lambda\left[\lambda^{-1} \beta^{-1}(b), \tau(a)\right] \beta \lambda(I) d \lambda \sigma(a)=0 .
$$

Since $\beta \lambda(I)$ an ideal of R then we have $b \beta \lambda\left[\lambda^{-1} \beta^{-1}(b), \tau(a)\right]=0$ or $d \lambda \sigma(a)=0$. That is $b[b, \beta \lambda \tau(a)]=0$ or $d \lambda \sigma(a)=0$.

Corollary 2.17. Let $h: R \longrightarrow R$ be a nonzero right-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation d and M be a nonzero ideal of R. If $b \in R$ such that bh $\lambda[R, M]_{\sigma, \tau}=0$ then $b \in Z$.

Proof. If $b h \lambda[R, m]_{\sigma, \tau}=0, \forall m \in M$ then using Lemma 2.16 we have for any $m \in M$

$$
b[b, \beta \lambda \tau(m)]=0 \text { or } d \lambda \sigma(m)=0
$$

Let $K=\{m \in M \mid b[b, \beta \lambda \tau(m)]=0\}$ and $L=\{m \in M \mid d \lambda \sigma(m)=0\}$. Considering as in the proof of Theorem 2.7 (i) we obtain $b[b, \beta \lambda \tau(M)]=0$ or $d \lambda \sigma(M)=0$. Since d is a nonzero derivation then $d \lambda \sigma(M) \neq 0$ from Lemma 2.1. If $b[b, \beta \lambda \tau(M)]=0$ then using Remark $2.15, b \in \mathrm{Z}$ is obtained.

Lemma 2.18. Let V be a left (σ, τ)-Lie ideal of R and $a, b \in R$. If $b[a, \lambda(V)]_{\alpha, \beta}=0$ then $a \in C_{\alpha, \beta}$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Proof. If $V \subset Z$ then $\sigma(v)+\tau(v) \in Z$ for all $v \in V$. If $V \nsubseteq Z$ then using Lemma 2.3, there exist a nonzero ideal M of R such that

$$
\left([R, M]_{\sigma, \tau} \subset V \text { and }[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right) \text { or } \sigma(v)+\tau(v) \in Z, \forall v \in V .
$$

Let $[R, M]_{\sigma, \tau} \subset V$. The mapping $d(r)=[a, r]_{\alpha, \beta}, \forall r \in R$ is a (α, β)-derivation and so right (and left)-generalized (α, β)-derivation associated with d. If $d=0$ then $a \in C_{\alpha, \beta}$ is obtained. Assume that d is a nonzero derivation.

If $b[a, \lambda(V)]_{\alpha, \beta}=0$ then we have $b d \lambda(V)=0$ and so $b d \lambda[R, M]_{\sigma, \tau}=0$. This gives that by Lemma 2.16, for any $m \in M$

$$
d \lambda \sigma(m)=0 \text { or } b[b, \beta \lambda \tau(m)]=0 .
$$

Considering as in the proof of Theorem 2.7 (i), we obtain that

$$
d \lambda \sigma(M)=0 \text { or } b[b, \beta \lambda \tau(M)]=0
$$

Since $\lambda \sigma(M)$ is a nonzero ideal of R and d is a nonzero derivation then $d \lambda \sigma(M) \neq 0$ by Lemma 2.1. On the other hand, if $b[b, \beta \lambda \tau(M)]=0$ then using Remark 2.15, we have $b \in Z$.

Finally we obtain that $a \in C_{\alpha, \beta}$ or $b \in \mathrm{Z}$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$ for all case.
Corollary 2.19. Let V be a left (σ, τ)-Lie ideal of R and $a, b \in R$. If $b[a, \lambda(V)]=0$ then $a \in Z$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Proof. Taking $\alpha=\beta=1$ an identity map of R in Lemma 2.18, we get the required result.
Theorem 2.20. Leth $: R \longrightarrow R$ be a nonzero right-generalized (α, β)-derivation associated with nonzero (α, β)-derivation d and $a, b \in R$. Let V be a left (σ, τ)-Lie ideal and $I \neq 0$ an ideal of R.
(i) If $b h \lambda(V)=0$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.
(ii) If $b h \lambda[I, V]_{\sigma, \tau}=0$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. (i) If $V \subset Z$ then it is clear that $\sigma(v)+\tau(v) \in Z, \forall v \in V$. If $V \nsubseteq Z$ then using Lemma 2.3, there exist a nonzero ideal M of R such that $\left([R, M]_{\sigma, \tau} \subset V\right.$ and $\left.[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right)$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$. If $[R, M]_{\sigma, \tau} \subset V$ then $b h \lambda(V)=0$ means that $b h \lambda[R, M]_{\sigma, \tau}=0$. Using Corollary 2.17, we get $b \in Z$.

Finally we obtain that $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$ for any case.
(ii) If $b h \lambda[I, v]_{\sigma, \tau}=0, \forall v \in V$ then using Lemma 2.16, we have for any $v \in V$

$$
b[b, \beta \lambda \tau(v)]=0 \text { or } d \lambda \sigma(v)=0
$$

Let $K=\{v \in V \mid b[b, \beta \lambda \tau(v)]=0\}$ and $L=\{v \in V \mid d \lambda \sigma(v)=0\}$. Considering as the proof of Theorem 2.7 (i), we obtain

$$
b[b, \beta \lambda \tau(V)]=0 \text { or } d \lambda \sigma(V)=0
$$

Since d is a (α, β)-derivation then d is a left-generalized (α, β)-derivation with d. Hence $d \lambda \sigma(V)=0$ implies that $\sigma(v)+\tau(v) \in Z, \forall v \in V$ from Theorem 2.7(ii). On the other hand,
if $b[b, \beta \lambda \tau(V)]=0$ then using Corollary 2.19, we get $b \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.
Corollary 2.21. Let $h: R \longrightarrow R$ be a nonzero right-generalized derivation associated with nonzero derivation d and $a, b \in R$. Let V be a left (σ, τ)-Lie ideal and $I \neq 0$ an ideal of R. If $b h(V)=0$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. Taking $\alpha=\beta=\lambda=1$ an identity map of R in Theorem 2.20 (i), we get the required result.
Theorem 2.22. Let V be a nonzero left (σ, τ)-Lie ideal of R. and $a, b \in R$.
(i) If $b[V, a]_{\alpha, \beta}=0$ or $[V, a]_{\alpha, \beta} b=0$ then $a \in Z$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.
(ii) If $(a, V)_{\alpha, \beta} b=0$ then $a \in C_{\alpha, \beta}$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$
(iii) If $(V, a)_{\alpha, \beta} b=0$ then $a \in Z$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. (i) Let us consider the mapping defined by $h(r)=[r, a]_{\alpha, \beta}, \forall r \in R$. Then h is a right(left resp.)generalized derivation associated with derivation $d_{1}(r)=[r, \alpha(a)], \forall r \in R$ and derivation $d_{2}=[r, \beta(a)], \forall r \in R$ respectively. Because

$$
\begin{aligned}
& h(r s)=[r s, a]_{\alpha, \beta}=r[s, \alpha(a)]+[r, a]_{\alpha, \beta} s=h(r) s+r d_{1}(s), \forall r, s \in R, \\
& h(r s)=[r s, a]_{\alpha, \beta}=r[s, a]_{\alpha, \beta}+[r, \beta(a)] s=d_{2}(r) s+r h(s), \forall r, s \in R .
\end{aligned}
$$

If $h=0$ then $d_{1}=0$ and $d_{2}=0$ and so $a \in Z$ is obtained. Let $h \neq 0, d_{1} \neq 0$ and $d_{2} \neq 0$.
If $b[V, a]_{\alpha, \beta}=0$ then we have $b h(V)=0$. Since h is a right-generalized derivation associated with derivation d_{1} then using Corollary 2.21, we get $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Similarly if $[V, a]_{\alpha, \beta} b=0$ then we write $h(V) b=0$. Since h is a left-generalized derivation associated with derivation d_{2} then using Corollary 2.14 we have $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$. Finally we obtain that $a \in Z$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$ for two case.
(ii) Let $g(r)=(a, r)_{\alpha, \beta}, \forall r \in R$ and $d_{3}(r)=[a, r]_{\alpha, \beta}, \forall r \in R$. Then g is a left-generalized (α, β)-derivation associated with (α, β)-derivation d_{3}. Because for all $r, s \in R$

$$
g(r s)=(a, r s)_{\alpha, \beta}=\beta(r)(a, s)_{\alpha, \beta}+[a, r]_{\alpha, \beta} \alpha(s)=d_{3}(r) \alpha(s)+\beta(r) g(s) .
$$

If $g=0$ then we have $d_{3}=0$ and so $a \in C_{\alpha, \beta}$ is obtained. Let $g \neq 0$ and $d_{3} \neq 0$.
If $(a, V)_{\alpha, \beta} b=0$ then we have $g(V) b=0$. Since g is a nonzero left-generalized (α, β)-derivation associated with (α, β)-derivation d_{3} then considering Theorem 2.13, we get $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$. Finally we obtain that $a \in C_{\alpha, \beta}$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$ for two case.
(iii) The mapping $f(r)=(r, a)_{\alpha, \beta}, \forall r \in R$ is a left-generalized derivation associated with derivation $d_{4}(r)=-[r, \beta(a)], \forall r \in R$. Because for all $r, s \in R$

$$
f(r s)=(r s, a)_{\alpha, \beta}=r(s, a)_{\alpha, \beta}-[r, \beta(a)] s=d_{4}(r) s+r f(s)
$$

If $f=0$ then $d_{4}=0$ and so $a \in \mathrm{Z}$ is obtained.
Let $f \neq 0$ and $d_{4} \neq 0$. If $(V, a)_{\alpha, \beta} b=0$ then we have $f(V) b=0$. This gives that $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$ by Corollary 2.14.

Lemma 2.23. Leth $: R \longrightarrow R$ be a nonzeroleft-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $d: R \rightarrow R$. Let V be a nonzero left (σ, τ)-Lie ideal of R and I be a nonzero ideal of R. If $a, b \in R$ such that $[h(I) b, a]_{\lambda, \mu}=0$ then $d \beta^{-1} \mu(a)=0$ or $b[b, \lambda(a)]=0$.
Proof. If $[h(x) b, a]_{\lambda, \mu}=0, \forall x \in I$ then we have

$$
\begin{equation*}
h(x)[b, \lambda(a)]+[h(x), a]_{\lambda, \mu} b=0, \forall x \in I . \tag{2}
\end{equation*}
$$

Replacing x by $s x, s \in R$ in (2) and using (2), we get for all $x \in I, s \in R$

$$
\begin{aligned}
0 & =h(s x)[b, \lambda(a)]+[h(s x), a]_{\lambda, \mu} b \\
& =d(s) \alpha(x)[b, \lambda(a)]+\beta(s) h(x)[b, \lambda(a)]+[d(s) \alpha(x)+\beta(s) h(x), a]_{\lambda, \mu} b \\
& =d(s) \alpha(x)[b, \lambda(a)]+\beta(s) h(x)[b, \lambda(a)]+d(s)[\alpha(x), \lambda(a)] b \\
& +[d(s), a]_{\lambda, \mu} \alpha(x) b+\beta(s)[h(x), a]_{\lambda, \mu} b+[\beta(s), \mu(a)] h(x) b \\
& =d(s) \alpha(x)[b, \lambda(a)]+d(s)[\alpha(x), \lambda(a)] b+[d(s), a]_{\lambda, \mu} \alpha(x) b+[\beta(s), \mu(a)] h(x) b .
\end{aligned}
$$

If we take $\beta^{-1} \mu(a)$ instead of s and say that $k=d \beta^{-1} \mu(a)$ then the last relation gives that

$$
\begin{equation*}
k \alpha(x)[b, \lambda(a)]+k[\alpha(x), \lambda(a)] b+[k, a]_{\lambda, \mu} \alpha(x) b=0, \forall x \in I . \tag{3}
\end{equation*}
$$

Replacing x by $x \alpha^{-1}(b)$ in (3) we have for all $x \in I$

$$
0=k \alpha(x) b[b, \lambda(a)]+k \alpha(x)[b, \lambda(a)] b+k[\alpha(x), \lambda(a)] b b+[k, a]_{\lambda, \mu} \alpha(x) b b=k \alpha(x) b[b, \lambda(a)]
$$

and so $k \alpha(I) b[b, \lambda(a)]=0$.
Since $\alpha(I)$ is a nonzero ideal of R then we obtain $d \beta^{-1} \mu(a)=0$ or $b[b, \lambda(a)]=0$.

Theorem 2.24. Leth $: R \longrightarrow R$ be a nonzeroleft-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $d: R \longrightarrow R$. Let V be a nonzero left (σ, τ)-Lie ideal of R and I be a nonzero ideal of R. If $b \in R$ such that $h(I) b \subset C_{\lambda, \mu}(V)$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. If $h(I) b \subset C_{\lambda, \mu}(V)$ then we have $[h(x) b, v]_{\lambda, \mu}=0, \forall v \in V, x \in I$. Using Lemma 2.23, we get $d \beta^{-1} \mu(v)=0$ or $b[b, \lambda(v)]=0$.

Let $K=\{v \in V \mid b[b, \lambda(v)]=0\}$ and $L=\left\{v \in V \mid d \beta^{-1} \mu(v)=0\right\}$. Considering as in the proof of Theorem 2.7 (i) we obtain

$$
d \beta^{-1} \mu(V)=0 \text { or } b[b, \lambda(V)]=0
$$

If $d \beta^{-1} \mu(V)=0$ then using Theorem 2.7 (ii), we have $\sigma(v)+\tau(v) \in Z, \forall v \in V$. On the other hand using Corollary 2.19, $b[b, \lambda(V)]=0$ means that $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Corollary 2.25. Let V be a nonzero left (σ, τ)-Lie ideal of R and $a, b \in R$. If $(a, I)_{\sigma, \tau} b \subset C_{\lambda, \mu}(V)$ then $a \in C_{\sigma, \tau}$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. The mapping defined by $h(r)=(a, r)_{\sigma, \tau}, \forall r \in R$ is a left-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $d(r)=[a, r]_{\sigma, \tau}, \forall r \in R$. If $h=0$ then $d=0$ and so we have $a \in C_{\sigma, \tau}$. Let $h \neq 0$ and $d \neq 0$.

If $(a, I)_{\sigma, \tau} b \subset C_{\lambda, \mu}(V)$ then we can write $h(I) b \subset C_{\lambda, \mu}(V)$. Using Theorem 2.24, we get $b \in Z$ or $\sigma(v)+\tau(v) \in$ $Z, \forall v \in V$.

Theorem 2.26. Let $h: R \longrightarrow R$ be a nonzero left-generalized (α, β)-derivation associated with nonzero (α, β)-derivation $d: R \longrightarrow R$ and I be a nonzero ideal of R. Let V be a nonzero left (σ, τ)-Lie ideal of R. If $h(I) \subset C_{\lambda, \mu}(V)$ then $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. If $h(I) \subset C_{\lambda, \mu}(V)$ then we have $[h(x), v]_{\lambda, \mu}=0, \forall x \in I, v \in V$. Let us consider the following relations

$$
\begin{aligned}
{[r s, t]_{\lambda, \mu} } & =r[s, \lambda(t)]+[r, t]_{\lambda, \mu} s, \forall r, s, t \in R \text { and } \\
{[r s, t]_{\lambda, \mu} } & =r[s, t]_{\lambda, \mu}+[r, \mu(t)] s, \forall r, s, t \in R .
\end{aligned}
$$

Using the hypothesis and the above relations we get for all $v \in V, x \in I, s \in R$

$$
\begin{aligned}
0 & =[h(s x), v]_{\lambda, \mu}=[d(s) \alpha(x)+\beta(s) h(x), v]_{\lambda, \mu} \\
& =[d(s) \alpha(x), v]_{\lambda, \mu}+[\beta(s) h(x), v]_{\lambda, \mu} \\
& =d(s)[\alpha(x), \lambda(v)]+[d(s), v]_{\lambda, \mu} \alpha(x)+\beta(s)[h(x), v]_{\lambda, \mu}+[\beta(s), \mu(v)] h(x) \\
& =d(s)[\alpha(x), \lambda(v)]+[d(s), v]_{\lambda, \mu} \alpha(x)+[\beta(s), \mu(v)] h(x)
\end{aligned}
$$

and so

$$
\begin{equation*}
d(s)[\alpha(x), \lambda(v)]+[d(s), v]_{\lambda, \mu} \alpha(x)+[\beta(s), \mu(v)] h(x)=0, \forall v \in V, x \in I, s \in R . \tag{4}
\end{equation*}
$$

If we take $\beta^{-1} \mu(v)$ instead of s in (4) and say that $k(v)=d \beta^{-1} \mu(v)$ then we obtain

$$
\begin{equation*}
k(v)[\alpha(x), \lambda(v)]+[k(v), v]_{\lambda, \mu} \alpha(x)=0, \forall v \in V, x \in I . \tag{5}
\end{equation*}
$$

Replacing x by $x r, r \in R$ in (5) and using (5) we have for all $v \in V, x \in I, r \in R$

$$
\begin{aligned}
0 & =k(v) \alpha(x)[\alpha(r), \lambda(v)]+k(v)[\alpha(x), \lambda(v)] \alpha(r)+[k(v), v]_{\lambda, \mu} \alpha(x) \alpha(r) \\
& =k(v) \alpha(x)[\alpha(r), \lambda(v)]
\end{aligned}
$$

and so

$$
\begin{equation*}
k(v) \alpha(I)[R, \lambda(v)]=0, \forall v \in V . \tag{6}
\end{equation*}
$$

For any $v \in V$, the relation (6) gives that $d \beta^{-1} \mu(v)=0$ or $v \in Z$.
Let $K=\left\{v \in V \mid d \beta^{-1} \mu(v)=0\right\}$ and $L=\{v \in V \mid v \in Z\}$. Considering as in the proof of Theorem 2.7 (i), we get $d \beta^{-1} \mu(V)=0$ or $V \subset Z$.

If $V \subset Z$ then $\sigma(v)+\tau(v) \in Z, \forall v \in V$. On the other hand, since d is a (α, β)-derivation and so a leftgeneralized (α, β)-derivation associated with d then $d \beta^{-1} \mu(V)=0$ means that $\sigma(v)+\tau(v) \in Z, \forall v \in V$ by Theorem 2.7 (ii).

Corollary 2.27. Let V be a nonzero left (σ, τ)-Lie ideal of R and $b \in R$. If $(b, I)_{\alpha, \beta} \subset C_{\lambda, \mu}(V)$ then $b \in C_{\alpha, \beta}$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. Let us consider the mappings defined by $h(r)=(b, r)_{\alpha, \beta}, \forall \in R$ and $d(r)=[b, r]_{\alpha, \beta}, \forall r \in R$. Since

$$
h(r s)=(b, r s)_{\alpha, \beta}=\tau(r)(b, s)_{\alpha, \beta}+[b, r]_{\alpha, \beta} \sigma(s)=d(r) \sigma(s)+\tau(r) h(s), \forall r, s \in R
$$

Then h is a left-generalized (α, β) - derivation associated with $(\alpha, \beta)-$ derivation d. If $h=0$ then $d=0$ and so $b \in C_{\alpha, \beta}$ is obtained.

If $(b, I)_{\alpha, \beta} \subset C_{\lambda, \mu}(V)$ then we have $h(I) \subset C_{\lambda, \mu}(V)$. Let $h \neq 0$ and $d \neq 0$. Using Theorem 2.26, we obtain $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Theorem 2.28. Let $h: R \longrightarrow R$ be a nonzero right-generalized (α, β)-derivation associated with (α, β)-derivation $0 \neq d: R \longrightarrow R$. Let V be a nonzero left (σ, τ)-Lie ideal of R and I be a nonzero ideal of R. If $b \in R$ such that $b h(I) \subset C_{\lambda, \mu}(V)$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. If $b h(I) \subset C_{\lambda, \mu}(V)$ then $[b h(I), v]_{\lambda, \mu}=0, \forall v \in V$. Using Lemma 2.4, for any $v \in V$, we obtain that $[b, \mu(v)] b=0$ or $d \alpha^{-1} \lambda(v)=0$.

Let $K=\{v \in V \mid[b, \mu(v)] b=0\}$ and $L=\left\{v \in V \mid d \alpha^{-1} \lambda(v)=0\right\}$. Considering as in the proof of Theorem 2.7 (i), we have

$$
[b, \mu(V)] b=0 \text { or } d \alpha^{-1} \lambda(V)=0
$$

If $d \alpha^{-1} \lambda(V)=0$ then $\sigma(v)+\tau(v) \in Z, \forall v \in V$ is obtained by Theorem 2.7 (ii). On the other hand $[b, \mu(V)] b=0$ means that $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$ by Corollary 2.12.

Corollary 2.29. Let I be a nonzero ideal of R and $a, b \in R$. If $b(a, I)_{\sigma, \tau} \subset C_{\lambda, \mu}(V)$ then $a \in C_{\sigma, \tau}$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Proof. The mapping defined by $h(r)=(a, r)_{\sigma, \tau}, \forall r \in R$ is a right-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $d(r)=[a, r]_{\sigma, \tau}, \forall r \in R$. If $h=0$ then $d=0$ and so we have $a \in C_{\sigma, \tau}$. Assume that h and d are nonzero.

If $b(a, I)_{\sigma, \tau} \subset C_{\lambda, \mu}(V)$ then we have $b h(I) \subset C_{\lambda, \mu}(V)$. Since h is right-generalized (σ, τ)-derivation then using Theorem 2.2, we get $b \in \mathrm{Z}$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

References

[1] N. Aydın, K. Kaya, Some generalizations in prime rings with (σ, τ)-derivation, Doğa-Tr. J. Math. 16, (1992) 169-176.
[2] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991) 89-93.
[3] J.C. Chang., On the identity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math. 7 (2003) 103-113.
[4] E. Güven, One sided (σ, τ)-Lie ideals and generalized derivations in prime rings, Palestine J. Math. 7 (2018) 479-486.
[5] E. Güven, K. Kaya, M. Soytürk, Some results on (σ, τ)-Lie ideals, Math. J. Okayama Univ. 49 (2007) 59-64.
[6] K. Kaya, N. Aydın, Some results on generalized Lie ideals, Albasapr Sci. J. (Jordan Univ. for Woman) 3:1 (1999) 53-61.
[7] K. Kaya, (σ, τ)-Lie ideals in prime rings, Anal. Univ Timisoara Ser. Stiinte Math. (1992) 251-255.
[8] J.H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984) 122-126.
[9] K.H. Park, Y.S. Jung, Some result concerning (θ, φ)-derivations on prime rings, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 10:4 (2003) 207-215.

[^0]: 2010 Mathematics Subject Classification. Primary 16W25; Secondary 16U80
 Keywords. Prime ring, generalized derivation, (σ, τ)-Lie ideal
 Received: 19 May 2017; Revised: 05 November 2017; Accepted: 30 November 2017
 Communicated by Ljubiša D.R. Kočinac
 Email address: evrim@kocaeli.edu.tr (Evrim Güven)

